1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe I/O command implementation.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/blkdev.h>
8 #include <linux/blk-integrity.h>
9 #include <linux/memremap.h>
10 #include <linux/module.h>
11 #include "nvmet.h"
12
nvmet_bdev_set_limits(struct block_device * bdev,struct nvme_id_ns * id)13 void nvmet_bdev_set_limits(struct block_device *bdev, struct nvme_id_ns *id)
14 {
15 /* Logical blocks per physical block, 0's based. */
16 const __le16 lpp0b = to0based(bdev_physical_block_size(bdev) /
17 bdev_logical_block_size(bdev));
18
19 /*
20 * For NVMe 1.2 and later, bit 1 indicates that the fields NAWUN,
21 * NAWUPF, and NACWU are defined for this namespace and should be
22 * used by the host for this namespace instead of the AWUN, AWUPF,
23 * and ACWU fields in the Identify Controller data structure. If
24 * any of these fields are zero that means that the corresponding
25 * field from the identify controller data structure should be used.
26 */
27 id->nsfeat |= 1 << 1;
28 id->nawun = lpp0b;
29 id->nawupf = lpp0b;
30 id->nacwu = lpp0b;
31
32 /*
33 * Bit 4 indicates that the fields NPWG, NPWA, NPDG, NPDA, and
34 * NOWS are defined for this namespace and should be used by
35 * the host for I/O optimization.
36 */
37 id->nsfeat |= 1 << 4;
38 /* NPWG = Namespace Preferred Write Granularity. 0's based */
39 id->npwg = lpp0b;
40 /* NPWA = Namespace Preferred Write Alignment. 0's based */
41 id->npwa = id->npwg;
42 /* NPDG = Namespace Preferred Deallocate Granularity. 0's based */
43 id->npdg = to0based(bdev_discard_granularity(bdev) /
44 bdev_logical_block_size(bdev));
45 /* NPDG = Namespace Preferred Deallocate Alignment */
46 id->npda = id->npdg;
47 /* NOWS = Namespace Optimal Write Size */
48 id->nows = to0based(bdev_io_opt(bdev) / bdev_logical_block_size(bdev));
49 }
50
nvmet_bdev_ns_disable(struct nvmet_ns * ns)51 void nvmet_bdev_ns_disable(struct nvmet_ns *ns)
52 {
53 if (ns->bdev) {
54 blkdev_put(ns->bdev, NULL);
55 ns->bdev = NULL;
56 }
57 }
58
nvmet_bdev_ns_enable_integrity(struct nvmet_ns * ns)59 static void nvmet_bdev_ns_enable_integrity(struct nvmet_ns *ns)
60 {
61 struct blk_integrity *bi = bdev_get_integrity(ns->bdev);
62
63 if (bi) {
64 ns->metadata_size = bi->tuple_size;
65 if (bi->profile == &t10_pi_type1_crc)
66 ns->pi_type = NVME_NS_DPS_PI_TYPE1;
67 else if (bi->profile == &t10_pi_type3_crc)
68 ns->pi_type = NVME_NS_DPS_PI_TYPE3;
69 else
70 /* Unsupported metadata type */
71 ns->metadata_size = 0;
72 }
73 }
74
nvmet_bdev_ns_enable(struct nvmet_ns * ns)75 int nvmet_bdev_ns_enable(struct nvmet_ns *ns)
76 {
77 int ret;
78
79 /*
80 * When buffered_io namespace attribute is enabled that means user want
81 * this block device to be used as a file, so block device can take
82 * an advantage of cache.
83 */
84 if (ns->buffered_io)
85 return -ENOTBLK;
86
87 ns->bdev = blkdev_get_by_path(ns->device_path,
88 BLK_OPEN_READ | BLK_OPEN_WRITE, NULL, NULL);
89 if (IS_ERR(ns->bdev)) {
90 ret = PTR_ERR(ns->bdev);
91 if (ret != -ENOTBLK) {
92 pr_err("failed to open block device %s: (%ld)\n",
93 ns->device_path, PTR_ERR(ns->bdev));
94 }
95 ns->bdev = NULL;
96 return ret;
97 }
98 ns->size = bdev_nr_bytes(ns->bdev);
99 ns->blksize_shift = blksize_bits(bdev_logical_block_size(ns->bdev));
100
101 ns->pi_type = 0;
102 ns->metadata_size = 0;
103 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY_T10))
104 nvmet_bdev_ns_enable_integrity(ns);
105
106 if (bdev_is_zoned(ns->bdev)) {
107 if (!nvmet_bdev_zns_enable(ns)) {
108 nvmet_bdev_ns_disable(ns);
109 return -EINVAL;
110 }
111 ns->csi = NVME_CSI_ZNS;
112 }
113
114 return 0;
115 }
116
nvmet_bdev_ns_revalidate(struct nvmet_ns * ns)117 void nvmet_bdev_ns_revalidate(struct nvmet_ns *ns)
118 {
119 ns->size = bdev_nr_bytes(ns->bdev);
120 }
121
blk_to_nvme_status(struct nvmet_req * req,blk_status_t blk_sts)122 u16 blk_to_nvme_status(struct nvmet_req *req, blk_status_t blk_sts)
123 {
124 u16 status = NVME_SC_SUCCESS;
125
126 if (likely(blk_sts == BLK_STS_OK))
127 return status;
128 /*
129 * Right now there exists M : 1 mapping between block layer error
130 * to the NVMe status code (see nvme_error_status()). For consistency,
131 * when we reverse map we use most appropriate NVMe Status code from
132 * the group of the NVMe staus codes used in the nvme_error_status().
133 */
134 switch (blk_sts) {
135 case BLK_STS_NOSPC:
136 status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
137 req->error_loc = offsetof(struct nvme_rw_command, length);
138 break;
139 case BLK_STS_TARGET:
140 status = NVME_SC_LBA_RANGE | NVME_SC_DNR;
141 req->error_loc = offsetof(struct nvme_rw_command, slba);
142 break;
143 case BLK_STS_NOTSUPP:
144 req->error_loc = offsetof(struct nvme_common_command, opcode);
145 switch (req->cmd->common.opcode) {
146 case nvme_cmd_dsm:
147 case nvme_cmd_write_zeroes:
148 status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
149 break;
150 default:
151 status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
152 }
153 break;
154 case BLK_STS_MEDIUM:
155 status = NVME_SC_ACCESS_DENIED;
156 req->error_loc = offsetof(struct nvme_rw_command, nsid);
157 break;
158 case BLK_STS_IOERR:
159 default:
160 status = NVME_SC_INTERNAL | NVME_SC_DNR;
161 req->error_loc = offsetof(struct nvme_common_command, opcode);
162 }
163
164 switch (req->cmd->common.opcode) {
165 case nvme_cmd_read:
166 case nvme_cmd_write:
167 req->error_slba = le64_to_cpu(req->cmd->rw.slba);
168 break;
169 case nvme_cmd_write_zeroes:
170 req->error_slba =
171 le64_to_cpu(req->cmd->write_zeroes.slba);
172 break;
173 default:
174 req->error_slba = 0;
175 }
176 return status;
177 }
178
nvmet_bio_done(struct bio * bio)179 static void nvmet_bio_done(struct bio *bio)
180 {
181 struct nvmet_req *req = bio->bi_private;
182
183 nvmet_req_complete(req, blk_to_nvme_status(req, bio->bi_status));
184 nvmet_req_bio_put(req, bio);
185 }
186
187 #ifdef CONFIG_BLK_DEV_INTEGRITY
nvmet_bdev_alloc_bip(struct nvmet_req * req,struct bio * bio,struct sg_mapping_iter * miter)188 static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio,
189 struct sg_mapping_iter *miter)
190 {
191 struct blk_integrity *bi;
192 struct bio_integrity_payload *bip;
193 int rc;
194 size_t resid, len;
195
196 bi = bdev_get_integrity(req->ns->bdev);
197 if (unlikely(!bi)) {
198 pr_err("Unable to locate bio_integrity\n");
199 return -ENODEV;
200 }
201
202 bip = bio_integrity_alloc(bio, GFP_NOIO,
203 bio_max_segs(req->metadata_sg_cnt));
204 if (IS_ERR(bip)) {
205 pr_err("Unable to allocate bio_integrity_payload\n");
206 return PTR_ERR(bip);
207 }
208
209 /* virtual start sector must be in integrity interval units */
210 bip_set_seed(bip, bio->bi_iter.bi_sector >>
211 (bi->interval_exp - SECTOR_SHIFT));
212
213 resid = bio_integrity_bytes(bi, bio_sectors(bio));
214 while (resid > 0 && sg_miter_next(miter)) {
215 len = min_t(size_t, miter->length, resid);
216 rc = bio_integrity_add_page(bio, miter->page, len,
217 offset_in_page(miter->addr));
218 if (unlikely(rc != len)) {
219 pr_err("bio_integrity_add_page() failed; %d\n", rc);
220 sg_miter_stop(miter);
221 return -ENOMEM;
222 }
223
224 resid -= len;
225 if (len < miter->length)
226 miter->consumed -= miter->length - len;
227 }
228 sg_miter_stop(miter);
229
230 return 0;
231 }
232 #else
nvmet_bdev_alloc_bip(struct nvmet_req * req,struct bio * bio,struct sg_mapping_iter * miter)233 static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio,
234 struct sg_mapping_iter *miter)
235 {
236 return -EINVAL;
237 }
238 #endif /* CONFIG_BLK_DEV_INTEGRITY */
239
nvmet_bdev_execute_rw(struct nvmet_req * req)240 static void nvmet_bdev_execute_rw(struct nvmet_req *req)
241 {
242 unsigned int sg_cnt = req->sg_cnt;
243 struct bio *bio;
244 struct scatterlist *sg;
245 struct blk_plug plug;
246 sector_t sector;
247 blk_opf_t opf;
248 int i, rc;
249 struct sg_mapping_iter prot_miter;
250 unsigned int iter_flags;
251 unsigned int total_len = nvmet_rw_data_len(req) + req->metadata_len;
252
253 if (!nvmet_check_transfer_len(req, total_len))
254 return;
255
256 if (!req->sg_cnt) {
257 nvmet_req_complete(req, 0);
258 return;
259 }
260
261 if (req->cmd->rw.opcode == nvme_cmd_write) {
262 opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
263 if (req->cmd->rw.control & cpu_to_le16(NVME_RW_FUA))
264 opf |= REQ_FUA;
265 iter_flags = SG_MITER_TO_SG;
266 } else {
267 opf = REQ_OP_READ;
268 iter_flags = SG_MITER_FROM_SG;
269 }
270
271 if (is_pci_p2pdma_page(sg_page(req->sg)))
272 opf |= REQ_NOMERGE;
273
274 sector = nvmet_lba_to_sect(req->ns, req->cmd->rw.slba);
275
276 if (nvmet_use_inline_bvec(req)) {
277 bio = &req->b.inline_bio;
278 bio_init(bio, req->ns->bdev, req->inline_bvec,
279 ARRAY_SIZE(req->inline_bvec), opf);
280 } else {
281 bio = bio_alloc(req->ns->bdev, bio_max_segs(sg_cnt), opf,
282 GFP_KERNEL);
283 }
284 bio->bi_iter.bi_sector = sector;
285 bio->bi_private = req;
286 bio->bi_end_io = nvmet_bio_done;
287
288 blk_start_plug(&plug);
289 if (req->metadata_len)
290 sg_miter_start(&prot_miter, req->metadata_sg,
291 req->metadata_sg_cnt, iter_flags);
292
293 for_each_sg(req->sg, sg, req->sg_cnt, i) {
294 while (bio_add_page(bio, sg_page(sg), sg->length, sg->offset)
295 != sg->length) {
296 struct bio *prev = bio;
297
298 if (req->metadata_len) {
299 rc = nvmet_bdev_alloc_bip(req, bio,
300 &prot_miter);
301 if (unlikely(rc)) {
302 bio_io_error(bio);
303 return;
304 }
305 }
306
307 bio = bio_alloc(req->ns->bdev, bio_max_segs(sg_cnt),
308 opf, GFP_KERNEL);
309 bio->bi_iter.bi_sector = sector;
310
311 bio_chain(bio, prev);
312 submit_bio(prev);
313 }
314
315 sector += sg->length >> 9;
316 sg_cnt--;
317 }
318
319 if (req->metadata_len) {
320 rc = nvmet_bdev_alloc_bip(req, bio, &prot_miter);
321 if (unlikely(rc)) {
322 bio_io_error(bio);
323 return;
324 }
325 }
326
327 submit_bio(bio);
328 blk_finish_plug(&plug);
329 }
330
nvmet_bdev_execute_flush(struct nvmet_req * req)331 static void nvmet_bdev_execute_flush(struct nvmet_req *req)
332 {
333 struct bio *bio = &req->b.inline_bio;
334
335 if (!bdev_write_cache(req->ns->bdev)) {
336 nvmet_req_complete(req, NVME_SC_SUCCESS);
337 return;
338 }
339
340 if (!nvmet_check_transfer_len(req, 0))
341 return;
342
343 bio_init(bio, req->ns->bdev, req->inline_bvec,
344 ARRAY_SIZE(req->inline_bvec), REQ_OP_WRITE | REQ_PREFLUSH);
345 bio->bi_private = req;
346 bio->bi_end_io = nvmet_bio_done;
347
348 submit_bio(bio);
349 }
350
nvmet_bdev_flush(struct nvmet_req * req)351 u16 nvmet_bdev_flush(struct nvmet_req *req)
352 {
353 if (!bdev_write_cache(req->ns->bdev))
354 return 0;
355
356 if (blkdev_issue_flush(req->ns->bdev))
357 return NVME_SC_INTERNAL | NVME_SC_DNR;
358 return 0;
359 }
360
nvmet_bdev_discard_range(struct nvmet_req * req,struct nvme_dsm_range * range,struct bio ** bio)361 static u16 nvmet_bdev_discard_range(struct nvmet_req *req,
362 struct nvme_dsm_range *range, struct bio **bio)
363 {
364 struct nvmet_ns *ns = req->ns;
365 int ret;
366
367 ret = __blkdev_issue_discard(ns->bdev,
368 nvmet_lba_to_sect(ns, range->slba),
369 le32_to_cpu(range->nlb) << (ns->blksize_shift - 9),
370 GFP_KERNEL, bio);
371 if (ret && ret != -EOPNOTSUPP) {
372 req->error_slba = le64_to_cpu(range->slba);
373 return errno_to_nvme_status(req, ret);
374 }
375 return NVME_SC_SUCCESS;
376 }
377
nvmet_bdev_execute_discard(struct nvmet_req * req)378 static void nvmet_bdev_execute_discard(struct nvmet_req *req)
379 {
380 struct nvme_dsm_range range;
381 struct bio *bio = NULL;
382 int i;
383 u16 status;
384
385 for (i = 0; i <= le32_to_cpu(req->cmd->dsm.nr); i++) {
386 status = nvmet_copy_from_sgl(req, i * sizeof(range), &range,
387 sizeof(range));
388 if (status)
389 break;
390
391 status = nvmet_bdev_discard_range(req, &range, &bio);
392 if (status)
393 break;
394 }
395
396 if (bio) {
397 bio->bi_private = req;
398 bio->bi_end_io = nvmet_bio_done;
399 if (status)
400 bio_io_error(bio);
401 else
402 submit_bio(bio);
403 } else {
404 nvmet_req_complete(req, status);
405 }
406 }
407
nvmet_bdev_execute_dsm(struct nvmet_req * req)408 static void nvmet_bdev_execute_dsm(struct nvmet_req *req)
409 {
410 if (!nvmet_check_data_len_lte(req, nvmet_dsm_len(req)))
411 return;
412
413 switch (le32_to_cpu(req->cmd->dsm.attributes)) {
414 case NVME_DSMGMT_AD:
415 nvmet_bdev_execute_discard(req);
416 return;
417 case NVME_DSMGMT_IDR:
418 case NVME_DSMGMT_IDW:
419 default:
420 /* Not supported yet */
421 nvmet_req_complete(req, 0);
422 return;
423 }
424 }
425
nvmet_bdev_execute_write_zeroes(struct nvmet_req * req)426 static void nvmet_bdev_execute_write_zeroes(struct nvmet_req *req)
427 {
428 struct nvme_write_zeroes_cmd *write_zeroes = &req->cmd->write_zeroes;
429 struct bio *bio = NULL;
430 sector_t sector;
431 sector_t nr_sector;
432 int ret;
433
434 if (!nvmet_check_transfer_len(req, 0))
435 return;
436
437 sector = nvmet_lba_to_sect(req->ns, write_zeroes->slba);
438 nr_sector = (((sector_t)le16_to_cpu(write_zeroes->length) + 1) <<
439 (req->ns->blksize_shift - 9));
440
441 ret = __blkdev_issue_zeroout(req->ns->bdev, sector, nr_sector,
442 GFP_KERNEL, &bio, 0);
443 if (bio) {
444 bio->bi_private = req;
445 bio->bi_end_io = nvmet_bio_done;
446 submit_bio(bio);
447 } else {
448 nvmet_req_complete(req, errno_to_nvme_status(req, ret));
449 }
450 }
451
nvmet_bdev_parse_io_cmd(struct nvmet_req * req)452 u16 nvmet_bdev_parse_io_cmd(struct nvmet_req *req)
453 {
454 switch (req->cmd->common.opcode) {
455 case nvme_cmd_read:
456 case nvme_cmd_write:
457 req->execute = nvmet_bdev_execute_rw;
458 if (req->sq->ctrl->pi_support && nvmet_ns_has_pi(req->ns))
459 req->metadata_len = nvmet_rw_metadata_len(req);
460 return 0;
461 case nvme_cmd_flush:
462 req->execute = nvmet_bdev_execute_flush;
463 return 0;
464 case nvme_cmd_dsm:
465 req->execute = nvmet_bdev_execute_dsm;
466 return 0;
467 case nvme_cmd_write_zeroes:
468 req->execute = nvmet_bdev_execute_write_zeroes;
469 return 0;
470 default:
471 return nvmet_report_invalid_opcode(req);
472 }
473 }
474