1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2017-2018 Christoph Hellwig.
4 */
5
6 #include <linux/backing-dev.h>
7 #include <linux/moduleparam.h>
8 #include <linux/vmalloc.h>
9 #include <trace/events/block.h>
10 #include "nvme.h"
11
12 bool multipath = true;
13 module_param(multipath, bool, 0444);
14 MODULE_PARM_DESC(multipath,
15 "turn on native support for multiple controllers per subsystem");
16
17 static const char *nvme_iopolicy_names[] = {
18 [NVME_IOPOLICY_NUMA] = "numa",
19 [NVME_IOPOLICY_RR] = "round-robin",
20 };
21
22 static int iopolicy = NVME_IOPOLICY_NUMA;
23
nvme_set_iopolicy(const char * val,const struct kernel_param * kp)24 static int nvme_set_iopolicy(const char *val, const struct kernel_param *kp)
25 {
26 if (!val)
27 return -EINVAL;
28 if (!strncmp(val, "numa", 4))
29 iopolicy = NVME_IOPOLICY_NUMA;
30 else if (!strncmp(val, "round-robin", 11))
31 iopolicy = NVME_IOPOLICY_RR;
32 else
33 return -EINVAL;
34
35 return 0;
36 }
37
nvme_get_iopolicy(char * buf,const struct kernel_param * kp)38 static int nvme_get_iopolicy(char *buf, const struct kernel_param *kp)
39 {
40 return sprintf(buf, "%s\n", nvme_iopolicy_names[iopolicy]);
41 }
42
43 module_param_call(iopolicy, nvme_set_iopolicy, nvme_get_iopolicy,
44 &iopolicy, 0644);
45 MODULE_PARM_DESC(iopolicy,
46 "Default multipath I/O policy; 'numa' (default) or 'round-robin'");
47
nvme_mpath_default_iopolicy(struct nvme_subsystem * subsys)48 void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys)
49 {
50 subsys->iopolicy = iopolicy;
51 }
52
nvme_mpath_unfreeze(struct nvme_subsystem * subsys)53 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
54 {
55 struct nvme_ns_head *h;
56
57 lockdep_assert_held(&subsys->lock);
58 list_for_each_entry(h, &subsys->nsheads, entry)
59 if (h->disk)
60 blk_mq_unfreeze_queue(h->disk->queue);
61 }
62
nvme_mpath_wait_freeze(struct nvme_subsystem * subsys)63 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
64 {
65 struct nvme_ns_head *h;
66
67 lockdep_assert_held(&subsys->lock);
68 list_for_each_entry(h, &subsys->nsheads, entry)
69 if (h->disk)
70 blk_mq_freeze_queue_wait(h->disk->queue);
71 }
72
nvme_mpath_start_freeze(struct nvme_subsystem * subsys)73 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
74 {
75 struct nvme_ns_head *h;
76
77 lockdep_assert_held(&subsys->lock);
78 list_for_each_entry(h, &subsys->nsheads, entry)
79 if (h->disk)
80 blk_freeze_queue_start(h->disk->queue);
81 }
82
nvme_failover_req(struct request * req)83 void nvme_failover_req(struct request *req)
84 {
85 struct nvme_ns *ns = req->q->queuedata;
86 u16 status = nvme_req(req)->status & 0x7ff;
87 unsigned long flags;
88 struct bio *bio;
89
90 nvme_mpath_clear_current_path(ns);
91
92 /*
93 * If we got back an ANA error, we know the controller is alive but not
94 * ready to serve this namespace. Kick of a re-read of the ANA
95 * information page, and just try any other available path for now.
96 */
97 if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) {
98 set_bit(NVME_NS_ANA_PENDING, &ns->flags);
99 queue_work(nvme_wq, &ns->ctrl->ana_work);
100 }
101
102 spin_lock_irqsave(&ns->head->requeue_lock, flags);
103 for (bio = req->bio; bio; bio = bio->bi_next) {
104 bio_set_dev(bio, ns->head->disk->part0);
105 if (bio->bi_opf & REQ_POLLED) {
106 bio->bi_opf &= ~REQ_POLLED;
107 bio->bi_cookie = BLK_QC_T_NONE;
108 }
109 /*
110 * The alternate request queue that we may end up submitting
111 * the bio to may be frozen temporarily, in this case REQ_NOWAIT
112 * will fail the I/O immediately with EAGAIN to the issuer.
113 * We are not in the issuer context which cannot block. Clear
114 * the flag to avoid spurious EAGAIN I/O failures.
115 */
116 bio->bi_opf &= ~REQ_NOWAIT;
117 }
118 blk_steal_bios(&ns->head->requeue_list, req);
119 spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
120
121 blk_mq_end_request(req, 0);
122 kblockd_schedule_work(&ns->head->requeue_work);
123 }
124
nvme_mpath_start_request(struct request * rq)125 void nvme_mpath_start_request(struct request *rq)
126 {
127 struct nvme_ns *ns = rq->q->queuedata;
128 struct gendisk *disk = ns->head->disk;
129
130 if (!blk_queue_io_stat(disk->queue) || blk_rq_is_passthrough(rq))
131 return;
132
133 nvme_req(rq)->flags |= NVME_MPATH_IO_STATS;
134 nvme_req(rq)->start_time = bdev_start_io_acct(disk->part0, req_op(rq),
135 jiffies);
136 }
137 EXPORT_SYMBOL_GPL(nvme_mpath_start_request);
138
nvme_mpath_end_request(struct request * rq)139 void nvme_mpath_end_request(struct request *rq)
140 {
141 struct nvme_ns *ns = rq->q->queuedata;
142
143 if (!(nvme_req(rq)->flags & NVME_MPATH_IO_STATS))
144 return;
145 bdev_end_io_acct(ns->head->disk->part0, req_op(rq),
146 blk_rq_bytes(rq) >> SECTOR_SHIFT,
147 nvme_req(rq)->start_time);
148 }
149
nvme_kick_requeue_lists(struct nvme_ctrl * ctrl)150 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
151 {
152 struct nvme_ns *ns;
153
154 down_read(&ctrl->namespaces_rwsem);
155 list_for_each_entry(ns, &ctrl->namespaces, list) {
156 if (!ns->head->disk)
157 continue;
158 kblockd_schedule_work(&ns->head->requeue_work);
159 if (ctrl->state == NVME_CTRL_LIVE)
160 disk_uevent(ns->head->disk, KOBJ_CHANGE);
161 }
162 up_read(&ctrl->namespaces_rwsem);
163 }
164
165 static const char *nvme_ana_state_names[] = {
166 [0] = "invalid state",
167 [NVME_ANA_OPTIMIZED] = "optimized",
168 [NVME_ANA_NONOPTIMIZED] = "non-optimized",
169 [NVME_ANA_INACCESSIBLE] = "inaccessible",
170 [NVME_ANA_PERSISTENT_LOSS] = "persistent-loss",
171 [NVME_ANA_CHANGE] = "change",
172 };
173
nvme_mpath_clear_current_path(struct nvme_ns * ns)174 bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
175 {
176 struct nvme_ns_head *head = ns->head;
177 bool changed = false;
178 int node;
179
180 if (!head)
181 goto out;
182
183 for_each_node(node) {
184 if (ns == rcu_access_pointer(head->current_path[node])) {
185 rcu_assign_pointer(head->current_path[node], NULL);
186 changed = true;
187 }
188 }
189 out:
190 return changed;
191 }
192
nvme_mpath_clear_ctrl_paths(struct nvme_ctrl * ctrl)193 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
194 {
195 struct nvme_ns *ns;
196
197 down_read(&ctrl->namespaces_rwsem);
198 list_for_each_entry(ns, &ctrl->namespaces, list) {
199 nvme_mpath_clear_current_path(ns);
200 kblockd_schedule_work(&ns->head->requeue_work);
201 }
202 up_read(&ctrl->namespaces_rwsem);
203 }
204
nvme_mpath_revalidate_paths(struct nvme_ns * ns)205 void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
206 {
207 struct nvme_ns_head *head = ns->head;
208 sector_t capacity = get_capacity(head->disk);
209 int node;
210 int srcu_idx;
211
212 srcu_idx = srcu_read_lock(&head->srcu);
213 list_for_each_entry_rcu(ns, &head->list, siblings) {
214 if (capacity != get_capacity(ns->disk))
215 clear_bit(NVME_NS_READY, &ns->flags);
216 }
217 srcu_read_unlock(&head->srcu, srcu_idx);
218
219 for_each_node(node)
220 rcu_assign_pointer(head->current_path[node], NULL);
221 kblockd_schedule_work(&head->requeue_work);
222 }
223
nvme_path_is_disabled(struct nvme_ns * ns)224 static bool nvme_path_is_disabled(struct nvme_ns *ns)
225 {
226 /*
227 * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should
228 * still be able to complete assuming that the controller is connected.
229 * Otherwise it will fail immediately and return to the requeue list.
230 */
231 if (ns->ctrl->state != NVME_CTRL_LIVE &&
232 ns->ctrl->state != NVME_CTRL_DELETING)
233 return true;
234 if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
235 !test_bit(NVME_NS_READY, &ns->flags))
236 return true;
237 return false;
238 }
239
__nvme_find_path(struct nvme_ns_head * head,int node)240 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
241 {
242 int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
243 struct nvme_ns *found = NULL, *fallback = NULL, *ns;
244
245 list_for_each_entry_rcu(ns, &head->list, siblings) {
246 if (nvme_path_is_disabled(ns))
247 continue;
248
249 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
250 distance = node_distance(node, ns->ctrl->numa_node);
251 else
252 distance = LOCAL_DISTANCE;
253
254 switch (ns->ana_state) {
255 case NVME_ANA_OPTIMIZED:
256 if (distance < found_distance) {
257 found_distance = distance;
258 found = ns;
259 }
260 break;
261 case NVME_ANA_NONOPTIMIZED:
262 if (distance < fallback_distance) {
263 fallback_distance = distance;
264 fallback = ns;
265 }
266 break;
267 default:
268 break;
269 }
270 }
271
272 if (!found)
273 found = fallback;
274 if (found)
275 rcu_assign_pointer(head->current_path[node], found);
276 return found;
277 }
278
nvme_next_ns(struct nvme_ns_head * head,struct nvme_ns * ns)279 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
280 struct nvme_ns *ns)
281 {
282 ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
283 siblings);
284 if (ns)
285 return ns;
286 return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
287 }
288
nvme_round_robin_path(struct nvme_ns_head * head,int node,struct nvme_ns * old)289 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head,
290 int node, struct nvme_ns *old)
291 {
292 struct nvme_ns *ns, *found = NULL;
293
294 if (list_is_singular(&head->list)) {
295 if (nvme_path_is_disabled(old))
296 return NULL;
297 return old;
298 }
299
300 for (ns = nvme_next_ns(head, old);
301 ns && ns != old;
302 ns = nvme_next_ns(head, ns)) {
303 if (nvme_path_is_disabled(ns))
304 continue;
305
306 if (ns->ana_state == NVME_ANA_OPTIMIZED) {
307 found = ns;
308 goto out;
309 }
310 if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
311 found = ns;
312 }
313
314 /*
315 * The loop above skips the current path for round-robin semantics.
316 * Fall back to the current path if either:
317 * - no other optimized path found and current is optimized,
318 * - no other usable path found and current is usable.
319 */
320 if (!nvme_path_is_disabled(old) &&
321 (old->ana_state == NVME_ANA_OPTIMIZED ||
322 (!found && old->ana_state == NVME_ANA_NONOPTIMIZED)))
323 return old;
324
325 if (!found)
326 return NULL;
327 out:
328 rcu_assign_pointer(head->current_path[node], found);
329 return found;
330 }
331
nvme_path_is_optimized(struct nvme_ns * ns)332 static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
333 {
334 return ns->ctrl->state == NVME_CTRL_LIVE &&
335 ns->ana_state == NVME_ANA_OPTIMIZED;
336 }
337
nvme_find_path(struct nvme_ns_head * head)338 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
339 {
340 int node = numa_node_id();
341 struct nvme_ns *ns;
342
343 ns = srcu_dereference(head->current_path[node], &head->srcu);
344 if (unlikely(!ns))
345 return __nvme_find_path(head, node);
346
347 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR)
348 return nvme_round_robin_path(head, node, ns);
349 if (unlikely(!nvme_path_is_optimized(ns)))
350 return __nvme_find_path(head, node);
351 return ns;
352 }
353
nvme_available_path(struct nvme_ns_head * head)354 static bool nvme_available_path(struct nvme_ns_head *head)
355 {
356 struct nvme_ns *ns;
357
358 list_for_each_entry_rcu(ns, &head->list, siblings) {
359 if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags))
360 continue;
361 switch (ns->ctrl->state) {
362 case NVME_CTRL_LIVE:
363 case NVME_CTRL_RESETTING:
364 case NVME_CTRL_CONNECTING:
365 /* fallthru */
366 return true;
367 default:
368 break;
369 }
370 }
371 return false;
372 }
373
nvme_ns_head_submit_bio(struct bio * bio)374 static void nvme_ns_head_submit_bio(struct bio *bio)
375 {
376 struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data;
377 struct device *dev = disk_to_dev(head->disk);
378 struct nvme_ns *ns;
379 int srcu_idx;
380
381 /*
382 * The namespace might be going away and the bio might be moved to a
383 * different queue via blk_steal_bios(), so we need to use the bio_split
384 * pool from the original queue to allocate the bvecs from.
385 */
386 bio = bio_split_to_limits(bio);
387 if (!bio)
388 return;
389
390 srcu_idx = srcu_read_lock(&head->srcu);
391 ns = nvme_find_path(head);
392 if (likely(ns)) {
393 bio_set_dev(bio, ns->disk->part0);
394 bio->bi_opf |= REQ_NVME_MPATH;
395 trace_block_bio_remap(bio, disk_devt(ns->head->disk),
396 bio->bi_iter.bi_sector);
397 submit_bio_noacct(bio);
398 } else if (nvme_available_path(head)) {
399 dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
400
401 spin_lock_irq(&head->requeue_lock);
402 bio_list_add(&head->requeue_list, bio);
403 spin_unlock_irq(&head->requeue_lock);
404 } else {
405 dev_warn_ratelimited(dev, "no available path - failing I/O\n");
406
407 bio_io_error(bio);
408 }
409
410 srcu_read_unlock(&head->srcu, srcu_idx);
411 }
412
nvme_ns_head_open(struct gendisk * disk,blk_mode_t mode)413 static int nvme_ns_head_open(struct gendisk *disk, blk_mode_t mode)
414 {
415 if (!nvme_tryget_ns_head(disk->private_data))
416 return -ENXIO;
417 return 0;
418 }
419
nvme_ns_head_release(struct gendisk * disk)420 static void nvme_ns_head_release(struct gendisk *disk)
421 {
422 nvme_put_ns_head(disk->private_data);
423 }
424
425 #ifdef CONFIG_BLK_DEV_ZONED
nvme_ns_head_report_zones(struct gendisk * disk,sector_t sector,unsigned int nr_zones,report_zones_cb cb,void * data)426 static int nvme_ns_head_report_zones(struct gendisk *disk, sector_t sector,
427 unsigned int nr_zones, report_zones_cb cb, void *data)
428 {
429 struct nvme_ns_head *head = disk->private_data;
430 struct nvme_ns *ns;
431 int srcu_idx, ret = -EWOULDBLOCK;
432
433 srcu_idx = srcu_read_lock(&head->srcu);
434 ns = nvme_find_path(head);
435 if (ns)
436 ret = nvme_ns_report_zones(ns, sector, nr_zones, cb, data);
437 srcu_read_unlock(&head->srcu, srcu_idx);
438 return ret;
439 }
440 #else
441 #define nvme_ns_head_report_zones NULL
442 #endif /* CONFIG_BLK_DEV_ZONED */
443
444 const struct block_device_operations nvme_ns_head_ops = {
445 .owner = THIS_MODULE,
446 .submit_bio = nvme_ns_head_submit_bio,
447 .open = nvme_ns_head_open,
448 .release = nvme_ns_head_release,
449 .ioctl = nvme_ns_head_ioctl,
450 .compat_ioctl = blkdev_compat_ptr_ioctl,
451 .getgeo = nvme_getgeo,
452 .report_zones = nvme_ns_head_report_zones,
453 .pr_ops = &nvme_pr_ops,
454 };
455
cdev_to_ns_head(struct cdev * cdev)456 static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev)
457 {
458 return container_of(cdev, struct nvme_ns_head, cdev);
459 }
460
nvme_ns_head_chr_open(struct inode * inode,struct file * file)461 static int nvme_ns_head_chr_open(struct inode *inode, struct file *file)
462 {
463 if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev)))
464 return -ENXIO;
465 return 0;
466 }
467
nvme_ns_head_chr_release(struct inode * inode,struct file * file)468 static int nvme_ns_head_chr_release(struct inode *inode, struct file *file)
469 {
470 nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev));
471 return 0;
472 }
473
474 static const struct file_operations nvme_ns_head_chr_fops = {
475 .owner = THIS_MODULE,
476 .open = nvme_ns_head_chr_open,
477 .release = nvme_ns_head_chr_release,
478 .unlocked_ioctl = nvme_ns_head_chr_ioctl,
479 .compat_ioctl = compat_ptr_ioctl,
480 .uring_cmd = nvme_ns_head_chr_uring_cmd,
481 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
482 };
483
nvme_add_ns_head_cdev(struct nvme_ns_head * head)484 static int nvme_add_ns_head_cdev(struct nvme_ns_head *head)
485 {
486 int ret;
487
488 head->cdev_device.parent = &head->subsys->dev;
489 ret = dev_set_name(&head->cdev_device, "ng%dn%d",
490 head->subsys->instance, head->instance);
491 if (ret)
492 return ret;
493 ret = nvme_cdev_add(&head->cdev, &head->cdev_device,
494 &nvme_ns_head_chr_fops, THIS_MODULE);
495 return ret;
496 }
497
nvme_requeue_work(struct work_struct * work)498 static void nvme_requeue_work(struct work_struct *work)
499 {
500 struct nvme_ns_head *head =
501 container_of(work, struct nvme_ns_head, requeue_work);
502 struct bio *bio, *next;
503
504 spin_lock_irq(&head->requeue_lock);
505 next = bio_list_get(&head->requeue_list);
506 spin_unlock_irq(&head->requeue_lock);
507
508 while ((bio = next) != NULL) {
509 next = bio->bi_next;
510 bio->bi_next = NULL;
511
512 submit_bio_noacct(bio);
513 }
514 }
515
nvme_mpath_alloc_disk(struct nvme_ctrl * ctrl,struct nvme_ns_head * head)516 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
517 {
518 bool vwc = false;
519
520 mutex_init(&head->lock);
521 bio_list_init(&head->requeue_list);
522 spin_lock_init(&head->requeue_lock);
523 INIT_WORK(&head->requeue_work, nvme_requeue_work);
524
525 /*
526 * Add a multipath node if the subsystems supports multiple controllers.
527 * We also do this for private namespaces as the namespace sharing flag
528 * could change after a rescan.
529 */
530 if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
531 !nvme_is_unique_nsid(ctrl, head) || !multipath)
532 return 0;
533
534 head->disk = blk_alloc_disk(ctrl->numa_node);
535 if (!head->disk)
536 return -ENOMEM;
537 head->disk->fops = &nvme_ns_head_ops;
538 head->disk->private_data = head;
539 sprintf(head->disk->disk_name, "nvme%dn%d",
540 ctrl->subsys->instance, head->instance);
541
542 blk_queue_flag_set(QUEUE_FLAG_NONROT, head->disk->queue);
543 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, head->disk->queue);
544 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, head->disk->queue);
545 /*
546 * This assumes all controllers that refer to a namespace either
547 * support poll queues or not. That is not a strict guarantee,
548 * but if the assumption is wrong the effect is only suboptimal
549 * performance but not correctness problem.
550 */
551 if (ctrl->tagset->nr_maps > HCTX_TYPE_POLL &&
552 ctrl->tagset->map[HCTX_TYPE_POLL].nr_queues)
553 blk_queue_flag_set(QUEUE_FLAG_POLL, head->disk->queue);
554
555 /* set to a default value of 512 until the disk is validated */
556 blk_queue_logical_block_size(head->disk->queue, 512);
557 blk_set_stacking_limits(&head->disk->queue->limits);
558 blk_queue_dma_alignment(head->disk->queue, 3);
559
560 /* we need to propagate up the VMC settings */
561 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
562 vwc = true;
563 blk_queue_write_cache(head->disk->queue, vwc, vwc);
564 return 0;
565 }
566
nvme_mpath_set_live(struct nvme_ns * ns)567 static void nvme_mpath_set_live(struct nvme_ns *ns)
568 {
569 struct nvme_ns_head *head = ns->head;
570 int rc;
571
572 if (!head->disk)
573 return;
574
575 /*
576 * test_and_set_bit() is used because it is protecting against two nvme
577 * paths simultaneously calling device_add_disk() on the same namespace
578 * head.
579 */
580 if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
581 rc = device_add_disk(&head->subsys->dev, head->disk,
582 nvme_ns_id_attr_groups);
583 if (rc) {
584 clear_bit(NVME_NSHEAD_DISK_LIVE, &ns->flags);
585 return;
586 }
587 nvme_add_ns_head_cdev(head);
588 }
589
590 mutex_lock(&head->lock);
591 if (nvme_path_is_optimized(ns)) {
592 int node, srcu_idx;
593
594 srcu_idx = srcu_read_lock(&head->srcu);
595 for_each_node(node)
596 __nvme_find_path(head, node);
597 srcu_read_unlock(&head->srcu, srcu_idx);
598 }
599 mutex_unlock(&head->lock);
600
601 synchronize_srcu(&head->srcu);
602 kblockd_schedule_work(&head->requeue_work);
603 }
604
nvme_parse_ana_log(struct nvme_ctrl * ctrl,void * data,int (* cb)(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc *,void *))605 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
606 int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
607 void *))
608 {
609 void *base = ctrl->ana_log_buf;
610 size_t offset = sizeof(struct nvme_ana_rsp_hdr);
611 int error, i;
612
613 lockdep_assert_held(&ctrl->ana_lock);
614
615 for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
616 struct nvme_ana_group_desc *desc = base + offset;
617 u32 nr_nsids;
618 size_t nsid_buf_size;
619
620 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
621 return -EINVAL;
622
623 nr_nsids = le32_to_cpu(desc->nnsids);
624 nsid_buf_size = flex_array_size(desc, nsids, nr_nsids);
625
626 if (WARN_ON_ONCE(desc->grpid == 0))
627 return -EINVAL;
628 if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
629 return -EINVAL;
630 if (WARN_ON_ONCE(desc->state == 0))
631 return -EINVAL;
632 if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
633 return -EINVAL;
634
635 offset += sizeof(*desc);
636 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
637 return -EINVAL;
638
639 error = cb(ctrl, desc, data);
640 if (error)
641 return error;
642
643 offset += nsid_buf_size;
644 }
645
646 return 0;
647 }
648
nvme_state_is_live(enum nvme_ana_state state)649 static inline bool nvme_state_is_live(enum nvme_ana_state state)
650 {
651 return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
652 }
653
nvme_update_ns_ana_state(struct nvme_ana_group_desc * desc,struct nvme_ns * ns)654 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
655 struct nvme_ns *ns)
656 {
657 ns->ana_grpid = le32_to_cpu(desc->grpid);
658 ns->ana_state = desc->state;
659 clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
660 /*
661 * nvme_mpath_set_live() will trigger I/O to the multipath path device
662 * and in turn to this path device. However we cannot accept this I/O
663 * if the controller is not live. This may deadlock if called from
664 * nvme_mpath_init_identify() and the ctrl will never complete
665 * initialization, preventing I/O from completing. For this case we
666 * will reprocess the ANA log page in nvme_mpath_update() once the
667 * controller is ready.
668 */
669 if (nvme_state_is_live(ns->ana_state) &&
670 ns->ctrl->state == NVME_CTRL_LIVE)
671 nvme_mpath_set_live(ns);
672 }
673
nvme_update_ana_state(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc * desc,void * data)674 static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
675 struct nvme_ana_group_desc *desc, void *data)
676 {
677 u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
678 unsigned *nr_change_groups = data;
679 struct nvme_ns *ns;
680
681 dev_dbg(ctrl->device, "ANA group %d: %s.\n",
682 le32_to_cpu(desc->grpid),
683 nvme_ana_state_names[desc->state]);
684
685 if (desc->state == NVME_ANA_CHANGE)
686 (*nr_change_groups)++;
687
688 if (!nr_nsids)
689 return 0;
690
691 down_read(&ctrl->namespaces_rwsem);
692 list_for_each_entry(ns, &ctrl->namespaces, list) {
693 unsigned nsid;
694 again:
695 nsid = le32_to_cpu(desc->nsids[n]);
696 if (ns->head->ns_id < nsid)
697 continue;
698 if (ns->head->ns_id == nsid)
699 nvme_update_ns_ana_state(desc, ns);
700 if (++n == nr_nsids)
701 break;
702 if (ns->head->ns_id > nsid)
703 goto again;
704 }
705 up_read(&ctrl->namespaces_rwsem);
706 return 0;
707 }
708
nvme_read_ana_log(struct nvme_ctrl * ctrl)709 static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
710 {
711 u32 nr_change_groups = 0;
712 int error;
713
714 mutex_lock(&ctrl->ana_lock);
715 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM,
716 ctrl->ana_log_buf, ctrl->ana_log_size, 0);
717 if (error) {
718 dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
719 goto out_unlock;
720 }
721
722 error = nvme_parse_ana_log(ctrl, &nr_change_groups,
723 nvme_update_ana_state);
724 if (error)
725 goto out_unlock;
726
727 /*
728 * In theory we should have an ANATT timer per group as they might enter
729 * the change state at different times. But that is a lot of overhead
730 * just to protect against a target that keeps entering new changes
731 * states while never finishing previous ones. But we'll still
732 * eventually time out once all groups are in change state, so this
733 * isn't a big deal.
734 *
735 * We also double the ANATT value to provide some slack for transports
736 * or AEN processing overhead.
737 */
738 if (nr_change_groups)
739 mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
740 else
741 del_timer_sync(&ctrl->anatt_timer);
742 out_unlock:
743 mutex_unlock(&ctrl->ana_lock);
744 return error;
745 }
746
nvme_ana_work(struct work_struct * work)747 static void nvme_ana_work(struct work_struct *work)
748 {
749 struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
750
751 if (ctrl->state != NVME_CTRL_LIVE)
752 return;
753
754 nvme_read_ana_log(ctrl);
755 }
756
nvme_mpath_update(struct nvme_ctrl * ctrl)757 void nvme_mpath_update(struct nvme_ctrl *ctrl)
758 {
759 u32 nr_change_groups = 0;
760
761 if (!ctrl->ana_log_buf)
762 return;
763
764 mutex_lock(&ctrl->ana_lock);
765 nvme_parse_ana_log(ctrl, &nr_change_groups, nvme_update_ana_state);
766 mutex_unlock(&ctrl->ana_lock);
767 }
768
nvme_anatt_timeout(struct timer_list * t)769 static void nvme_anatt_timeout(struct timer_list *t)
770 {
771 struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
772
773 dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
774 nvme_reset_ctrl(ctrl);
775 }
776
nvme_mpath_stop(struct nvme_ctrl * ctrl)777 void nvme_mpath_stop(struct nvme_ctrl *ctrl)
778 {
779 if (!nvme_ctrl_use_ana(ctrl))
780 return;
781 del_timer_sync(&ctrl->anatt_timer);
782 cancel_work_sync(&ctrl->ana_work);
783 }
784
785 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store) \
786 struct device_attribute subsys_attr_##_name = \
787 __ATTR(_name, _mode, _show, _store)
788
nvme_subsys_iopolicy_show(struct device * dev,struct device_attribute * attr,char * buf)789 static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
790 struct device_attribute *attr, char *buf)
791 {
792 struct nvme_subsystem *subsys =
793 container_of(dev, struct nvme_subsystem, dev);
794
795 return sysfs_emit(buf, "%s\n",
796 nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
797 }
798
nvme_subsys_iopolicy_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)799 static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
800 struct device_attribute *attr, const char *buf, size_t count)
801 {
802 struct nvme_subsystem *subsys =
803 container_of(dev, struct nvme_subsystem, dev);
804 int i;
805
806 for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
807 if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
808 WRITE_ONCE(subsys->iopolicy, i);
809 return count;
810 }
811 }
812
813 return -EINVAL;
814 }
815 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
816 nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
817
ana_grpid_show(struct device * dev,struct device_attribute * attr,char * buf)818 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
819 char *buf)
820 {
821 return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
822 }
823 DEVICE_ATTR_RO(ana_grpid);
824
ana_state_show(struct device * dev,struct device_attribute * attr,char * buf)825 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
826 char *buf)
827 {
828 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
829
830 return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
831 }
832 DEVICE_ATTR_RO(ana_state);
833
nvme_lookup_ana_group_desc(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc * desc,void * data)834 static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl,
835 struct nvme_ana_group_desc *desc, void *data)
836 {
837 struct nvme_ana_group_desc *dst = data;
838
839 if (desc->grpid != dst->grpid)
840 return 0;
841
842 *dst = *desc;
843 return -ENXIO; /* just break out of the loop */
844 }
845
nvme_mpath_add_disk(struct nvme_ns * ns,__le32 anagrpid)846 void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid)
847 {
848 if (nvme_ctrl_use_ana(ns->ctrl)) {
849 struct nvme_ana_group_desc desc = {
850 .grpid = anagrpid,
851 .state = 0,
852 };
853
854 mutex_lock(&ns->ctrl->ana_lock);
855 ns->ana_grpid = le32_to_cpu(anagrpid);
856 nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc);
857 mutex_unlock(&ns->ctrl->ana_lock);
858 if (desc.state) {
859 /* found the group desc: update */
860 nvme_update_ns_ana_state(&desc, ns);
861 } else {
862 /* group desc not found: trigger a re-read */
863 set_bit(NVME_NS_ANA_PENDING, &ns->flags);
864 queue_work(nvme_wq, &ns->ctrl->ana_work);
865 }
866 } else {
867 ns->ana_state = NVME_ANA_OPTIMIZED;
868 nvme_mpath_set_live(ns);
869 }
870
871 if (blk_queue_stable_writes(ns->queue) && ns->head->disk)
872 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES,
873 ns->head->disk->queue);
874 #ifdef CONFIG_BLK_DEV_ZONED
875 if (blk_queue_is_zoned(ns->queue) && ns->head->disk)
876 ns->head->disk->nr_zones = ns->disk->nr_zones;
877 #endif
878 }
879
nvme_mpath_shutdown_disk(struct nvme_ns_head * head)880 void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
881 {
882 if (!head->disk)
883 return;
884 kblockd_schedule_work(&head->requeue_work);
885 if (test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
886 nvme_cdev_del(&head->cdev, &head->cdev_device);
887 del_gendisk(head->disk);
888 }
889 }
890
nvme_mpath_remove_disk(struct nvme_ns_head * head)891 void nvme_mpath_remove_disk(struct nvme_ns_head *head)
892 {
893 if (!head->disk)
894 return;
895 /* make sure all pending bios are cleaned up */
896 kblockd_schedule_work(&head->requeue_work);
897 flush_work(&head->requeue_work);
898 put_disk(head->disk);
899 }
900
nvme_mpath_init_ctrl(struct nvme_ctrl * ctrl)901 void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
902 {
903 mutex_init(&ctrl->ana_lock);
904 timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
905 INIT_WORK(&ctrl->ana_work, nvme_ana_work);
906 }
907
nvme_mpath_init_identify(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)908 int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
909 {
910 size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT;
911 size_t ana_log_size;
912 int error = 0;
913
914 /* check if multipath is enabled and we have the capability */
915 if (!multipath || !ctrl->subsys ||
916 !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA))
917 return 0;
918
919 if (!ctrl->max_namespaces ||
920 ctrl->max_namespaces > le32_to_cpu(id->nn)) {
921 dev_err(ctrl->device,
922 "Invalid MNAN value %u\n", ctrl->max_namespaces);
923 return -EINVAL;
924 }
925
926 ctrl->anacap = id->anacap;
927 ctrl->anatt = id->anatt;
928 ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
929 ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
930
931 ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
932 ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) +
933 ctrl->max_namespaces * sizeof(__le32);
934 if (ana_log_size > max_transfer_size) {
935 dev_err(ctrl->device,
936 "ANA log page size (%zd) larger than MDTS (%zd).\n",
937 ana_log_size, max_transfer_size);
938 dev_err(ctrl->device, "disabling ANA support.\n");
939 goto out_uninit;
940 }
941 if (ana_log_size > ctrl->ana_log_size) {
942 nvme_mpath_stop(ctrl);
943 nvme_mpath_uninit(ctrl);
944 ctrl->ana_log_buf = kvmalloc(ana_log_size, GFP_KERNEL);
945 if (!ctrl->ana_log_buf)
946 return -ENOMEM;
947 }
948 ctrl->ana_log_size = ana_log_size;
949 error = nvme_read_ana_log(ctrl);
950 if (error)
951 goto out_uninit;
952 return 0;
953
954 out_uninit:
955 nvme_mpath_uninit(ctrl);
956 return error;
957 }
958
nvme_mpath_uninit(struct nvme_ctrl * ctrl)959 void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
960 {
961 kvfree(ctrl->ana_log_buf);
962 ctrl->ana_log_buf = NULL;
963 ctrl->ana_log_size = 0;
964 }
965