1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2002 Andi Kleen, SuSE Labs.
4 * Thanks to Ben LaHaise for precious feedback.
5 */
6 #include <linux/highmem.h>
7 #include <linux/memblock.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/proc_fs.h>
13 #include <linux/debugfs.h>
14 #include <linux/pfn.h>
15 #include <linux/percpu.h>
16 #include <linux/gfp.h>
17 #include <linux/pci.h>
18 #include <linux/vmalloc.h>
19 #include <linux/libnvdimm.h>
20 #include <linux/vmstat.h>
21 #include <linux/kernel.h>
22 #include <linux/cc_platform.h>
23 #include <linux/set_memory.h>
24 #include <linux/memregion.h>
25
26 #include <asm/e820/api.h>
27 #include <asm/processor.h>
28 #include <asm/tlbflush.h>
29 #include <asm/sections.h>
30 #include <asm/setup.h>
31 #include <linux/uaccess.h>
32 #include <asm/pgalloc.h>
33 #include <asm/proto.h>
34 #include <asm/memtype.h>
35 #include <asm/hyperv-tlfs.h>
36 #include <asm/mshyperv.h>
37
38 #include "../mm_internal.h"
39
40 /*
41 * The current flushing context - we pass it instead of 5 arguments:
42 */
43 struct cpa_data {
44 unsigned long *vaddr;
45 pgd_t *pgd;
46 pgprot_t mask_set;
47 pgprot_t mask_clr;
48 unsigned long numpages;
49 unsigned long curpage;
50 unsigned long pfn;
51 unsigned int flags;
52 unsigned int force_split : 1,
53 force_static_prot : 1,
54 force_flush_all : 1;
55 struct page **pages;
56 };
57
58 enum cpa_warn {
59 CPA_CONFLICT,
60 CPA_PROTECT,
61 CPA_DETECT,
62 };
63
64 static const int cpa_warn_level = CPA_PROTECT;
65
66 /*
67 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
68 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
69 * entries change the page attribute in parallel to some other cpu
70 * splitting a large page entry along with changing the attribute.
71 */
72 static DEFINE_SPINLOCK(cpa_lock);
73
74 #define CPA_FLUSHTLB 1
75 #define CPA_ARRAY 2
76 #define CPA_PAGES_ARRAY 4
77 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
78
cachemode2pgprot(enum page_cache_mode pcm)79 static inline pgprot_t cachemode2pgprot(enum page_cache_mode pcm)
80 {
81 return __pgprot(cachemode2protval(pcm));
82 }
83
84 #ifdef CONFIG_PROC_FS
85 static unsigned long direct_pages_count[PG_LEVEL_NUM];
86
update_page_count(int level,unsigned long pages)87 void update_page_count(int level, unsigned long pages)
88 {
89 /* Protect against CPA */
90 spin_lock(&pgd_lock);
91 direct_pages_count[level] += pages;
92 spin_unlock(&pgd_lock);
93 }
94
split_page_count(int level)95 static void split_page_count(int level)
96 {
97 if (direct_pages_count[level] == 0)
98 return;
99
100 direct_pages_count[level]--;
101 if (system_state == SYSTEM_RUNNING) {
102 if (level == PG_LEVEL_2M)
103 count_vm_event(DIRECT_MAP_LEVEL2_SPLIT);
104 else if (level == PG_LEVEL_1G)
105 count_vm_event(DIRECT_MAP_LEVEL3_SPLIT);
106 }
107 direct_pages_count[level - 1] += PTRS_PER_PTE;
108 }
109
arch_report_meminfo(struct seq_file * m)110 void arch_report_meminfo(struct seq_file *m)
111 {
112 seq_printf(m, "DirectMap4k: %8lu kB\n",
113 direct_pages_count[PG_LEVEL_4K] << 2);
114 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
115 seq_printf(m, "DirectMap2M: %8lu kB\n",
116 direct_pages_count[PG_LEVEL_2M] << 11);
117 #else
118 seq_printf(m, "DirectMap4M: %8lu kB\n",
119 direct_pages_count[PG_LEVEL_2M] << 12);
120 #endif
121 if (direct_gbpages)
122 seq_printf(m, "DirectMap1G: %8lu kB\n",
123 direct_pages_count[PG_LEVEL_1G] << 20);
124 }
125 #else
split_page_count(int level)126 static inline void split_page_count(int level) { }
127 #endif
128
129 #ifdef CONFIG_X86_CPA_STATISTICS
130
131 static unsigned long cpa_1g_checked;
132 static unsigned long cpa_1g_sameprot;
133 static unsigned long cpa_1g_preserved;
134 static unsigned long cpa_2m_checked;
135 static unsigned long cpa_2m_sameprot;
136 static unsigned long cpa_2m_preserved;
137 static unsigned long cpa_4k_install;
138
cpa_inc_1g_checked(void)139 static inline void cpa_inc_1g_checked(void)
140 {
141 cpa_1g_checked++;
142 }
143
cpa_inc_2m_checked(void)144 static inline void cpa_inc_2m_checked(void)
145 {
146 cpa_2m_checked++;
147 }
148
cpa_inc_4k_install(void)149 static inline void cpa_inc_4k_install(void)
150 {
151 data_race(cpa_4k_install++);
152 }
153
cpa_inc_lp_sameprot(int level)154 static inline void cpa_inc_lp_sameprot(int level)
155 {
156 if (level == PG_LEVEL_1G)
157 cpa_1g_sameprot++;
158 else
159 cpa_2m_sameprot++;
160 }
161
cpa_inc_lp_preserved(int level)162 static inline void cpa_inc_lp_preserved(int level)
163 {
164 if (level == PG_LEVEL_1G)
165 cpa_1g_preserved++;
166 else
167 cpa_2m_preserved++;
168 }
169
cpastats_show(struct seq_file * m,void * p)170 static int cpastats_show(struct seq_file *m, void *p)
171 {
172 seq_printf(m, "1G pages checked: %16lu\n", cpa_1g_checked);
173 seq_printf(m, "1G pages sameprot: %16lu\n", cpa_1g_sameprot);
174 seq_printf(m, "1G pages preserved: %16lu\n", cpa_1g_preserved);
175 seq_printf(m, "2M pages checked: %16lu\n", cpa_2m_checked);
176 seq_printf(m, "2M pages sameprot: %16lu\n", cpa_2m_sameprot);
177 seq_printf(m, "2M pages preserved: %16lu\n", cpa_2m_preserved);
178 seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install);
179 return 0;
180 }
181
cpastats_open(struct inode * inode,struct file * file)182 static int cpastats_open(struct inode *inode, struct file *file)
183 {
184 return single_open(file, cpastats_show, NULL);
185 }
186
187 static const struct file_operations cpastats_fops = {
188 .open = cpastats_open,
189 .read = seq_read,
190 .llseek = seq_lseek,
191 .release = single_release,
192 };
193
cpa_stats_init(void)194 static int __init cpa_stats_init(void)
195 {
196 debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL,
197 &cpastats_fops);
198 return 0;
199 }
200 late_initcall(cpa_stats_init);
201 #else
cpa_inc_1g_checked(void)202 static inline void cpa_inc_1g_checked(void) { }
cpa_inc_2m_checked(void)203 static inline void cpa_inc_2m_checked(void) { }
cpa_inc_4k_install(void)204 static inline void cpa_inc_4k_install(void) { }
cpa_inc_lp_sameprot(int level)205 static inline void cpa_inc_lp_sameprot(int level) { }
cpa_inc_lp_preserved(int level)206 static inline void cpa_inc_lp_preserved(int level) { }
207 #endif
208
209
210 static inline int
within(unsigned long addr,unsigned long start,unsigned long end)211 within(unsigned long addr, unsigned long start, unsigned long end)
212 {
213 return addr >= start && addr < end;
214 }
215
216 static inline int
within_inclusive(unsigned long addr,unsigned long start,unsigned long end)217 within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
218 {
219 return addr >= start && addr <= end;
220 }
221
222 #ifdef CONFIG_X86_64
223
224 /*
225 * The kernel image is mapped into two places in the virtual address space
226 * (addresses without KASLR, of course):
227 *
228 * 1. The kernel direct map (0xffff880000000000)
229 * 2. The "high kernel map" (0xffffffff81000000)
230 *
231 * We actually execute out of #2. If we get the address of a kernel symbol, it
232 * points to #2, but almost all physical-to-virtual translations point to #1.
233 *
234 * This is so that we can have both a directmap of all physical memory *and*
235 * take full advantage of the limited (s32) immediate addressing range (2G)
236 * of x86_64.
237 *
238 * See Documentation/arch/x86/x86_64/mm.rst for more detail.
239 */
240
highmap_start_pfn(void)241 static inline unsigned long highmap_start_pfn(void)
242 {
243 return __pa_symbol(_text) >> PAGE_SHIFT;
244 }
245
highmap_end_pfn(void)246 static inline unsigned long highmap_end_pfn(void)
247 {
248 /* Do not reference physical address outside the kernel. */
249 return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
250 }
251
__cpa_pfn_in_highmap(unsigned long pfn)252 static bool __cpa_pfn_in_highmap(unsigned long pfn)
253 {
254 /*
255 * Kernel text has an alias mapping at a high address, known
256 * here as "highmap".
257 */
258 return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
259 }
260
261 #else
262
__cpa_pfn_in_highmap(unsigned long pfn)263 static bool __cpa_pfn_in_highmap(unsigned long pfn)
264 {
265 /* There is no highmap on 32-bit */
266 return false;
267 }
268
269 #endif
270
271 /*
272 * See set_mce_nospec().
273 *
274 * Machine check recovery code needs to change cache mode of poisoned pages to
275 * UC to avoid speculative access logging another error. But passing the
276 * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a
277 * speculative access. So we cheat and flip the top bit of the address. This
278 * works fine for the code that updates the page tables. But at the end of the
279 * process we need to flush the TLB and cache and the non-canonical address
280 * causes a #GP fault when used by the INVLPG and CLFLUSH instructions.
281 *
282 * But in the common case we already have a canonical address. This code
283 * will fix the top bit if needed and is a no-op otherwise.
284 */
fix_addr(unsigned long addr)285 static inline unsigned long fix_addr(unsigned long addr)
286 {
287 #ifdef CONFIG_X86_64
288 return (long)(addr << 1) >> 1;
289 #else
290 return addr;
291 #endif
292 }
293
__cpa_addr(struct cpa_data * cpa,unsigned long idx)294 static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx)
295 {
296 if (cpa->flags & CPA_PAGES_ARRAY) {
297 struct page *page = cpa->pages[idx];
298
299 if (unlikely(PageHighMem(page)))
300 return 0;
301
302 return (unsigned long)page_address(page);
303 }
304
305 if (cpa->flags & CPA_ARRAY)
306 return cpa->vaddr[idx];
307
308 return *cpa->vaddr + idx * PAGE_SIZE;
309 }
310
311 /*
312 * Flushing functions
313 */
314
clflush_cache_range_opt(void * vaddr,unsigned int size)315 static void clflush_cache_range_opt(void *vaddr, unsigned int size)
316 {
317 const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
318 void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
319 void *vend = vaddr + size;
320
321 if (p >= vend)
322 return;
323
324 for (; p < vend; p += clflush_size)
325 clflushopt(p);
326 }
327
328 /**
329 * clflush_cache_range - flush a cache range with clflush
330 * @vaddr: virtual start address
331 * @size: number of bytes to flush
332 *
333 * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or
334 * SFENCE to avoid ordering issues.
335 */
clflush_cache_range(void * vaddr,unsigned int size)336 void clflush_cache_range(void *vaddr, unsigned int size)
337 {
338 mb();
339 clflush_cache_range_opt(vaddr, size);
340 mb();
341 }
342 EXPORT_SYMBOL_GPL(clflush_cache_range);
343
344 #ifdef CONFIG_ARCH_HAS_PMEM_API
arch_invalidate_pmem(void * addr,size_t size)345 void arch_invalidate_pmem(void *addr, size_t size)
346 {
347 clflush_cache_range(addr, size);
348 }
349 EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
350 #endif
351
352 #ifdef CONFIG_ARCH_HAS_CPU_CACHE_INVALIDATE_MEMREGION
cpu_cache_has_invalidate_memregion(void)353 bool cpu_cache_has_invalidate_memregion(void)
354 {
355 return !cpu_feature_enabled(X86_FEATURE_HYPERVISOR);
356 }
357 EXPORT_SYMBOL_NS_GPL(cpu_cache_has_invalidate_memregion, DEVMEM);
358
cpu_cache_invalidate_memregion(int res_desc)359 int cpu_cache_invalidate_memregion(int res_desc)
360 {
361 if (WARN_ON_ONCE(!cpu_cache_has_invalidate_memregion()))
362 return -ENXIO;
363 wbinvd_on_all_cpus();
364 return 0;
365 }
366 EXPORT_SYMBOL_NS_GPL(cpu_cache_invalidate_memregion, DEVMEM);
367 #endif
368
__cpa_flush_all(void * arg)369 static void __cpa_flush_all(void *arg)
370 {
371 unsigned long cache = (unsigned long)arg;
372
373 /*
374 * Flush all to work around Errata in early athlons regarding
375 * large page flushing.
376 */
377 __flush_tlb_all();
378
379 if (cache && boot_cpu_data.x86 >= 4)
380 wbinvd();
381 }
382
cpa_flush_all(unsigned long cache)383 static void cpa_flush_all(unsigned long cache)
384 {
385 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
386
387 on_each_cpu(__cpa_flush_all, (void *) cache, 1);
388 }
389
__cpa_flush_tlb(void * data)390 static void __cpa_flush_tlb(void *data)
391 {
392 struct cpa_data *cpa = data;
393 unsigned int i;
394
395 for (i = 0; i < cpa->numpages; i++)
396 flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i)));
397 }
398
cpa_flush(struct cpa_data * data,int cache)399 static void cpa_flush(struct cpa_data *data, int cache)
400 {
401 struct cpa_data *cpa = data;
402 unsigned int i;
403
404 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
405
406 if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
407 cpa_flush_all(cache);
408 return;
409 }
410
411 if (cpa->force_flush_all || cpa->numpages > tlb_single_page_flush_ceiling)
412 flush_tlb_all();
413 else
414 on_each_cpu(__cpa_flush_tlb, cpa, 1);
415
416 if (!cache)
417 return;
418
419 mb();
420 for (i = 0; i < cpa->numpages; i++) {
421 unsigned long addr = __cpa_addr(cpa, i);
422 unsigned int level;
423
424 pte_t *pte = lookup_address(addr, &level);
425
426 /*
427 * Only flush present addresses:
428 */
429 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
430 clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE);
431 }
432 mb();
433 }
434
overlaps(unsigned long r1_start,unsigned long r1_end,unsigned long r2_start,unsigned long r2_end)435 static bool overlaps(unsigned long r1_start, unsigned long r1_end,
436 unsigned long r2_start, unsigned long r2_end)
437 {
438 return (r1_start <= r2_end && r1_end >= r2_start) ||
439 (r2_start <= r1_end && r2_end >= r1_start);
440 }
441
442 #ifdef CONFIG_PCI_BIOS
443 /*
444 * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
445 * based config access (CONFIG_PCI_GOBIOS) support.
446 */
447 #define BIOS_PFN PFN_DOWN(BIOS_BEGIN)
448 #define BIOS_PFN_END PFN_DOWN(BIOS_END - 1)
449
protect_pci_bios(unsigned long spfn,unsigned long epfn)450 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
451 {
452 if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END))
453 return _PAGE_NX;
454 return 0;
455 }
456 #else
protect_pci_bios(unsigned long spfn,unsigned long epfn)457 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
458 {
459 return 0;
460 }
461 #endif
462
463 /*
464 * The .rodata section needs to be read-only. Using the pfn catches all
465 * aliases. This also includes __ro_after_init, so do not enforce until
466 * kernel_set_to_readonly is true.
467 */
protect_rodata(unsigned long spfn,unsigned long epfn)468 static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn)
469 {
470 unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata));
471
472 /*
473 * Note: __end_rodata is at page aligned and not inclusive, so
474 * subtract 1 to get the last enforced PFN in the rodata area.
475 */
476 epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1;
477
478 if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro))
479 return _PAGE_RW;
480 return 0;
481 }
482
483 /*
484 * Protect kernel text against becoming non executable by forbidding
485 * _PAGE_NX. This protects only the high kernel mapping (_text -> _etext)
486 * out of which the kernel actually executes. Do not protect the low
487 * mapping.
488 *
489 * This does not cover __inittext since that is gone after boot.
490 */
protect_kernel_text(unsigned long start,unsigned long end)491 static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end)
492 {
493 unsigned long t_end = (unsigned long)_etext - 1;
494 unsigned long t_start = (unsigned long)_text;
495
496 if (overlaps(start, end, t_start, t_end))
497 return _PAGE_NX;
498 return 0;
499 }
500
501 #if defined(CONFIG_X86_64)
502 /*
503 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
504 * kernel text mappings for the large page aligned text, rodata sections
505 * will be always read-only. For the kernel identity mappings covering the
506 * holes caused by this alignment can be anything that user asks.
507 *
508 * This will preserve the large page mappings for kernel text/data at no
509 * extra cost.
510 */
protect_kernel_text_ro(unsigned long start,unsigned long end)511 static pgprotval_t protect_kernel_text_ro(unsigned long start,
512 unsigned long end)
513 {
514 unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1;
515 unsigned long t_start = (unsigned long)_text;
516 unsigned int level;
517
518 if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end))
519 return 0;
520 /*
521 * Don't enforce the !RW mapping for the kernel text mapping, if
522 * the current mapping is already using small page mapping. No
523 * need to work hard to preserve large page mappings in this case.
524 *
525 * This also fixes the Linux Xen paravirt guest boot failure caused
526 * by unexpected read-only mappings for kernel identity
527 * mappings. In this paravirt guest case, the kernel text mapping
528 * and the kernel identity mapping share the same page-table pages,
529 * so the protections for kernel text and identity mappings have to
530 * be the same.
531 */
532 if (lookup_address(start, &level) && (level != PG_LEVEL_4K))
533 return _PAGE_RW;
534 return 0;
535 }
536 #else
protect_kernel_text_ro(unsigned long start,unsigned long end)537 static pgprotval_t protect_kernel_text_ro(unsigned long start,
538 unsigned long end)
539 {
540 return 0;
541 }
542 #endif
543
conflicts(pgprot_t prot,pgprotval_t val)544 static inline bool conflicts(pgprot_t prot, pgprotval_t val)
545 {
546 return (pgprot_val(prot) & ~val) != pgprot_val(prot);
547 }
548
check_conflict(int warnlvl,pgprot_t prot,pgprotval_t val,unsigned long start,unsigned long end,unsigned long pfn,const char * txt)549 static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val,
550 unsigned long start, unsigned long end,
551 unsigned long pfn, const char *txt)
552 {
553 static const char *lvltxt[] = {
554 [CPA_CONFLICT] = "conflict",
555 [CPA_PROTECT] = "protect",
556 [CPA_DETECT] = "detect",
557 };
558
559 if (warnlvl > cpa_warn_level || !conflicts(prot, val))
560 return;
561
562 pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
563 lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot),
564 (unsigned long long)val);
565 }
566
567 /*
568 * Certain areas of memory on x86 require very specific protection flags,
569 * for example the BIOS area or kernel text. Callers don't always get this
570 * right (again, ioremap() on BIOS memory is not uncommon) so this function
571 * checks and fixes these known static required protection bits.
572 */
static_protections(pgprot_t prot,unsigned long start,unsigned long pfn,unsigned long npg,unsigned long lpsize,int warnlvl)573 static inline pgprot_t static_protections(pgprot_t prot, unsigned long start,
574 unsigned long pfn, unsigned long npg,
575 unsigned long lpsize, int warnlvl)
576 {
577 pgprotval_t forbidden, res;
578 unsigned long end;
579
580 /*
581 * There is no point in checking RW/NX conflicts when the requested
582 * mapping is setting the page !PRESENT.
583 */
584 if (!(pgprot_val(prot) & _PAGE_PRESENT))
585 return prot;
586
587 /* Operate on the virtual address */
588 end = start + npg * PAGE_SIZE - 1;
589
590 res = protect_kernel_text(start, end);
591 check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX");
592 forbidden = res;
593
594 /*
595 * Special case to preserve a large page. If the change spawns the
596 * full large page mapping then there is no point to split it
597 * up. Happens with ftrace and is going to be removed once ftrace
598 * switched to text_poke().
599 */
600 if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) {
601 res = protect_kernel_text_ro(start, end);
602 check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO");
603 forbidden |= res;
604 }
605
606 /* Check the PFN directly */
607 res = protect_pci_bios(pfn, pfn + npg - 1);
608 check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX");
609 forbidden |= res;
610
611 res = protect_rodata(pfn, pfn + npg - 1);
612 check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO");
613 forbidden |= res;
614
615 return __pgprot(pgprot_val(prot) & ~forbidden);
616 }
617
618 /*
619 * Validate strict W^X semantics.
620 */
verify_rwx(pgprot_t old,pgprot_t new,unsigned long start,unsigned long pfn,unsigned long npg)621 static inline pgprot_t verify_rwx(pgprot_t old, pgprot_t new, unsigned long start,
622 unsigned long pfn, unsigned long npg)
623 {
624 unsigned long end;
625
626 /*
627 * 32-bit has some unfixable W+X issues, like EFI code
628 * and writeable data being in the same page. Disable
629 * detection and enforcement there.
630 */
631 if (IS_ENABLED(CONFIG_X86_32))
632 return new;
633
634 /* Only verify when NX is supported: */
635 if (!(__supported_pte_mask & _PAGE_NX))
636 return new;
637
638 if (!((pgprot_val(old) ^ pgprot_val(new)) & (_PAGE_RW | _PAGE_NX)))
639 return new;
640
641 if ((pgprot_val(new) & (_PAGE_RW | _PAGE_NX)) != _PAGE_RW)
642 return new;
643
644 end = start + npg * PAGE_SIZE - 1;
645 WARN_ONCE(1, "CPA detected W^X violation: %016llx -> %016llx range: 0x%016lx - 0x%016lx PFN %lx\n",
646 (unsigned long long)pgprot_val(old),
647 (unsigned long long)pgprot_val(new),
648 start, end, pfn);
649
650 /*
651 * For now, allow all permission change attempts by returning the
652 * attempted permissions. This can 'return old' to actively
653 * refuse the permission change at a later time.
654 */
655 return new;
656 }
657
658 /*
659 * Lookup the page table entry for a virtual address in a specific pgd.
660 * Return a pointer to the entry and the level of the mapping.
661 */
lookup_address_in_pgd(pgd_t * pgd,unsigned long address,unsigned int * level)662 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
663 unsigned int *level)
664 {
665 p4d_t *p4d;
666 pud_t *pud;
667 pmd_t *pmd;
668
669 *level = PG_LEVEL_NONE;
670
671 if (pgd_none(*pgd))
672 return NULL;
673
674 p4d = p4d_offset(pgd, address);
675 if (p4d_none(*p4d))
676 return NULL;
677
678 *level = PG_LEVEL_512G;
679 if (p4d_large(*p4d) || !p4d_present(*p4d))
680 return (pte_t *)p4d;
681
682 pud = pud_offset(p4d, address);
683 if (pud_none(*pud))
684 return NULL;
685
686 *level = PG_LEVEL_1G;
687 if (pud_large(*pud) || !pud_present(*pud))
688 return (pte_t *)pud;
689
690 pmd = pmd_offset(pud, address);
691 if (pmd_none(*pmd))
692 return NULL;
693
694 *level = PG_LEVEL_2M;
695 if (pmd_large(*pmd) || !pmd_present(*pmd))
696 return (pte_t *)pmd;
697
698 *level = PG_LEVEL_4K;
699
700 return pte_offset_kernel(pmd, address);
701 }
702
703 /*
704 * Lookup the page table entry for a virtual address. Return a pointer
705 * to the entry and the level of the mapping.
706 *
707 * Note: We return pud and pmd either when the entry is marked large
708 * or when the present bit is not set. Otherwise we would return a
709 * pointer to a nonexisting mapping.
710 */
lookup_address(unsigned long address,unsigned int * level)711 pte_t *lookup_address(unsigned long address, unsigned int *level)
712 {
713 return lookup_address_in_pgd(pgd_offset_k(address), address, level);
714 }
715 EXPORT_SYMBOL_GPL(lookup_address);
716
_lookup_address_cpa(struct cpa_data * cpa,unsigned long address,unsigned int * level)717 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
718 unsigned int *level)
719 {
720 if (cpa->pgd)
721 return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
722 address, level);
723
724 return lookup_address(address, level);
725 }
726
727 /*
728 * Lookup the PMD entry for a virtual address. Return a pointer to the entry
729 * or NULL if not present.
730 */
lookup_pmd_address(unsigned long address)731 pmd_t *lookup_pmd_address(unsigned long address)
732 {
733 pgd_t *pgd;
734 p4d_t *p4d;
735 pud_t *pud;
736
737 pgd = pgd_offset_k(address);
738 if (pgd_none(*pgd))
739 return NULL;
740
741 p4d = p4d_offset(pgd, address);
742 if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
743 return NULL;
744
745 pud = pud_offset(p4d, address);
746 if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
747 return NULL;
748
749 return pmd_offset(pud, address);
750 }
751
752 /*
753 * This is necessary because __pa() does not work on some
754 * kinds of memory, like vmalloc() or the alloc_remap()
755 * areas on 32-bit NUMA systems. The percpu areas can
756 * end up in this kind of memory, for instance.
757 *
758 * This could be optimized, but it is only intended to be
759 * used at initialization time, and keeping it
760 * unoptimized should increase the testing coverage for
761 * the more obscure platforms.
762 */
slow_virt_to_phys(void * __virt_addr)763 phys_addr_t slow_virt_to_phys(void *__virt_addr)
764 {
765 unsigned long virt_addr = (unsigned long)__virt_addr;
766 phys_addr_t phys_addr;
767 unsigned long offset;
768 enum pg_level level;
769 pte_t *pte;
770
771 pte = lookup_address(virt_addr, &level);
772 BUG_ON(!pte);
773
774 /*
775 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
776 * before being left-shifted PAGE_SHIFT bits -- this trick is to
777 * make 32-PAE kernel work correctly.
778 */
779 switch (level) {
780 case PG_LEVEL_1G:
781 phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
782 offset = virt_addr & ~PUD_MASK;
783 break;
784 case PG_LEVEL_2M:
785 phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
786 offset = virt_addr & ~PMD_MASK;
787 break;
788 default:
789 phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
790 offset = virt_addr & ~PAGE_MASK;
791 }
792
793 return (phys_addr_t)(phys_addr | offset);
794 }
795 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
796
797 /*
798 * Set the new pmd in all the pgds we know about:
799 */
__set_pmd_pte(pte_t * kpte,unsigned long address,pte_t pte)800 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
801 {
802 /* change init_mm */
803 set_pte_atomic(kpte, pte);
804 #ifdef CONFIG_X86_32
805 if (!SHARED_KERNEL_PMD) {
806 struct page *page;
807
808 list_for_each_entry(page, &pgd_list, lru) {
809 pgd_t *pgd;
810 p4d_t *p4d;
811 pud_t *pud;
812 pmd_t *pmd;
813
814 pgd = (pgd_t *)page_address(page) + pgd_index(address);
815 p4d = p4d_offset(pgd, address);
816 pud = pud_offset(p4d, address);
817 pmd = pmd_offset(pud, address);
818 set_pte_atomic((pte_t *)pmd, pte);
819 }
820 }
821 #endif
822 }
823
pgprot_clear_protnone_bits(pgprot_t prot)824 static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
825 {
826 /*
827 * _PAGE_GLOBAL means "global page" for present PTEs.
828 * But, it is also used to indicate _PAGE_PROTNONE
829 * for non-present PTEs.
830 *
831 * This ensures that a _PAGE_GLOBAL PTE going from
832 * present to non-present is not confused as
833 * _PAGE_PROTNONE.
834 */
835 if (!(pgprot_val(prot) & _PAGE_PRESENT))
836 pgprot_val(prot) &= ~_PAGE_GLOBAL;
837
838 return prot;
839 }
840
__should_split_large_page(pte_t * kpte,unsigned long address,struct cpa_data * cpa)841 static int __should_split_large_page(pte_t *kpte, unsigned long address,
842 struct cpa_data *cpa)
843 {
844 unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn;
845 pgprot_t old_prot, new_prot, req_prot, chk_prot;
846 pte_t new_pte, *tmp;
847 enum pg_level level;
848
849 /*
850 * Check for races, another CPU might have split this page
851 * up already:
852 */
853 tmp = _lookup_address_cpa(cpa, address, &level);
854 if (tmp != kpte)
855 return 1;
856
857 switch (level) {
858 case PG_LEVEL_2M:
859 old_prot = pmd_pgprot(*(pmd_t *)kpte);
860 old_pfn = pmd_pfn(*(pmd_t *)kpte);
861 cpa_inc_2m_checked();
862 break;
863 case PG_LEVEL_1G:
864 old_prot = pud_pgprot(*(pud_t *)kpte);
865 old_pfn = pud_pfn(*(pud_t *)kpte);
866 cpa_inc_1g_checked();
867 break;
868 default:
869 return -EINVAL;
870 }
871
872 psize = page_level_size(level);
873 pmask = page_level_mask(level);
874
875 /*
876 * Calculate the number of pages, which fit into this large
877 * page starting at address:
878 */
879 lpaddr = (address + psize) & pmask;
880 numpages = (lpaddr - address) >> PAGE_SHIFT;
881 if (numpages < cpa->numpages)
882 cpa->numpages = numpages;
883
884 /*
885 * We are safe now. Check whether the new pgprot is the same:
886 * Convert protection attributes to 4k-format, as cpa->mask* are set
887 * up accordingly.
888 */
889
890 /* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
891 req_prot = pgprot_large_2_4k(old_prot);
892
893 pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
894 pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
895
896 /*
897 * req_prot is in format of 4k pages. It must be converted to large
898 * page format: the caching mode includes the PAT bit located at
899 * different bit positions in the two formats.
900 */
901 req_prot = pgprot_4k_2_large(req_prot);
902 req_prot = pgprot_clear_protnone_bits(req_prot);
903 if (pgprot_val(req_prot) & _PAGE_PRESENT)
904 pgprot_val(req_prot) |= _PAGE_PSE;
905
906 /*
907 * old_pfn points to the large page base pfn. So we need to add the
908 * offset of the virtual address:
909 */
910 pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
911 cpa->pfn = pfn;
912
913 /*
914 * Calculate the large page base address and the number of 4K pages
915 * in the large page
916 */
917 lpaddr = address & pmask;
918 numpages = psize >> PAGE_SHIFT;
919
920 /*
921 * Sanity check that the existing mapping is correct versus the static
922 * protections. static_protections() guards against !PRESENT, so no
923 * extra conditional required here.
924 */
925 chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages,
926 psize, CPA_CONFLICT);
927
928 if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) {
929 /*
930 * Split the large page and tell the split code to
931 * enforce static protections.
932 */
933 cpa->force_static_prot = 1;
934 return 1;
935 }
936
937 /*
938 * Optimization: If the requested pgprot is the same as the current
939 * pgprot, then the large page can be preserved and no updates are
940 * required independent of alignment and length of the requested
941 * range. The above already established that the current pgprot is
942 * correct, which in consequence makes the requested pgprot correct
943 * as well if it is the same. The static protection scan below will
944 * not come to a different conclusion.
945 */
946 if (pgprot_val(req_prot) == pgprot_val(old_prot)) {
947 cpa_inc_lp_sameprot(level);
948 return 0;
949 }
950
951 /*
952 * If the requested range does not cover the full page, split it up
953 */
954 if (address != lpaddr || cpa->numpages != numpages)
955 return 1;
956
957 /*
958 * Check whether the requested pgprot is conflicting with a static
959 * protection requirement in the large page.
960 */
961 new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages,
962 psize, CPA_DETECT);
963
964 new_prot = verify_rwx(old_prot, new_prot, lpaddr, old_pfn, numpages);
965
966 /*
967 * If there is a conflict, split the large page.
968 *
969 * There used to be a 4k wise evaluation trying really hard to
970 * preserve the large pages, but experimentation has shown, that this
971 * does not help at all. There might be corner cases which would
972 * preserve one large page occasionally, but it's really not worth the
973 * extra code and cycles for the common case.
974 */
975 if (pgprot_val(req_prot) != pgprot_val(new_prot))
976 return 1;
977
978 /* All checks passed. Update the large page mapping. */
979 new_pte = pfn_pte(old_pfn, new_prot);
980 __set_pmd_pte(kpte, address, new_pte);
981 cpa->flags |= CPA_FLUSHTLB;
982 cpa_inc_lp_preserved(level);
983 return 0;
984 }
985
should_split_large_page(pte_t * kpte,unsigned long address,struct cpa_data * cpa)986 static int should_split_large_page(pte_t *kpte, unsigned long address,
987 struct cpa_data *cpa)
988 {
989 int do_split;
990
991 if (cpa->force_split)
992 return 1;
993
994 spin_lock(&pgd_lock);
995 do_split = __should_split_large_page(kpte, address, cpa);
996 spin_unlock(&pgd_lock);
997
998 return do_split;
999 }
1000
split_set_pte(struct cpa_data * cpa,pte_t * pte,unsigned long pfn,pgprot_t ref_prot,unsigned long address,unsigned long size)1001 static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn,
1002 pgprot_t ref_prot, unsigned long address,
1003 unsigned long size)
1004 {
1005 unsigned int npg = PFN_DOWN(size);
1006 pgprot_t prot;
1007
1008 /*
1009 * If should_split_large_page() discovered an inconsistent mapping,
1010 * remove the invalid protection in the split mapping.
1011 */
1012 if (!cpa->force_static_prot)
1013 goto set;
1014
1015 /* Hand in lpsize = 0 to enforce the protection mechanism */
1016 prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT);
1017
1018 if (pgprot_val(prot) == pgprot_val(ref_prot))
1019 goto set;
1020
1021 /*
1022 * If this is splitting a PMD, fix it up. PUD splits cannot be
1023 * fixed trivially as that would require to rescan the newly
1024 * installed PMD mappings after returning from split_large_page()
1025 * so an eventual further split can allocate the necessary PTE
1026 * pages. Warn for now and revisit it in case this actually
1027 * happens.
1028 */
1029 if (size == PAGE_SIZE)
1030 ref_prot = prot;
1031 else
1032 pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
1033 set:
1034 set_pte(pte, pfn_pte(pfn, ref_prot));
1035 }
1036
1037 static int
__split_large_page(struct cpa_data * cpa,pte_t * kpte,unsigned long address,struct page * base)1038 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
1039 struct page *base)
1040 {
1041 unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1;
1042 pte_t *pbase = (pte_t *)page_address(base);
1043 unsigned int i, level;
1044 pgprot_t ref_prot;
1045 pte_t *tmp;
1046
1047 spin_lock(&pgd_lock);
1048 /*
1049 * Check for races, another CPU might have split this page
1050 * up for us already:
1051 */
1052 tmp = _lookup_address_cpa(cpa, address, &level);
1053 if (tmp != kpte) {
1054 spin_unlock(&pgd_lock);
1055 return 1;
1056 }
1057
1058 paravirt_alloc_pte(&init_mm, page_to_pfn(base));
1059
1060 switch (level) {
1061 case PG_LEVEL_2M:
1062 ref_prot = pmd_pgprot(*(pmd_t *)kpte);
1063 /*
1064 * Clear PSE (aka _PAGE_PAT) and move
1065 * PAT bit to correct position.
1066 */
1067 ref_prot = pgprot_large_2_4k(ref_prot);
1068 ref_pfn = pmd_pfn(*(pmd_t *)kpte);
1069 lpaddr = address & PMD_MASK;
1070 lpinc = PAGE_SIZE;
1071 break;
1072
1073 case PG_LEVEL_1G:
1074 ref_prot = pud_pgprot(*(pud_t *)kpte);
1075 ref_pfn = pud_pfn(*(pud_t *)kpte);
1076 pfninc = PMD_SIZE >> PAGE_SHIFT;
1077 lpaddr = address & PUD_MASK;
1078 lpinc = PMD_SIZE;
1079 /*
1080 * Clear the PSE flags if the PRESENT flag is not set
1081 * otherwise pmd_present/pmd_huge will return true
1082 * even on a non present pmd.
1083 */
1084 if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
1085 pgprot_val(ref_prot) &= ~_PAGE_PSE;
1086 break;
1087
1088 default:
1089 spin_unlock(&pgd_lock);
1090 return 1;
1091 }
1092
1093 ref_prot = pgprot_clear_protnone_bits(ref_prot);
1094
1095 /*
1096 * Get the target pfn from the original entry:
1097 */
1098 pfn = ref_pfn;
1099 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc)
1100 split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc);
1101
1102 if (virt_addr_valid(address)) {
1103 unsigned long pfn = PFN_DOWN(__pa(address));
1104
1105 if (pfn_range_is_mapped(pfn, pfn + 1))
1106 split_page_count(level);
1107 }
1108
1109 /*
1110 * Install the new, split up pagetable.
1111 *
1112 * We use the standard kernel pagetable protections for the new
1113 * pagetable protections, the actual ptes set above control the
1114 * primary protection behavior:
1115 */
1116 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
1117
1118 /*
1119 * Do a global flush tlb after splitting the large page
1120 * and before we do the actual change page attribute in the PTE.
1121 *
1122 * Without this, we violate the TLB application note, that says:
1123 * "The TLBs may contain both ordinary and large-page
1124 * translations for a 4-KByte range of linear addresses. This
1125 * may occur if software modifies the paging structures so that
1126 * the page size used for the address range changes. If the two
1127 * translations differ with respect to page frame or attributes
1128 * (e.g., permissions), processor behavior is undefined and may
1129 * be implementation-specific."
1130 *
1131 * We do this global tlb flush inside the cpa_lock, so that we
1132 * don't allow any other cpu, with stale tlb entries change the
1133 * page attribute in parallel, that also falls into the
1134 * just split large page entry.
1135 */
1136 flush_tlb_all();
1137 spin_unlock(&pgd_lock);
1138
1139 return 0;
1140 }
1141
split_large_page(struct cpa_data * cpa,pte_t * kpte,unsigned long address)1142 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
1143 unsigned long address)
1144 {
1145 struct page *base;
1146
1147 if (!debug_pagealloc_enabled())
1148 spin_unlock(&cpa_lock);
1149 base = alloc_pages(GFP_KERNEL, 0);
1150 if (!debug_pagealloc_enabled())
1151 spin_lock(&cpa_lock);
1152 if (!base)
1153 return -ENOMEM;
1154
1155 if (__split_large_page(cpa, kpte, address, base))
1156 __free_page(base);
1157
1158 return 0;
1159 }
1160
try_to_free_pte_page(pte_t * pte)1161 static bool try_to_free_pte_page(pte_t *pte)
1162 {
1163 int i;
1164
1165 for (i = 0; i < PTRS_PER_PTE; i++)
1166 if (!pte_none(pte[i]))
1167 return false;
1168
1169 free_page((unsigned long)pte);
1170 return true;
1171 }
1172
try_to_free_pmd_page(pmd_t * pmd)1173 static bool try_to_free_pmd_page(pmd_t *pmd)
1174 {
1175 int i;
1176
1177 for (i = 0; i < PTRS_PER_PMD; i++)
1178 if (!pmd_none(pmd[i]))
1179 return false;
1180
1181 free_page((unsigned long)pmd);
1182 return true;
1183 }
1184
unmap_pte_range(pmd_t * pmd,unsigned long start,unsigned long end)1185 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
1186 {
1187 pte_t *pte = pte_offset_kernel(pmd, start);
1188
1189 while (start < end) {
1190 set_pte(pte, __pte(0));
1191
1192 start += PAGE_SIZE;
1193 pte++;
1194 }
1195
1196 if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
1197 pmd_clear(pmd);
1198 return true;
1199 }
1200 return false;
1201 }
1202
__unmap_pmd_range(pud_t * pud,pmd_t * pmd,unsigned long start,unsigned long end)1203 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
1204 unsigned long start, unsigned long end)
1205 {
1206 if (unmap_pte_range(pmd, start, end))
1207 if (try_to_free_pmd_page(pud_pgtable(*pud)))
1208 pud_clear(pud);
1209 }
1210
unmap_pmd_range(pud_t * pud,unsigned long start,unsigned long end)1211 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
1212 {
1213 pmd_t *pmd = pmd_offset(pud, start);
1214
1215 /*
1216 * Not on a 2MB page boundary?
1217 */
1218 if (start & (PMD_SIZE - 1)) {
1219 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1220 unsigned long pre_end = min_t(unsigned long, end, next_page);
1221
1222 __unmap_pmd_range(pud, pmd, start, pre_end);
1223
1224 start = pre_end;
1225 pmd++;
1226 }
1227
1228 /*
1229 * Try to unmap in 2M chunks.
1230 */
1231 while (end - start >= PMD_SIZE) {
1232 if (pmd_large(*pmd))
1233 pmd_clear(pmd);
1234 else
1235 __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
1236
1237 start += PMD_SIZE;
1238 pmd++;
1239 }
1240
1241 /*
1242 * 4K leftovers?
1243 */
1244 if (start < end)
1245 return __unmap_pmd_range(pud, pmd, start, end);
1246
1247 /*
1248 * Try again to free the PMD page if haven't succeeded above.
1249 */
1250 if (!pud_none(*pud))
1251 if (try_to_free_pmd_page(pud_pgtable(*pud)))
1252 pud_clear(pud);
1253 }
1254
unmap_pud_range(p4d_t * p4d,unsigned long start,unsigned long end)1255 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
1256 {
1257 pud_t *pud = pud_offset(p4d, start);
1258
1259 /*
1260 * Not on a GB page boundary?
1261 */
1262 if (start & (PUD_SIZE - 1)) {
1263 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1264 unsigned long pre_end = min_t(unsigned long, end, next_page);
1265
1266 unmap_pmd_range(pud, start, pre_end);
1267
1268 start = pre_end;
1269 pud++;
1270 }
1271
1272 /*
1273 * Try to unmap in 1G chunks?
1274 */
1275 while (end - start >= PUD_SIZE) {
1276
1277 if (pud_large(*pud))
1278 pud_clear(pud);
1279 else
1280 unmap_pmd_range(pud, start, start + PUD_SIZE);
1281
1282 start += PUD_SIZE;
1283 pud++;
1284 }
1285
1286 /*
1287 * 2M leftovers?
1288 */
1289 if (start < end)
1290 unmap_pmd_range(pud, start, end);
1291
1292 /*
1293 * No need to try to free the PUD page because we'll free it in
1294 * populate_pgd's error path
1295 */
1296 }
1297
alloc_pte_page(pmd_t * pmd)1298 static int alloc_pte_page(pmd_t *pmd)
1299 {
1300 pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
1301 if (!pte)
1302 return -1;
1303
1304 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
1305 return 0;
1306 }
1307
alloc_pmd_page(pud_t * pud)1308 static int alloc_pmd_page(pud_t *pud)
1309 {
1310 pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
1311 if (!pmd)
1312 return -1;
1313
1314 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
1315 return 0;
1316 }
1317
populate_pte(struct cpa_data * cpa,unsigned long start,unsigned long end,unsigned num_pages,pmd_t * pmd,pgprot_t pgprot)1318 static void populate_pte(struct cpa_data *cpa,
1319 unsigned long start, unsigned long end,
1320 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
1321 {
1322 pte_t *pte;
1323
1324 pte = pte_offset_kernel(pmd, start);
1325
1326 pgprot = pgprot_clear_protnone_bits(pgprot);
1327
1328 while (num_pages-- && start < end) {
1329 set_pte(pte, pfn_pte(cpa->pfn, pgprot));
1330
1331 start += PAGE_SIZE;
1332 cpa->pfn++;
1333 pte++;
1334 }
1335 }
1336
populate_pmd(struct cpa_data * cpa,unsigned long start,unsigned long end,unsigned num_pages,pud_t * pud,pgprot_t pgprot)1337 static long populate_pmd(struct cpa_data *cpa,
1338 unsigned long start, unsigned long end,
1339 unsigned num_pages, pud_t *pud, pgprot_t pgprot)
1340 {
1341 long cur_pages = 0;
1342 pmd_t *pmd;
1343 pgprot_t pmd_pgprot;
1344
1345 /*
1346 * Not on a 2M boundary?
1347 */
1348 if (start & (PMD_SIZE - 1)) {
1349 unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
1350 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1351
1352 pre_end = min_t(unsigned long, pre_end, next_page);
1353 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1354 cur_pages = min_t(unsigned int, num_pages, cur_pages);
1355
1356 /*
1357 * Need a PTE page?
1358 */
1359 pmd = pmd_offset(pud, start);
1360 if (pmd_none(*pmd))
1361 if (alloc_pte_page(pmd))
1362 return -1;
1363
1364 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
1365
1366 start = pre_end;
1367 }
1368
1369 /*
1370 * We mapped them all?
1371 */
1372 if (num_pages == cur_pages)
1373 return cur_pages;
1374
1375 pmd_pgprot = pgprot_4k_2_large(pgprot);
1376
1377 while (end - start >= PMD_SIZE) {
1378
1379 /*
1380 * We cannot use a 1G page so allocate a PMD page if needed.
1381 */
1382 if (pud_none(*pud))
1383 if (alloc_pmd_page(pud))
1384 return -1;
1385
1386 pmd = pmd_offset(pud, start);
1387
1388 set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
1389 canon_pgprot(pmd_pgprot))));
1390
1391 start += PMD_SIZE;
1392 cpa->pfn += PMD_SIZE >> PAGE_SHIFT;
1393 cur_pages += PMD_SIZE >> PAGE_SHIFT;
1394 }
1395
1396 /*
1397 * Map trailing 4K pages.
1398 */
1399 if (start < end) {
1400 pmd = pmd_offset(pud, start);
1401 if (pmd_none(*pmd))
1402 if (alloc_pte_page(pmd))
1403 return -1;
1404
1405 populate_pte(cpa, start, end, num_pages - cur_pages,
1406 pmd, pgprot);
1407 }
1408 return num_pages;
1409 }
1410
populate_pud(struct cpa_data * cpa,unsigned long start,p4d_t * p4d,pgprot_t pgprot)1411 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1412 pgprot_t pgprot)
1413 {
1414 pud_t *pud;
1415 unsigned long end;
1416 long cur_pages = 0;
1417 pgprot_t pud_pgprot;
1418
1419 end = start + (cpa->numpages << PAGE_SHIFT);
1420
1421 /*
1422 * Not on a Gb page boundary? => map everything up to it with
1423 * smaller pages.
1424 */
1425 if (start & (PUD_SIZE - 1)) {
1426 unsigned long pre_end;
1427 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1428
1429 pre_end = min_t(unsigned long, end, next_page);
1430 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1431 cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1432
1433 pud = pud_offset(p4d, start);
1434
1435 /*
1436 * Need a PMD page?
1437 */
1438 if (pud_none(*pud))
1439 if (alloc_pmd_page(pud))
1440 return -1;
1441
1442 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1443 pud, pgprot);
1444 if (cur_pages < 0)
1445 return cur_pages;
1446
1447 start = pre_end;
1448 }
1449
1450 /* We mapped them all? */
1451 if (cpa->numpages == cur_pages)
1452 return cur_pages;
1453
1454 pud = pud_offset(p4d, start);
1455 pud_pgprot = pgprot_4k_2_large(pgprot);
1456
1457 /*
1458 * Map everything starting from the Gb boundary, possibly with 1G pages
1459 */
1460 while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1461 set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
1462 canon_pgprot(pud_pgprot))));
1463
1464 start += PUD_SIZE;
1465 cpa->pfn += PUD_SIZE >> PAGE_SHIFT;
1466 cur_pages += PUD_SIZE >> PAGE_SHIFT;
1467 pud++;
1468 }
1469
1470 /* Map trailing leftover */
1471 if (start < end) {
1472 long tmp;
1473
1474 pud = pud_offset(p4d, start);
1475 if (pud_none(*pud))
1476 if (alloc_pmd_page(pud))
1477 return -1;
1478
1479 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1480 pud, pgprot);
1481 if (tmp < 0)
1482 return cur_pages;
1483
1484 cur_pages += tmp;
1485 }
1486 return cur_pages;
1487 }
1488
1489 /*
1490 * Restrictions for kernel page table do not necessarily apply when mapping in
1491 * an alternate PGD.
1492 */
populate_pgd(struct cpa_data * cpa,unsigned long addr)1493 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1494 {
1495 pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1496 pud_t *pud = NULL; /* shut up gcc */
1497 p4d_t *p4d;
1498 pgd_t *pgd_entry;
1499 long ret;
1500
1501 pgd_entry = cpa->pgd + pgd_index(addr);
1502
1503 if (pgd_none(*pgd_entry)) {
1504 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1505 if (!p4d)
1506 return -1;
1507
1508 set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1509 }
1510
1511 /*
1512 * Allocate a PUD page and hand it down for mapping.
1513 */
1514 p4d = p4d_offset(pgd_entry, addr);
1515 if (p4d_none(*p4d)) {
1516 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1517 if (!pud)
1518 return -1;
1519
1520 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1521 }
1522
1523 pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1524 pgprot_val(pgprot) |= pgprot_val(cpa->mask_set);
1525
1526 ret = populate_pud(cpa, addr, p4d, pgprot);
1527 if (ret < 0) {
1528 /*
1529 * Leave the PUD page in place in case some other CPU or thread
1530 * already found it, but remove any useless entries we just
1531 * added to it.
1532 */
1533 unmap_pud_range(p4d, addr,
1534 addr + (cpa->numpages << PAGE_SHIFT));
1535 return ret;
1536 }
1537
1538 cpa->numpages = ret;
1539 return 0;
1540 }
1541
__cpa_process_fault(struct cpa_data * cpa,unsigned long vaddr,int primary)1542 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1543 int primary)
1544 {
1545 if (cpa->pgd) {
1546 /*
1547 * Right now, we only execute this code path when mapping
1548 * the EFI virtual memory map regions, no other users
1549 * provide a ->pgd value. This may change in the future.
1550 */
1551 return populate_pgd(cpa, vaddr);
1552 }
1553
1554 /*
1555 * Ignore all non primary paths.
1556 */
1557 if (!primary) {
1558 cpa->numpages = 1;
1559 return 0;
1560 }
1561
1562 /*
1563 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1564 * to have holes.
1565 * Also set numpages to '1' indicating that we processed cpa req for
1566 * one virtual address page and its pfn. TBD: numpages can be set based
1567 * on the initial value and the level returned by lookup_address().
1568 */
1569 if (within(vaddr, PAGE_OFFSET,
1570 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1571 cpa->numpages = 1;
1572 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1573 return 0;
1574
1575 } else if (__cpa_pfn_in_highmap(cpa->pfn)) {
1576 /* Faults in the highmap are OK, so do not warn: */
1577 return -EFAULT;
1578 } else {
1579 WARN(1, KERN_WARNING "CPA: called for zero pte. "
1580 "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1581 *cpa->vaddr);
1582
1583 return -EFAULT;
1584 }
1585 }
1586
__change_page_attr(struct cpa_data * cpa,int primary)1587 static int __change_page_attr(struct cpa_data *cpa, int primary)
1588 {
1589 unsigned long address;
1590 int do_split, err;
1591 unsigned int level;
1592 pte_t *kpte, old_pte;
1593
1594 address = __cpa_addr(cpa, cpa->curpage);
1595 repeat:
1596 kpte = _lookup_address_cpa(cpa, address, &level);
1597 if (!kpte)
1598 return __cpa_process_fault(cpa, address, primary);
1599
1600 old_pte = *kpte;
1601 if (pte_none(old_pte))
1602 return __cpa_process_fault(cpa, address, primary);
1603
1604 if (level == PG_LEVEL_4K) {
1605 pte_t new_pte;
1606 pgprot_t old_prot = pte_pgprot(old_pte);
1607 pgprot_t new_prot = pte_pgprot(old_pte);
1608 unsigned long pfn = pte_pfn(old_pte);
1609
1610 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1611 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1612
1613 cpa_inc_4k_install();
1614 /* Hand in lpsize = 0 to enforce the protection mechanism */
1615 new_prot = static_protections(new_prot, address, pfn, 1, 0,
1616 CPA_PROTECT);
1617
1618 new_prot = verify_rwx(old_prot, new_prot, address, pfn, 1);
1619
1620 new_prot = pgprot_clear_protnone_bits(new_prot);
1621
1622 /*
1623 * We need to keep the pfn from the existing PTE,
1624 * after all we're only going to change it's attributes
1625 * not the memory it points to
1626 */
1627 new_pte = pfn_pte(pfn, new_prot);
1628 cpa->pfn = pfn;
1629 /*
1630 * Do we really change anything ?
1631 */
1632 if (pte_val(old_pte) != pte_val(new_pte)) {
1633 set_pte_atomic(kpte, new_pte);
1634 cpa->flags |= CPA_FLUSHTLB;
1635 }
1636 cpa->numpages = 1;
1637 return 0;
1638 }
1639
1640 /*
1641 * Check, whether we can keep the large page intact
1642 * and just change the pte:
1643 */
1644 do_split = should_split_large_page(kpte, address, cpa);
1645 /*
1646 * When the range fits into the existing large page,
1647 * return. cp->numpages and cpa->tlbflush have been updated in
1648 * try_large_page:
1649 */
1650 if (do_split <= 0)
1651 return do_split;
1652
1653 /*
1654 * We have to split the large page:
1655 */
1656 err = split_large_page(cpa, kpte, address);
1657 if (!err)
1658 goto repeat;
1659
1660 return err;
1661 }
1662
1663 static int __change_page_attr_set_clr(struct cpa_data *cpa, int primary);
1664
1665 /*
1666 * Check the directmap and "high kernel map" 'aliases'.
1667 */
cpa_process_alias(struct cpa_data * cpa)1668 static int cpa_process_alias(struct cpa_data *cpa)
1669 {
1670 struct cpa_data alias_cpa;
1671 unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1672 unsigned long vaddr;
1673 int ret;
1674
1675 if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1676 return 0;
1677
1678 /*
1679 * No need to redo, when the primary call touched the direct
1680 * mapping already:
1681 */
1682 vaddr = __cpa_addr(cpa, cpa->curpage);
1683 if (!(within(vaddr, PAGE_OFFSET,
1684 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1685
1686 alias_cpa = *cpa;
1687 alias_cpa.vaddr = &laddr;
1688 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1689 alias_cpa.curpage = 0;
1690
1691 /* Directmap always has NX set, do not modify. */
1692 if (__supported_pte_mask & _PAGE_NX) {
1693 alias_cpa.mask_clr.pgprot &= ~_PAGE_NX;
1694 alias_cpa.mask_set.pgprot &= ~_PAGE_NX;
1695 }
1696
1697 cpa->force_flush_all = 1;
1698
1699 ret = __change_page_attr_set_clr(&alias_cpa, 0);
1700 if (ret)
1701 return ret;
1702 }
1703
1704 #ifdef CONFIG_X86_64
1705 /*
1706 * If the primary call didn't touch the high mapping already
1707 * and the physical address is inside the kernel map, we need
1708 * to touch the high mapped kernel as well:
1709 */
1710 if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1711 __cpa_pfn_in_highmap(cpa->pfn)) {
1712 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1713 __START_KERNEL_map - phys_base;
1714 alias_cpa = *cpa;
1715 alias_cpa.vaddr = &temp_cpa_vaddr;
1716 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1717 alias_cpa.curpage = 0;
1718
1719 /*
1720 * [_text, _brk_end) also covers data, do not modify NX except
1721 * in cases where the highmap is the primary target.
1722 */
1723 if (__supported_pte_mask & _PAGE_NX) {
1724 alias_cpa.mask_clr.pgprot &= ~_PAGE_NX;
1725 alias_cpa.mask_set.pgprot &= ~_PAGE_NX;
1726 }
1727
1728 cpa->force_flush_all = 1;
1729 /*
1730 * The high mapping range is imprecise, so ignore the
1731 * return value.
1732 */
1733 __change_page_attr_set_clr(&alias_cpa, 0);
1734 }
1735 #endif
1736
1737 return 0;
1738 }
1739
__change_page_attr_set_clr(struct cpa_data * cpa,int primary)1740 static int __change_page_attr_set_clr(struct cpa_data *cpa, int primary)
1741 {
1742 unsigned long numpages = cpa->numpages;
1743 unsigned long rempages = numpages;
1744 int ret = 0;
1745
1746 /*
1747 * No changes, easy!
1748 */
1749 if (!(pgprot_val(cpa->mask_set) | pgprot_val(cpa->mask_clr)) &&
1750 !cpa->force_split)
1751 return ret;
1752
1753 while (rempages) {
1754 /*
1755 * Store the remaining nr of pages for the large page
1756 * preservation check.
1757 */
1758 cpa->numpages = rempages;
1759 /* for array changes, we can't use large page */
1760 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1761 cpa->numpages = 1;
1762
1763 if (!debug_pagealloc_enabled())
1764 spin_lock(&cpa_lock);
1765 ret = __change_page_attr(cpa, primary);
1766 if (!debug_pagealloc_enabled())
1767 spin_unlock(&cpa_lock);
1768 if (ret)
1769 goto out;
1770
1771 if (primary && !(cpa->flags & CPA_NO_CHECK_ALIAS)) {
1772 ret = cpa_process_alias(cpa);
1773 if (ret)
1774 goto out;
1775 }
1776
1777 /*
1778 * Adjust the number of pages with the result of the
1779 * CPA operation. Either a large page has been
1780 * preserved or a single page update happened.
1781 */
1782 BUG_ON(cpa->numpages > rempages || !cpa->numpages);
1783 rempages -= cpa->numpages;
1784 cpa->curpage += cpa->numpages;
1785 }
1786
1787 out:
1788 /* Restore the original numpages */
1789 cpa->numpages = numpages;
1790 return ret;
1791 }
1792
change_page_attr_set_clr(unsigned long * addr,int numpages,pgprot_t mask_set,pgprot_t mask_clr,int force_split,int in_flag,struct page ** pages)1793 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1794 pgprot_t mask_set, pgprot_t mask_clr,
1795 int force_split, int in_flag,
1796 struct page **pages)
1797 {
1798 struct cpa_data cpa;
1799 int ret, cache;
1800
1801 memset(&cpa, 0, sizeof(cpa));
1802
1803 /*
1804 * Check, if we are requested to set a not supported
1805 * feature. Clearing non-supported features is OK.
1806 */
1807 mask_set = canon_pgprot(mask_set);
1808
1809 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1810 return 0;
1811
1812 /* Ensure we are PAGE_SIZE aligned */
1813 if (in_flag & CPA_ARRAY) {
1814 int i;
1815 for (i = 0; i < numpages; i++) {
1816 if (addr[i] & ~PAGE_MASK) {
1817 addr[i] &= PAGE_MASK;
1818 WARN_ON_ONCE(1);
1819 }
1820 }
1821 } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1822 /*
1823 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1824 * No need to check in that case
1825 */
1826 if (*addr & ~PAGE_MASK) {
1827 *addr &= PAGE_MASK;
1828 /*
1829 * People should not be passing in unaligned addresses:
1830 */
1831 WARN_ON_ONCE(1);
1832 }
1833 }
1834
1835 /* Must avoid aliasing mappings in the highmem code */
1836 kmap_flush_unused();
1837
1838 vm_unmap_aliases();
1839
1840 cpa.vaddr = addr;
1841 cpa.pages = pages;
1842 cpa.numpages = numpages;
1843 cpa.mask_set = mask_set;
1844 cpa.mask_clr = mask_clr;
1845 cpa.flags = in_flag;
1846 cpa.curpage = 0;
1847 cpa.force_split = force_split;
1848
1849 ret = __change_page_attr_set_clr(&cpa, 1);
1850
1851 /*
1852 * Check whether we really changed something:
1853 */
1854 if (!(cpa.flags & CPA_FLUSHTLB))
1855 goto out;
1856
1857 /*
1858 * No need to flush, when we did not set any of the caching
1859 * attributes:
1860 */
1861 cache = !!pgprot2cachemode(mask_set);
1862
1863 /*
1864 * On error; flush everything to be sure.
1865 */
1866 if (ret) {
1867 cpa_flush_all(cache);
1868 goto out;
1869 }
1870
1871 cpa_flush(&cpa, cache);
1872 out:
1873 return ret;
1874 }
1875
change_page_attr_set(unsigned long * addr,int numpages,pgprot_t mask,int array)1876 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1877 pgprot_t mask, int array)
1878 {
1879 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1880 (array ? CPA_ARRAY : 0), NULL);
1881 }
1882
change_page_attr_clear(unsigned long * addr,int numpages,pgprot_t mask,int array)1883 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1884 pgprot_t mask, int array)
1885 {
1886 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1887 (array ? CPA_ARRAY : 0), NULL);
1888 }
1889
cpa_set_pages_array(struct page ** pages,int numpages,pgprot_t mask)1890 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1891 pgprot_t mask)
1892 {
1893 return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1894 CPA_PAGES_ARRAY, pages);
1895 }
1896
cpa_clear_pages_array(struct page ** pages,int numpages,pgprot_t mask)1897 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1898 pgprot_t mask)
1899 {
1900 return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1901 CPA_PAGES_ARRAY, pages);
1902 }
1903
1904 /*
1905 * __set_memory_prot is an internal helper for callers that have been passed
1906 * a pgprot_t value from upper layers and a reservation has already been taken.
1907 * If you want to set the pgprot to a specific page protocol, use the
1908 * set_memory_xx() functions.
1909 */
__set_memory_prot(unsigned long addr,int numpages,pgprot_t prot)1910 int __set_memory_prot(unsigned long addr, int numpages, pgprot_t prot)
1911 {
1912 return change_page_attr_set_clr(&addr, numpages, prot,
1913 __pgprot(~pgprot_val(prot)), 0, 0,
1914 NULL);
1915 }
1916
_set_memory_uc(unsigned long addr,int numpages)1917 int _set_memory_uc(unsigned long addr, int numpages)
1918 {
1919 /*
1920 * for now UC MINUS. see comments in ioremap()
1921 * If you really need strong UC use ioremap_uc(), but note
1922 * that you cannot override IO areas with set_memory_*() as
1923 * these helpers cannot work with IO memory.
1924 */
1925 return change_page_attr_set(&addr, numpages,
1926 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1927 0);
1928 }
1929
set_memory_uc(unsigned long addr,int numpages)1930 int set_memory_uc(unsigned long addr, int numpages)
1931 {
1932 int ret;
1933
1934 /*
1935 * for now UC MINUS. see comments in ioremap()
1936 */
1937 ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1938 _PAGE_CACHE_MODE_UC_MINUS, NULL);
1939 if (ret)
1940 goto out_err;
1941
1942 ret = _set_memory_uc(addr, numpages);
1943 if (ret)
1944 goto out_free;
1945
1946 return 0;
1947
1948 out_free:
1949 memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1950 out_err:
1951 return ret;
1952 }
1953 EXPORT_SYMBOL(set_memory_uc);
1954
_set_memory_wc(unsigned long addr,int numpages)1955 int _set_memory_wc(unsigned long addr, int numpages)
1956 {
1957 int ret;
1958
1959 ret = change_page_attr_set(&addr, numpages,
1960 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1961 0);
1962 if (!ret) {
1963 ret = change_page_attr_set_clr(&addr, numpages,
1964 cachemode2pgprot(_PAGE_CACHE_MODE_WC),
1965 __pgprot(_PAGE_CACHE_MASK),
1966 0, 0, NULL);
1967 }
1968 return ret;
1969 }
1970
set_memory_wc(unsigned long addr,int numpages)1971 int set_memory_wc(unsigned long addr, int numpages)
1972 {
1973 int ret;
1974
1975 ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1976 _PAGE_CACHE_MODE_WC, NULL);
1977 if (ret)
1978 return ret;
1979
1980 ret = _set_memory_wc(addr, numpages);
1981 if (ret)
1982 memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1983
1984 return ret;
1985 }
1986 EXPORT_SYMBOL(set_memory_wc);
1987
_set_memory_wt(unsigned long addr,int numpages)1988 int _set_memory_wt(unsigned long addr, int numpages)
1989 {
1990 return change_page_attr_set(&addr, numpages,
1991 cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1992 }
1993
_set_memory_wb(unsigned long addr,int numpages)1994 int _set_memory_wb(unsigned long addr, int numpages)
1995 {
1996 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1997 return change_page_attr_clear(&addr, numpages,
1998 __pgprot(_PAGE_CACHE_MASK), 0);
1999 }
2000
set_memory_wb(unsigned long addr,int numpages)2001 int set_memory_wb(unsigned long addr, int numpages)
2002 {
2003 int ret;
2004
2005 ret = _set_memory_wb(addr, numpages);
2006 if (ret)
2007 return ret;
2008
2009 memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
2010 return 0;
2011 }
2012 EXPORT_SYMBOL(set_memory_wb);
2013
2014 /* Prevent speculative access to a page by marking it not-present */
2015 #ifdef CONFIG_X86_64
set_mce_nospec(unsigned long pfn)2016 int set_mce_nospec(unsigned long pfn)
2017 {
2018 unsigned long decoy_addr;
2019 int rc;
2020
2021 /* SGX pages are not in the 1:1 map */
2022 if (arch_is_platform_page(pfn << PAGE_SHIFT))
2023 return 0;
2024 /*
2025 * We would like to just call:
2026 * set_memory_XX((unsigned long)pfn_to_kaddr(pfn), 1);
2027 * but doing that would radically increase the odds of a
2028 * speculative access to the poison page because we'd have
2029 * the virtual address of the kernel 1:1 mapping sitting
2030 * around in registers.
2031 * Instead we get tricky. We create a non-canonical address
2032 * that looks just like the one we want, but has bit 63 flipped.
2033 * This relies on set_memory_XX() properly sanitizing any __pa()
2034 * results with __PHYSICAL_MASK or PTE_PFN_MASK.
2035 */
2036 decoy_addr = (pfn << PAGE_SHIFT) + (PAGE_OFFSET ^ BIT(63));
2037
2038 rc = set_memory_np(decoy_addr, 1);
2039 if (rc)
2040 pr_warn("Could not invalidate pfn=0x%lx from 1:1 map\n", pfn);
2041 return rc;
2042 }
2043
set_memory_p(unsigned long * addr,int numpages)2044 static int set_memory_p(unsigned long *addr, int numpages)
2045 {
2046 return change_page_attr_set(addr, numpages, __pgprot(_PAGE_PRESENT), 0);
2047 }
2048
2049 /* Restore full speculative operation to the pfn. */
clear_mce_nospec(unsigned long pfn)2050 int clear_mce_nospec(unsigned long pfn)
2051 {
2052 unsigned long addr = (unsigned long) pfn_to_kaddr(pfn);
2053
2054 return set_memory_p(&addr, 1);
2055 }
2056 EXPORT_SYMBOL_GPL(clear_mce_nospec);
2057 #endif /* CONFIG_X86_64 */
2058
set_memory_x(unsigned long addr,int numpages)2059 int set_memory_x(unsigned long addr, int numpages)
2060 {
2061 if (!(__supported_pte_mask & _PAGE_NX))
2062 return 0;
2063
2064 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
2065 }
2066
set_memory_nx(unsigned long addr,int numpages)2067 int set_memory_nx(unsigned long addr, int numpages)
2068 {
2069 if (!(__supported_pte_mask & _PAGE_NX))
2070 return 0;
2071
2072 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
2073 }
2074
set_memory_ro(unsigned long addr,int numpages)2075 int set_memory_ro(unsigned long addr, int numpages)
2076 {
2077 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW | _PAGE_DIRTY), 0);
2078 }
2079
set_memory_rox(unsigned long addr,int numpages)2080 int set_memory_rox(unsigned long addr, int numpages)
2081 {
2082 pgprot_t clr = __pgprot(_PAGE_RW | _PAGE_DIRTY);
2083
2084 if (__supported_pte_mask & _PAGE_NX)
2085 clr.pgprot |= _PAGE_NX;
2086
2087 return change_page_attr_clear(&addr, numpages, clr, 0);
2088 }
2089
set_memory_rw(unsigned long addr,int numpages)2090 int set_memory_rw(unsigned long addr, int numpages)
2091 {
2092 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
2093 }
2094
set_memory_np(unsigned long addr,int numpages)2095 int set_memory_np(unsigned long addr, int numpages)
2096 {
2097 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
2098 }
2099
set_memory_np_noalias(unsigned long addr,int numpages)2100 int set_memory_np_noalias(unsigned long addr, int numpages)
2101 {
2102 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
2103 __pgprot(_PAGE_PRESENT), 0,
2104 CPA_NO_CHECK_ALIAS, NULL);
2105 }
2106
set_memory_4k(unsigned long addr,int numpages)2107 int set_memory_4k(unsigned long addr, int numpages)
2108 {
2109 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
2110 __pgprot(0), 1, 0, NULL);
2111 }
2112
set_memory_nonglobal(unsigned long addr,int numpages)2113 int set_memory_nonglobal(unsigned long addr, int numpages)
2114 {
2115 return change_page_attr_clear(&addr, numpages,
2116 __pgprot(_PAGE_GLOBAL), 0);
2117 }
2118
set_memory_global(unsigned long addr,int numpages)2119 int set_memory_global(unsigned long addr, int numpages)
2120 {
2121 return change_page_attr_set(&addr, numpages,
2122 __pgprot(_PAGE_GLOBAL), 0);
2123 }
2124
2125 /*
2126 * __set_memory_enc_pgtable() is used for the hypervisors that get
2127 * informed about "encryption" status via page tables.
2128 */
__set_memory_enc_pgtable(unsigned long addr,int numpages,bool enc)2129 static int __set_memory_enc_pgtable(unsigned long addr, int numpages, bool enc)
2130 {
2131 pgprot_t empty = __pgprot(0);
2132 struct cpa_data cpa;
2133 int ret;
2134
2135 /* Should not be working on unaligned addresses */
2136 if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
2137 addr &= PAGE_MASK;
2138
2139 memset(&cpa, 0, sizeof(cpa));
2140 cpa.vaddr = &addr;
2141 cpa.numpages = numpages;
2142 cpa.mask_set = enc ? pgprot_encrypted(empty) : pgprot_decrypted(empty);
2143 cpa.mask_clr = enc ? pgprot_decrypted(empty) : pgprot_encrypted(empty);
2144 cpa.pgd = init_mm.pgd;
2145
2146 /* Must avoid aliasing mappings in the highmem code */
2147 kmap_flush_unused();
2148 vm_unmap_aliases();
2149
2150 /* Flush the caches as needed before changing the encryption attribute. */
2151 if (x86_platform.guest.enc_tlb_flush_required(enc))
2152 cpa_flush(&cpa, x86_platform.guest.enc_cache_flush_required());
2153
2154 /* Notify hypervisor that we are about to set/clr encryption attribute. */
2155 if (!x86_platform.guest.enc_status_change_prepare(addr, numpages, enc))
2156 return -EIO;
2157
2158 ret = __change_page_attr_set_clr(&cpa, 1);
2159
2160 /*
2161 * After changing the encryption attribute, we need to flush TLBs again
2162 * in case any speculative TLB caching occurred (but no need to flush
2163 * caches again). We could just use cpa_flush_all(), but in case TLB
2164 * flushing gets optimized in the cpa_flush() path use the same logic
2165 * as above.
2166 */
2167 cpa_flush(&cpa, 0);
2168
2169 /* Notify hypervisor that we have successfully set/clr encryption attribute. */
2170 if (!ret) {
2171 if (!x86_platform.guest.enc_status_change_finish(addr, numpages, enc))
2172 ret = -EIO;
2173 }
2174
2175 return ret;
2176 }
2177
__set_memory_enc_dec(unsigned long addr,int numpages,bool enc)2178 static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
2179 {
2180 if (cc_platform_has(CC_ATTR_MEM_ENCRYPT))
2181 return __set_memory_enc_pgtable(addr, numpages, enc);
2182
2183 return 0;
2184 }
2185
set_memory_encrypted(unsigned long addr,int numpages)2186 int set_memory_encrypted(unsigned long addr, int numpages)
2187 {
2188 return __set_memory_enc_dec(addr, numpages, true);
2189 }
2190 EXPORT_SYMBOL_GPL(set_memory_encrypted);
2191
set_memory_decrypted(unsigned long addr,int numpages)2192 int set_memory_decrypted(unsigned long addr, int numpages)
2193 {
2194 return __set_memory_enc_dec(addr, numpages, false);
2195 }
2196 EXPORT_SYMBOL_GPL(set_memory_decrypted);
2197
set_pages_uc(struct page * page,int numpages)2198 int set_pages_uc(struct page *page, int numpages)
2199 {
2200 unsigned long addr = (unsigned long)page_address(page);
2201
2202 return set_memory_uc(addr, numpages);
2203 }
2204 EXPORT_SYMBOL(set_pages_uc);
2205
_set_pages_array(struct page ** pages,int numpages,enum page_cache_mode new_type)2206 static int _set_pages_array(struct page **pages, int numpages,
2207 enum page_cache_mode new_type)
2208 {
2209 unsigned long start;
2210 unsigned long end;
2211 enum page_cache_mode set_type;
2212 int i;
2213 int free_idx;
2214 int ret;
2215
2216 for (i = 0; i < numpages; i++) {
2217 if (PageHighMem(pages[i]))
2218 continue;
2219 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2220 end = start + PAGE_SIZE;
2221 if (memtype_reserve(start, end, new_type, NULL))
2222 goto err_out;
2223 }
2224
2225 /* If WC, set to UC- first and then WC */
2226 set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
2227 _PAGE_CACHE_MODE_UC_MINUS : new_type;
2228
2229 ret = cpa_set_pages_array(pages, numpages,
2230 cachemode2pgprot(set_type));
2231 if (!ret && new_type == _PAGE_CACHE_MODE_WC)
2232 ret = change_page_attr_set_clr(NULL, numpages,
2233 cachemode2pgprot(
2234 _PAGE_CACHE_MODE_WC),
2235 __pgprot(_PAGE_CACHE_MASK),
2236 0, CPA_PAGES_ARRAY, pages);
2237 if (ret)
2238 goto err_out;
2239 return 0; /* Success */
2240 err_out:
2241 free_idx = i;
2242 for (i = 0; i < free_idx; i++) {
2243 if (PageHighMem(pages[i]))
2244 continue;
2245 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2246 end = start + PAGE_SIZE;
2247 memtype_free(start, end);
2248 }
2249 return -EINVAL;
2250 }
2251
set_pages_array_uc(struct page ** pages,int numpages)2252 int set_pages_array_uc(struct page **pages, int numpages)
2253 {
2254 return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS);
2255 }
2256 EXPORT_SYMBOL(set_pages_array_uc);
2257
set_pages_array_wc(struct page ** pages,int numpages)2258 int set_pages_array_wc(struct page **pages, int numpages)
2259 {
2260 return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC);
2261 }
2262 EXPORT_SYMBOL(set_pages_array_wc);
2263
set_pages_wb(struct page * page,int numpages)2264 int set_pages_wb(struct page *page, int numpages)
2265 {
2266 unsigned long addr = (unsigned long)page_address(page);
2267
2268 return set_memory_wb(addr, numpages);
2269 }
2270 EXPORT_SYMBOL(set_pages_wb);
2271
set_pages_array_wb(struct page ** pages,int numpages)2272 int set_pages_array_wb(struct page **pages, int numpages)
2273 {
2274 int retval;
2275 unsigned long start;
2276 unsigned long end;
2277 int i;
2278
2279 /* WB cache mode is hard wired to all cache attribute bits being 0 */
2280 retval = cpa_clear_pages_array(pages, numpages,
2281 __pgprot(_PAGE_CACHE_MASK));
2282 if (retval)
2283 return retval;
2284
2285 for (i = 0; i < numpages; i++) {
2286 if (PageHighMem(pages[i]))
2287 continue;
2288 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2289 end = start + PAGE_SIZE;
2290 memtype_free(start, end);
2291 }
2292
2293 return 0;
2294 }
2295 EXPORT_SYMBOL(set_pages_array_wb);
2296
set_pages_ro(struct page * page,int numpages)2297 int set_pages_ro(struct page *page, int numpages)
2298 {
2299 unsigned long addr = (unsigned long)page_address(page);
2300
2301 return set_memory_ro(addr, numpages);
2302 }
2303
set_pages_rw(struct page * page,int numpages)2304 int set_pages_rw(struct page *page, int numpages)
2305 {
2306 unsigned long addr = (unsigned long)page_address(page);
2307
2308 return set_memory_rw(addr, numpages);
2309 }
2310
__set_pages_p(struct page * page,int numpages)2311 static int __set_pages_p(struct page *page, int numpages)
2312 {
2313 unsigned long tempaddr = (unsigned long) page_address(page);
2314 struct cpa_data cpa = { .vaddr = &tempaddr,
2315 .pgd = NULL,
2316 .numpages = numpages,
2317 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2318 .mask_clr = __pgprot(0),
2319 .flags = CPA_NO_CHECK_ALIAS };
2320
2321 /*
2322 * No alias checking needed for setting present flag. otherwise,
2323 * we may need to break large pages for 64-bit kernel text
2324 * mappings (this adds to complexity if we want to do this from
2325 * atomic context especially). Let's keep it simple!
2326 */
2327 return __change_page_attr_set_clr(&cpa, 1);
2328 }
2329
__set_pages_np(struct page * page,int numpages)2330 static int __set_pages_np(struct page *page, int numpages)
2331 {
2332 unsigned long tempaddr = (unsigned long) page_address(page);
2333 struct cpa_data cpa = { .vaddr = &tempaddr,
2334 .pgd = NULL,
2335 .numpages = numpages,
2336 .mask_set = __pgprot(0),
2337 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2338 .flags = CPA_NO_CHECK_ALIAS };
2339
2340 /*
2341 * No alias checking needed for setting not present flag. otherwise,
2342 * we may need to break large pages for 64-bit kernel text
2343 * mappings (this adds to complexity if we want to do this from
2344 * atomic context especially). Let's keep it simple!
2345 */
2346 return __change_page_attr_set_clr(&cpa, 1);
2347 }
2348
set_direct_map_invalid_noflush(struct page * page)2349 int set_direct_map_invalid_noflush(struct page *page)
2350 {
2351 return __set_pages_np(page, 1);
2352 }
2353
set_direct_map_default_noflush(struct page * page)2354 int set_direct_map_default_noflush(struct page *page)
2355 {
2356 return __set_pages_p(page, 1);
2357 }
2358
2359 #ifdef CONFIG_DEBUG_PAGEALLOC
__kernel_map_pages(struct page * page,int numpages,int enable)2360 void __kernel_map_pages(struct page *page, int numpages, int enable)
2361 {
2362 if (PageHighMem(page))
2363 return;
2364 if (!enable) {
2365 debug_check_no_locks_freed(page_address(page),
2366 numpages * PAGE_SIZE);
2367 }
2368
2369 /*
2370 * The return value is ignored as the calls cannot fail.
2371 * Large pages for identity mappings are not used at boot time
2372 * and hence no memory allocations during large page split.
2373 */
2374 if (enable)
2375 __set_pages_p(page, numpages);
2376 else
2377 __set_pages_np(page, numpages);
2378
2379 /*
2380 * We should perform an IPI and flush all tlbs,
2381 * but that can deadlock->flush only current cpu.
2382 * Preemption needs to be disabled around __flush_tlb_all() due to
2383 * CR3 reload in __native_flush_tlb().
2384 */
2385 preempt_disable();
2386 __flush_tlb_all();
2387 preempt_enable();
2388
2389 arch_flush_lazy_mmu_mode();
2390 }
2391 #endif /* CONFIG_DEBUG_PAGEALLOC */
2392
kernel_page_present(struct page * page)2393 bool kernel_page_present(struct page *page)
2394 {
2395 unsigned int level;
2396 pte_t *pte;
2397
2398 if (PageHighMem(page))
2399 return false;
2400
2401 pte = lookup_address((unsigned long)page_address(page), &level);
2402 return (pte_val(*pte) & _PAGE_PRESENT);
2403 }
2404
kernel_map_pages_in_pgd(pgd_t * pgd,u64 pfn,unsigned long address,unsigned numpages,unsigned long page_flags)2405 int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2406 unsigned numpages, unsigned long page_flags)
2407 {
2408 int retval = -EINVAL;
2409
2410 struct cpa_data cpa = {
2411 .vaddr = &address,
2412 .pfn = pfn,
2413 .pgd = pgd,
2414 .numpages = numpages,
2415 .mask_set = __pgprot(0),
2416 .mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)),
2417 .flags = CPA_NO_CHECK_ALIAS,
2418 };
2419
2420 WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2421
2422 if (!(__supported_pte_mask & _PAGE_NX))
2423 goto out;
2424
2425 if (!(page_flags & _PAGE_ENC))
2426 cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2427
2428 cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2429
2430 retval = __change_page_attr_set_clr(&cpa, 1);
2431 __flush_tlb_all();
2432
2433 out:
2434 return retval;
2435 }
2436
2437 /*
2438 * __flush_tlb_all() flushes mappings only on current CPU and hence this
2439 * function shouldn't be used in an SMP environment. Presently, it's used only
2440 * during boot (way before smp_init()) by EFI subsystem and hence is ok.
2441 */
kernel_unmap_pages_in_pgd(pgd_t * pgd,unsigned long address,unsigned long numpages)2442 int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address,
2443 unsigned long numpages)
2444 {
2445 int retval;
2446
2447 /*
2448 * The typical sequence for unmapping is to find a pte through
2449 * lookup_address_in_pgd() (ideally, it should never return NULL because
2450 * the address is already mapped) and change it's protections. As pfn is
2451 * the *target* of a mapping, it's not useful while unmapping.
2452 */
2453 struct cpa_data cpa = {
2454 .vaddr = &address,
2455 .pfn = 0,
2456 .pgd = pgd,
2457 .numpages = numpages,
2458 .mask_set = __pgprot(0),
2459 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2460 .flags = CPA_NO_CHECK_ALIAS,
2461 };
2462
2463 WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2464
2465 retval = __change_page_attr_set_clr(&cpa, 1);
2466 __flush_tlb_all();
2467
2468 return retval;
2469 }
2470
2471 /*
2472 * The testcases use internal knowledge of the implementation that shouldn't
2473 * be exposed to the rest of the kernel. Include these directly here.
2474 */
2475 #ifdef CONFIG_CPA_DEBUG
2476 #include "cpa-test.c"
2477 #endif
2478