1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * A memslot-related performance benchmark.
4 *
5 * Copyright (C) 2021 Oracle and/or its affiliates.
6 *
7 * Basic guest setup / host vCPU thread code lifted from set_memory_region_test.
8 */
9 #include <pthread.h>
10 #include <sched.h>
11 #include <semaphore.h>
12 #include <stdatomic.h>
13 #include <stdbool.h>
14 #include <stdint.h>
15 #include <stdio.h>
16 #include <stdlib.h>
17 #include <string.h>
18 #include <sys/mman.h>
19 #include <time.h>
20 #include <unistd.h>
21
22 #include <linux/compiler.h>
23
24 #include <test_util.h>
25 #include <kvm_util.h>
26 #include <processor.h>
27
28 #define MEM_SIZE ((512U << 20) + 4096)
29 #define MEM_SIZE_PAGES (MEM_SIZE / 4096)
30 #define MEM_GPA 0x10000000UL
31 #define MEM_AUX_GPA MEM_GPA
32 #define MEM_SYNC_GPA MEM_AUX_GPA
33 #define MEM_TEST_GPA (MEM_AUX_GPA + 4096)
34 #define MEM_TEST_SIZE (MEM_SIZE - 4096)
35 static_assert(MEM_SIZE % 4096 == 0, "invalid mem size");
36 static_assert(MEM_TEST_SIZE % 4096 == 0, "invalid mem test size");
37
38 /*
39 * 32 MiB is max size that gets well over 100 iterations on 509 slots.
40 * Considering that each slot needs to have at least one page up to
41 * 8194 slots in use can then be tested (although with slightly
42 * limited resolution).
43 */
44 #define MEM_SIZE_MAP ((32U << 20) + 4096)
45 #define MEM_SIZE_MAP_PAGES (MEM_SIZE_MAP / 4096)
46 #define MEM_TEST_MAP_SIZE (MEM_SIZE_MAP - 4096)
47 #define MEM_TEST_MAP_SIZE_PAGES (MEM_TEST_MAP_SIZE / 4096)
48 static_assert(MEM_SIZE_MAP % 4096 == 0, "invalid map test region size");
49 static_assert(MEM_TEST_MAP_SIZE % 4096 == 0, "invalid map test region size");
50 static_assert(MEM_TEST_MAP_SIZE_PAGES % 2 == 0, "invalid map test region size");
51 static_assert(MEM_TEST_MAP_SIZE_PAGES > 2, "invalid map test region size");
52
53 /*
54 * 128 MiB is min size that fills 32k slots with at least one page in each
55 * while at the same time gets 100+ iterations in such test
56 */
57 #define MEM_TEST_UNMAP_SIZE (128U << 20)
58 #define MEM_TEST_UNMAP_SIZE_PAGES (MEM_TEST_UNMAP_SIZE / 4096)
59 /* 2 MiB chunk size like a typical huge page */
60 #define MEM_TEST_UNMAP_CHUNK_PAGES (2U << (20 - 12))
61 static_assert(MEM_TEST_UNMAP_SIZE <= MEM_TEST_SIZE,
62 "invalid unmap test region size");
63 static_assert(MEM_TEST_UNMAP_SIZE % 4096 == 0,
64 "invalid unmap test region size");
65 static_assert(MEM_TEST_UNMAP_SIZE_PAGES %
66 (2 * MEM_TEST_UNMAP_CHUNK_PAGES) == 0,
67 "invalid unmap test region size");
68
69 /*
70 * For the move active test the middle of the test area is placed on
71 * a memslot boundary: half lies in the memslot being moved, half in
72 * other memslot(s).
73 *
74 * When running this test with 32k memslots (32764, really) each memslot
75 * contains 4 pages.
76 * The last one additionally contains the remaining 21 pages of memory,
77 * for the total size of 25 pages.
78 * Hence, the maximum size here is 50 pages.
79 */
80 #define MEM_TEST_MOVE_SIZE_PAGES (50)
81 #define MEM_TEST_MOVE_SIZE (MEM_TEST_MOVE_SIZE_PAGES * 4096)
82 #define MEM_TEST_MOVE_GPA_DEST (MEM_GPA + MEM_SIZE)
83 static_assert(MEM_TEST_MOVE_SIZE <= MEM_TEST_SIZE,
84 "invalid move test region size");
85
86 #define MEM_TEST_VAL_1 0x1122334455667788
87 #define MEM_TEST_VAL_2 0x99AABBCCDDEEFF00
88
89 struct vm_data {
90 struct kvm_vm *vm;
91 struct kvm_vcpu *vcpu;
92 pthread_t vcpu_thread;
93 uint32_t nslots;
94 uint64_t npages;
95 uint64_t pages_per_slot;
96 void **hva_slots;
97 bool mmio_ok;
98 uint64_t mmio_gpa_min;
99 uint64_t mmio_gpa_max;
100 };
101
102 struct sync_area {
103 atomic_bool start_flag;
104 atomic_bool exit_flag;
105 atomic_bool sync_flag;
106 void *move_area_ptr;
107 };
108
109 /*
110 * Technically, we need also for the atomic bool to be address-free, which
111 * is recommended, but not strictly required, by C11 for lockless
112 * implementations.
113 * However, in practice both GCC and Clang fulfill this requirement on
114 * all KVM-supported platforms.
115 */
116 static_assert(ATOMIC_BOOL_LOCK_FREE == 2, "atomic bool is not lockless");
117
118 static sem_t vcpu_ready;
119
120 static bool map_unmap_verify;
121
122 static bool verbose;
123 #define pr_info_v(...) \
124 do { \
125 if (verbose) \
126 pr_info(__VA_ARGS__); \
127 } while (0)
128
check_mmio_access(struct vm_data * data,struct kvm_run * run)129 static void check_mmio_access(struct vm_data *data, struct kvm_run *run)
130 {
131 TEST_ASSERT(data->mmio_ok, "Unexpected mmio exit");
132 TEST_ASSERT(run->mmio.is_write, "Unexpected mmio read");
133 TEST_ASSERT(run->mmio.len == 8,
134 "Unexpected exit mmio size = %u", run->mmio.len);
135 TEST_ASSERT(run->mmio.phys_addr >= data->mmio_gpa_min &&
136 run->mmio.phys_addr <= data->mmio_gpa_max,
137 "Unexpected exit mmio address = 0x%llx",
138 run->mmio.phys_addr);
139 }
140
vcpu_worker(void * __data)141 static void *vcpu_worker(void *__data)
142 {
143 struct vm_data *data = __data;
144 struct kvm_vcpu *vcpu = data->vcpu;
145 struct kvm_run *run = vcpu->run;
146 struct ucall uc;
147
148 while (1) {
149 vcpu_run(vcpu);
150
151 switch (get_ucall(vcpu, &uc)) {
152 case UCALL_SYNC:
153 TEST_ASSERT(uc.args[1] == 0,
154 "Unexpected sync ucall, got %lx",
155 (ulong)uc.args[1]);
156 sem_post(&vcpu_ready);
157 continue;
158 case UCALL_NONE:
159 if (run->exit_reason == KVM_EXIT_MMIO)
160 check_mmio_access(data, run);
161 else
162 goto done;
163 break;
164 case UCALL_ABORT:
165 REPORT_GUEST_ASSERT_1(uc, "val = %lu");
166 break;
167 case UCALL_DONE:
168 goto done;
169 default:
170 TEST_FAIL("Unknown ucall %lu", uc.cmd);
171 }
172 }
173
174 done:
175 return NULL;
176 }
177
wait_for_vcpu(void)178 static void wait_for_vcpu(void)
179 {
180 struct timespec ts;
181
182 TEST_ASSERT(!clock_gettime(CLOCK_REALTIME, &ts),
183 "clock_gettime() failed: %d\n", errno);
184
185 ts.tv_sec += 2;
186 TEST_ASSERT(!sem_timedwait(&vcpu_ready, &ts),
187 "sem_timedwait() failed: %d\n", errno);
188 }
189
vm_gpa2hva(struct vm_data * data,uint64_t gpa,uint64_t * rempages)190 static void *vm_gpa2hva(struct vm_data *data, uint64_t gpa, uint64_t *rempages)
191 {
192 uint64_t gpage, pgoffs;
193 uint32_t slot, slotoffs;
194 void *base;
195
196 TEST_ASSERT(gpa >= MEM_GPA, "Too low gpa to translate");
197 TEST_ASSERT(gpa < MEM_GPA + data->npages * 4096,
198 "Too high gpa to translate");
199 gpa -= MEM_GPA;
200
201 gpage = gpa / 4096;
202 pgoffs = gpa % 4096;
203 slot = min(gpage / data->pages_per_slot, (uint64_t)data->nslots - 1);
204 slotoffs = gpage - (slot * data->pages_per_slot);
205
206 if (rempages) {
207 uint64_t slotpages;
208
209 if (slot == data->nslots - 1)
210 slotpages = data->npages - slot * data->pages_per_slot;
211 else
212 slotpages = data->pages_per_slot;
213
214 TEST_ASSERT(!pgoffs,
215 "Asking for remaining pages in slot but gpa not page aligned");
216 *rempages = slotpages - slotoffs;
217 }
218
219 base = data->hva_slots[slot];
220 return (uint8_t *)base + slotoffs * 4096 + pgoffs;
221 }
222
vm_slot2gpa(struct vm_data * data,uint32_t slot)223 static uint64_t vm_slot2gpa(struct vm_data *data, uint32_t slot)
224 {
225 TEST_ASSERT(slot < data->nslots, "Too high slot number");
226
227 return MEM_GPA + slot * data->pages_per_slot * 4096;
228 }
229
alloc_vm(void)230 static struct vm_data *alloc_vm(void)
231 {
232 struct vm_data *data;
233
234 data = malloc(sizeof(*data));
235 TEST_ASSERT(data, "malloc(vmdata) failed");
236
237 data->vm = NULL;
238 data->vcpu = NULL;
239 data->hva_slots = NULL;
240
241 return data;
242 }
243
prepare_vm(struct vm_data * data,int nslots,uint64_t * maxslots,void * guest_code,uint64_t mempages,struct timespec * slot_runtime)244 static bool prepare_vm(struct vm_data *data, int nslots, uint64_t *maxslots,
245 void *guest_code, uint64_t mempages,
246 struct timespec *slot_runtime)
247 {
248 uint32_t max_mem_slots;
249 uint64_t rempages;
250 uint64_t guest_addr;
251 uint32_t slot;
252 struct timespec tstart;
253 struct sync_area *sync;
254
255 max_mem_slots = kvm_check_cap(KVM_CAP_NR_MEMSLOTS);
256 TEST_ASSERT(max_mem_slots > 1,
257 "KVM_CAP_NR_MEMSLOTS should be greater than 1");
258 TEST_ASSERT(nslots > 1 || nslots == -1,
259 "Slot count cap should be greater than 1");
260 if (nslots != -1)
261 max_mem_slots = min(max_mem_slots, (uint32_t)nslots);
262 pr_info_v("Allowed number of memory slots: %"PRIu32"\n", max_mem_slots);
263
264 TEST_ASSERT(mempages > 1,
265 "Can't test without any memory");
266
267 data->npages = mempages;
268 data->nslots = max_mem_slots - 1;
269 data->pages_per_slot = mempages / data->nslots;
270 if (!data->pages_per_slot) {
271 *maxslots = mempages + 1;
272 return false;
273 }
274
275 rempages = mempages % data->nslots;
276 data->hva_slots = malloc(sizeof(*data->hva_slots) * data->nslots);
277 TEST_ASSERT(data->hva_slots, "malloc() fail");
278
279 data->vm = __vm_create_with_one_vcpu(&data->vcpu, mempages, guest_code);
280 ucall_init(data->vm, NULL);
281
282 pr_info_v("Adding slots 1..%i, each slot with %"PRIu64" pages + %"PRIu64" extra pages last\n",
283 max_mem_slots - 1, data->pages_per_slot, rempages);
284
285 clock_gettime(CLOCK_MONOTONIC, &tstart);
286 for (slot = 1, guest_addr = MEM_GPA; slot < max_mem_slots; slot++) {
287 uint64_t npages;
288
289 npages = data->pages_per_slot;
290 if (slot == max_mem_slots - 1)
291 npages += rempages;
292
293 vm_userspace_mem_region_add(data->vm, VM_MEM_SRC_ANONYMOUS,
294 guest_addr, slot, npages,
295 0);
296 guest_addr += npages * 4096;
297 }
298 *slot_runtime = timespec_elapsed(tstart);
299
300 for (slot = 0, guest_addr = MEM_GPA; slot < max_mem_slots - 1; slot++) {
301 uint64_t npages;
302 uint64_t gpa;
303
304 npages = data->pages_per_slot;
305 if (slot == max_mem_slots - 2)
306 npages += rempages;
307
308 gpa = vm_phy_pages_alloc(data->vm, npages, guest_addr,
309 slot + 1);
310 TEST_ASSERT(gpa == guest_addr,
311 "vm_phy_pages_alloc() failed\n");
312
313 data->hva_slots[slot] = addr_gpa2hva(data->vm, guest_addr);
314 memset(data->hva_slots[slot], 0, npages * 4096);
315
316 guest_addr += npages * 4096;
317 }
318
319 virt_map(data->vm, MEM_GPA, MEM_GPA, mempages);
320
321 sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL);
322 atomic_init(&sync->start_flag, false);
323 atomic_init(&sync->exit_flag, false);
324 atomic_init(&sync->sync_flag, false);
325
326 data->mmio_ok = false;
327
328 return true;
329 }
330
launch_vm(struct vm_data * data)331 static void launch_vm(struct vm_data *data)
332 {
333 pr_info_v("Launching the test VM\n");
334
335 pthread_create(&data->vcpu_thread, NULL, vcpu_worker, data);
336
337 /* Ensure the guest thread is spun up. */
338 wait_for_vcpu();
339 }
340
free_vm(struct vm_data * data)341 static void free_vm(struct vm_data *data)
342 {
343 kvm_vm_free(data->vm);
344 free(data->hva_slots);
345 free(data);
346 }
347
wait_guest_exit(struct vm_data * data)348 static void wait_guest_exit(struct vm_data *data)
349 {
350 pthread_join(data->vcpu_thread, NULL);
351 }
352
let_guest_run(struct sync_area * sync)353 static void let_guest_run(struct sync_area *sync)
354 {
355 atomic_store_explicit(&sync->start_flag, true, memory_order_release);
356 }
357
guest_spin_until_start(void)358 static void guest_spin_until_start(void)
359 {
360 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
361
362 while (!atomic_load_explicit(&sync->start_flag, memory_order_acquire))
363 ;
364 }
365
make_guest_exit(struct sync_area * sync)366 static void make_guest_exit(struct sync_area *sync)
367 {
368 atomic_store_explicit(&sync->exit_flag, true, memory_order_release);
369 }
370
_guest_should_exit(void)371 static bool _guest_should_exit(void)
372 {
373 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
374
375 return atomic_load_explicit(&sync->exit_flag, memory_order_acquire);
376 }
377
378 #define guest_should_exit() unlikely(_guest_should_exit())
379
380 /*
381 * noinline so we can easily see how much time the host spends waiting
382 * for the guest.
383 * For the same reason use alarm() instead of polling clock_gettime()
384 * to implement a wait timeout.
385 */
host_perform_sync(struct sync_area * sync)386 static noinline void host_perform_sync(struct sync_area *sync)
387 {
388 alarm(2);
389
390 atomic_store_explicit(&sync->sync_flag, true, memory_order_release);
391 while (atomic_load_explicit(&sync->sync_flag, memory_order_acquire))
392 ;
393
394 alarm(0);
395 }
396
guest_perform_sync(void)397 static bool guest_perform_sync(void)
398 {
399 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
400 bool expected;
401
402 do {
403 if (guest_should_exit())
404 return false;
405
406 expected = true;
407 } while (!atomic_compare_exchange_weak_explicit(&sync->sync_flag,
408 &expected, false,
409 memory_order_acq_rel,
410 memory_order_relaxed));
411
412 return true;
413 }
414
guest_code_test_memslot_move(void)415 static void guest_code_test_memslot_move(void)
416 {
417 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
418 uintptr_t base = (typeof(base))READ_ONCE(sync->move_area_ptr);
419
420 GUEST_SYNC(0);
421
422 guest_spin_until_start();
423
424 while (!guest_should_exit()) {
425 uintptr_t ptr;
426
427 for (ptr = base; ptr < base + MEM_TEST_MOVE_SIZE;
428 ptr += 4096)
429 *(uint64_t *)ptr = MEM_TEST_VAL_1;
430
431 /*
432 * No host sync here since the MMIO exits are so expensive
433 * that the host would spend most of its time waiting for
434 * the guest and so instead of measuring memslot move
435 * performance we would measure the performance and
436 * likelihood of MMIO exits
437 */
438 }
439
440 GUEST_DONE();
441 }
442
guest_code_test_memslot_map(void)443 static void guest_code_test_memslot_map(void)
444 {
445 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
446
447 GUEST_SYNC(0);
448
449 guest_spin_until_start();
450
451 while (1) {
452 uintptr_t ptr;
453
454 for (ptr = MEM_TEST_GPA;
455 ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2; ptr += 4096)
456 *(uint64_t *)ptr = MEM_TEST_VAL_1;
457
458 if (!guest_perform_sync())
459 break;
460
461 for (ptr = MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2;
462 ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE; ptr += 4096)
463 *(uint64_t *)ptr = MEM_TEST_VAL_2;
464
465 if (!guest_perform_sync())
466 break;
467 }
468
469 GUEST_DONE();
470 }
471
guest_code_test_memslot_unmap(void)472 static void guest_code_test_memslot_unmap(void)
473 {
474 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
475
476 GUEST_SYNC(0);
477
478 guest_spin_until_start();
479
480 while (1) {
481 uintptr_t ptr = MEM_TEST_GPA;
482
483 /*
484 * We can afford to access (map) just a small number of pages
485 * per host sync as otherwise the host will spend
486 * a significant amount of its time waiting for the guest
487 * (instead of doing unmap operations), so this will
488 * effectively turn this test into a map performance test.
489 *
490 * Just access a single page to be on the safe side.
491 */
492 *(uint64_t *)ptr = MEM_TEST_VAL_1;
493
494 if (!guest_perform_sync())
495 break;
496
497 ptr += MEM_TEST_UNMAP_SIZE / 2;
498 *(uint64_t *)ptr = MEM_TEST_VAL_2;
499
500 if (!guest_perform_sync())
501 break;
502 }
503
504 GUEST_DONE();
505 }
506
guest_code_test_memslot_rw(void)507 static void guest_code_test_memslot_rw(void)
508 {
509 GUEST_SYNC(0);
510
511 guest_spin_until_start();
512
513 while (1) {
514 uintptr_t ptr;
515
516 for (ptr = MEM_TEST_GPA;
517 ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += 4096)
518 *(uint64_t *)ptr = MEM_TEST_VAL_1;
519
520 if (!guest_perform_sync())
521 break;
522
523 for (ptr = MEM_TEST_GPA + 4096 / 2;
524 ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += 4096) {
525 uint64_t val = *(uint64_t *)ptr;
526
527 GUEST_ASSERT_1(val == MEM_TEST_VAL_2, val);
528 *(uint64_t *)ptr = 0;
529 }
530
531 if (!guest_perform_sync())
532 break;
533 }
534
535 GUEST_DONE();
536 }
537
test_memslot_move_prepare(struct vm_data * data,struct sync_area * sync,uint64_t * maxslots,bool isactive)538 static bool test_memslot_move_prepare(struct vm_data *data,
539 struct sync_area *sync,
540 uint64_t *maxslots, bool isactive)
541 {
542 uint64_t movesrcgpa, movetestgpa;
543
544 movesrcgpa = vm_slot2gpa(data, data->nslots - 1);
545
546 if (isactive) {
547 uint64_t lastpages;
548
549 vm_gpa2hva(data, movesrcgpa, &lastpages);
550 if (lastpages < MEM_TEST_MOVE_SIZE_PAGES / 2) {
551 *maxslots = 0;
552 return false;
553 }
554 }
555
556 movetestgpa = movesrcgpa - (MEM_TEST_MOVE_SIZE / (isactive ? 2 : 1));
557 sync->move_area_ptr = (void *)movetestgpa;
558
559 if (isactive) {
560 data->mmio_ok = true;
561 data->mmio_gpa_min = movesrcgpa;
562 data->mmio_gpa_max = movesrcgpa + MEM_TEST_MOVE_SIZE / 2 - 1;
563 }
564
565 return true;
566 }
567
test_memslot_move_prepare_active(struct vm_data * data,struct sync_area * sync,uint64_t * maxslots)568 static bool test_memslot_move_prepare_active(struct vm_data *data,
569 struct sync_area *sync,
570 uint64_t *maxslots)
571 {
572 return test_memslot_move_prepare(data, sync, maxslots, true);
573 }
574
test_memslot_move_prepare_inactive(struct vm_data * data,struct sync_area * sync,uint64_t * maxslots)575 static bool test_memslot_move_prepare_inactive(struct vm_data *data,
576 struct sync_area *sync,
577 uint64_t *maxslots)
578 {
579 return test_memslot_move_prepare(data, sync, maxslots, false);
580 }
581
test_memslot_move_loop(struct vm_data * data,struct sync_area * sync)582 static void test_memslot_move_loop(struct vm_data *data, struct sync_area *sync)
583 {
584 uint64_t movesrcgpa;
585
586 movesrcgpa = vm_slot2gpa(data, data->nslots - 1);
587 vm_mem_region_move(data->vm, data->nslots - 1 + 1,
588 MEM_TEST_MOVE_GPA_DEST);
589 vm_mem_region_move(data->vm, data->nslots - 1 + 1, movesrcgpa);
590 }
591
test_memslot_do_unmap(struct vm_data * data,uint64_t offsp,uint64_t count)592 static void test_memslot_do_unmap(struct vm_data *data,
593 uint64_t offsp, uint64_t count)
594 {
595 uint64_t gpa, ctr;
596
597 for (gpa = MEM_TEST_GPA + offsp * 4096, ctr = 0; ctr < count; ) {
598 uint64_t npages;
599 void *hva;
600 int ret;
601
602 hva = vm_gpa2hva(data, gpa, &npages);
603 TEST_ASSERT(npages, "Empty memory slot at gptr 0x%"PRIx64, gpa);
604 npages = min(npages, count - ctr);
605 ret = madvise(hva, npages * 4096, MADV_DONTNEED);
606 TEST_ASSERT(!ret,
607 "madvise(%p, MADV_DONTNEED) on VM memory should not fail for gptr 0x%"PRIx64,
608 hva, gpa);
609 ctr += npages;
610 gpa += npages * 4096;
611 }
612 TEST_ASSERT(ctr == count,
613 "madvise(MADV_DONTNEED) should exactly cover all of the requested area");
614 }
615
test_memslot_map_unmap_check(struct vm_data * data,uint64_t offsp,uint64_t valexp)616 static void test_memslot_map_unmap_check(struct vm_data *data,
617 uint64_t offsp, uint64_t valexp)
618 {
619 uint64_t gpa;
620 uint64_t *val;
621
622 if (!map_unmap_verify)
623 return;
624
625 gpa = MEM_TEST_GPA + offsp * 4096;
626 val = (typeof(val))vm_gpa2hva(data, gpa, NULL);
627 TEST_ASSERT(*val == valexp,
628 "Guest written values should read back correctly before unmap (%"PRIu64" vs %"PRIu64" @ %"PRIx64")",
629 *val, valexp, gpa);
630 *val = 0;
631 }
632
test_memslot_map_loop(struct vm_data * data,struct sync_area * sync)633 static void test_memslot_map_loop(struct vm_data *data, struct sync_area *sync)
634 {
635 /*
636 * Unmap the second half of the test area while guest writes to (maps)
637 * the first half.
638 */
639 test_memslot_do_unmap(data, MEM_TEST_MAP_SIZE_PAGES / 2,
640 MEM_TEST_MAP_SIZE_PAGES / 2);
641
642 /*
643 * Wait for the guest to finish writing the first half of the test
644 * area, verify the written value on the first and the last page of
645 * this area and then unmap it.
646 * Meanwhile, the guest is writing to (mapping) the second half of
647 * the test area.
648 */
649 host_perform_sync(sync);
650 test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1);
651 test_memslot_map_unmap_check(data,
652 MEM_TEST_MAP_SIZE_PAGES / 2 - 1,
653 MEM_TEST_VAL_1);
654 test_memslot_do_unmap(data, 0, MEM_TEST_MAP_SIZE_PAGES / 2);
655
656
657 /*
658 * Wait for the guest to finish writing the second half of the test
659 * area and verify the written value on the first and the last page
660 * of this area.
661 * The area will be unmapped at the beginning of the next loop
662 * iteration.
663 * Meanwhile, the guest is writing to (mapping) the first half of
664 * the test area.
665 */
666 host_perform_sync(sync);
667 test_memslot_map_unmap_check(data, MEM_TEST_MAP_SIZE_PAGES / 2,
668 MEM_TEST_VAL_2);
669 test_memslot_map_unmap_check(data, MEM_TEST_MAP_SIZE_PAGES - 1,
670 MEM_TEST_VAL_2);
671 }
672
test_memslot_unmap_loop_common(struct vm_data * data,struct sync_area * sync,uint64_t chunk)673 static void test_memslot_unmap_loop_common(struct vm_data *data,
674 struct sync_area *sync,
675 uint64_t chunk)
676 {
677 uint64_t ctr;
678
679 /*
680 * Wait for the guest to finish mapping page(s) in the first half
681 * of the test area, verify the written value and then perform unmap
682 * of this area.
683 * Meanwhile, the guest is writing to (mapping) page(s) in the second
684 * half of the test area.
685 */
686 host_perform_sync(sync);
687 test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1);
688 for (ctr = 0; ctr < MEM_TEST_UNMAP_SIZE_PAGES / 2; ctr += chunk)
689 test_memslot_do_unmap(data, ctr, chunk);
690
691 /* Likewise, but for the opposite host / guest areas */
692 host_perform_sync(sync);
693 test_memslot_map_unmap_check(data, MEM_TEST_UNMAP_SIZE_PAGES / 2,
694 MEM_TEST_VAL_2);
695 for (ctr = MEM_TEST_UNMAP_SIZE_PAGES / 2;
696 ctr < MEM_TEST_UNMAP_SIZE_PAGES; ctr += chunk)
697 test_memslot_do_unmap(data, ctr, chunk);
698 }
699
test_memslot_unmap_loop(struct vm_data * data,struct sync_area * sync)700 static void test_memslot_unmap_loop(struct vm_data *data,
701 struct sync_area *sync)
702 {
703 test_memslot_unmap_loop_common(data, sync, 1);
704 }
705
test_memslot_unmap_loop_chunked(struct vm_data * data,struct sync_area * sync)706 static void test_memslot_unmap_loop_chunked(struct vm_data *data,
707 struct sync_area *sync)
708 {
709 test_memslot_unmap_loop_common(data, sync, MEM_TEST_UNMAP_CHUNK_PAGES);
710 }
711
test_memslot_rw_loop(struct vm_data * data,struct sync_area * sync)712 static void test_memslot_rw_loop(struct vm_data *data, struct sync_area *sync)
713 {
714 uint64_t gptr;
715
716 for (gptr = MEM_TEST_GPA + 4096 / 2;
717 gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += 4096)
718 *(uint64_t *)vm_gpa2hva(data, gptr, NULL) = MEM_TEST_VAL_2;
719
720 host_perform_sync(sync);
721
722 for (gptr = MEM_TEST_GPA;
723 gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += 4096) {
724 uint64_t *vptr = (typeof(vptr))vm_gpa2hva(data, gptr, NULL);
725 uint64_t val = *vptr;
726
727 TEST_ASSERT(val == MEM_TEST_VAL_1,
728 "Guest written values should read back correctly (is %"PRIu64" @ %"PRIx64")",
729 val, gptr);
730 *vptr = 0;
731 }
732
733 host_perform_sync(sync);
734 }
735
736 struct test_data {
737 const char *name;
738 uint64_t mem_size;
739 void (*guest_code)(void);
740 bool (*prepare)(struct vm_data *data, struct sync_area *sync,
741 uint64_t *maxslots);
742 void (*loop)(struct vm_data *data, struct sync_area *sync);
743 };
744
test_execute(int nslots,uint64_t * maxslots,unsigned int maxtime,const struct test_data * tdata,uint64_t * nloops,struct timespec * slot_runtime,struct timespec * guest_runtime)745 static bool test_execute(int nslots, uint64_t *maxslots,
746 unsigned int maxtime,
747 const struct test_data *tdata,
748 uint64_t *nloops,
749 struct timespec *slot_runtime,
750 struct timespec *guest_runtime)
751 {
752 uint64_t mem_size = tdata->mem_size ? : MEM_SIZE_PAGES;
753 struct vm_data *data;
754 struct sync_area *sync;
755 struct timespec tstart;
756 bool ret = true;
757
758 data = alloc_vm();
759 if (!prepare_vm(data, nslots, maxslots, tdata->guest_code,
760 mem_size, slot_runtime)) {
761 ret = false;
762 goto exit_free;
763 }
764
765 sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL);
766
767 if (tdata->prepare &&
768 !tdata->prepare(data, sync, maxslots)) {
769 ret = false;
770 goto exit_free;
771 }
772
773 launch_vm(data);
774
775 clock_gettime(CLOCK_MONOTONIC, &tstart);
776 let_guest_run(sync);
777
778 while (1) {
779 *guest_runtime = timespec_elapsed(tstart);
780 if (guest_runtime->tv_sec >= maxtime)
781 break;
782
783 tdata->loop(data, sync);
784
785 (*nloops)++;
786 }
787
788 make_guest_exit(sync);
789 wait_guest_exit(data);
790
791 exit_free:
792 free_vm(data);
793
794 return ret;
795 }
796
797 static const struct test_data tests[] = {
798 {
799 .name = "map",
800 .mem_size = MEM_SIZE_MAP_PAGES,
801 .guest_code = guest_code_test_memslot_map,
802 .loop = test_memslot_map_loop,
803 },
804 {
805 .name = "unmap",
806 .mem_size = MEM_TEST_UNMAP_SIZE_PAGES + 1,
807 .guest_code = guest_code_test_memslot_unmap,
808 .loop = test_memslot_unmap_loop,
809 },
810 {
811 .name = "unmap chunked",
812 .mem_size = MEM_TEST_UNMAP_SIZE_PAGES + 1,
813 .guest_code = guest_code_test_memslot_unmap,
814 .loop = test_memslot_unmap_loop_chunked,
815 },
816 {
817 .name = "move active area",
818 .guest_code = guest_code_test_memslot_move,
819 .prepare = test_memslot_move_prepare_active,
820 .loop = test_memslot_move_loop,
821 },
822 {
823 .name = "move inactive area",
824 .guest_code = guest_code_test_memslot_move,
825 .prepare = test_memslot_move_prepare_inactive,
826 .loop = test_memslot_move_loop,
827 },
828 {
829 .name = "RW",
830 .guest_code = guest_code_test_memslot_rw,
831 .loop = test_memslot_rw_loop
832 },
833 };
834
835 #define NTESTS ARRAY_SIZE(tests)
836
837 struct test_args {
838 int tfirst;
839 int tlast;
840 int nslots;
841 int seconds;
842 int runs;
843 };
844
help(char * name,struct test_args * targs)845 static void help(char *name, struct test_args *targs)
846 {
847 int ctr;
848
849 pr_info("usage: %s [-h] [-v] [-d] [-s slots] [-f first_test] [-e last_test] [-l test_length] [-r run_count]\n",
850 name);
851 pr_info(" -h: print this help screen.\n");
852 pr_info(" -v: enable verbose mode (not for benchmarking).\n");
853 pr_info(" -d: enable extra debug checks.\n");
854 pr_info(" -s: specify memslot count cap (-1 means no cap; currently: %i)\n",
855 targs->nslots);
856 pr_info(" -f: specify the first test to run (currently: %i; max %zu)\n",
857 targs->tfirst, NTESTS - 1);
858 pr_info(" -e: specify the last test to run (currently: %i; max %zu)\n",
859 targs->tlast, NTESTS - 1);
860 pr_info(" -l: specify the test length in seconds (currently: %i)\n",
861 targs->seconds);
862 pr_info(" -r: specify the number of runs per test (currently: %i)\n",
863 targs->runs);
864
865 pr_info("\nAvailable tests:\n");
866 for (ctr = 0; ctr < NTESTS; ctr++)
867 pr_info("%d: %s\n", ctr, tests[ctr].name);
868 }
869
parse_args(int argc,char * argv[],struct test_args * targs)870 static bool parse_args(int argc, char *argv[],
871 struct test_args *targs)
872 {
873 int opt;
874
875 while ((opt = getopt(argc, argv, "hvds:f:e:l:r:")) != -1) {
876 switch (opt) {
877 case 'h':
878 default:
879 help(argv[0], targs);
880 return false;
881 case 'v':
882 verbose = true;
883 break;
884 case 'd':
885 map_unmap_verify = true;
886 break;
887 case 's':
888 targs->nslots = atoi(optarg);
889 if (targs->nslots <= 0 && targs->nslots != -1) {
890 pr_info("Slot count cap has to be positive or -1 for no cap\n");
891 return false;
892 }
893 break;
894 case 'f':
895 targs->tfirst = atoi(optarg);
896 if (targs->tfirst < 0) {
897 pr_info("First test to run has to be non-negative\n");
898 return false;
899 }
900 break;
901 case 'e':
902 targs->tlast = atoi(optarg);
903 if (targs->tlast < 0 || targs->tlast >= NTESTS) {
904 pr_info("Last test to run has to be non-negative and less than %zu\n",
905 NTESTS);
906 return false;
907 }
908 break;
909 case 'l':
910 targs->seconds = atoi(optarg);
911 if (targs->seconds < 0) {
912 pr_info("Test length in seconds has to be non-negative\n");
913 return false;
914 }
915 break;
916 case 'r':
917 targs->runs = atoi(optarg);
918 if (targs->runs <= 0) {
919 pr_info("Runs per test has to be positive\n");
920 return false;
921 }
922 break;
923 }
924 }
925
926 if (optind < argc) {
927 help(argv[0], targs);
928 return false;
929 }
930
931 if (targs->tfirst > targs->tlast) {
932 pr_info("First test to run cannot be greater than the last test to run\n");
933 return false;
934 }
935
936 return true;
937 }
938
939 struct test_result {
940 struct timespec slot_runtime, guest_runtime, iter_runtime;
941 int64_t slottimens, runtimens;
942 uint64_t nloops;
943 };
944
test_loop(const struct test_data * data,const struct test_args * targs,struct test_result * rbestslottime,struct test_result * rbestruntime)945 static bool test_loop(const struct test_data *data,
946 const struct test_args *targs,
947 struct test_result *rbestslottime,
948 struct test_result *rbestruntime)
949 {
950 uint64_t maxslots;
951 struct test_result result;
952
953 result.nloops = 0;
954 if (!test_execute(targs->nslots, &maxslots, targs->seconds, data,
955 &result.nloops,
956 &result.slot_runtime, &result.guest_runtime)) {
957 if (maxslots)
958 pr_info("Memslot count too high for this test, decrease the cap (max is %"PRIu64")\n",
959 maxslots);
960 else
961 pr_info("Memslot count may be too high for this test, try adjusting the cap\n");
962
963 return false;
964 }
965
966 pr_info("Test took %ld.%.9lds for slot setup + %ld.%.9lds all iterations\n",
967 result.slot_runtime.tv_sec, result.slot_runtime.tv_nsec,
968 result.guest_runtime.tv_sec, result.guest_runtime.tv_nsec);
969 if (!result.nloops) {
970 pr_info("No full loops done - too short test time or system too loaded?\n");
971 return true;
972 }
973
974 result.iter_runtime = timespec_div(result.guest_runtime,
975 result.nloops);
976 pr_info("Done %"PRIu64" iterations, avg %ld.%.9lds each\n",
977 result.nloops,
978 result.iter_runtime.tv_sec,
979 result.iter_runtime.tv_nsec);
980 result.slottimens = timespec_to_ns(result.slot_runtime);
981 result.runtimens = timespec_to_ns(result.iter_runtime);
982
983 /*
984 * Only rank the slot setup time for tests using the whole test memory
985 * area so they are comparable
986 */
987 if (!data->mem_size &&
988 (!rbestslottime->slottimens ||
989 result.slottimens < rbestslottime->slottimens))
990 *rbestslottime = result;
991 if (!rbestruntime->runtimens ||
992 result.runtimens < rbestruntime->runtimens)
993 *rbestruntime = result;
994
995 return true;
996 }
997
main(int argc,char * argv[])998 int main(int argc, char *argv[])
999 {
1000 struct test_args targs = {
1001 .tfirst = 0,
1002 .tlast = NTESTS - 1,
1003 .nslots = -1,
1004 .seconds = 5,
1005 .runs = 1,
1006 };
1007 struct test_result rbestslottime;
1008 int tctr;
1009
1010 /* Tell stdout not to buffer its content */
1011 setbuf(stdout, NULL);
1012
1013 if (!parse_args(argc, argv, &targs))
1014 return -1;
1015
1016 rbestslottime.slottimens = 0;
1017 for (tctr = targs.tfirst; tctr <= targs.tlast; tctr++) {
1018 const struct test_data *data = &tests[tctr];
1019 unsigned int runctr;
1020 struct test_result rbestruntime;
1021
1022 if (tctr > targs.tfirst)
1023 pr_info("\n");
1024
1025 pr_info("Testing %s performance with %i runs, %d seconds each\n",
1026 data->name, targs.runs, targs.seconds);
1027
1028 rbestruntime.runtimens = 0;
1029 for (runctr = 0; runctr < targs.runs; runctr++)
1030 if (!test_loop(data, &targs,
1031 &rbestslottime, &rbestruntime))
1032 break;
1033
1034 if (rbestruntime.runtimens)
1035 pr_info("Best runtime result was %ld.%.9lds per iteration (with %"PRIu64" iterations)\n",
1036 rbestruntime.iter_runtime.tv_sec,
1037 rbestruntime.iter_runtime.tv_nsec,
1038 rbestruntime.nloops);
1039 }
1040
1041 if (rbestslottime.slottimens)
1042 pr_info("Best slot setup time for the whole test area was %ld.%.9lds\n",
1043 rbestslottime.slot_runtime.tv_sec,
1044 rbestslottime.slot_runtime.tv_nsec);
1045
1046 return 0;
1047 }
1048