1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>,
4 * Takashi Iwai <tiwai@suse.de>
5 * Creative Labs, Inc.
6 * Routines for control of EMU10K1 chips / mixer routines
7 * Multichannel PCM support Copyright (c) Lee Revell <rlrevell@joe-job.com>
8 *
9 * Copyright (c) by James Courtier-Dutton <James@superbug.co.uk>
10 * Added EMU 1010 support.
11 *
12 * BUGS:
13 * --
14 *
15 * TODO:
16 * --
17 */
18
19 #include <linux/time.h>
20 #include <linux/init.h>
21 #include <sound/core.h>
22 #include <sound/emu10k1.h>
23 #include <linux/delay.h>
24 #include <sound/tlv.h>
25
26 #include "p17v.h"
27
28 #define AC97_ID_STAC9758 0x83847658
29
30 static const DECLARE_TLV_DB_SCALE(snd_audigy_db_scale2, -10350, 50, 1); /* WM8775 gain scale */
31
snd_emu10k1_spdif_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)32 static int snd_emu10k1_spdif_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
33 {
34 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
35 uinfo->count = 1;
36 return 0;
37 }
38
snd_emu10k1_spdif_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)39 static int snd_emu10k1_spdif_get(struct snd_kcontrol *kcontrol,
40 struct snd_ctl_elem_value *ucontrol)
41 {
42 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
43 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
44 unsigned long flags;
45
46 /* Limit: emu->spdif_bits */
47 if (idx >= 3)
48 return -EINVAL;
49 spin_lock_irqsave(&emu->reg_lock, flags);
50 ucontrol->value.iec958.status[0] = (emu->spdif_bits[idx] >> 0) & 0xff;
51 ucontrol->value.iec958.status[1] = (emu->spdif_bits[idx] >> 8) & 0xff;
52 ucontrol->value.iec958.status[2] = (emu->spdif_bits[idx] >> 16) & 0xff;
53 ucontrol->value.iec958.status[3] = (emu->spdif_bits[idx] >> 24) & 0xff;
54 spin_unlock_irqrestore(&emu->reg_lock, flags);
55 return 0;
56 }
57
snd_emu10k1_spdif_get_mask(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)58 static int snd_emu10k1_spdif_get_mask(struct snd_kcontrol *kcontrol,
59 struct snd_ctl_elem_value *ucontrol)
60 {
61 ucontrol->value.iec958.status[0] = 0xff;
62 ucontrol->value.iec958.status[1] = 0xff;
63 ucontrol->value.iec958.status[2] = 0xff;
64 ucontrol->value.iec958.status[3] = 0xff;
65 return 0;
66 }
67
68 /*
69 * Items labels in enum mixer controls assigning source data to
70 * each destination
71 */
72 static const char * const emu1010_src_texts[] = {
73 "Silence",
74 "Dock Mic A",
75 "Dock Mic B",
76 "Dock ADC1 Left",
77 "Dock ADC1 Right",
78 "Dock ADC2 Left",
79 "Dock ADC2 Right",
80 "Dock ADC3 Left",
81 "Dock ADC3 Right",
82 "0202 ADC Left",
83 "0202 ADC Right",
84 "0202 SPDIF Left",
85 "0202 SPDIF Right",
86 "ADAT 0",
87 "ADAT 1",
88 "ADAT 2",
89 "ADAT 3",
90 "ADAT 4",
91 "ADAT 5",
92 "ADAT 6",
93 "ADAT 7",
94 "DSP 0",
95 "DSP 1",
96 "DSP 2",
97 "DSP 3",
98 "DSP 4",
99 "DSP 5",
100 "DSP 6",
101 "DSP 7",
102 "DSP 8",
103 "DSP 9",
104 "DSP 10",
105 "DSP 11",
106 "DSP 12",
107 "DSP 13",
108 "DSP 14",
109 "DSP 15",
110 "DSP 16",
111 "DSP 17",
112 "DSP 18",
113 "DSP 19",
114 "DSP 20",
115 "DSP 21",
116 "DSP 22",
117 "DSP 23",
118 "DSP 24",
119 "DSP 25",
120 "DSP 26",
121 "DSP 27",
122 "DSP 28",
123 "DSP 29",
124 "DSP 30",
125 "DSP 31",
126 };
127
128 /* 1616(m) cardbus */
129
130 static const char * const emu1616_src_texts[] = {
131 "Silence",
132 "Dock Mic A",
133 "Dock Mic B",
134 "Dock ADC1 Left",
135 "Dock ADC1 Right",
136 "Dock ADC2 Left",
137 "Dock ADC2 Right",
138 "Dock SPDIF Left",
139 "Dock SPDIF Right",
140 "ADAT 0",
141 "ADAT 1",
142 "ADAT 2",
143 "ADAT 3",
144 "ADAT 4",
145 "ADAT 5",
146 "ADAT 6",
147 "ADAT 7",
148 "DSP 0",
149 "DSP 1",
150 "DSP 2",
151 "DSP 3",
152 "DSP 4",
153 "DSP 5",
154 "DSP 6",
155 "DSP 7",
156 "DSP 8",
157 "DSP 9",
158 "DSP 10",
159 "DSP 11",
160 "DSP 12",
161 "DSP 13",
162 "DSP 14",
163 "DSP 15",
164 "DSP 16",
165 "DSP 17",
166 "DSP 18",
167 "DSP 19",
168 "DSP 20",
169 "DSP 21",
170 "DSP 22",
171 "DSP 23",
172 "DSP 24",
173 "DSP 25",
174 "DSP 26",
175 "DSP 27",
176 "DSP 28",
177 "DSP 29",
178 "DSP 30",
179 "DSP 31",
180 };
181
182
183 /*
184 * List of data sources available for each destination
185 */
186 static const unsigned int emu1010_src_regs[] = {
187 EMU_SRC_SILENCE,/* 0 */
188 EMU_SRC_DOCK_MIC_A1, /* 1 */
189 EMU_SRC_DOCK_MIC_B1, /* 2 */
190 EMU_SRC_DOCK_ADC1_LEFT1, /* 3 */
191 EMU_SRC_DOCK_ADC1_RIGHT1, /* 4 */
192 EMU_SRC_DOCK_ADC2_LEFT1, /* 5 */
193 EMU_SRC_DOCK_ADC2_RIGHT1, /* 6 */
194 EMU_SRC_DOCK_ADC3_LEFT1, /* 7 */
195 EMU_SRC_DOCK_ADC3_RIGHT1, /* 8 */
196 EMU_SRC_HAMOA_ADC_LEFT1, /* 9 */
197 EMU_SRC_HAMOA_ADC_RIGHT1, /* 10 */
198 EMU_SRC_HANA_SPDIF_LEFT1, /* 11 */
199 EMU_SRC_HANA_SPDIF_RIGHT1, /* 12 */
200 EMU_SRC_HANA_ADAT, /* 13 */
201 EMU_SRC_HANA_ADAT+1, /* 14 */
202 EMU_SRC_HANA_ADAT+2, /* 15 */
203 EMU_SRC_HANA_ADAT+3, /* 16 */
204 EMU_SRC_HANA_ADAT+4, /* 17 */
205 EMU_SRC_HANA_ADAT+5, /* 18 */
206 EMU_SRC_HANA_ADAT+6, /* 19 */
207 EMU_SRC_HANA_ADAT+7, /* 20 */
208 EMU_SRC_ALICE_EMU32A, /* 21 */
209 EMU_SRC_ALICE_EMU32A+1, /* 22 */
210 EMU_SRC_ALICE_EMU32A+2, /* 23 */
211 EMU_SRC_ALICE_EMU32A+3, /* 24 */
212 EMU_SRC_ALICE_EMU32A+4, /* 25 */
213 EMU_SRC_ALICE_EMU32A+5, /* 26 */
214 EMU_SRC_ALICE_EMU32A+6, /* 27 */
215 EMU_SRC_ALICE_EMU32A+7, /* 28 */
216 EMU_SRC_ALICE_EMU32A+8, /* 29 */
217 EMU_SRC_ALICE_EMU32A+9, /* 30 */
218 EMU_SRC_ALICE_EMU32A+0xa, /* 31 */
219 EMU_SRC_ALICE_EMU32A+0xb, /* 32 */
220 EMU_SRC_ALICE_EMU32A+0xc, /* 33 */
221 EMU_SRC_ALICE_EMU32A+0xd, /* 34 */
222 EMU_SRC_ALICE_EMU32A+0xe, /* 35 */
223 EMU_SRC_ALICE_EMU32A+0xf, /* 36 */
224 EMU_SRC_ALICE_EMU32B, /* 37 */
225 EMU_SRC_ALICE_EMU32B+1, /* 38 */
226 EMU_SRC_ALICE_EMU32B+2, /* 39 */
227 EMU_SRC_ALICE_EMU32B+3, /* 40 */
228 EMU_SRC_ALICE_EMU32B+4, /* 41 */
229 EMU_SRC_ALICE_EMU32B+5, /* 42 */
230 EMU_SRC_ALICE_EMU32B+6, /* 43 */
231 EMU_SRC_ALICE_EMU32B+7, /* 44 */
232 EMU_SRC_ALICE_EMU32B+8, /* 45 */
233 EMU_SRC_ALICE_EMU32B+9, /* 46 */
234 EMU_SRC_ALICE_EMU32B+0xa, /* 47 */
235 EMU_SRC_ALICE_EMU32B+0xb, /* 48 */
236 EMU_SRC_ALICE_EMU32B+0xc, /* 49 */
237 EMU_SRC_ALICE_EMU32B+0xd, /* 50 */
238 EMU_SRC_ALICE_EMU32B+0xe, /* 51 */
239 EMU_SRC_ALICE_EMU32B+0xf, /* 52 */
240 };
241
242 /* 1616(m) cardbus */
243 static const unsigned int emu1616_src_regs[] = {
244 EMU_SRC_SILENCE,
245 EMU_SRC_DOCK_MIC_A1,
246 EMU_SRC_DOCK_MIC_B1,
247 EMU_SRC_DOCK_ADC1_LEFT1,
248 EMU_SRC_DOCK_ADC1_RIGHT1,
249 EMU_SRC_DOCK_ADC2_LEFT1,
250 EMU_SRC_DOCK_ADC2_RIGHT1,
251 EMU_SRC_MDOCK_SPDIF_LEFT1,
252 EMU_SRC_MDOCK_SPDIF_RIGHT1,
253 EMU_SRC_MDOCK_ADAT,
254 EMU_SRC_MDOCK_ADAT+1,
255 EMU_SRC_MDOCK_ADAT+2,
256 EMU_SRC_MDOCK_ADAT+3,
257 EMU_SRC_MDOCK_ADAT+4,
258 EMU_SRC_MDOCK_ADAT+5,
259 EMU_SRC_MDOCK_ADAT+6,
260 EMU_SRC_MDOCK_ADAT+7,
261 EMU_SRC_ALICE_EMU32A,
262 EMU_SRC_ALICE_EMU32A+1,
263 EMU_SRC_ALICE_EMU32A+2,
264 EMU_SRC_ALICE_EMU32A+3,
265 EMU_SRC_ALICE_EMU32A+4,
266 EMU_SRC_ALICE_EMU32A+5,
267 EMU_SRC_ALICE_EMU32A+6,
268 EMU_SRC_ALICE_EMU32A+7,
269 EMU_SRC_ALICE_EMU32A+8,
270 EMU_SRC_ALICE_EMU32A+9,
271 EMU_SRC_ALICE_EMU32A+0xa,
272 EMU_SRC_ALICE_EMU32A+0xb,
273 EMU_SRC_ALICE_EMU32A+0xc,
274 EMU_SRC_ALICE_EMU32A+0xd,
275 EMU_SRC_ALICE_EMU32A+0xe,
276 EMU_SRC_ALICE_EMU32A+0xf,
277 EMU_SRC_ALICE_EMU32B,
278 EMU_SRC_ALICE_EMU32B+1,
279 EMU_SRC_ALICE_EMU32B+2,
280 EMU_SRC_ALICE_EMU32B+3,
281 EMU_SRC_ALICE_EMU32B+4,
282 EMU_SRC_ALICE_EMU32B+5,
283 EMU_SRC_ALICE_EMU32B+6,
284 EMU_SRC_ALICE_EMU32B+7,
285 EMU_SRC_ALICE_EMU32B+8,
286 EMU_SRC_ALICE_EMU32B+9,
287 EMU_SRC_ALICE_EMU32B+0xa,
288 EMU_SRC_ALICE_EMU32B+0xb,
289 EMU_SRC_ALICE_EMU32B+0xc,
290 EMU_SRC_ALICE_EMU32B+0xd,
291 EMU_SRC_ALICE_EMU32B+0xe,
292 EMU_SRC_ALICE_EMU32B+0xf,
293 };
294
295 /*
296 * Data destinations - physical EMU outputs.
297 * Each destination has an enum mixer control to choose a data source
298 */
299 static const unsigned int emu1010_output_dst[] = {
300 EMU_DST_DOCK_DAC1_LEFT1, /* 0 */
301 EMU_DST_DOCK_DAC1_RIGHT1, /* 1 */
302 EMU_DST_DOCK_DAC2_LEFT1, /* 2 */
303 EMU_DST_DOCK_DAC2_RIGHT1, /* 3 */
304 EMU_DST_DOCK_DAC3_LEFT1, /* 4 */
305 EMU_DST_DOCK_DAC3_RIGHT1, /* 5 */
306 EMU_DST_DOCK_DAC4_LEFT1, /* 6 */
307 EMU_DST_DOCK_DAC4_RIGHT1, /* 7 */
308 EMU_DST_DOCK_PHONES_LEFT1, /* 8 */
309 EMU_DST_DOCK_PHONES_RIGHT1, /* 9 */
310 EMU_DST_DOCK_SPDIF_LEFT1, /* 10 */
311 EMU_DST_DOCK_SPDIF_RIGHT1, /* 11 */
312 EMU_DST_HANA_SPDIF_LEFT1, /* 12 */
313 EMU_DST_HANA_SPDIF_RIGHT1, /* 13 */
314 EMU_DST_HAMOA_DAC_LEFT1, /* 14 */
315 EMU_DST_HAMOA_DAC_RIGHT1, /* 15 */
316 EMU_DST_HANA_ADAT, /* 16 */
317 EMU_DST_HANA_ADAT+1, /* 17 */
318 EMU_DST_HANA_ADAT+2, /* 18 */
319 EMU_DST_HANA_ADAT+3, /* 19 */
320 EMU_DST_HANA_ADAT+4, /* 20 */
321 EMU_DST_HANA_ADAT+5, /* 21 */
322 EMU_DST_HANA_ADAT+6, /* 22 */
323 EMU_DST_HANA_ADAT+7, /* 23 */
324 };
325
326 /* 1616(m) cardbus */
327 static const unsigned int emu1616_output_dst[] = {
328 EMU_DST_DOCK_DAC1_LEFT1,
329 EMU_DST_DOCK_DAC1_RIGHT1,
330 EMU_DST_DOCK_DAC2_LEFT1,
331 EMU_DST_DOCK_DAC2_RIGHT1,
332 EMU_DST_DOCK_DAC3_LEFT1,
333 EMU_DST_DOCK_DAC3_RIGHT1,
334 EMU_DST_MDOCK_SPDIF_LEFT1,
335 EMU_DST_MDOCK_SPDIF_RIGHT1,
336 EMU_DST_MDOCK_ADAT,
337 EMU_DST_MDOCK_ADAT+1,
338 EMU_DST_MDOCK_ADAT+2,
339 EMU_DST_MDOCK_ADAT+3,
340 EMU_DST_MDOCK_ADAT+4,
341 EMU_DST_MDOCK_ADAT+5,
342 EMU_DST_MDOCK_ADAT+6,
343 EMU_DST_MDOCK_ADAT+7,
344 EMU_DST_MANA_DAC_LEFT,
345 EMU_DST_MANA_DAC_RIGHT,
346 };
347
348 /*
349 * Data destinations - HANA outputs going to Alice2 (audigy) for
350 * capture (EMU32 + I2S links)
351 * Each destination has an enum mixer control to choose a data source
352 */
353 static const unsigned int emu1010_input_dst[] = {
354 EMU_DST_ALICE2_EMU32_0,
355 EMU_DST_ALICE2_EMU32_1,
356 EMU_DST_ALICE2_EMU32_2,
357 EMU_DST_ALICE2_EMU32_3,
358 EMU_DST_ALICE2_EMU32_4,
359 EMU_DST_ALICE2_EMU32_5,
360 EMU_DST_ALICE2_EMU32_6,
361 EMU_DST_ALICE2_EMU32_7,
362 EMU_DST_ALICE2_EMU32_8,
363 EMU_DST_ALICE2_EMU32_9,
364 EMU_DST_ALICE2_EMU32_A,
365 EMU_DST_ALICE2_EMU32_B,
366 EMU_DST_ALICE2_EMU32_C,
367 EMU_DST_ALICE2_EMU32_D,
368 EMU_DST_ALICE2_EMU32_E,
369 EMU_DST_ALICE2_EMU32_F,
370 EMU_DST_ALICE_I2S0_LEFT,
371 EMU_DST_ALICE_I2S0_RIGHT,
372 EMU_DST_ALICE_I2S1_LEFT,
373 EMU_DST_ALICE_I2S1_RIGHT,
374 EMU_DST_ALICE_I2S2_LEFT,
375 EMU_DST_ALICE_I2S2_RIGHT,
376 };
377
snd_emu1010_input_output_source_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)378 static int snd_emu1010_input_output_source_info(struct snd_kcontrol *kcontrol,
379 struct snd_ctl_elem_info *uinfo)
380 {
381 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
382
383 if (emu->card_capabilities->emu_model == EMU_MODEL_EMU1616)
384 return snd_ctl_enum_info(uinfo, 1, 49, emu1616_src_texts);
385 else
386 return snd_ctl_enum_info(uinfo, 1, 53, emu1010_src_texts);
387 }
388
snd_emu1010_output_source_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)389 static int snd_emu1010_output_source_get(struct snd_kcontrol *kcontrol,
390 struct snd_ctl_elem_value *ucontrol)
391 {
392 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
393 unsigned int channel;
394
395 channel = (kcontrol->private_value) & 0xff;
396 /* Limit: emu1010_output_dst, emu->emu1010.output_source */
397 if (channel >= 24 ||
398 (emu->card_capabilities->emu_model == EMU_MODEL_EMU1616 &&
399 channel >= 18))
400 return -EINVAL;
401 ucontrol->value.enumerated.item[0] = emu->emu1010.output_source[channel];
402 return 0;
403 }
404
snd_emu1010_output_source_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)405 static int snd_emu1010_output_source_put(struct snd_kcontrol *kcontrol,
406 struct snd_ctl_elem_value *ucontrol)
407 {
408 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
409 unsigned int val;
410 unsigned int channel;
411
412 val = ucontrol->value.enumerated.item[0];
413 if (val >= 53 ||
414 (emu->card_capabilities->emu_model == EMU_MODEL_EMU1616 &&
415 val >= 49))
416 return -EINVAL;
417 channel = (kcontrol->private_value) & 0xff;
418 /* Limit: emu1010_output_dst, emu->emu1010.output_source */
419 if (channel >= 24 ||
420 (emu->card_capabilities->emu_model == EMU_MODEL_EMU1616 &&
421 channel >= 18))
422 return -EINVAL;
423 if (emu->emu1010.output_source[channel] == val)
424 return 0;
425 emu->emu1010.output_source[channel] = val;
426 if (emu->card_capabilities->emu_model == EMU_MODEL_EMU1616)
427 snd_emu1010_fpga_link_dst_src_write(emu,
428 emu1616_output_dst[channel], emu1616_src_regs[val]);
429 else
430 snd_emu1010_fpga_link_dst_src_write(emu,
431 emu1010_output_dst[channel], emu1010_src_regs[val]);
432 return 1;
433 }
434
snd_emu1010_input_source_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)435 static int snd_emu1010_input_source_get(struct snd_kcontrol *kcontrol,
436 struct snd_ctl_elem_value *ucontrol)
437 {
438 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
439 unsigned int channel;
440
441 channel = (kcontrol->private_value) & 0xff;
442 /* Limit: emu1010_input_dst, emu->emu1010.input_source */
443 if (channel >= 22)
444 return -EINVAL;
445 ucontrol->value.enumerated.item[0] = emu->emu1010.input_source[channel];
446 return 0;
447 }
448
snd_emu1010_input_source_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)449 static int snd_emu1010_input_source_put(struct snd_kcontrol *kcontrol,
450 struct snd_ctl_elem_value *ucontrol)
451 {
452 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
453 unsigned int val;
454 unsigned int channel;
455
456 val = ucontrol->value.enumerated.item[0];
457 if (val >= 53 ||
458 (emu->card_capabilities->emu_model == EMU_MODEL_EMU1616 &&
459 val >= 49))
460 return -EINVAL;
461 channel = (kcontrol->private_value) & 0xff;
462 /* Limit: emu1010_input_dst, emu->emu1010.input_source */
463 if (channel >= 22)
464 return -EINVAL;
465 if (emu->emu1010.input_source[channel] == val)
466 return 0;
467 emu->emu1010.input_source[channel] = val;
468 if (emu->card_capabilities->emu_model == EMU_MODEL_EMU1616)
469 snd_emu1010_fpga_link_dst_src_write(emu,
470 emu1010_input_dst[channel], emu1616_src_regs[val]);
471 else
472 snd_emu1010_fpga_link_dst_src_write(emu,
473 emu1010_input_dst[channel], emu1010_src_regs[val]);
474 return 1;
475 }
476
477 #define EMU1010_SOURCE_OUTPUT(xname,chid) \
478 { \
479 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
480 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \
481 .info = snd_emu1010_input_output_source_info, \
482 .get = snd_emu1010_output_source_get, \
483 .put = snd_emu1010_output_source_put, \
484 .private_value = chid \
485 }
486
487 static const struct snd_kcontrol_new snd_emu1010_output_enum_ctls[] = {
488 EMU1010_SOURCE_OUTPUT("Dock DAC1 Left Playback Enum", 0),
489 EMU1010_SOURCE_OUTPUT("Dock DAC1 Right Playback Enum", 1),
490 EMU1010_SOURCE_OUTPUT("Dock DAC2 Left Playback Enum", 2),
491 EMU1010_SOURCE_OUTPUT("Dock DAC2 Right Playback Enum", 3),
492 EMU1010_SOURCE_OUTPUT("Dock DAC3 Left Playback Enum", 4),
493 EMU1010_SOURCE_OUTPUT("Dock DAC3 Right Playback Enum", 5),
494 EMU1010_SOURCE_OUTPUT("Dock DAC4 Left Playback Enum", 6),
495 EMU1010_SOURCE_OUTPUT("Dock DAC4 Right Playback Enum", 7),
496 EMU1010_SOURCE_OUTPUT("Dock Phones Left Playback Enum", 8),
497 EMU1010_SOURCE_OUTPUT("Dock Phones Right Playback Enum", 9),
498 EMU1010_SOURCE_OUTPUT("Dock SPDIF Left Playback Enum", 0xa),
499 EMU1010_SOURCE_OUTPUT("Dock SPDIF Right Playback Enum", 0xb),
500 EMU1010_SOURCE_OUTPUT("1010 SPDIF Left Playback Enum", 0xc),
501 EMU1010_SOURCE_OUTPUT("1010 SPDIF Right Playback Enum", 0xd),
502 EMU1010_SOURCE_OUTPUT("0202 DAC Left Playback Enum", 0xe),
503 EMU1010_SOURCE_OUTPUT("0202 DAC Right Playback Enum", 0xf),
504 EMU1010_SOURCE_OUTPUT("1010 ADAT 0 Playback Enum", 0x10),
505 EMU1010_SOURCE_OUTPUT("1010 ADAT 1 Playback Enum", 0x11),
506 EMU1010_SOURCE_OUTPUT("1010 ADAT 2 Playback Enum", 0x12),
507 EMU1010_SOURCE_OUTPUT("1010 ADAT 3 Playback Enum", 0x13),
508 EMU1010_SOURCE_OUTPUT("1010 ADAT 4 Playback Enum", 0x14),
509 EMU1010_SOURCE_OUTPUT("1010 ADAT 5 Playback Enum", 0x15),
510 EMU1010_SOURCE_OUTPUT("1010 ADAT 6 Playback Enum", 0x16),
511 EMU1010_SOURCE_OUTPUT("1010 ADAT 7 Playback Enum", 0x17),
512 };
513
514
515 /* 1616(m) cardbus */
516 static const struct snd_kcontrol_new snd_emu1616_output_enum_ctls[] = {
517 EMU1010_SOURCE_OUTPUT("Dock DAC1 Left Playback Enum", 0),
518 EMU1010_SOURCE_OUTPUT("Dock DAC1 Right Playback Enum", 1),
519 EMU1010_SOURCE_OUTPUT("Dock DAC2 Left Playback Enum", 2),
520 EMU1010_SOURCE_OUTPUT("Dock DAC2 Right Playback Enum", 3),
521 EMU1010_SOURCE_OUTPUT("Dock DAC3 Left Playback Enum", 4),
522 EMU1010_SOURCE_OUTPUT("Dock DAC3 Right Playback Enum", 5),
523 EMU1010_SOURCE_OUTPUT("Dock SPDIF Left Playback Enum", 6),
524 EMU1010_SOURCE_OUTPUT("Dock SPDIF Right Playback Enum", 7),
525 EMU1010_SOURCE_OUTPUT("Dock ADAT 0 Playback Enum", 8),
526 EMU1010_SOURCE_OUTPUT("Dock ADAT 1 Playback Enum", 9),
527 EMU1010_SOURCE_OUTPUT("Dock ADAT 2 Playback Enum", 0xa),
528 EMU1010_SOURCE_OUTPUT("Dock ADAT 3 Playback Enum", 0xb),
529 EMU1010_SOURCE_OUTPUT("Dock ADAT 4 Playback Enum", 0xc),
530 EMU1010_SOURCE_OUTPUT("Dock ADAT 5 Playback Enum", 0xd),
531 EMU1010_SOURCE_OUTPUT("Dock ADAT 6 Playback Enum", 0xe),
532 EMU1010_SOURCE_OUTPUT("Dock ADAT 7 Playback Enum", 0xf),
533 EMU1010_SOURCE_OUTPUT("Mana DAC Left Playback Enum", 0x10),
534 EMU1010_SOURCE_OUTPUT("Mana DAC Right Playback Enum", 0x11),
535 };
536
537
538 #define EMU1010_SOURCE_INPUT(xname,chid) \
539 { \
540 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
541 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \
542 .info = snd_emu1010_input_output_source_info, \
543 .get = snd_emu1010_input_source_get, \
544 .put = snd_emu1010_input_source_put, \
545 .private_value = chid \
546 }
547
548 static const struct snd_kcontrol_new snd_emu1010_input_enum_ctls[] = {
549 EMU1010_SOURCE_INPUT("DSP 0 Capture Enum", 0),
550 EMU1010_SOURCE_INPUT("DSP 1 Capture Enum", 1),
551 EMU1010_SOURCE_INPUT("DSP 2 Capture Enum", 2),
552 EMU1010_SOURCE_INPUT("DSP 3 Capture Enum", 3),
553 EMU1010_SOURCE_INPUT("DSP 4 Capture Enum", 4),
554 EMU1010_SOURCE_INPUT("DSP 5 Capture Enum", 5),
555 EMU1010_SOURCE_INPUT("DSP 6 Capture Enum", 6),
556 EMU1010_SOURCE_INPUT("DSP 7 Capture Enum", 7),
557 EMU1010_SOURCE_INPUT("DSP 8 Capture Enum", 8),
558 EMU1010_SOURCE_INPUT("DSP 9 Capture Enum", 9),
559 EMU1010_SOURCE_INPUT("DSP A Capture Enum", 0xa),
560 EMU1010_SOURCE_INPUT("DSP B Capture Enum", 0xb),
561 EMU1010_SOURCE_INPUT("DSP C Capture Enum", 0xc),
562 EMU1010_SOURCE_INPUT("DSP D Capture Enum", 0xd),
563 EMU1010_SOURCE_INPUT("DSP E Capture Enum", 0xe),
564 EMU1010_SOURCE_INPUT("DSP F Capture Enum", 0xf),
565 EMU1010_SOURCE_INPUT("DSP 10 Capture Enum", 0x10),
566 EMU1010_SOURCE_INPUT("DSP 11 Capture Enum", 0x11),
567 EMU1010_SOURCE_INPUT("DSP 12 Capture Enum", 0x12),
568 EMU1010_SOURCE_INPUT("DSP 13 Capture Enum", 0x13),
569 EMU1010_SOURCE_INPUT("DSP 14 Capture Enum", 0x14),
570 EMU1010_SOURCE_INPUT("DSP 15 Capture Enum", 0x15),
571 };
572
573
574
575 #define snd_emu1010_adc_pads_info snd_ctl_boolean_mono_info
576
snd_emu1010_adc_pads_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)577 static int snd_emu1010_adc_pads_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
578 {
579 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
580 unsigned int mask = kcontrol->private_value & 0xff;
581 ucontrol->value.integer.value[0] = (emu->emu1010.adc_pads & mask) ? 1 : 0;
582 return 0;
583 }
584
snd_emu1010_adc_pads_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)585 static int snd_emu1010_adc_pads_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
586 {
587 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
588 unsigned int mask = kcontrol->private_value & 0xff;
589 unsigned int val, cache;
590 val = ucontrol->value.integer.value[0];
591 cache = emu->emu1010.adc_pads;
592 if (val == 1)
593 cache = cache | mask;
594 else
595 cache = cache & ~mask;
596 if (cache != emu->emu1010.adc_pads) {
597 snd_emu1010_fpga_write(emu, EMU_HANA_ADC_PADS, cache );
598 emu->emu1010.adc_pads = cache;
599 }
600
601 return 0;
602 }
603
604
605
606 #define EMU1010_ADC_PADS(xname,chid) \
607 { \
608 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
609 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \
610 .info = snd_emu1010_adc_pads_info, \
611 .get = snd_emu1010_adc_pads_get, \
612 .put = snd_emu1010_adc_pads_put, \
613 .private_value = chid \
614 }
615
616 static const struct snd_kcontrol_new snd_emu1010_adc_pads[] = {
617 EMU1010_ADC_PADS("ADC1 14dB PAD Audio Dock Capture Switch", EMU_HANA_DOCK_ADC_PAD1),
618 EMU1010_ADC_PADS("ADC2 14dB PAD Audio Dock Capture Switch", EMU_HANA_DOCK_ADC_PAD2),
619 EMU1010_ADC_PADS("ADC3 14dB PAD Audio Dock Capture Switch", EMU_HANA_DOCK_ADC_PAD3),
620 EMU1010_ADC_PADS("ADC1 14dB PAD 0202 Capture Switch", EMU_HANA_0202_ADC_PAD1),
621 };
622
623 #define snd_emu1010_dac_pads_info snd_ctl_boolean_mono_info
624
snd_emu1010_dac_pads_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)625 static int snd_emu1010_dac_pads_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
626 {
627 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
628 unsigned int mask = kcontrol->private_value & 0xff;
629 ucontrol->value.integer.value[0] = (emu->emu1010.dac_pads & mask) ? 1 : 0;
630 return 0;
631 }
632
snd_emu1010_dac_pads_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)633 static int snd_emu1010_dac_pads_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
634 {
635 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
636 unsigned int mask = kcontrol->private_value & 0xff;
637 unsigned int val, cache;
638 val = ucontrol->value.integer.value[0];
639 cache = emu->emu1010.dac_pads;
640 if (val == 1)
641 cache = cache | mask;
642 else
643 cache = cache & ~mask;
644 if (cache != emu->emu1010.dac_pads) {
645 snd_emu1010_fpga_write(emu, EMU_HANA_DAC_PADS, cache );
646 emu->emu1010.dac_pads = cache;
647 }
648
649 return 0;
650 }
651
652
653
654 #define EMU1010_DAC_PADS(xname,chid) \
655 { \
656 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
657 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \
658 .info = snd_emu1010_dac_pads_info, \
659 .get = snd_emu1010_dac_pads_get, \
660 .put = snd_emu1010_dac_pads_put, \
661 .private_value = chid \
662 }
663
664 static const struct snd_kcontrol_new snd_emu1010_dac_pads[] = {
665 EMU1010_DAC_PADS("DAC1 Audio Dock 14dB PAD Playback Switch", EMU_HANA_DOCK_DAC_PAD1),
666 EMU1010_DAC_PADS("DAC2 Audio Dock 14dB PAD Playback Switch", EMU_HANA_DOCK_DAC_PAD2),
667 EMU1010_DAC_PADS("DAC3 Audio Dock 14dB PAD Playback Switch", EMU_HANA_DOCK_DAC_PAD3),
668 EMU1010_DAC_PADS("DAC4 Audio Dock 14dB PAD Playback Switch", EMU_HANA_DOCK_DAC_PAD4),
669 EMU1010_DAC_PADS("DAC1 0202 14dB PAD Playback Switch", EMU_HANA_0202_DAC_PAD1),
670 };
671
672
snd_emu1010_internal_clock_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)673 static int snd_emu1010_internal_clock_info(struct snd_kcontrol *kcontrol,
674 struct snd_ctl_elem_info *uinfo)
675 {
676 static const char * const texts[4] = {
677 "44100", "48000", "SPDIF", "ADAT"
678 };
679
680 return snd_ctl_enum_info(uinfo, 1, 4, texts);
681 }
682
snd_emu1010_internal_clock_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)683 static int snd_emu1010_internal_clock_get(struct snd_kcontrol *kcontrol,
684 struct snd_ctl_elem_value *ucontrol)
685 {
686 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
687
688 ucontrol->value.enumerated.item[0] = emu->emu1010.internal_clock;
689 return 0;
690 }
691
snd_emu1010_internal_clock_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)692 static int snd_emu1010_internal_clock_put(struct snd_kcontrol *kcontrol,
693 struct snd_ctl_elem_value *ucontrol)
694 {
695 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
696 unsigned int val;
697 int change = 0;
698
699 val = ucontrol->value.enumerated.item[0] ;
700 /* Limit: uinfo->value.enumerated.items = 4; */
701 if (val >= 4)
702 return -EINVAL;
703 change = (emu->emu1010.internal_clock != val);
704 if (change) {
705 emu->emu1010.internal_clock = val;
706 switch (val) {
707 case 0:
708 /* 44100 */
709 /* Mute all */
710 snd_emu1010_fpga_write(emu, EMU_HANA_UNMUTE, EMU_MUTE );
711 /* Default fallback clock 48kHz */
712 snd_emu1010_fpga_write(emu, EMU_HANA_DEFCLOCK, EMU_HANA_DEFCLOCK_44_1K );
713 /* Word Clock source, Internal 44.1kHz x1 */
714 snd_emu1010_fpga_write(emu, EMU_HANA_WCLOCK,
715 EMU_HANA_WCLOCK_INT_44_1K | EMU_HANA_WCLOCK_1X );
716 /* Set LEDs on Audio Dock */
717 snd_emu1010_fpga_write(emu, EMU_HANA_DOCK_LEDS_2,
718 EMU_HANA_DOCK_LEDS_2_44K | EMU_HANA_DOCK_LEDS_2_LOCK );
719 /* Allow DLL to settle */
720 msleep(10);
721 /* Unmute all */
722 snd_emu1010_fpga_write(emu, EMU_HANA_UNMUTE, EMU_UNMUTE );
723 break;
724 case 1:
725 /* 48000 */
726 /* Mute all */
727 snd_emu1010_fpga_write(emu, EMU_HANA_UNMUTE, EMU_MUTE );
728 /* Default fallback clock 48kHz */
729 snd_emu1010_fpga_write(emu, EMU_HANA_DEFCLOCK, EMU_HANA_DEFCLOCK_48K );
730 /* Word Clock source, Internal 48kHz x1 */
731 snd_emu1010_fpga_write(emu, EMU_HANA_WCLOCK,
732 EMU_HANA_WCLOCK_INT_48K | EMU_HANA_WCLOCK_1X );
733 /* Set LEDs on Audio Dock */
734 snd_emu1010_fpga_write(emu, EMU_HANA_DOCK_LEDS_2,
735 EMU_HANA_DOCK_LEDS_2_48K | EMU_HANA_DOCK_LEDS_2_LOCK );
736 /* Allow DLL to settle */
737 msleep(10);
738 /* Unmute all */
739 snd_emu1010_fpga_write(emu, EMU_HANA_UNMUTE, EMU_UNMUTE );
740 break;
741
742 case 2: /* Take clock from S/PDIF IN */
743 /* Mute all */
744 snd_emu1010_fpga_write(emu, EMU_HANA_UNMUTE, EMU_MUTE );
745 /* Default fallback clock 48kHz */
746 snd_emu1010_fpga_write(emu, EMU_HANA_DEFCLOCK, EMU_HANA_DEFCLOCK_48K );
747 /* Word Clock source, sync to S/PDIF input */
748 snd_emu1010_fpga_write(emu, EMU_HANA_WCLOCK,
749 EMU_HANA_WCLOCK_HANA_SPDIF_IN | EMU_HANA_WCLOCK_1X );
750 /* Set LEDs on Audio Dock */
751 snd_emu1010_fpga_write(emu, EMU_HANA_DOCK_LEDS_2,
752 EMU_HANA_DOCK_LEDS_2_EXT | EMU_HANA_DOCK_LEDS_2_LOCK );
753 /* FIXME: We should set EMU_HANA_DOCK_LEDS_2_LOCK only when clock signal is present and valid */
754 /* Allow DLL to settle */
755 msleep(10);
756 /* Unmute all */
757 snd_emu1010_fpga_write(emu, EMU_HANA_UNMUTE, EMU_UNMUTE );
758 break;
759
760 case 3:
761 /* Take clock from ADAT IN */
762 /* Mute all */
763 snd_emu1010_fpga_write(emu, EMU_HANA_UNMUTE, EMU_MUTE );
764 /* Default fallback clock 48kHz */
765 snd_emu1010_fpga_write(emu, EMU_HANA_DEFCLOCK, EMU_HANA_DEFCLOCK_48K );
766 /* Word Clock source, sync to ADAT input */
767 snd_emu1010_fpga_write(emu, EMU_HANA_WCLOCK,
768 EMU_HANA_WCLOCK_HANA_ADAT_IN | EMU_HANA_WCLOCK_1X );
769 /* Set LEDs on Audio Dock */
770 snd_emu1010_fpga_write(emu, EMU_HANA_DOCK_LEDS_2, EMU_HANA_DOCK_LEDS_2_EXT | EMU_HANA_DOCK_LEDS_2_LOCK );
771 /* FIXME: We should set EMU_HANA_DOCK_LEDS_2_LOCK only when clock signal is present and valid */
772 /* Allow DLL to settle */
773 msleep(10);
774 /* Unmute all */
775 snd_emu1010_fpga_write(emu, EMU_HANA_UNMUTE, EMU_UNMUTE );
776
777
778 break;
779 }
780 }
781 return change;
782 }
783
784 static const struct snd_kcontrol_new snd_emu1010_internal_clock =
785 {
786 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
787 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
788 .name = "Clock Internal Rate",
789 .count = 1,
790 .info = snd_emu1010_internal_clock_info,
791 .get = snd_emu1010_internal_clock_get,
792 .put = snd_emu1010_internal_clock_put
793 };
794
snd_emu1010_optical_out_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)795 static int snd_emu1010_optical_out_info(struct snd_kcontrol *kcontrol,
796 struct snd_ctl_elem_info *uinfo)
797 {
798 static const char * const texts[2] = {
799 "SPDIF", "ADAT"
800 };
801
802 return snd_ctl_enum_info(uinfo, 1, 2, texts);
803 }
804
snd_emu1010_optical_out_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)805 static int snd_emu1010_optical_out_get(struct snd_kcontrol *kcontrol,
806 struct snd_ctl_elem_value *ucontrol)
807 {
808 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
809
810 ucontrol->value.enumerated.item[0] = emu->emu1010.optical_out;
811 return 0;
812 }
813
snd_emu1010_optical_out_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)814 static int snd_emu1010_optical_out_put(struct snd_kcontrol *kcontrol,
815 struct snd_ctl_elem_value *ucontrol)
816 {
817 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
818 unsigned int val;
819 u32 tmp;
820 int change = 0;
821
822 val = ucontrol->value.enumerated.item[0];
823 /* Limit: uinfo->value.enumerated.items = 2; */
824 if (val >= 2)
825 return -EINVAL;
826 change = (emu->emu1010.optical_out != val);
827 if (change) {
828 emu->emu1010.optical_out = val;
829 tmp = (emu->emu1010.optical_in ? EMU_HANA_OPTICAL_IN_ADAT : 0) |
830 (emu->emu1010.optical_out ? EMU_HANA_OPTICAL_OUT_ADAT : 0);
831 snd_emu1010_fpga_write(emu, EMU_HANA_OPTICAL_TYPE, tmp);
832 }
833 return change;
834 }
835
836 static const struct snd_kcontrol_new snd_emu1010_optical_out = {
837 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
838 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
839 .name = "Optical Output Mode",
840 .count = 1,
841 .info = snd_emu1010_optical_out_info,
842 .get = snd_emu1010_optical_out_get,
843 .put = snd_emu1010_optical_out_put
844 };
845
snd_emu1010_optical_in_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)846 static int snd_emu1010_optical_in_info(struct snd_kcontrol *kcontrol,
847 struct snd_ctl_elem_info *uinfo)
848 {
849 static const char * const texts[2] = {
850 "SPDIF", "ADAT"
851 };
852
853 return snd_ctl_enum_info(uinfo, 1, 2, texts);
854 }
855
snd_emu1010_optical_in_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)856 static int snd_emu1010_optical_in_get(struct snd_kcontrol *kcontrol,
857 struct snd_ctl_elem_value *ucontrol)
858 {
859 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
860
861 ucontrol->value.enumerated.item[0] = emu->emu1010.optical_in;
862 return 0;
863 }
864
snd_emu1010_optical_in_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)865 static int snd_emu1010_optical_in_put(struct snd_kcontrol *kcontrol,
866 struct snd_ctl_elem_value *ucontrol)
867 {
868 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
869 unsigned int val;
870 u32 tmp;
871 int change = 0;
872
873 val = ucontrol->value.enumerated.item[0];
874 /* Limit: uinfo->value.enumerated.items = 2; */
875 if (val >= 2)
876 return -EINVAL;
877 change = (emu->emu1010.optical_in != val);
878 if (change) {
879 emu->emu1010.optical_in = val;
880 tmp = (emu->emu1010.optical_in ? EMU_HANA_OPTICAL_IN_ADAT : 0) |
881 (emu->emu1010.optical_out ? EMU_HANA_OPTICAL_OUT_ADAT : 0);
882 snd_emu1010_fpga_write(emu, EMU_HANA_OPTICAL_TYPE, tmp);
883 }
884 return change;
885 }
886
887 static const struct snd_kcontrol_new snd_emu1010_optical_in = {
888 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
889 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
890 .name = "Optical Input Mode",
891 .count = 1,
892 .info = snd_emu1010_optical_in_info,
893 .get = snd_emu1010_optical_in_get,
894 .put = snd_emu1010_optical_in_put
895 };
896
snd_audigy_i2c_capture_source_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)897 static int snd_audigy_i2c_capture_source_info(struct snd_kcontrol *kcontrol,
898 struct snd_ctl_elem_info *uinfo)
899 {
900 #if 0
901 static const char * const texts[4] = {
902 "Unknown1", "Unknown2", "Mic", "Line"
903 };
904 #endif
905 static const char * const texts[2] = {
906 "Mic", "Line"
907 };
908
909 return snd_ctl_enum_info(uinfo, 1, 2, texts);
910 }
911
snd_audigy_i2c_capture_source_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)912 static int snd_audigy_i2c_capture_source_get(struct snd_kcontrol *kcontrol,
913 struct snd_ctl_elem_value *ucontrol)
914 {
915 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
916
917 ucontrol->value.enumerated.item[0] = emu->i2c_capture_source;
918 return 0;
919 }
920
snd_audigy_i2c_capture_source_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)921 static int snd_audigy_i2c_capture_source_put(struct snd_kcontrol *kcontrol,
922 struct snd_ctl_elem_value *ucontrol)
923 {
924 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
925 unsigned int source_id;
926 unsigned int ngain, ogain;
927 u32 gpio;
928 int change = 0;
929 unsigned long flags;
930 u32 source;
931 /* If the capture source has changed,
932 * update the capture volume from the cached value
933 * for the particular source.
934 */
935 source_id = ucontrol->value.enumerated.item[0];
936 /* Limit: uinfo->value.enumerated.items = 2; */
937 /* emu->i2c_capture_volume */
938 if (source_id >= 2)
939 return -EINVAL;
940 change = (emu->i2c_capture_source != source_id);
941 if (change) {
942 snd_emu10k1_i2c_write(emu, ADC_MUX, 0); /* Mute input */
943 spin_lock_irqsave(&emu->emu_lock, flags);
944 gpio = inl(emu->port + A_IOCFG);
945 if (source_id==0)
946 outl(gpio | 0x4, emu->port + A_IOCFG);
947 else
948 outl(gpio & ~0x4, emu->port + A_IOCFG);
949 spin_unlock_irqrestore(&emu->emu_lock, flags);
950
951 ngain = emu->i2c_capture_volume[source_id][0]; /* Left */
952 ogain = emu->i2c_capture_volume[emu->i2c_capture_source][0]; /* Left */
953 if (ngain != ogain)
954 snd_emu10k1_i2c_write(emu, ADC_ATTEN_ADCL, ((ngain) & 0xff));
955 ngain = emu->i2c_capture_volume[source_id][1]; /* Right */
956 ogain = emu->i2c_capture_volume[emu->i2c_capture_source][1]; /* Right */
957 if (ngain != ogain)
958 snd_emu10k1_i2c_write(emu, ADC_ATTEN_ADCR, ((ngain) & 0xff));
959
960 source = 1 << (source_id + 2);
961 snd_emu10k1_i2c_write(emu, ADC_MUX, source); /* Set source */
962 emu->i2c_capture_source = source_id;
963 }
964 return change;
965 }
966
967 static const struct snd_kcontrol_new snd_audigy_i2c_capture_source =
968 {
969 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
970 .name = "Capture Source",
971 .info = snd_audigy_i2c_capture_source_info,
972 .get = snd_audigy_i2c_capture_source_get,
973 .put = snd_audigy_i2c_capture_source_put
974 };
975
snd_audigy_i2c_volume_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)976 static int snd_audigy_i2c_volume_info(struct snd_kcontrol *kcontrol,
977 struct snd_ctl_elem_info *uinfo)
978 {
979 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
980 uinfo->count = 2;
981 uinfo->value.integer.min = 0;
982 uinfo->value.integer.max = 255;
983 return 0;
984 }
985
snd_audigy_i2c_volume_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)986 static int snd_audigy_i2c_volume_get(struct snd_kcontrol *kcontrol,
987 struct snd_ctl_elem_value *ucontrol)
988 {
989 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
990 unsigned int source_id;
991
992 source_id = kcontrol->private_value;
993 /* Limit: emu->i2c_capture_volume */
994 /* capture_source: uinfo->value.enumerated.items = 2 */
995 if (source_id >= 2)
996 return -EINVAL;
997
998 ucontrol->value.integer.value[0] = emu->i2c_capture_volume[source_id][0];
999 ucontrol->value.integer.value[1] = emu->i2c_capture_volume[source_id][1];
1000 return 0;
1001 }
1002
snd_audigy_i2c_volume_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1003 static int snd_audigy_i2c_volume_put(struct snd_kcontrol *kcontrol,
1004 struct snd_ctl_elem_value *ucontrol)
1005 {
1006 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
1007 unsigned int ogain;
1008 unsigned int ngain;
1009 unsigned int source_id;
1010 int change = 0;
1011
1012 source_id = kcontrol->private_value;
1013 /* Limit: emu->i2c_capture_volume */
1014 /* capture_source: uinfo->value.enumerated.items = 2 */
1015 if (source_id >= 2)
1016 return -EINVAL;
1017 ogain = emu->i2c_capture_volume[source_id][0]; /* Left */
1018 ngain = ucontrol->value.integer.value[0];
1019 if (ngain > 0xff)
1020 return 0;
1021 if (ogain != ngain) {
1022 if (emu->i2c_capture_source == source_id)
1023 snd_emu10k1_i2c_write(emu, ADC_ATTEN_ADCL, ((ngain) & 0xff) );
1024 emu->i2c_capture_volume[source_id][0] = ngain;
1025 change = 1;
1026 }
1027 ogain = emu->i2c_capture_volume[source_id][1]; /* Right */
1028 ngain = ucontrol->value.integer.value[1];
1029 if (ngain > 0xff)
1030 return 0;
1031 if (ogain != ngain) {
1032 if (emu->i2c_capture_source == source_id)
1033 snd_emu10k1_i2c_write(emu, ADC_ATTEN_ADCR, ((ngain) & 0xff));
1034 emu->i2c_capture_volume[source_id][1] = ngain;
1035 change = 1;
1036 }
1037
1038 return change;
1039 }
1040
1041 #define I2C_VOLUME(xname,chid) \
1042 { \
1043 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1044 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \
1045 SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
1046 .info = snd_audigy_i2c_volume_info, \
1047 .get = snd_audigy_i2c_volume_get, \
1048 .put = snd_audigy_i2c_volume_put, \
1049 .tlv = { .p = snd_audigy_db_scale2 }, \
1050 .private_value = chid \
1051 }
1052
1053
1054 static const struct snd_kcontrol_new snd_audigy_i2c_volume_ctls[] = {
1055 I2C_VOLUME("Mic Capture Volume", 0),
1056 I2C_VOLUME("Line Capture Volume", 0)
1057 };
1058
1059 #if 0
1060 static int snd_audigy_spdif_output_rate_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1061 {
1062 static const char * const texts[] = {"44100", "48000", "96000"};
1063
1064 return snd_ctl_enum_info(uinfo, 1, 3, texts);
1065 }
1066
1067 static int snd_audigy_spdif_output_rate_get(struct snd_kcontrol *kcontrol,
1068 struct snd_ctl_elem_value *ucontrol)
1069 {
1070 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
1071 unsigned int tmp;
1072 unsigned long flags;
1073
1074
1075 spin_lock_irqsave(&emu->reg_lock, flags);
1076 tmp = snd_emu10k1_ptr_read(emu, A_SPDIF_SAMPLERATE, 0);
1077 switch (tmp & A_SPDIF_RATE_MASK) {
1078 case A_SPDIF_44100:
1079 ucontrol->value.enumerated.item[0] = 0;
1080 break;
1081 case A_SPDIF_48000:
1082 ucontrol->value.enumerated.item[0] = 1;
1083 break;
1084 case A_SPDIF_96000:
1085 ucontrol->value.enumerated.item[0] = 2;
1086 break;
1087 default:
1088 ucontrol->value.enumerated.item[0] = 1;
1089 }
1090 spin_unlock_irqrestore(&emu->reg_lock, flags);
1091 return 0;
1092 }
1093
1094 static int snd_audigy_spdif_output_rate_put(struct snd_kcontrol *kcontrol,
1095 struct snd_ctl_elem_value *ucontrol)
1096 {
1097 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
1098 int change;
1099 unsigned int reg, val, tmp;
1100 unsigned long flags;
1101
1102 switch(ucontrol->value.enumerated.item[0]) {
1103 case 0:
1104 val = A_SPDIF_44100;
1105 break;
1106 case 1:
1107 val = A_SPDIF_48000;
1108 break;
1109 case 2:
1110 val = A_SPDIF_96000;
1111 break;
1112 default:
1113 val = A_SPDIF_48000;
1114 break;
1115 }
1116
1117
1118 spin_lock_irqsave(&emu->reg_lock, flags);
1119 reg = snd_emu10k1_ptr_read(emu, A_SPDIF_SAMPLERATE, 0);
1120 tmp = reg & ~A_SPDIF_RATE_MASK;
1121 tmp |= val;
1122 change = (tmp != reg);
1123 if (change)
1124 snd_emu10k1_ptr_write(emu, A_SPDIF_SAMPLERATE, 0, tmp);
1125 spin_unlock_irqrestore(&emu->reg_lock, flags);
1126 return change;
1127 }
1128
1129 static const struct snd_kcontrol_new snd_audigy_spdif_output_rate =
1130 {
1131 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
1132 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1133 .name = "Audigy SPDIF Output Sample Rate",
1134 .count = 1,
1135 .info = snd_audigy_spdif_output_rate_info,
1136 .get = snd_audigy_spdif_output_rate_get,
1137 .put = snd_audigy_spdif_output_rate_put
1138 };
1139 #endif
1140
snd_emu10k1_spdif_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1141 static int snd_emu10k1_spdif_put(struct snd_kcontrol *kcontrol,
1142 struct snd_ctl_elem_value *ucontrol)
1143 {
1144 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
1145 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
1146 int change;
1147 unsigned int val;
1148 unsigned long flags;
1149
1150 /* Limit: emu->spdif_bits */
1151 if (idx >= 3)
1152 return -EINVAL;
1153 val = (ucontrol->value.iec958.status[0] << 0) |
1154 (ucontrol->value.iec958.status[1] << 8) |
1155 (ucontrol->value.iec958.status[2] << 16) |
1156 (ucontrol->value.iec958.status[3] << 24);
1157 spin_lock_irqsave(&emu->reg_lock, flags);
1158 change = val != emu->spdif_bits[idx];
1159 if (change) {
1160 snd_emu10k1_ptr_write(emu, SPCS0 + idx, 0, val);
1161 emu->spdif_bits[idx] = val;
1162 }
1163 spin_unlock_irqrestore(&emu->reg_lock, flags);
1164 return change;
1165 }
1166
1167 static const struct snd_kcontrol_new snd_emu10k1_spdif_mask_control =
1168 {
1169 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1170 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1171 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,MASK),
1172 .count = 3,
1173 .info = snd_emu10k1_spdif_info,
1174 .get = snd_emu10k1_spdif_get_mask
1175 };
1176
1177 static const struct snd_kcontrol_new snd_emu10k1_spdif_control =
1178 {
1179 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1180 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1181 .count = 3,
1182 .info = snd_emu10k1_spdif_info,
1183 .get = snd_emu10k1_spdif_get,
1184 .put = snd_emu10k1_spdif_put
1185 };
1186
1187
update_emu10k1_fxrt(struct snd_emu10k1 * emu,int voice,unsigned char * route)1188 static void update_emu10k1_fxrt(struct snd_emu10k1 *emu, int voice, unsigned char *route)
1189 {
1190 if (emu->audigy) {
1191 snd_emu10k1_ptr_write(emu, A_FXRT1, voice,
1192 snd_emu10k1_compose_audigy_fxrt1(route));
1193 snd_emu10k1_ptr_write(emu, A_FXRT2, voice,
1194 snd_emu10k1_compose_audigy_fxrt2(route));
1195 } else {
1196 snd_emu10k1_ptr_write(emu, FXRT, voice,
1197 snd_emu10k1_compose_send_routing(route));
1198 }
1199 }
1200
update_emu10k1_send_volume(struct snd_emu10k1 * emu,int voice,unsigned char * volume)1201 static void update_emu10k1_send_volume(struct snd_emu10k1 *emu, int voice, unsigned char *volume)
1202 {
1203 snd_emu10k1_ptr_write(emu, PTRX_FXSENDAMOUNT_A, voice, volume[0]);
1204 snd_emu10k1_ptr_write(emu, PTRX_FXSENDAMOUNT_B, voice, volume[1]);
1205 snd_emu10k1_ptr_write(emu, PSST_FXSENDAMOUNT_C, voice, volume[2]);
1206 snd_emu10k1_ptr_write(emu, DSL_FXSENDAMOUNT_D, voice, volume[3]);
1207 if (emu->audigy) {
1208 unsigned int val = ((unsigned int)volume[4] << 24) |
1209 ((unsigned int)volume[5] << 16) |
1210 ((unsigned int)volume[6] << 8) |
1211 (unsigned int)volume[7];
1212 snd_emu10k1_ptr_write(emu, A_SENDAMOUNTS, voice, val);
1213 }
1214 }
1215
1216 /* PCM stream controls */
1217
snd_emu10k1_send_routing_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)1218 static int snd_emu10k1_send_routing_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1219 {
1220 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
1221 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1222 uinfo->count = emu->audigy ? 3*8 : 3*4;
1223 uinfo->value.integer.min = 0;
1224 uinfo->value.integer.max = emu->audigy ? 0x3f : 0x0f;
1225 return 0;
1226 }
1227
snd_emu10k1_send_routing_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1228 static int snd_emu10k1_send_routing_get(struct snd_kcontrol *kcontrol,
1229 struct snd_ctl_elem_value *ucontrol)
1230 {
1231 unsigned long flags;
1232 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
1233 struct snd_emu10k1_pcm_mixer *mix =
1234 &emu->pcm_mixer[snd_ctl_get_ioffidx(kcontrol, &ucontrol->id)];
1235 int voice, idx;
1236 int num_efx = emu->audigy ? 8 : 4;
1237 int mask = emu->audigy ? 0x3f : 0x0f;
1238
1239 spin_lock_irqsave(&emu->reg_lock, flags);
1240 for (voice = 0; voice < 3; voice++)
1241 for (idx = 0; idx < num_efx; idx++)
1242 ucontrol->value.integer.value[(voice * num_efx) + idx] =
1243 mix->send_routing[voice][idx] & mask;
1244 spin_unlock_irqrestore(&emu->reg_lock, flags);
1245 return 0;
1246 }
1247
snd_emu10k1_send_routing_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1248 static int snd_emu10k1_send_routing_put(struct snd_kcontrol *kcontrol,
1249 struct snd_ctl_elem_value *ucontrol)
1250 {
1251 unsigned long flags;
1252 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
1253 struct snd_emu10k1_pcm_mixer *mix =
1254 &emu->pcm_mixer[snd_ctl_get_ioffidx(kcontrol, &ucontrol->id)];
1255 int change = 0, voice, idx, val;
1256 int num_efx = emu->audigy ? 8 : 4;
1257 int mask = emu->audigy ? 0x3f : 0x0f;
1258
1259 spin_lock_irqsave(&emu->reg_lock, flags);
1260 for (voice = 0; voice < 3; voice++)
1261 for (idx = 0; idx < num_efx; idx++) {
1262 val = ucontrol->value.integer.value[(voice * num_efx) + idx] & mask;
1263 if (mix->send_routing[voice][idx] != val) {
1264 mix->send_routing[voice][idx] = val;
1265 change = 1;
1266 }
1267 }
1268 if (change && mix->epcm) {
1269 if (mix->epcm->voices[0] && mix->epcm->voices[1]) {
1270 update_emu10k1_fxrt(emu, mix->epcm->voices[0]->number,
1271 &mix->send_routing[1][0]);
1272 update_emu10k1_fxrt(emu, mix->epcm->voices[1]->number,
1273 &mix->send_routing[2][0]);
1274 } else if (mix->epcm->voices[0]) {
1275 update_emu10k1_fxrt(emu, mix->epcm->voices[0]->number,
1276 &mix->send_routing[0][0]);
1277 }
1278 }
1279 spin_unlock_irqrestore(&emu->reg_lock, flags);
1280 return change;
1281 }
1282
1283 static const struct snd_kcontrol_new snd_emu10k1_send_routing_control =
1284 {
1285 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1286 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1287 .name = "EMU10K1 PCM Send Routing",
1288 .count = 32,
1289 .info = snd_emu10k1_send_routing_info,
1290 .get = snd_emu10k1_send_routing_get,
1291 .put = snd_emu10k1_send_routing_put
1292 };
1293
snd_emu10k1_send_volume_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)1294 static int snd_emu10k1_send_volume_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1295 {
1296 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
1297 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1298 uinfo->count = emu->audigy ? 3*8 : 3*4;
1299 uinfo->value.integer.min = 0;
1300 uinfo->value.integer.max = 255;
1301 return 0;
1302 }
1303
snd_emu10k1_send_volume_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1304 static int snd_emu10k1_send_volume_get(struct snd_kcontrol *kcontrol,
1305 struct snd_ctl_elem_value *ucontrol)
1306 {
1307 unsigned long flags;
1308 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
1309 struct snd_emu10k1_pcm_mixer *mix =
1310 &emu->pcm_mixer[snd_ctl_get_ioffidx(kcontrol, &ucontrol->id)];
1311 int idx;
1312 int num_efx = emu->audigy ? 8 : 4;
1313
1314 spin_lock_irqsave(&emu->reg_lock, flags);
1315 for (idx = 0; idx < 3*num_efx; idx++)
1316 ucontrol->value.integer.value[idx] = mix->send_volume[idx/num_efx][idx%num_efx];
1317 spin_unlock_irqrestore(&emu->reg_lock, flags);
1318 return 0;
1319 }
1320
snd_emu10k1_send_volume_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1321 static int snd_emu10k1_send_volume_put(struct snd_kcontrol *kcontrol,
1322 struct snd_ctl_elem_value *ucontrol)
1323 {
1324 unsigned long flags;
1325 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
1326 struct snd_emu10k1_pcm_mixer *mix =
1327 &emu->pcm_mixer[snd_ctl_get_ioffidx(kcontrol, &ucontrol->id)];
1328 int change = 0, idx, val;
1329 int num_efx = emu->audigy ? 8 : 4;
1330
1331 spin_lock_irqsave(&emu->reg_lock, flags);
1332 for (idx = 0; idx < 3*num_efx; idx++) {
1333 val = ucontrol->value.integer.value[idx] & 255;
1334 if (mix->send_volume[idx/num_efx][idx%num_efx] != val) {
1335 mix->send_volume[idx/num_efx][idx%num_efx] = val;
1336 change = 1;
1337 }
1338 }
1339 if (change && mix->epcm) {
1340 if (mix->epcm->voices[0] && mix->epcm->voices[1]) {
1341 update_emu10k1_send_volume(emu, mix->epcm->voices[0]->number,
1342 &mix->send_volume[1][0]);
1343 update_emu10k1_send_volume(emu, mix->epcm->voices[1]->number,
1344 &mix->send_volume[2][0]);
1345 } else if (mix->epcm->voices[0]) {
1346 update_emu10k1_send_volume(emu, mix->epcm->voices[0]->number,
1347 &mix->send_volume[0][0]);
1348 }
1349 }
1350 spin_unlock_irqrestore(&emu->reg_lock, flags);
1351 return change;
1352 }
1353
1354 static const struct snd_kcontrol_new snd_emu10k1_send_volume_control =
1355 {
1356 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1357 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1358 .name = "EMU10K1 PCM Send Volume",
1359 .count = 32,
1360 .info = snd_emu10k1_send_volume_info,
1361 .get = snd_emu10k1_send_volume_get,
1362 .put = snd_emu10k1_send_volume_put
1363 };
1364
snd_emu10k1_attn_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)1365 static int snd_emu10k1_attn_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1366 {
1367 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1368 uinfo->count = 3;
1369 uinfo->value.integer.min = 0;
1370 uinfo->value.integer.max = 0xffff;
1371 return 0;
1372 }
1373
snd_emu10k1_attn_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1374 static int snd_emu10k1_attn_get(struct snd_kcontrol *kcontrol,
1375 struct snd_ctl_elem_value *ucontrol)
1376 {
1377 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
1378 struct snd_emu10k1_pcm_mixer *mix =
1379 &emu->pcm_mixer[snd_ctl_get_ioffidx(kcontrol, &ucontrol->id)];
1380 unsigned long flags;
1381 int idx;
1382
1383 spin_lock_irqsave(&emu->reg_lock, flags);
1384 for (idx = 0; idx < 3; idx++)
1385 ucontrol->value.integer.value[idx] = mix->attn[idx];
1386 spin_unlock_irqrestore(&emu->reg_lock, flags);
1387 return 0;
1388 }
1389
snd_emu10k1_attn_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1390 static int snd_emu10k1_attn_put(struct snd_kcontrol *kcontrol,
1391 struct snd_ctl_elem_value *ucontrol)
1392 {
1393 unsigned long flags;
1394 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
1395 struct snd_emu10k1_pcm_mixer *mix =
1396 &emu->pcm_mixer[snd_ctl_get_ioffidx(kcontrol, &ucontrol->id)];
1397 int change = 0, idx, val;
1398
1399 spin_lock_irqsave(&emu->reg_lock, flags);
1400 for (idx = 0; idx < 3; idx++) {
1401 val = ucontrol->value.integer.value[idx] & 0xffff;
1402 if (mix->attn[idx] != val) {
1403 mix->attn[idx] = val;
1404 change = 1;
1405 }
1406 }
1407 if (change && mix->epcm) {
1408 if (mix->epcm->voices[0] && mix->epcm->voices[1]) {
1409 snd_emu10k1_ptr_write(emu, VTFT_VOLUMETARGET, mix->epcm->voices[0]->number, mix->attn[1]);
1410 snd_emu10k1_ptr_write(emu, VTFT_VOLUMETARGET, mix->epcm->voices[1]->number, mix->attn[2]);
1411 } else if (mix->epcm->voices[0]) {
1412 snd_emu10k1_ptr_write(emu, VTFT_VOLUMETARGET, mix->epcm->voices[0]->number, mix->attn[0]);
1413 }
1414 }
1415 spin_unlock_irqrestore(&emu->reg_lock, flags);
1416 return change;
1417 }
1418
1419 static const struct snd_kcontrol_new snd_emu10k1_attn_control =
1420 {
1421 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1422 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1423 .name = "EMU10K1 PCM Volume",
1424 .count = 32,
1425 .info = snd_emu10k1_attn_info,
1426 .get = snd_emu10k1_attn_get,
1427 .put = snd_emu10k1_attn_put
1428 };
1429
1430 /* Mutichannel PCM stream controls */
1431
snd_emu10k1_efx_send_routing_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)1432 static int snd_emu10k1_efx_send_routing_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1433 {
1434 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
1435 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1436 uinfo->count = emu->audigy ? 8 : 4;
1437 uinfo->value.integer.min = 0;
1438 uinfo->value.integer.max = emu->audigy ? 0x3f : 0x0f;
1439 return 0;
1440 }
1441
snd_emu10k1_efx_send_routing_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1442 static int snd_emu10k1_efx_send_routing_get(struct snd_kcontrol *kcontrol,
1443 struct snd_ctl_elem_value *ucontrol)
1444 {
1445 unsigned long flags;
1446 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
1447 struct snd_emu10k1_pcm_mixer *mix =
1448 &emu->efx_pcm_mixer[snd_ctl_get_ioffidx(kcontrol, &ucontrol->id)];
1449 int idx;
1450 int num_efx = emu->audigy ? 8 : 4;
1451 int mask = emu->audigy ? 0x3f : 0x0f;
1452
1453 spin_lock_irqsave(&emu->reg_lock, flags);
1454 for (idx = 0; idx < num_efx; idx++)
1455 ucontrol->value.integer.value[idx] =
1456 mix->send_routing[0][idx] & mask;
1457 spin_unlock_irqrestore(&emu->reg_lock, flags);
1458 return 0;
1459 }
1460
snd_emu10k1_efx_send_routing_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1461 static int snd_emu10k1_efx_send_routing_put(struct snd_kcontrol *kcontrol,
1462 struct snd_ctl_elem_value *ucontrol)
1463 {
1464 unsigned long flags;
1465 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
1466 int ch = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
1467 struct snd_emu10k1_pcm_mixer *mix = &emu->efx_pcm_mixer[ch];
1468 int change = 0, idx, val;
1469 int num_efx = emu->audigy ? 8 : 4;
1470 int mask = emu->audigy ? 0x3f : 0x0f;
1471
1472 spin_lock_irqsave(&emu->reg_lock, flags);
1473 for (idx = 0; idx < num_efx; idx++) {
1474 val = ucontrol->value.integer.value[idx] & mask;
1475 if (mix->send_routing[0][idx] != val) {
1476 mix->send_routing[0][idx] = val;
1477 change = 1;
1478 }
1479 }
1480
1481 if (change && mix->epcm) {
1482 if (mix->epcm->voices[ch]) {
1483 update_emu10k1_fxrt(emu, mix->epcm->voices[ch]->number,
1484 &mix->send_routing[0][0]);
1485 }
1486 }
1487 spin_unlock_irqrestore(&emu->reg_lock, flags);
1488 return change;
1489 }
1490
1491 static const struct snd_kcontrol_new snd_emu10k1_efx_send_routing_control =
1492 {
1493 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1494 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1495 .name = "Multichannel PCM Send Routing",
1496 .count = 16,
1497 .info = snd_emu10k1_efx_send_routing_info,
1498 .get = snd_emu10k1_efx_send_routing_get,
1499 .put = snd_emu10k1_efx_send_routing_put
1500 };
1501
snd_emu10k1_efx_send_volume_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)1502 static int snd_emu10k1_efx_send_volume_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1503 {
1504 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
1505 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1506 uinfo->count = emu->audigy ? 8 : 4;
1507 uinfo->value.integer.min = 0;
1508 uinfo->value.integer.max = 255;
1509 return 0;
1510 }
1511
snd_emu10k1_efx_send_volume_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1512 static int snd_emu10k1_efx_send_volume_get(struct snd_kcontrol *kcontrol,
1513 struct snd_ctl_elem_value *ucontrol)
1514 {
1515 unsigned long flags;
1516 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
1517 struct snd_emu10k1_pcm_mixer *mix =
1518 &emu->efx_pcm_mixer[snd_ctl_get_ioffidx(kcontrol, &ucontrol->id)];
1519 int idx;
1520 int num_efx = emu->audigy ? 8 : 4;
1521
1522 spin_lock_irqsave(&emu->reg_lock, flags);
1523 for (idx = 0; idx < num_efx; idx++)
1524 ucontrol->value.integer.value[idx] = mix->send_volume[0][idx];
1525 spin_unlock_irqrestore(&emu->reg_lock, flags);
1526 return 0;
1527 }
1528
snd_emu10k1_efx_send_volume_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1529 static int snd_emu10k1_efx_send_volume_put(struct snd_kcontrol *kcontrol,
1530 struct snd_ctl_elem_value *ucontrol)
1531 {
1532 unsigned long flags;
1533 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
1534 int ch = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
1535 struct snd_emu10k1_pcm_mixer *mix = &emu->efx_pcm_mixer[ch];
1536 int change = 0, idx, val;
1537 int num_efx = emu->audigy ? 8 : 4;
1538
1539 spin_lock_irqsave(&emu->reg_lock, flags);
1540 for (idx = 0; idx < num_efx; idx++) {
1541 val = ucontrol->value.integer.value[idx] & 255;
1542 if (mix->send_volume[0][idx] != val) {
1543 mix->send_volume[0][idx] = val;
1544 change = 1;
1545 }
1546 }
1547 if (change && mix->epcm) {
1548 if (mix->epcm->voices[ch]) {
1549 update_emu10k1_send_volume(emu, mix->epcm->voices[ch]->number,
1550 &mix->send_volume[0][0]);
1551 }
1552 }
1553 spin_unlock_irqrestore(&emu->reg_lock, flags);
1554 return change;
1555 }
1556
1557
1558 static const struct snd_kcontrol_new snd_emu10k1_efx_send_volume_control =
1559 {
1560 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1561 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1562 .name = "Multichannel PCM Send Volume",
1563 .count = 16,
1564 .info = snd_emu10k1_efx_send_volume_info,
1565 .get = snd_emu10k1_efx_send_volume_get,
1566 .put = snd_emu10k1_efx_send_volume_put
1567 };
1568
snd_emu10k1_efx_attn_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)1569 static int snd_emu10k1_efx_attn_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1570 {
1571 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1572 uinfo->count = 1;
1573 uinfo->value.integer.min = 0;
1574 uinfo->value.integer.max = 0xffff;
1575 return 0;
1576 }
1577
snd_emu10k1_efx_attn_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1578 static int snd_emu10k1_efx_attn_get(struct snd_kcontrol *kcontrol,
1579 struct snd_ctl_elem_value *ucontrol)
1580 {
1581 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
1582 struct snd_emu10k1_pcm_mixer *mix =
1583 &emu->efx_pcm_mixer[snd_ctl_get_ioffidx(kcontrol, &ucontrol->id)];
1584 unsigned long flags;
1585
1586 spin_lock_irqsave(&emu->reg_lock, flags);
1587 ucontrol->value.integer.value[0] = mix->attn[0];
1588 spin_unlock_irqrestore(&emu->reg_lock, flags);
1589 return 0;
1590 }
1591
snd_emu10k1_efx_attn_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1592 static int snd_emu10k1_efx_attn_put(struct snd_kcontrol *kcontrol,
1593 struct snd_ctl_elem_value *ucontrol)
1594 {
1595 unsigned long flags;
1596 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
1597 int ch = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
1598 struct snd_emu10k1_pcm_mixer *mix = &emu->efx_pcm_mixer[ch];
1599 int change = 0, val;
1600
1601 spin_lock_irqsave(&emu->reg_lock, flags);
1602 val = ucontrol->value.integer.value[0] & 0xffff;
1603 if (mix->attn[0] != val) {
1604 mix->attn[0] = val;
1605 change = 1;
1606 }
1607 if (change && mix->epcm) {
1608 if (mix->epcm->voices[ch]) {
1609 snd_emu10k1_ptr_write(emu, VTFT_VOLUMETARGET, mix->epcm->voices[ch]->number, mix->attn[0]);
1610 }
1611 }
1612 spin_unlock_irqrestore(&emu->reg_lock, flags);
1613 return change;
1614 }
1615
1616 static const struct snd_kcontrol_new snd_emu10k1_efx_attn_control =
1617 {
1618 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1619 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1620 .name = "Multichannel PCM Volume",
1621 .count = 16,
1622 .info = snd_emu10k1_efx_attn_info,
1623 .get = snd_emu10k1_efx_attn_get,
1624 .put = snd_emu10k1_efx_attn_put
1625 };
1626
1627 #define snd_emu10k1_shared_spdif_info snd_ctl_boolean_mono_info
1628
snd_emu10k1_shared_spdif_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1629 static int snd_emu10k1_shared_spdif_get(struct snd_kcontrol *kcontrol,
1630 struct snd_ctl_elem_value *ucontrol)
1631 {
1632 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
1633
1634 if (emu->audigy)
1635 ucontrol->value.integer.value[0] = inl(emu->port + A_IOCFG) & A_IOCFG_GPOUT0 ? 1 : 0;
1636 else
1637 ucontrol->value.integer.value[0] = inl(emu->port + HCFG) & HCFG_GPOUT0 ? 1 : 0;
1638 if (emu->card_capabilities->invert_shared_spdif)
1639 ucontrol->value.integer.value[0] =
1640 !ucontrol->value.integer.value[0];
1641
1642 return 0;
1643 }
1644
snd_emu10k1_shared_spdif_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1645 static int snd_emu10k1_shared_spdif_put(struct snd_kcontrol *kcontrol,
1646 struct snd_ctl_elem_value *ucontrol)
1647 {
1648 unsigned long flags;
1649 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
1650 unsigned int reg, val, sw;
1651 int change = 0;
1652
1653 sw = ucontrol->value.integer.value[0];
1654 if (emu->card_capabilities->invert_shared_spdif)
1655 sw = !sw;
1656 spin_lock_irqsave(&emu->reg_lock, flags);
1657 if ( emu->card_capabilities->i2c_adc) {
1658 /* Do nothing for Audigy 2 ZS Notebook */
1659 } else if (emu->audigy) {
1660 reg = inl(emu->port + A_IOCFG);
1661 val = sw ? A_IOCFG_GPOUT0 : 0;
1662 change = (reg & A_IOCFG_GPOUT0) != val;
1663 if (change) {
1664 reg &= ~A_IOCFG_GPOUT0;
1665 reg |= val;
1666 outl(reg | val, emu->port + A_IOCFG);
1667 }
1668 }
1669 reg = inl(emu->port + HCFG);
1670 val = sw ? HCFG_GPOUT0 : 0;
1671 change |= (reg & HCFG_GPOUT0) != val;
1672 if (change) {
1673 reg &= ~HCFG_GPOUT0;
1674 reg |= val;
1675 outl(reg | val, emu->port + HCFG);
1676 }
1677 spin_unlock_irqrestore(&emu->reg_lock, flags);
1678 return change;
1679 }
1680
1681 static const struct snd_kcontrol_new snd_emu10k1_shared_spdif =
1682 {
1683 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1684 .name = "SB Live Analog/Digital Output Jack",
1685 .info = snd_emu10k1_shared_spdif_info,
1686 .get = snd_emu10k1_shared_spdif_get,
1687 .put = snd_emu10k1_shared_spdif_put
1688 };
1689
1690 static const struct snd_kcontrol_new snd_audigy_shared_spdif =
1691 {
1692 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1693 .name = "Audigy Analog/Digital Output Jack",
1694 .info = snd_emu10k1_shared_spdif_info,
1695 .get = snd_emu10k1_shared_spdif_get,
1696 .put = snd_emu10k1_shared_spdif_put
1697 };
1698
1699 /* workaround for too low volume on Audigy due to 16bit/24bit conversion */
1700
1701 #define snd_audigy_capture_boost_info snd_ctl_boolean_mono_info
1702
snd_audigy_capture_boost_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1703 static int snd_audigy_capture_boost_get(struct snd_kcontrol *kcontrol,
1704 struct snd_ctl_elem_value *ucontrol)
1705 {
1706 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
1707 unsigned int val;
1708
1709 /* FIXME: better to use a cached version */
1710 val = snd_ac97_read(emu->ac97, AC97_REC_GAIN);
1711 ucontrol->value.integer.value[0] = !!val;
1712 return 0;
1713 }
1714
snd_audigy_capture_boost_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1715 static int snd_audigy_capture_boost_put(struct snd_kcontrol *kcontrol,
1716 struct snd_ctl_elem_value *ucontrol)
1717 {
1718 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
1719 unsigned int val;
1720
1721 if (ucontrol->value.integer.value[0])
1722 val = 0x0f0f;
1723 else
1724 val = 0;
1725 return snd_ac97_update(emu->ac97, AC97_REC_GAIN, val);
1726 }
1727
1728 static const struct snd_kcontrol_new snd_audigy_capture_boost =
1729 {
1730 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1731 .name = "Mic Extra Boost",
1732 .info = snd_audigy_capture_boost_info,
1733 .get = snd_audigy_capture_boost_get,
1734 .put = snd_audigy_capture_boost_put
1735 };
1736
1737
1738 /*
1739 */
snd_emu10k1_mixer_free_ac97(struct snd_ac97 * ac97)1740 static void snd_emu10k1_mixer_free_ac97(struct snd_ac97 *ac97)
1741 {
1742 struct snd_emu10k1 *emu = ac97->private_data;
1743 emu->ac97 = NULL;
1744 }
1745
1746 /*
1747 */
remove_ctl(struct snd_card * card,const char * name)1748 static int remove_ctl(struct snd_card *card, const char *name)
1749 {
1750 struct snd_ctl_elem_id id;
1751 memset(&id, 0, sizeof(id));
1752 strcpy(id.name, name);
1753 id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
1754 return snd_ctl_remove_id(card, &id);
1755 }
1756
ctl_find(struct snd_card * card,const char * name)1757 static struct snd_kcontrol *ctl_find(struct snd_card *card, const char *name)
1758 {
1759 struct snd_ctl_elem_id sid;
1760 memset(&sid, 0, sizeof(sid));
1761 strcpy(sid.name, name);
1762 sid.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
1763 return snd_ctl_find_id(card, &sid);
1764 }
1765
rename_ctl(struct snd_card * card,const char * src,const char * dst)1766 static int rename_ctl(struct snd_card *card, const char *src, const char *dst)
1767 {
1768 struct snd_kcontrol *kctl = ctl_find(card, src);
1769 if (kctl) {
1770 snd_ctl_rename(card, kctl, dst);
1771 return 0;
1772 }
1773 return -ENOENT;
1774 }
1775
snd_emu10k1_mixer(struct snd_emu10k1 * emu,int pcm_device,int multi_device)1776 int snd_emu10k1_mixer(struct snd_emu10k1 *emu,
1777 int pcm_device, int multi_device)
1778 {
1779 int err, pcm;
1780 struct snd_kcontrol *kctl;
1781 struct snd_card *card = emu->card;
1782 const char * const *c;
1783 static const char * const emu10k1_remove_ctls[] = {
1784 /* no AC97 mono, surround, center/lfe */
1785 "Master Mono Playback Switch",
1786 "Master Mono Playback Volume",
1787 "PCM Out Path & Mute",
1788 "Mono Output Select",
1789 "Surround Playback Switch",
1790 "Surround Playback Volume",
1791 "Center Playback Switch",
1792 "Center Playback Volume",
1793 "LFE Playback Switch",
1794 "LFE Playback Volume",
1795 NULL
1796 };
1797 static const char * const emu10k1_rename_ctls[] = {
1798 "Surround Digital Playback Volume", "Surround Playback Volume",
1799 "Center Digital Playback Volume", "Center Playback Volume",
1800 "LFE Digital Playback Volume", "LFE Playback Volume",
1801 NULL
1802 };
1803 static const char * const audigy_remove_ctls[] = {
1804 /* Master/PCM controls on ac97 of Audigy has no effect */
1805 /* On the Audigy2 the AC97 playback is piped into
1806 * the Philips ADC for 24bit capture */
1807 "PCM Playback Switch",
1808 "PCM Playback Volume",
1809 "Master Playback Switch",
1810 "Master Playback Volume",
1811 "PCM Out Path & Mute",
1812 "Mono Output Select",
1813 /* remove unused AC97 capture controls */
1814 "Capture Source",
1815 "Capture Switch",
1816 "Capture Volume",
1817 "Mic Select",
1818 "Headphone Playback Switch",
1819 "Headphone Playback Volume",
1820 "3D Control - Center",
1821 "3D Control - Depth",
1822 "3D Control - Switch",
1823 "Video Playback Switch",
1824 "Video Playback Volume",
1825 "Mic Playback Switch",
1826 "Mic Playback Volume",
1827 "External Amplifier",
1828 NULL
1829 };
1830 static const char * const audigy_rename_ctls[] = {
1831 /* use conventional names */
1832 "Wave Playback Volume", "PCM Playback Volume",
1833 /* "Wave Capture Volume", "PCM Capture Volume", */
1834 "Wave Master Playback Volume", "Master Playback Volume",
1835 "AMic Playback Volume", "Mic Playback Volume",
1836 "Master Mono Playback Switch", "Phone Output Playback Switch",
1837 "Master Mono Playback Volume", "Phone Output Playback Volume",
1838 NULL
1839 };
1840 static const char * const audigy_rename_ctls_i2c_adc[] = {
1841 //"Analog Mix Capture Volume","OLD Analog Mix Capture Volume",
1842 "Line Capture Volume", "Analog Mix Capture Volume",
1843 "Wave Playback Volume", "OLD PCM Playback Volume",
1844 "Wave Master Playback Volume", "Master Playback Volume",
1845 "AMic Playback Volume", "Old Mic Playback Volume",
1846 "CD Capture Volume", "IEC958 Optical Capture Volume",
1847 NULL
1848 };
1849 static const char * const audigy_remove_ctls_i2c_adc[] = {
1850 /* On the Audigy2 ZS Notebook
1851 * Capture via WM8775 */
1852 "Mic Capture Volume",
1853 "Analog Mix Capture Volume",
1854 "Aux Capture Volume",
1855 "IEC958 Optical Capture Volume",
1856 NULL
1857 };
1858 static const char * const audigy_remove_ctls_1361t_adc[] = {
1859 /* On the Audigy2 the AC97 playback is piped into
1860 * the Philips ADC for 24bit capture */
1861 "PCM Playback Switch",
1862 "PCM Playback Volume",
1863 "Capture Source",
1864 "Capture Switch",
1865 "Capture Volume",
1866 "Mic Capture Volume",
1867 "Headphone Playback Switch",
1868 "Headphone Playback Volume",
1869 "3D Control - Center",
1870 "3D Control - Depth",
1871 "3D Control - Switch",
1872 "Line2 Playback Volume",
1873 "Line2 Capture Volume",
1874 NULL
1875 };
1876 static const char * const audigy_rename_ctls_1361t_adc[] = {
1877 "Master Playback Switch", "Master Capture Switch",
1878 "Master Playback Volume", "Master Capture Volume",
1879 "Wave Master Playback Volume", "Master Playback Volume",
1880 "Beep Playback Switch", "Beep Capture Switch",
1881 "Beep Playback Volume", "Beep Capture Volume",
1882 "Phone Playback Switch", "Phone Capture Switch",
1883 "Phone Playback Volume", "Phone Capture Volume",
1884 "Mic Playback Switch", "Mic Capture Switch",
1885 "Mic Playback Volume", "Mic Capture Volume",
1886 "Line Playback Switch", "Line Capture Switch",
1887 "Line Playback Volume", "Line Capture Volume",
1888 "CD Playback Switch", "CD Capture Switch",
1889 "CD Playback Volume", "CD Capture Volume",
1890 "Aux Playback Switch", "Aux Capture Switch",
1891 "Aux Playback Volume", "Aux Capture Volume",
1892 "Video Playback Switch", "Video Capture Switch",
1893 "Video Playback Volume", "Video Capture Volume",
1894 "Master Mono Playback Switch", "Phone Output Playback Switch",
1895 "Master Mono Playback Volume", "Phone Output Playback Volume",
1896 NULL
1897 };
1898
1899 if (emu->card_capabilities->ac97_chip) {
1900 struct snd_ac97_bus *pbus;
1901 struct snd_ac97_template ac97;
1902 static const struct snd_ac97_bus_ops ops = {
1903 .write = snd_emu10k1_ac97_write,
1904 .read = snd_emu10k1_ac97_read,
1905 };
1906
1907 err = snd_ac97_bus(emu->card, 0, &ops, NULL, &pbus);
1908 if (err < 0)
1909 return err;
1910 pbus->no_vra = 1; /* we don't need VRA */
1911
1912 memset(&ac97, 0, sizeof(ac97));
1913 ac97.private_data = emu;
1914 ac97.private_free = snd_emu10k1_mixer_free_ac97;
1915 ac97.scaps = AC97_SCAP_NO_SPDIF;
1916 err = snd_ac97_mixer(pbus, &ac97, &emu->ac97);
1917 if (err < 0) {
1918 if (emu->card_capabilities->ac97_chip == 1)
1919 return err;
1920 dev_info(emu->card->dev,
1921 "AC97 is optional on this board\n");
1922 dev_info(emu->card->dev,
1923 "Proceeding without ac97 mixers...\n");
1924 snd_device_free(emu->card, pbus);
1925 goto no_ac97; /* FIXME: get rid of ugly gotos.. */
1926 }
1927 if (emu->audigy) {
1928 /* set master volume to 0 dB */
1929 snd_ac97_write_cache(emu->ac97, AC97_MASTER, 0x0000);
1930 /* set capture source to mic */
1931 snd_ac97_write_cache(emu->ac97, AC97_REC_SEL, 0x0000);
1932 /* set mono output (TAD) to mic */
1933 snd_ac97_update_bits(emu->ac97, AC97_GENERAL_PURPOSE,
1934 0x0200, 0x0200);
1935 if (emu->card_capabilities->adc_1361t)
1936 c = audigy_remove_ctls_1361t_adc;
1937 else
1938 c = audigy_remove_ctls;
1939 } else {
1940 /*
1941 * Credits for cards based on STAC9758:
1942 * James Courtier-Dutton <James@superbug.demon.co.uk>
1943 * Voluspa <voluspa@comhem.se>
1944 */
1945 if (emu->ac97->id == AC97_ID_STAC9758) {
1946 emu->rear_ac97 = 1;
1947 snd_emu10k1_ptr_write(emu, AC97SLOT, 0, AC97SLOT_CNTR|AC97SLOT_LFE|AC97SLOT_REAR_LEFT|AC97SLOT_REAR_RIGHT);
1948 snd_ac97_write_cache(emu->ac97, AC97_HEADPHONE, 0x0202);
1949 remove_ctl(card,"Front Playback Volume");
1950 remove_ctl(card,"Front Playback Switch");
1951 }
1952 /* remove unused AC97 controls */
1953 snd_ac97_write_cache(emu->ac97, AC97_SURROUND_MASTER, 0x0202);
1954 snd_ac97_write_cache(emu->ac97, AC97_CENTER_LFE_MASTER, 0x0202);
1955 c = emu10k1_remove_ctls;
1956 }
1957 for (; *c; c++)
1958 remove_ctl(card, *c);
1959 } else if (emu->card_capabilities->i2c_adc) {
1960 c = audigy_remove_ctls_i2c_adc;
1961 for (; *c; c++)
1962 remove_ctl(card, *c);
1963 } else {
1964 no_ac97:
1965 if (emu->card_capabilities->ecard)
1966 strcpy(emu->card->mixername, "EMU APS");
1967 else if (emu->audigy)
1968 strcpy(emu->card->mixername, "SB Audigy");
1969 else
1970 strcpy(emu->card->mixername, "Emu10k1");
1971 }
1972
1973 if (emu->audigy)
1974 if (emu->card_capabilities->adc_1361t)
1975 c = audigy_rename_ctls_1361t_adc;
1976 else if (emu->card_capabilities->i2c_adc)
1977 c = audigy_rename_ctls_i2c_adc;
1978 else
1979 c = audigy_rename_ctls;
1980 else
1981 c = emu10k1_rename_ctls;
1982 for (; *c; c += 2)
1983 rename_ctl(card, c[0], c[1]);
1984
1985 if (emu->card_capabilities->subsystem == 0x80401102) { /* SB Live! Platinum CT4760P */
1986 remove_ctl(card, "Center Playback Volume");
1987 remove_ctl(card, "LFE Playback Volume");
1988 remove_ctl(card, "Wave Center Playback Volume");
1989 remove_ctl(card, "Wave LFE Playback Volume");
1990 }
1991 if (emu->card_capabilities->subsystem == 0x20071102) { /* Audigy 4 Pro */
1992 rename_ctl(card, "Line2 Capture Volume", "Line1/Mic Capture Volume");
1993 rename_ctl(card, "Analog Mix Capture Volume", "Line2 Capture Volume");
1994 rename_ctl(card, "Aux2 Capture Volume", "Line3 Capture Volume");
1995 rename_ctl(card, "Mic Capture Volume", "Unknown1 Capture Volume");
1996 }
1997 kctl = emu->ctl_send_routing = snd_ctl_new1(&snd_emu10k1_send_routing_control, emu);
1998 if (!kctl)
1999 return -ENOMEM;
2000 kctl->id.device = pcm_device;
2001 err = snd_ctl_add(card, kctl);
2002 if (err)
2003 return err;
2004 kctl = emu->ctl_send_volume = snd_ctl_new1(&snd_emu10k1_send_volume_control, emu);
2005 if (!kctl)
2006 return -ENOMEM;
2007 kctl->id.device = pcm_device;
2008 err = snd_ctl_add(card, kctl);
2009 if (err)
2010 return err;
2011 kctl = emu->ctl_attn = snd_ctl_new1(&snd_emu10k1_attn_control, emu);
2012 if (!kctl)
2013 return -ENOMEM;
2014 kctl->id.device = pcm_device;
2015 err = snd_ctl_add(card, kctl);
2016 if (err)
2017 return err;
2018
2019 kctl = emu->ctl_efx_send_routing = snd_ctl_new1(&snd_emu10k1_efx_send_routing_control, emu);
2020 if (!kctl)
2021 return -ENOMEM;
2022 kctl->id.device = multi_device;
2023 err = snd_ctl_add(card, kctl);
2024 if (err)
2025 return err;
2026
2027 kctl = emu->ctl_efx_send_volume = snd_ctl_new1(&snd_emu10k1_efx_send_volume_control, emu);
2028 if (!kctl)
2029 return -ENOMEM;
2030 kctl->id.device = multi_device;
2031 err = snd_ctl_add(card, kctl);
2032 if (err)
2033 return err;
2034
2035 kctl = emu->ctl_efx_attn = snd_ctl_new1(&snd_emu10k1_efx_attn_control, emu);
2036 if (!kctl)
2037 return -ENOMEM;
2038 kctl->id.device = multi_device;
2039 err = snd_ctl_add(card, kctl);
2040 if (err)
2041 return err;
2042
2043 /* initialize the routing and volume table for each pcm playback stream */
2044 for (pcm = 0; pcm < 32; pcm++) {
2045 struct snd_emu10k1_pcm_mixer *mix;
2046 int v;
2047
2048 mix = &emu->pcm_mixer[pcm];
2049 mix->epcm = NULL;
2050
2051 for (v = 0; v < 4; v++)
2052 mix->send_routing[0][v] =
2053 mix->send_routing[1][v] =
2054 mix->send_routing[2][v] = v;
2055
2056 memset(&mix->send_volume, 0, sizeof(mix->send_volume));
2057 mix->send_volume[0][0] = mix->send_volume[0][1] =
2058 mix->send_volume[1][0] = mix->send_volume[2][1] = 255;
2059
2060 mix->attn[0] = mix->attn[1] = mix->attn[2] = 0xffff;
2061 }
2062
2063 /* initialize the routing and volume table for the multichannel playback stream */
2064 for (pcm = 0; pcm < NUM_EFX_PLAYBACK; pcm++) {
2065 struct snd_emu10k1_pcm_mixer *mix;
2066 int v;
2067
2068 mix = &emu->efx_pcm_mixer[pcm];
2069 mix->epcm = NULL;
2070
2071 mix->send_routing[0][0] = pcm;
2072 mix->send_routing[0][1] = (pcm == 0) ? 1 : 0;
2073 for (v = 0; v < 2; v++)
2074 mix->send_routing[0][2+v] = 13+v;
2075 if (emu->audigy)
2076 for (v = 0; v < 4; v++)
2077 mix->send_routing[0][4+v] = 60+v;
2078
2079 memset(&mix->send_volume, 0, sizeof(mix->send_volume));
2080 mix->send_volume[0][0] = 255;
2081
2082 mix->attn[0] = 0xffff;
2083 }
2084
2085 if (! emu->card_capabilities->ecard) { /* FIXME: APS has these controls? */
2086 /* sb live! and audigy */
2087 kctl = snd_ctl_new1(&snd_emu10k1_spdif_mask_control, emu);
2088 if (!kctl)
2089 return -ENOMEM;
2090 if (!emu->audigy)
2091 kctl->id.device = emu->pcm_efx->device;
2092 err = snd_ctl_add(card, kctl);
2093 if (err)
2094 return err;
2095 kctl = snd_ctl_new1(&snd_emu10k1_spdif_control, emu);
2096 if (!kctl)
2097 return -ENOMEM;
2098 if (!emu->audigy)
2099 kctl->id.device = emu->pcm_efx->device;
2100 err = snd_ctl_add(card, kctl);
2101 if (err)
2102 return err;
2103 }
2104
2105 if (emu->card_capabilities->emu_model) {
2106 ; /* Disable the snd_audigy_spdif_shared_spdif */
2107 } else if (emu->audigy) {
2108 kctl = snd_ctl_new1(&snd_audigy_shared_spdif, emu);
2109 if (!kctl)
2110 return -ENOMEM;
2111 err = snd_ctl_add(card, kctl);
2112 if (err)
2113 return err;
2114 #if 0
2115 kctl = snd_ctl_new1(&snd_audigy_spdif_output_rate, emu);
2116 if (!kctl)
2117 return -ENOMEM;
2118 err = snd_ctl_add(card, kctl);
2119 if (err)
2120 return err;
2121 #endif
2122 } else if (! emu->card_capabilities->ecard) {
2123 /* sb live! */
2124 kctl = snd_ctl_new1(&snd_emu10k1_shared_spdif, emu);
2125 if (!kctl)
2126 return -ENOMEM;
2127 err = snd_ctl_add(card, kctl);
2128 if (err)
2129 return err;
2130 }
2131 if (emu->card_capabilities->ca0151_chip) { /* P16V */
2132 err = snd_p16v_mixer(emu);
2133 if (err)
2134 return err;
2135 }
2136
2137 if (emu->card_capabilities->emu_model == EMU_MODEL_EMU1616) {
2138 /* 1616(m) cardbus */
2139 int i;
2140
2141 for (i = 0; i < ARRAY_SIZE(snd_emu1616_output_enum_ctls); i++) {
2142 err = snd_ctl_add(card,
2143 snd_ctl_new1(&snd_emu1616_output_enum_ctls[i],
2144 emu));
2145 if (err < 0)
2146 return err;
2147 }
2148 for (i = 0; i < ARRAY_SIZE(snd_emu1010_input_enum_ctls); i++) {
2149 err = snd_ctl_add(card,
2150 snd_ctl_new1(&snd_emu1010_input_enum_ctls[i],
2151 emu));
2152 if (err < 0)
2153 return err;
2154 }
2155 for (i = 0; i < ARRAY_SIZE(snd_emu1010_adc_pads) - 2; i++) {
2156 err = snd_ctl_add(card,
2157 snd_ctl_new1(&snd_emu1010_adc_pads[i], emu));
2158 if (err < 0)
2159 return err;
2160 }
2161 for (i = 0; i < ARRAY_SIZE(snd_emu1010_dac_pads) - 2; i++) {
2162 err = snd_ctl_add(card,
2163 snd_ctl_new1(&snd_emu1010_dac_pads[i], emu));
2164 if (err < 0)
2165 return err;
2166 }
2167 err = snd_ctl_add(card,
2168 snd_ctl_new1(&snd_emu1010_internal_clock, emu));
2169 if (err < 0)
2170 return err;
2171 err = snd_ctl_add(card,
2172 snd_ctl_new1(&snd_emu1010_optical_out, emu));
2173 if (err < 0)
2174 return err;
2175 err = snd_ctl_add(card,
2176 snd_ctl_new1(&snd_emu1010_optical_in, emu));
2177 if (err < 0)
2178 return err;
2179
2180 } else if (emu->card_capabilities->emu_model) {
2181 /* all other e-mu cards for now */
2182 int i;
2183
2184 for (i = 0; i < ARRAY_SIZE(snd_emu1010_output_enum_ctls); i++) {
2185 err = snd_ctl_add(card,
2186 snd_ctl_new1(&snd_emu1010_output_enum_ctls[i],
2187 emu));
2188 if (err < 0)
2189 return err;
2190 }
2191 for (i = 0; i < ARRAY_SIZE(snd_emu1010_input_enum_ctls); i++) {
2192 err = snd_ctl_add(card,
2193 snd_ctl_new1(&snd_emu1010_input_enum_ctls[i],
2194 emu));
2195 if (err < 0)
2196 return err;
2197 }
2198 for (i = 0; i < ARRAY_SIZE(snd_emu1010_adc_pads); i++) {
2199 err = snd_ctl_add(card,
2200 snd_ctl_new1(&snd_emu1010_adc_pads[i], emu));
2201 if (err < 0)
2202 return err;
2203 }
2204 for (i = 0; i < ARRAY_SIZE(snd_emu1010_dac_pads); i++) {
2205 err = snd_ctl_add(card,
2206 snd_ctl_new1(&snd_emu1010_dac_pads[i], emu));
2207 if (err < 0)
2208 return err;
2209 }
2210 err = snd_ctl_add(card,
2211 snd_ctl_new1(&snd_emu1010_internal_clock, emu));
2212 if (err < 0)
2213 return err;
2214 err = snd_ctl_add(card,
2215 snd_ctl_new1(&snd_emu1010_optical_out, emu));
2216 if (err < 0)
2217 return err;
2218 err = snd_ctl_add(card,
2219 snd_ctl_new1(&snd_emu1010_optical_in, emu));
2220 if (err < 0)
2221 return err;
2222 }
2223
2224 if ( emu->card_capabilities->i2c_adc) {
2225 int i;
2226
2227 err = snd_ctl_add(card, snd_ctl_new1(&snd_audigy_i2c_capture_source, emu));
2228 if (err < 0)
2229 return err;
2230
2231 for (i = 0; i < ARRAY_SIZE(snd_audigy_i2c_volume_ctls); i++) {
2232 err = snd_ctl_add(card, snd_ctl_new1(&snd_audigy_i2c_volume_ctls[i], emu));
2233 if (err < 0)
2234 return err;
2235 }
2236 }
2237
2238 if (emu->card_capabilities->ac97_chip && emu->audigy) {
2239 err = snd_ctl_add(card, snd_ctl_new1(&snd_audigy_capture_boost,
2240 emu));
2241 if (err < 0)
2242 return err;
2243 }
2244
2245 return 0;
2246 }
2247