1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Implementation of the security services.
4 *
5 * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
6 * James Morris <jmorris@redhat.com>
7 *
8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 *
10 * Support for enhanced MLS infrastructure.
11 * Support for context based audit filters.
12 *
13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 *
15 * Added conditional policy language extensions
16 *
17 * Updated: Hewlett-Packard <paul@paul-moore.com>
18 *
19 * Added support for NetLabel
20 * Added support for the policy capability bitmap
21 *
22 * Updated: Chad Sellers <csellers@tresys.com>
23 *
24 * Added validation of kernel classes and permissions
25 *
26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27 *
28 * Added support for bounds domain and audit messaged on masked permissions
29 *
30 * Updated: Guido Trentalancia <guido@trentalancia.com>
31 *
32 * Added support for runtime switching of the policy type
33 *
34 * Copyright (C) 2008, 2009 NEC Corporation
35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
39 */
40 #include <linux/kernel.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/errno.h>
46 #include <linux/in.h>
47 #include <linux/sched.h>
48 #include <linux/audit.h>
49 #include <linux/vmalloc.h>
50 #include <linux/lsm_hooks.h>
51 #include <net/netlabel.h>
52
53 #include "flask.h"
54 #include "avc.h"
55 #include "avc_ss.h"
56 #include "security.h"
57 #include "context.h"
58 #include "policydb.h"
59 #include "sidtab.h"
60 #include "services.h"
61 #include "conditional.h"
62 #include "mls.h"
63 #include "objsec.h"
64 #include "netlabel.h"
65 #include "xfrm.h"
66 #include "ebitmap.h"
67 #include "audit.h"
68 #include "policycap_names.h"
69 #include "ima.h"
70
71 struct convert_context_args {
72 struct selinux_state *state;
73 struct policydb *oldp;
74 struct policydb *newp;
75 };
76
77 struct selinux_policy_convert_data {
78 struct convert_context_args args;
79 struct sidtab_convert_params sidtab_params;
80 };
81
82 /* Forward declaration. */
83 static int context_struct_to_string(struct policydb *policydb,
84 struct context *context,
85 char **scontext,
86 u32 *scontext_len);
87
88 static int sidtab_entry_to_string(struct policydb *policydb,
89 struct sidtab *sidtab,
90 struct sidtab_entry *entry,
91 char **scontext,
92 u32 *scontext_len);
93
94 static void context_struct_compute_av(struct policydb *policydb,
95 struct context *scontext,
96 struct context *tcontext,
97 u16 tclass,
98 struct av_decision *avd,
99 struct extended_perms *xperms);
100
selinux_set_mapping(struct policydb * pol,const struct security_class_mapping * map,struct selinux_map * out_map)101 static int selinux_set_mapping(struct policydb *pol,
102 const struct security_class_mapping *map,
103 struct selinux_map *out_map)
104 {
105 u16 i, j;
106 unsigned k;
107 bool print_unknown_handle = false;
108
109 /* Find number of classes in the input mapping */
110 if (!map)
111 return -EINVAL;
112 i = 0;
113 while (map[i].name)
114 i++;
115
116 /* Allocate space for the class records, plus one for class zero */
117 out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
118 if (!out_map->mapping)
119 return -ENOMEM;
120
121 /* Store the raw class and permission values */
122 j = 0;
123 while (map[j].name) {
124 const struct security_class_mapping *p_in = map + (j++);
125 struct selinux_mapping *p_out = out_map->mapping + j;
126
127 /* An empty class string skips ahead */
128 if (!strcmp(p_in->name, "")) {
129 p_out->num_perms = 0;
130 continue;
131 }
132
133 p_out->value = string_to_security_class(pol, p_in->name);
134 if (!p_out->value) {
135 pr_info("SELinux: Class %s not defined in policy.\n",
136 p_in->name);
137 if (pol->reject_unknown)
138 goto err;
139 p_out->num_perms = 0;
140 print_unknown_handle = true;
141 continue;
142 }
143
144 k = 0;
145 while (p_in->perms[k]) {
146 /* An empty permission string skips ahead */
147 if (!*p_in->perms[k]) {
148 k++;
149 continue;
150 }
151 p_out->perms[k] = string_to_av_perm(pol, p_out->value,
152 p_in->perms[k]);
153 if (!p_out->perms[k]) {
154 pr_info("SELinux: Permission %s in class %s not defined in policy.\n",
155 p_in->perms[k], p_in->name);
156 if (pol->reject_unknown)
157 goto err;
158 print_unknown_handle = true;
159 }
160
161 k++;
162 }
163 p_out->num_perms = k;
164 }
165
166 if (print_unknown_handle)
167 pr_info("SELinux: the above unknown classes and permissions will be %s\n",
168 pol->allow_unknown ? "allowed" : "denied");
169
170 out_map->size = i;
171 return 0;
172 err:
173 kfree(out_map->mapping);
174 out_map->mapping = NULL;
175 return -EINVAL;
176 }
177
178 /*
179 * Get real, policy values from mapped values
180 */
181
unmap_class(struct selinux_map * map,u16 tclass)182 static u16 unmap_class(struct selinux_map *map, u16 tclass)
183 {
184 if (tclass < map->size)
185 return map->mapping[tclass].value;
186
187 return tclass;
188 }
189
190 /*
191 * Get kernel value for class from its policy value
192 */
map_class(struct selinux_map * map,u16 pol_value)193 static u16 map_class(struct selinux_map *map, u16 pol_value)
194 {
195 u16 i;
196
197 for (i = 1; i < map->size; i++) {
198 if (map->mapping[i].value == pol_value)
199 return i;
200 }
201
202 return SECCLASS_NULL;
203 }
204
map_decision(struct selinux_map * map,u16 tclass,struct av_decision * avd,int allow_unknown)205 static void map_decision(struct selinux_map *map,
206 u16 tclass, struct av_decision *avd,
207 int allow_unknown)
208 {
209 if (tclass < map->size) {
210 struct selinux_mapping *mapping = &map->mapping[tclass];
211 unsigned int i, n = mapping->num_perms;
212 u32 result;
213
214 for (i = 0, result = 0; i < n; i++) {
215 if (avd->allowed & mapping->perms[i])
216 result |= 1<<i;
217 if (allow_unknown && !mapping->perms[i])
218 result |= 1<<i;
219 }
220 avd->allowed = result;
221
222 for (i = 0, result = 0; i < n; i++)
223 if (avd->auditallow & mapping->perms[i])
224 result |= 1<<i;
225 avd->auditallow = result;
226
227 for (i = 0, result = 0; i < n; i++) {
228 if (avd->auditdeny & mapping->perms[i])
229 result |= 1<<i;
230 if (!allow_unknown && !mapping->perms[i])
231 result |= 1<<i;
232 }
233 /*
234 * In case the kernel has a bug and requests a permission
235 * between num_perms and the maximum permission number, we
236 * should audit that denial
237 */
238 for (; i < (sizeof(u32)*8); i++)
239 result |= 1<<i;
240 avd->auditdeny = result;
241 }
242 }
243
security_mls_enabled(struct selinux_state * state)244 int security_mls_enabled(struct selinux_state *state)
245 {
246 int mls_enabled;
247 struct selinux_policy *policy;
248
249 if (!selinux_initialized(state))
250 return 0;
251
252 rcu_read_lock();
253 policy = rcu_dereference(state->policy);
254 mls_enabled = policy->policydb.mls_enabled;
255 rcu_read_unlock();
256 return mls_enabled;
257 }
258
259 /*
260 * Return the boolean value of a constraint expression
261 * when it is applied to the specified source and target
262 * security contexts.
263 *
264 * xcontext is a special beast... It is used by the validatetrans rules
265 * only. For these rules, scontext is the context before the transition,
266 * tcontext is the context after the transition, and xcontext is the context
267 * of the process performing the transition. All other callers of
268 * constraint_expr_eval should pass in NULL for xcontext.
269 */
constraint_expr_eval(struct policydb * policydb,struct context * scontext,struct context * tcontext,struct context * xcontext,struct constraint_expr * cexpr)270 static int constraint_expr_eval(struct policydb *policydb,
271 struct context *scontext,
272 struct context *tcontext,
273 struct context *xcontext,
274 struct constraint_expr *cexpr)
275 {
276 u32 val1, val2;
277 struct context *c;
278 struct role_datum *r1, *r2;
279 struct mls_level *l1, *l2;
280 struct constraint_expr *e;
281 int s[CEXPR_MAXDEPTH];
282 int sp = -1;
283
284 for (e = cexpr; e; e = e->next) {
285 switch (e->expr_type) {
286 case CEXPR_NOT:
287 BUG_ON(sp < 0);
288 s[sp] = !s[sp];
289 break;
290 case CEXPR_AND:
291 BUG_ON(sp < 1);
292 sp--;
293 s[sp] &= s[sp + 1];
294 break;
295 case CEXPR_OR:
296 BUG_ON(sp < 1);
297 sp--;
298 s[sp] |= s[sp + 1];
299 break;
300 case CEXPR_ATTR:
301 if (sp == (CEXPR_MAXDEPTH - 1))
302 return 0;
303 switch (e->attr) {
304 case CEXPR_USER:
305 val1 = scontext->user;
306 val2 = tcontext->user;
307 break;
308 case CEXPR_TYPE:
309 val1 = scontext->type;
310 val2 = tcontext->type;
311 break;
312 case CEXPR_ROLE:
313 val1 = scontext->role;
314 val2 = tcontext->role;
315 r1 = policydb->role_val_to_struct[val1 - 1];
316 r2 = policydb->role_val_to_struct[val2 - 1];
317 switch (e->op) {
318 case CEXPR_DOM:
319 s[++sp] = ebitmap_get_bit(&r1->dominates,
320 val2 - 1);
321 continue;
322 case CEXPR_DOMBY:
323 s[++sp] = ebitmap_get_bit(&r2->dominates,
324 val1 - 1);
325 continue;
326 case CEXPR_INCOMP:
327 s[++sp] = (!ebitmap_get_bit(&r1->dominates,
328 val2 - 1) &&
329 !ebitmap_get_bit(&r2->dominates,
330 val1 - 1));
331 continue;
332 default:
333 break;
334 }
335 break;
336 case CEXPR_L1L2:
337 l1 = &(scontext->range.level[0]);
338 l2 = &(tcontext->range.level[0]);
339 goto mls_ops;
340 case CEXPR_L1H2:
341 l1 = &(scontext->range.level[0]);
342 l2 = &(tcontext->range.level[1]);
343 goto mls_ops;
344 case CEXPR_H1L2:
345 l1 = &(scontext->range.level[1]);
346 l2 = &(tcontext->range.level[0]);
347 goto mls_ops;
348 case CEXPR_H1H2:
349 l1 = &(scontext->range.level[1]);
350 l2 = &(tcontext->range.level[1]);
351 goto mls_ops;
352 case CEXPR_L1H1:
353 l1 = &(scontext->range.level[0]);
354 l2 = &(scontext->range.level[1]);
355 goto mls_ops;
356 case CEXPR_L2H2:
357 l1 = &(tcontext->range.level[0]);
358 l2 = &(tcontext->range.level[1]);
359 goto mls_ops;
360 mls_ops:
361 switch (e->op) {
362 case CEXPR_EQ:
363 s[++sp] = mls_level_eq(l1, l2);
364 continue;
365 case CEXPR_NEQ:
366 s[++sp] = !mls_level_eq(l1, l2);
367 continue;
368 case CEXPR_DOM:
369 s[++sp] = mls_level_dom(l1, l2);
370 continue;
371 case CEXPR_DOMBY:
372 s[++sp] = mls_level_dom(l2, l1);
373 continue;
374 case CEXPR_INCOMP:
375 s[++sp] = mls_level_incomp(l2, l1);
376 continue;
377 default:
378 BUG();
379 return 0;
380 }
381 break;
382 default:
383 BUG();
384 return 0;
385 }
386
387 switch (e->op) {
388 case CEXPR_EQ:
389 s[++sp] = (val1 == val2);
390 break;
391 case CEXPR_NEQ:
392 s[++sp] = (val1 != val2);
393 break;
394 default:
395 BUG();
396 return 0;
397 }
398 break;
399 case CEXPR_NAMES:
400 if (sp == (CEXPR_MAXDEPTH-1))
401 return 0;
402 c = scontext;
403 if (e->attr & CEXPR_TARGET)
404 c = tcontext;
405 else if (e->attr & CEXPR_XTARGET) {
406 c = xcontext;
407 if (!c) {
408 BUG();
409 return 0;
410 }
411 }
412 if (e->attr & CEXPR_USER)
413 val1 = c->user;
414 else if (e->attr & CEXPR_ROLE)
415 val1 = c->role;
416 else if (e->attr & CEXPR_TYPE)
417 val1 = c->type;
418 else {
419 BUG();
420 return 0;
421 }
422
423 switch (e->op) {
424 case CEXPR_EQ:
425 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
426 break;
427 case CEXPR_NEQ:
428 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
429 break;
430 default:
431 BUG();
432 return 0;
433 }
434 break;
435 default:
436 BUG();
437 return 0;
438 }
439 }
440
441 BUG_ON(sp != 0);
442 return s[0];
443 }
444
445 /*
446 * security_dump_masked_av - dumps masked permissions during
447 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
448 */
dump_masked_av_helper(void * k,void * d,void * args)449 static int dump_masked_av_helper(void *k, void *d, void *args)
450 {
451 struct perm_datum *pdatum = d;
452 char **permission_names = args;
453
454 BUG_ON(pdatum->value < 1 || pdatum->value > 32);
455
456 permission_names[pdatum->value - 1] = (char *)k;
457
458 return 0;
459 }
460
security_dump_masked_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,u32 permissions,const char * reason)461 static void security_dump_masked_av(struct policydb *policydb,
462 struct context *scontext,
463 struct context *tcontext,
464 u16 tclass,
465 u32 permissions,
466 const char *reason)
467 {
468 struct common_datum *common_dat;
469 struct class_datum *tclass_dat;
470 struct audit_buffer *ab;
471 char *tclass_name;
472 char *scontext_name = NULL;
473 char *tcontext_name = NULL;
474 char *permission_names[32];
475 int index;
476 u32 length;
477 bool need_comma = false;
478
479 if (!permissions)
480 return;
481
482 tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
483 tclass_dat = policydb->class_val_to_struct[tclass - 1];
484 common_dat = tclass_dat->comdatum;
485
486 /* init permission_names */
487 if (common_dat &&
488 hashtab_map(&common_dat->permissions.table,
489 dump_masked_av_helper, permission_names) < 0)
490 goto out;
491
492 if (hashtab_map(&tclass_dat->permissions.table,
493 dump_masked_av_helper, permission_names) < 0)
494 goto out;
495
496 /* get scontext/tcontext in text form */
497 if (context_struct_to_string(policydb, scontext,
498 &scontext_name, &length) < 0)
499 goto out;
500
501 if (context_struct_to_string(policydb, tcontext,
502 &tcontext_name, &length) < 0)
503 goto out;
504
505 /* audit a message */
506 ab = audit_log_start(audit_context(),
507 GFP_ATOMIC, AUDIT_SELINUX_ERR);
508 if (!ab)
509 goto out;
510
511 audit_log_format(ab, "op=security_compute_av reason=%s "
512 "scontext=%s tcontext=%s tclass=%s perms=",
513 reason, scontext_name, tcontext_name, tclass_name);
514
515 for (index = 0; index < 32; index++) {
516 u32 mask = (1 << index);
517
518 if ((mask & permissions) == 0)
519 continue;
520
521 audit_log_format(ab, "%s%s",
522 need_comma ? "," : "",
523 permission_names[index]
524 ? permission_names[index] : "????");
525 need_comma = true;
526 }
527 audit_log_end(ab);
528 out:
529 /* release scontext/tcontext */
530 kfree(tcontext_name);
531 kfree(scontext_name);
532 }
533
534 /*
535 * security_boundary_permission - drops violated permissions
536 * on boundary constraint.
537 */
type_attribute_bounds_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd)538 static void type_attribute_bounds_av(struct policydb *policydb,
539 struct context *scontext,
540 struct context *tcontext,
541 u16 tclass,
542 struct av_decision *avd)
543 {
544 struct context lo_scontext;
545 struct context lo_tcontext, *tcontextp = tcontext;
546 struct av_decision lo_avd;
547 struct type_datum *source;
548 struct type_datum *target;
549 u32 masked = 0;
550
551 source = policydb->type_val_to_struct[scontext->type - 1];
552 BUG_ON(!source);
553
554 if (!source->bounds)
555 return;
556
557 target = policydb->type_val_to_struct[tcontext->type - 1];
558 BUG_ON(!target);
559
560 memset(&lo_avd, 0, sizeof(lo_avd));
561
562 memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
563 lo_scontext.type = source->bounds;
564
565 if (target->bounds) {
566 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
567 lo_tcontext.type = target->bounds;
568 tcontextp = &lo_tcontext;
569 }
570
571 context_struct_compute_av(policydb, &lo_scontext,
572 tcontextp,
573 tclass,
574 &lo_avd,
575 NULL);
576
577 masked = ~lo_avd.allowed & avd->allowed;
578
579 if (likely(!masked))
580 return; /* no masked permission */
581
582 /* mask violated permissions */
583 avd->allowed &= ~masked;
584
585 /* audit masked permissions */
586 security_dump_masked_av(policydb, scontext, tcontext,
587 tclass, masked, "bounds");
588 }
589
590 /*
591 * flag which drivers have permissions
592 * only looking for ioctl based extended permssions
593 */
services_compute_xperms_drivers(struct extended_perms * xperms,struct avtab_node * node)594 void services_compute_xperms_drivers(
595 struct extended_perms *xperms,
596 struct avtab_node *node)
597 {
598 unsigned int i;
599
600 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
601 /* if one or more driver has all permissions allowed */
602 for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
603 xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
604 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
605 /* if allowing permissions within a driver */
606 security_xperm_set(xperms->drivers.p,
607 node->datum.u.xperms->driver);
608 }
609
610 xperms->len = 1;
611 }
612
613 /*
614 * Compute access vectors and extended permissions based on a context
615 * structure pair for the permissions in a particular class.
616 */
context_struct_compute_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd,struct extended_perms * xperms)617 static void context_struct_compute_av(struct policydb *policydb,
618 struct context *scontext,
619 struct context *tcontext,
620 u16 tclass,
621 struct av_decision *avd,
622 struct extended_perms *xperms)
623 {
624 struct constraint_node *constraint;
625 struct role_allow *ra;
626 struct avtab_key avkey;
627 struct avtab_node *node;
628 struct class_datum *tclass_datum;
629 struct ebitmap *sattr, *tattr;
630 struct ebitmap_node *snode, *tnode;
631 unsigned int i, j;
632
633 avd->allowed = 0;
634 avd->auditallow = 0;
635 avd->auditdeny = 0xffffffff;
636 if (xperms) {
637 memset(&xperms->drivers, 0, sizeof(xperms->drivers));
638 xperms->len = 0;
639 }
640
641 if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
642 if (printk_ratelimit())
643 pr_warn("SELinux: Invalid class %hu\n", tclass);
644 return;
645 }
646
647 tclass_datum = policydb->class_val_to_struct[tclass - 1];
648
649 /*
650 * If a specific type enforcement rule was defined for
651 * this permission check, then use it.
652 */
653 avkey.target_class = tclass;
654 avkey.specified = AVTAB_AV | AVTAB_XPERMS;
655 sattr = &policydb->type_attr_map_array[scontext->type - 1];
656 tattr = &policydb->type_attr_map_array[tcontext->type - 1];
657 ebitmap_for_each_positive_bit(sattr, snode, i) {
658 ebitmap_for_each_positive_bit(tattr, tnode, j) {
659 avkey.source_type = i + 1;
660 avkey.target_type = j + 1;
661 for (node = avtab_search_node(&policydb->te_avtab,
662 &avkey);
663 node;
664 node = avtab_search_node_next(node, avkey.specified)) {
665 if (node->key.specified == AVTAB_ALLOWED)
666 avd->allowed |= node->datum.u.data;
667 else if (node->key.specified == AVTAB_AUDITALLOW)
668 avd->auditallow |= node->datum.u.data;
669 else if (node->key.specified == AVTAB_AUDITDENY)
670 avd->auditdeny &= node->datum.u.data;
671 else if (xperms && (node->key.specified & AVTAB_XPERMS))
672 services_compute_xperms_drivers(xperms, node);
673 }
674
675 /* Check conditional av table for additional permissions */
676 cond_compute_av(&policydb->te_cond_avtab, &avkey,
677 avd, xperms);
678
679 }
680 }
681
682 /*
683 * Remove any permissions prohibited by a constraint (this includes
684 * the MLS policy).
685 */
686 constraint = tclass_datum->constraints;
687 while (constraint) {
688 if ((constraint->permissions & (avd->allowed)) &&
689 !constraint_expr_eval(policydb, scontext, tcontext, NULL,
690 constraint->expr)) {
691 avd->allowed &= ~(constraint->permissions);
692 }
693 constraint = constraint->next;
694 }
695
696 /*
697 * If checking process transition permission and the
698 * role is changing, then check the (current_role, new_role)
699 * pair.
700 */
701 if (tclass == policydb->process_class &&
702 (avd->allowed & policydb->process_trans_perms) &&
703 scontext->role != tcontext->role) {
704 for (ra = policydb->role_allow; ra; ra = ra->next) {
705 if (scontext->role == ra->role &&
706 tcontext->role == ra->new_role)
707 break;
708 }
709 if (!ra)
710 avd->allowed &= ~policydb->process_trans_perms;
711 }
712
713 /*
714 * If the given source and target types have boundary
715 * constraint, lazy checks have to mask any violated
716 * permission and notice it to userspace via audit.
717 */
718 type_attribute_bounds_av(policydb, scontext, tcontext,
719 tclass, avd);
720 }
721
security_validtrans_handle_fail(struct selinux_state * state,struct selinux_policy * policy,struct sidtab_entry * oentry,struct sidtab_entry * nentry,struct sidtab_entry * tentry,u16 tclass)722 static int security_validtrans_handle_fail(struct selinux_state *state,
723 struct selinux_policy *policy,
724 struct sidtab_entry *oentry,
725 struct sidtab_entry *nentry,
726 struct sidtab_entry *tentry,
727 u16 tclass)
728 {
729 struct policydb *p = &policy->policydb;
730 struct sidtab *sidtab = policy->sidtab;
731 char *o = NULL, *n = NULL, *t = NULL;
732 u32 olen, nlen, tlen;
733
734 if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
735 goto out;
736 if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
737 goto out;
738 if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
739 goto out;
740 audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
741 "op=security_validate_transition seresult=denied"
742 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
743 o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
744 out:
745 kfree(o);
746 kfree(n);
747 kfree(t);
748
749 if (!enforcing_enabled(state))
750 return 0;
751 return -EPERM;
752 }
753
security_compute_validatetrans(struct selinux_state * state,u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass,bool user)754 static int security_compute_validatetrans(struct selinux_state *state,
755 u32 oldsid, u32 newsid, u32 tasksid,
756 u16 orig_tclass, bool user)
757 {
758 struct selinux_policy *policy;
759 struct policydb *policydb;
760 struct sidtab *sidtab;
761 struct sidtab_entry *oentry;
762 struct sidtab_entry *nentry;
763 struct sidtab_entry *tentry;
764 struct class_datum *tclass_datum;
765 struct constraint_node *constraint;
766 u16 tclass;
767 int rc = 0;
768
769
770 if (!selinux_initialized(state))
771 return 0;
772
773 rcu_read_lock();
774
775 policy = rcu_dereference(state->policy);
776 policydb = &policy->policydb;
777 sidtab = policy->sidtab;
778
779 if (!user)
780 tclass = unmap_class(&policy->map, orig_tclass);
781 else
782 tclass = orig_tclass;
783
784 if (!tclass || tclass > policydb->p_classes.nprim) {
785 rc = -EINVAL;
786 goto out;
787 }
788 tclass_datum = policydb->class_val_to_struct[tclass - 1];
789
790 oentry = sidtab_search_entry(sidtab, oldsid);
791 if (!oentry) {
792 pr_err("SELinux: %s: unrecognized SID %d\n",
793 __func__, oldsid);
794 rc = -EINVAL;
795 goto out;
796 }
797
798 nentry = sidtab_search_entry(sidtab, newsid);
799 if (!nentry) {
800 pr_err("SELinux: %s: unrecognized SID %d\n",
801 __func__, newsid);
802 rc = -EINVAL;
803 goto out;
804 }
805
806 tentry = sidtab_search_entry(sidtab, tasksid);
807 if (!tentry) {
808 pr_err("SELinux: %s: unrecognized SID %d\n",
809 __func__, tasksid);
810 rc = -EINVAL;
811 goto out;
812 }
813
814 constraint = tclass_datum->validatetrans;
815 while (constraint) {
816 if (!constraint_expr_eval(policydb, &oentry->context,
817 &nentry->context, &tentry->context,
818 constraint->expr)) {
819 if (user)
820 rc = -EPERM;
821 else
822 rc = security_validtrans_handle_fail(state,
823 policy,
824 oentry,
825 nentry,
826 tentry,
827 tclass);
828 goto out;
829 }
830 constraint = constraint->next;
831 }
832
833 out:
834 rcu_read_unlock();
835 return rc;
836 }
837
security_validate_transition_user(struct selinux_state * state,u32 oldsid,u32 newsid,u32 tasksid,u16 tclass)838 int security_validate_transition_user(struct selinux_state *state,
839 u32 oldsid, u32 newsid, u32 tasksid,
840 u16 tclass)
841 {
842 return security_compute_validatetrans(state, oldsid, newsid, tasksid,
843 tclass, true);
844 }
845
security_validate_transition(struct selinux_state * state,u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass)846 int security_validate_transition(struct selinux_state *state,
847 u32 oldsid, u32 newsid, u32 tasksid,
848 u16 orig_tclass)
849 {
850 return security_compute_validatetrans(state, oldsid, newsid, tasksid,
851 orig_tclass, false);
852 }
853
854 /*
855 * security_bounded_transition - check whether the given
856 * transition is directed to bounded, or not.
857 * It returns 0, if @newsid is bounded by @oldsid.
858 * Otherwise, it returns error code.
859 *
860 * @state: SELinux state
861 * @oldsid : current security identifier
862 * @newsid : destinated security identifier
863 */
security_bounded_transition(struct selinux_state * state,u32 old_sid,u32 new_sid)864 int security_bounded_transition(struct selinux_state *state,
865 u32 old_sid, u32 new_sid)
866 {
867 struct selinux_policy *policy;
868 struct policydb *policydb;
869 struct sidtab *sidtab;
870 struct sidtab_entry *old_entry, *new_entry;
871 struct type_datum *type;
872 int index;
873 int rc;
874
875 if (!selinux_initialized(state))
876 return 0;
877
878 rcu_read_lock();
879 policy = rcu_dereference(state->policy);
880 policydb = &policy->policydb;
881 sidtab = policy->sidtab;
882
883 rc = -EINVAL;
884 old_entry = sidtab_search_entry(sidtab, old_sid);
885 if (!old_entry) {
886 pr_err("SELinux: %s: unrecognized SID %u\n",
887 __func__, old_sid);
888 goto out;
889 }
890
891 rc = -EINVAL;
892 new_entry = sidtab_search_entry(sidtab, new_sid);
893 if (!new_entry) {
894 pr_err("SELinux: %s: unrecognized SID %u\n",
895 __func__, new_sid);
896 goto out;
897 }
898
899 rc = 0;
900 /* type/domain unchanged */
901 if (old_entry->context.type == new_entry->context.type)
902 goto out;
903
904 index = new_entry->context.type;
905 while (true) {
906 type = policydb->type_val_to_struct[index - 1];
907 BUG_ON(!type);
908
909 /* not bounded anymore */
910 rc = -EPERM;
911 if (!type->bounds)
912 break;
913
914 /* @newsid is bounded by @oldsid */
915 rc = 0;
916 if (type->bounds == old_entry->context.type)
917 break;
918
919 index = type->bounds;
920 }
921
922 if (rc) {
923 char *old_name = NULL;
924 char *new_name = NULL;
925 u32 length;
926
927 if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
928 &old_name, &length) &&
929 !sidtab_entry_to_string(policydb, sidtab, new_entry,
930 &new_name, &length)) {
931 audit_log(audit_context(),
932 GFP_ATOMIC, AUDIT_SELINUX_ERR,
933 "op=security_bounded_transition "
934 "seresult=denied "
935 "oldcontext=%s newcontext=%s",
936 old_name, new_name);
937 }
938 kfree(new_name);
939 kfree(old_name);
940 }
941 out:
942 rcu_read_unlock();
943
944 return rc;
945 }
946
avd_init(struct selinux_policy * policy,struct av_decision * avd)947 static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
948 {
949 avd->allowed = 0;
950 avd->auditallow = 0;
951 avd->auditdeny = 0xffffffff;
952 if (policy)
953 avd->seqno = policy->latest_granting;
954 else
955 avd->seqno = 0;
956 avd->flags = 0;
957 }
958
services_compute_xperms_decision(struct extended_perms_decision * xpermd,struct avtab_node * node)959 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
960 struct avtab_node *node)
961 {
962 unsigned int i;
963
964 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
965 if (xpermd->driver != node->datum.u.xperms->driver)
966 return;
967 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
968 if (!security_xperm_test(node->datum.u.xperms->perms.p,
969 xpermd->driver))
970 return;
971 } else {
972 BUG();
973 }
974
975 if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
976 xpermd->used |= XPERMS_ALLOWED;
977 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
978 memset(xpermd->allowed->p, 0xff,
979 sizeof(xpermd->allowed->p));
980 }
981 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
982 for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
983 xpermd->allowed->p[i] |=
984 node->datum.u.xperms->perms.p[i];
985 }
986 } else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
987 xpermd->used |= XPERMS_AUDITALLOW;
988 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
989 memset(xpermd->auditallow->p, 0xff,
990 sizeof(xpermd->auditallow->p));
991 }
992 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
993 for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
994 xpermd->auditallow->p[i] |=
995 node->datum.u.xperms->perms.p[i];
996 }
997 } else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
998 xpermd->used |= XPERMS_DONTAUDIT;
999 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
1000 memset(xpermd->dontaudit->p, 0xff,
1001 sizeof(xpermd->dontaudit->p));
1002 }
1003 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
1004 for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
1005 xpermd->dontaudit->p[i] |=
1006 node->datum.u.xperms->perms.p[i];
1007 }
1008 } else {
1009 BUG();
1010 }
1011 }
1012
security_compute_xperms_decision(struct selinux_state * state,u32 ssid,u32 tsid,u16 orig_tclass,u8 driver,struct extended_perms_decision * xpermd)1013 void security_compute_xperms_decision(struct selinux_state *state,
1014 u32 ssid,
1015 u32 tsid,
1016 u16 orig_tclass,
1017 u8 driver,
1018 struct extended_perms_decision *xpermd)
1019 {
1020 struct selinux_policy *policy;
1021 struct policydb *policydb;
1022 struct sidtab *sidtab;
1023 u16 tclass;
1024 struct context *scontext, *tcontext;
1025 struct avtab_key avkey;
1026 struct avtab_node *node;
1027 struct ebitmap *sattr, *tattr;
1028 struct ebitmap_node *snode, *tnode;
1029 unsigned int i, j;
1030
1031 xpermd->driver = driver;
1032 xpermd->used = 0;
1033 memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1034 memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1035 memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1036
1037 rcu_read_lock();
1038 if (!selinux_initialized(state))
1039 goto allow;
1040
1041 policy = rcu_dereference(state->policy);
1042 policydb = &policy->policydb;
1043 sidtab = policy->sidtab;
1044
1045 scontext = sidtab_search(sidtab, ssid);
1046 if (!scontext) {
1047 pr_err("SELinux: %s: unrecognized SID %d\n",
1048 __func__, ssid);
1049 goto out;
1050 }
1051
1052 tcontext = sidtab_search(sidtab, tsid);
1053 if (!tcontext) {
1054 pr_err("SELinux: %s: unrecognized SID %d\n",
1055 __func__, tsid);
1056 goto out;
1057 }
1058
1059 tclass = unmap_class(&policy->map, orig_tclass);
1060 if (unlikely(orig_tclass && !tclass)) {
1061 if (policydb->allow_unknown)
1062 goto allow;
1063 goto out;
1064 }
1065
1066
1067 if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1068 pr_warn_ratelimited("SELinux: Invalid class %hu\n", tclass);
1069 goto out;
1070 }
1071
1072 avkey.target_class = tclass;
1073 avkey.specified = AVTAB_XPERMS;
1074 sattr = &policydb->type_attr_map_array[scontext->type - 1];
1075 tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1076 ebitmap_for_each_positive_bit(sattr, snode, i) {
1077 ebitmap_for_each_positive_bit(tattr, tnode, j) {
1078 avkey.source_type = i + 1;
1079 avkey.target_type = j + 1;
1080 for (node = avtab_search_node(&policydb->te_avtab,
1081 &avkey);
1082 node;
1083 node = avtab_search_node_next(node, avkey.specified))
1084 services_compute_xperms_decision(xpermd, node);
1085
1086 cond_compute_xperms(&policydb->te_cond_avtab,
1087 &avkey, xpermd);
1088 }
1089 }
1090 out:
1091 rcu_read_unlock();
1092 return;
1093 allow:
1094 memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1095 goto out;
1096 }
1097
1098 /**
1099 * security_compute_av - Compute access vector decisions.
1100 * @state: SELinux state
1101 * @ssid: source security identifier
1102 * @tsid: target security identifier
1103 * @orig_tclass: target security class
1104 * @avd: access vector decisions
1105 * @xperms: extended permissions
1106 *
1107 * Compute a set of access vector decisions based on the
1108 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1109 */
security_compute_av(struct selinux_state * state,u32 ssid,u32 tsid,u16 orig_tclass,struct av_decision * avd,struct extended_perms * xperms)1110 void security_compute_av(struct selinux_state *state,
1111 u32 ssid,
1112 u32 tsid,
1113 u16 orig_tclass,
1114 struct av_decision *avd,
1115 struct extended_perms *xperms)
1116 {
1117 struct selinux_policy *policy;
1118 struct policydb *policydb;
1119 struct sidtab *sidtab;
1120 u16 tclass;
1121 struct context *scontext = NULL, *tcontext = NULL;
1122
1123 rcu_read_lock();
1124 policy = rcu_dereference(state->policy);
1125 avd_init(policy, avd);
1126 xperms->len = 0;
1127 if (!selinux_initialized(state))
1128 goto allow;
1129
1130 policydb = &policy->policydb;
1131 sidtab = policy->sidtab;
1132
1133 scontext = sidtab_search(sidtab, ssid);
1134 if (!scontext) {
1135 pr_err("SELinux: %s: unrecognized SID %d\n",
1136 __func__, ssid);
1137 goto out;
1138 }
1139
1140 /* permissive domain? */
1141 if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1142 avd->flags |= AVD_FLAGS_PERMISSIVE;
1143
1144 tcontext = sidtab_search(sidtab, tsid);
1145 if (!tcontext) {
1146 pr_err("SELinux: %s: unrecognized SID %d\n",
1147 __func__, tsid);
1148 goto out;
1149 }
1150
1151 tclass = unmap_class(&policy->map, orig_tclass);
1152 if (unlikely(orig_tclass && !tclass)) {
1153 if (policydb->allow_unknown)
1154 goto allow;
1155 goto out;
1156 }
1157 context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1158 xperms);
1159 map_decision(&policy->map, orig_tclass, avd,
1160 policydb->allow_unknown);
1161 out:
1162 rcu_read_unlock();
1163 return;
1164 allow:
1165 avd->allowed = 0xffffffff;
1166 goto out;
1167 }
1168
security_compute_av_user(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd)1169 void security_compute_av_user(struct selinux_state *state,
1170 u32 ssid,
1171 u32 tsid,
1172 u16 tclass,
1173 struct av_decision *avd)
1174 {
1175 struct selinux_policy *policy;
1176 struct policydb *policydb;
1177 struct sidtab *sidtab;
1178 struct context *scontext = NULL, *tcontext = NULL;
1179
1180 rcu_read_lock();
1181 policy = rcu_dereference(state->policy);
1182 avd_init(policy, avd);
1183 if (!selinux_initialized(state))
1184 goto allow;
1185
1186 policydb = &policy->policydb;
1187 sidtab = policy->sidtab;
1188
1189 scontext = sidtab_search(sidtab, ssid);
1190 if (!scontext) {
1191 pr_err("SELinux: %s: unrecognized SID %d\n",
1192 __func__, ssid);
1193 goto out;
1194 }
1195
1196 /* permissive domain? */
1197 if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1198 avd->flags |= AVD_FLAGS_PERMISSIVE;
1199
1200 tcontext = sidtab_search(sidtab, tsid);
1201 if (!tcontext) {
1202 pr_err("SELinux: %s: unrecognized SID %d\n",
1203 __func__, tsid);
1204 goto out;
1205 }
1206
1207 if (unlikely(!tclass)) {
1208 if (policydb->allow_unknown)
1209 goto allow;
1210 goto out;
1211 }
1212
1213 context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1214 NULL);
1215 out:
1216 rcu_read_unlock();
1217 return;
1218 allow:
1219 avd->allowed = 0xffffffff;
1220 goto out;
1221 }
1222
1223 /*
1224 * Write the security context string representation of
1225 * the context structure `context' into a dynamically
1226 * allocated string of the correct size. Set `*scontext'
1227 * to point to this string and set `*scontext_len' to
1228 * the length of the string.
1229 */
context_struct_to_string(struct policydb * p,struct context * context,char ** scontext,u32 * scontext_len)1230 static int context_struct_to_string(struct policydb *p,
1231 struct context *context,
1232 char **scontext, u32 *scontext_len)
1233 {
1234 char *scontextp;
1235
1236 if (scontext)
1237 *scontext = NULL;
1238 *scontext_len = 0;
1239
1240 if (context->len) {
1241 *scontext_len = context->len;
1242 if (scontext) {
1243 *scontext = kstrdup(context->str, GFP_ATOMIC);
1244 if (!(*scontext))
1245 return -ENOMEM;
1246 }
1247 return 0;
1248 }
1249
1250 /* Compute the size of the context. */
1251 *scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1252 *scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1253 *scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1254 *scontext_len += mls_compute_context_len(p, context);
1255
1256 if (!scontext)
1257 return 0;
1258
1259 /* Allocate space for the context; caller must free this space. */
1260 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1261 if (!scontextp)
1262 return -ENOMEM;
1263 *scontext = scontextp;
1264
1265 /*
1266 * Copy the user name, role name and type name into the context.
1267 */
1268 scontextp += sprintf(scontextp, "%s:%s:%s",
1269 sym_name(p, SYM_USERS, context->user - 1),
1270 sym_name(p, SYM_ROLES, context->role - 1),
1271 sym_name(p, SYM_TYPES, context->type - 1));
1272
1273 mls_sid_to_context(p, context, &scontextp);
1274
1275 *scontextp = 0;
1276
1277 return 0;
1278 }
1279
sidtab_entry_to_string(struct policydb * p,struct sidtab * sidtab,struct sidtab_entry * entry,char ** scontext,u32 * scontext_len)1280 static int sidtab_entry_to_string(struct policydb *p,
1281 struct sidtab *sidtab,
1282 struct sidtab_entry *entry,
1283 char **scontext, u32 *scontext_len)
1284 {
1285 int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1286
1287 if (rc != -ENOENT)
1288 return rc;
1289
1290 rc = context_struct_to_string(p, &entry->context, scontext,
1291 scontext_len);
1292 if (!rc && scontext)
1293 sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1294 return rc;
1295 }
1296
1297 #include "initial_sid_to_string.h"
1298
security_sidtab_hash_stats(struct selinux_state * state,char * page)1299 int security_sidtab_hash_stats(struct selinux_state *state, char *page)
1300 {
1301 struct selinux_policy *policy;
1302 int rc;
1303
1304 if (!selinux_initialized(state)) {
1305 pr_err("SELinux: %s: called before initial load_policy\n",
1306 __func__);
1307 return -EINVAL;
1308 }
1309
1310 rcu_read_lock();
1311 policy = rcu_dereference(state->policy);
1312 rc = sidtab_hash_stats(policy->sidtab, page);
1313 rcu_read_unlock();
1314
1315 return rc;
1316 }
1317
security_get_initial_sid_context(u32 sid)1318 const char *security_get_initial_sid_context(u32 sid)
1319 {
1320 if (unlikely(sid > SECINITSID_NUM))
1321 return NULL;
1322 return initial_sid_to_string[sid];
1323 }
1324
security_sid_to_context_core(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len,int force,int only_invalid)1325 static int security_sid_to_context_core(struct selinux_state *state,
1326 u32 sid, char **scontext,
1327 u32 *scontext_len, int force,
1328 int only_invalid)
1329 {
1330 struct selinux_policy *policy;
1331 struct policydb *policydb;
1332 struct sidtab *sidtab;
1333 struct sidtab_entry *entry;
1334 int rc = 0;
1335
1336 if (scontext)
1337 *scontext = NULL;
1338 *scontext_len = 0;
1339
1340 if (!selinux_initialized(state)) {
1341 if (sid <= SECINITSID_NUM) {
1342 char *scontextp;
1343 const char *s = initial_sid_to_string[sid];
1344
1345 if (!s)
1346 return -EINVAL;
1347 *scontext_len = strlen(s) + 1;
1348 if (!scontext)
1349 return 0;
1350 scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1351 if (!scontextp)
1352 return -ENOMEM;
1353 *scontext = scontextp;
1354 return 0;
1355 }
1356 pr_err("SELinux: %s: called before initial "
1357 "load_policy on unknown SID %d\n", __func__, sid);
1358 return -EINVAL;
1359 }
1360 rcu_read_lock();
1361 policy = rcu_dereference(state->policy);
1362 policydb = &policy->policydb;
1363 sidtab = policy->sidtab;
1364
1365 if (force)
1366 entry = sidtab_search_entry_force(sidtab, sid);
1367 else
1368 entry = sidtab_search_entry(sidtab, sid);
1369 if (!entry) {
1370 pr_err("SELinux: %s: unrecognized SID %d\n",
1371 __func__, sid);
1372 rc = -EINVAL;
1373 goto out_unlock;
1374 }
1375 if (only_invalid && !entry->context.len)
1376 goto out_unlock;
1377
1378 rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1379 scontext_len);
1380
1381 out_unlock:
1382 rcu_read_unlock();
1383 return rc;
1384
1385 }
1386
1387 /**
1388 * security_sid_to_context - Obtain a context for a given SID.
1389 * @state: SELinux state
1390 * @sid: security identifier, SID
1391 * @scontext: security context
1392 * @scontext_len: length in bytes
1393 *
1394 * Write the string representation of the context associated with @sid
1395 * into a dynamically allocated string of the correct size. Set @scontext
1396 * to point to this string and set @scontext_len to the length of the string.
1397 */
security_sid_to_context(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len)1398 int security_sid_to_context(struct selinux_state *state,
1399 u32 sid, char **scontext, u32 *scontext_len)
1400 {
1401 return security_sid_to_context_core(state, sid, scontext,
1402 scontext_len, 0, 0);
1403 }
1404
security_sid_to_context_force(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len)1405 int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1406 char **scontext, u32 *scontext_len)
1407 {
1408 return security_sid_to_context_core(state, sid, scontext,
1409 scontext_len, 1, 0);
1410 }
1411
1412 /**
1413 * security_sid_to_context_inval - Obtain a context for a given SID if it
1414 * is invalid.
1415 * @state: SELinux state
1416 * @sid: security identifier, SID
1417 * @scontext: security context
1418 * @scontext_len: length in bytes
1419 *
1420 * Write the string representation of the context associated with @sid
1421 * into a dynamically allocated string of the correct size, but only if the
1422 * context is invalid in the current policy. Set @scontext to point to
1423 * this string (or NULL if the context is valid) and set @scontext_len to
1424 * the length of the string (or 0 if the context is valid).
1425 */
security_sid_to_context_inval(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len)1426 int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1427 char **scontext, u32 *scontext_len)
1428 {
1429 return security_sid_to_context_core(state, sid, scontext,
1430 scontext_len, 1, 1);
1431 }
1432
1433 /*
1434 * Caveat: Mutates scontext.
1435 */
string_to_context_struct(struct policydb * pol,struct sidtab * sidtabp,char * scontext,struct context * ctx,u32 def_sid)1436 static int string_to_context_struct(struct policydb *pol,
1437 struct sidtab *sidtabp,
1438 char *scontext,
1439 struct context *ctx,
1440 u32 def_sid)
1441 {
1442 struct role_datum *role;
1443 struct type_datum *typdatum;
1444 struct user_datum *usrdatum;
1445 char *scontextp, *p, oldc;
1446 int rc = 0;
1447
1448 context_init(ctx);
1449
1450 /* Parse the security context. */
1451
1452 rc = -EINVAL;
1453 scontextp = scontext;
1454
1455 /* Extract the user. */
1456 p = scontextp;
1457 while (*p && *p != ':')
1458 p++;
1459
1460 if (*p == 0)
1461 goto out;
1462
1463 *p++ = 0;
1464
1465 usrdatum = symtab_search(&pol->p_users, scontextp);
1466 if (!usrdatum)
1467 goto out;
1468
1469 ctx->user = usrdatum->value;
1470
1471 /* Extract role. */
1472 scontextp = p;
1473 while (*p && *p != ':')
1474 p++;
1475
1476 if (*p == 0)
1477 goto out;
1478
1479 *p++ = 0;
1480
1481 role = symtab_search(&pol->p_roles, scontextp);
1482 if (!role)
1483 goto out;
1484 ctx->role = role->value;
1485
1486 /* Extract type. */
1487 scontextp = p;
1488 while (*p && *p != ':')
1489 p++;
1490 oldc = *p;
1491 *p++ = 0;
1492
1493 typdatum = symtab_search(&pol->p_types, scontextp);
1494 if (!typdatum || typdatum->attribute)
1495 goto out;
1496
1497 ctx->type = typdatum->value;
1498
1499 rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1500 if (rc)
1501 goto out;
1502
1503 /* Check the validity of the new context. */
1504 rc = -EINVAL;
1505 if (!policydb_context_isvalid(pol, ctx))
1506 goto out;
1507 rc = 0;
1508 out:
1509 if (rc)
1510 context_destroy(ctx);
1511 return rc;
1512 }
1513
security_context_to_sid_core(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags,int force)1514 static int security_context_to_sid_core(struct selinux_state *state,
1515 const char *scontext, u32 scontext_len,
1516 u32 *sid, u32 def_sid, gfp_t gfp_flags,
1517 int force)
1518 {
1519 struct selinux_policy *policy;
1520 struct policydb *policydb;
1521 struct sidtab *sidtab;
1522 char *scontext2, *str = NULL;
1523 struct context context;
1524 int rc = 0;
1525
1526 /* An empty security context is never valid. */
1527 if (!scontext_len)
1528 return -EINVAL;
1529
1530 /* Copy the string to allow changes and ensure a NUL terminator */
1531 scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1532 if (!scontext2)
1533 return -ENOMEM;
1534
1535 if (!selinux_initialized(state)) {
1536 int i;
1537
1538 for (i = 1; i < SECINITSID_NUM; i++) {
1539 const char *s = initial_sid_to_string[i];
1540
1541 if (s && !strcmp(s, scontext2)) {
1542 *sid = i;
1543 goto out;
1544 }
1545 }
1546 *sid = SECINITSID_KERNEL;
1547 goto out;
1548 }
1549 *sid = SECSID_NULL;
1550
1551 if (force) {
1552 /* Save another copy for storing in uninterpreted form */
1553 rc = -ENOMEM;
1554 str = kstrdup(scontext2, gfp_flags);
1555 if (!str)
1556 goto out;
1557 }
1558 retry:
1559 rcu_read_lock();
1560 policy = rcu_dereference(state->policy);
1561 policydb = &policy->policydb;
1562 sidtab = policy->sidtab;
1563 rc = string_to_context_struct(policydb, sidtab, scontext2,
1564 &context, def_sid);
1565 if (rc == -EINVAL && force) {
1566 context.str = str;
1567 context.len = strlen(str) + 1;
1568 str = NULL;
1569 } else if (rc)
1570 goto out_unlock;
1571 rc = sidtab_context_to_sid(sidtab, &context, sid);
1572 if (rc == -ESTALE) {
1573 rcu_read_unlock();
1574 if (context.str) {
1575 str = context.str;
1576 context.str = NULL;
1577 }
1578 context_destroy(&context);
1579 goto retry;
1580 }
1581 context_destroy(&context);
1582 out_unlock:
1583 rcu_read_unlock();
1584 out:
1585 kfree(scontext2);
1586 kfree(str);
1587 return rc;
1588 }
1589
1590 /**
1591 * security_context_to_sid - Obtain a SID for a given security context.
1592 * @state: SELinux state
1593 * @scontext: security context
1594 * @scontext_len: length in bytes
1595 * @sid: security identifier, SID
1596 * @gfp: context for the allocation
1597 *
1598 * Obtains a SID associated with the security context that
1599 * has the string representation specified by @scontext.
1600 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1601 * memory is available, or 0 on success.
1602 */
security_context_to_sid(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid,gfp_t gfp)1603 int security_context_to_sid(struct selinux_state *state,
1604 const char *scontext, u32 scontext_len, u32 *sid,
1605 gfp_t gfp)
1606 {
1607 return security_context_to_sid_core(state, scontext, scontext_len,
1608 sid, SECSID_NULL, gfp, 0);
1609 }
1610
security_context_str_to_sid(struct selinux_state * state,const char * scontext,u32 * sid,gfp_t gfp)1611 int security_context_str_to_sid(struct selinux_state *state,
1612 const char *scontext, u32 *sid, gfp_t gfp)
1613 {
1614 return security_context_to_sid(state, scontext, strlen(scontext),
1615 sid, gfp);
1616 }
1617
1618 /**
1619 * security_context_to_sid_default - Obtain a SID for a given security context,
1620 * falling back to specified default if needed.
1621 *
1622 * @state: SELinux state
1623 * @scontext: security context
1624 * @scontext_len: length in bytes
1625 * @sid: security identifier, SID
1626 * @def_sid: default SID to assign on error
1627 * @gfp_flags: the allocator get-free-page (GFP) flags
1628 *
1629 * Obtains a SID associated with the security context that
1630 * has the string representation specified by @scontext.
1631 * The default SID is passed to the MLS layer to be used to allow
1632 * kernel labeling of the MLS field if the MLS field is not present
1633 * (for upgrading to MLS without full relabel).
1634 * Implicitly forces adding of the context even if it cannot be mapped yet.
1635 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1636 * memory is available, or 0 on success.
1637 */
security_context_to_sid_default(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags)1638 int security_context_to_sid_default(struct selinux_state *state,
1639 const char *scontext, u32 scontext_len,
1640 u32 *sid, u32 def_sid, gfp_t gfp_flags)
1641 {
1642 return security_context_to_sid_core(state, scontext, scontext_len,
1643 sid, def_sid, gfp_flags, 1);
1644 }
1645
security_context_to_sid_force(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid)1646 int security_context_to_sid_force(struct selinux_state *state,
1647 const char *scontext, u32 scontext_len,
1648 u32 *sid)
1649 {
1650 return security_context_to_sid_core(state, scontext, scontext_len,
1651 sid, SECSID_NULL, GFP_KERNEL, 1);
1652 }
1653
compute_sid_handle_invalid_context(struct selinux_state * state,struct selinux_policy * policy,struct sidtab_entry * sentry,struct sidtab_entry * tentry,u16 tclass,struct context * newcontext)1654 static int compute_sid_handle_invalid_context(
1655 struct selinux_state *state,
1656 struct selinux_policy *policy,
1657 struct sidtab_entry *sentry,
1658 struct sidtab_entry *tentry,
1659 u16 tclass,
1660 struct context *newcontext)
1661 {
1662 struct policydb *policydb = &policy->policydb;
1663 struct sidtab *sidtab = policy->sidtab;
1664 char *s = NULL, *t = NULL, *n = NULL;
1665 u32 slen, tlen, nlen;
1666 struct audit_buffer *ab;
1667
1668 if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1669 goto out;
1670 if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1671 goto out;
1672 if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1673 goto out;
1674 ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1675 if (!ab)
1676 goto out;
1677 audit_log_format(ab,
1678 "op=security_compute_sid invalid_context=");
1679 /* no need to record the NUL with untrusted strings */
1680 audit_log_n_untrustedstring(ab, n, nlen - 1);
1681 audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1682 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1683 audit_log_end(ab);
1684 out:
1685 kfree(s);
1686 kfree(t);
1687 kfree(n);
1688 if (!enforcing_enabled(state))
1689 return 0;
1690 return -EACCES;
1691 }
1692
filename_compute_type(struct policydb * policydb,struct context * newcontext,u32 stype,u32 ttype,u16 tclass,const char * objname)1693 static void filename_compute_type(struct policydb *policydb,
1694 struct context *newcontext,
1695 u32 stype, u32 ttype, u16 tclass,
1696 const char *objname)
1697 {
1698 struct filename_trans_key ft;
1699 struct filename_trans_datum *datum;
1700
1701 /*
1702 * Most filename trans rules are going to live in specific directories
1703 * like /dev or /var/run. This bitmap will quickly skip rule searches
1704 * if the ttype does not contain any rules.
1705 */
1706 if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1707 return;
1708
1709 ft.ttype = ttype;
1710 ft.tclass = tclass;
1711 ft.name = objname;
1712
1713 datum = policydb_filenametr_search(policydb, &ft);
1714 while (datum) {
1715 if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1716 newcontext->type = datum->otype;
1717 return;
1718 }
1719 datum = datum->next;
1720 }
1721 }
1722
security_compute_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 orig_tclass,u32 specified,const char * objname,u32 * out_sid,bool kern)1723 static int security_compute_sid(struct selinux_state *state,
1724 u32 ssid,
1725 u32 tsid,
1726 u16 orig_tclass,
1727 u32 specified,
1728 const char *objname,
1729 u32 *out_sid,
1730 bool kern)
1731 {
1732 struct selinux_policy *policy;
1733 struct policydb *policydb;
1734 struct sidtab *sidtab;
1735 struct class_datum *cladatum;
1736 struct context *scontext, *tcontext, newcontext;
1737 struct sidtab_entry *sentry, *tentry;
1738 struct avtab_key avkey;
1739 struct avtab_datum *avdatum;
1740 struct avtab_node *node;
1741 u16 tclass;
1742 int rc = 0;
1743 bool sock;
1744
1745 if (!selinux_initialized(state)) {
1746 switch (orig_tclass) {
1747 case SECCLASS_PROCESS: /* kernel value */
1748 *out_sid = ssid;
1749 break;
1750 default:
1751 *out_sid = tsid;
1752 break;
1753 }
1754 goto out;
1755 }
1756
1757 retry:
1758 cladatum = NULL;
1759 context_init(&newcontext);
1760
1761 rcu_read_lock();
1762
1763 policy = rcu_dereference(state->policy);
1764
1765 if (kern) {
1766 tclass = unmap_class(&policy->map, orig_tclass);
1767 sock = security_is_socket_class(orig_tclass);
1768 } else {
1769 tclass = orig_tclass;
1770 sock = security_is_socket_class(map_class(&policy->map,
1771 tclass));
1772 }
1773
1774 policydb = &policy->policydb;
1775 sidtab = policy->sidtab;
1776
1777 sentry = sidtab_search_entry(sidtab, ssid);
1778 if (!sentry) {
1779 pr_err("SELinux: %s: unrecognized SID %d\n",
1780 __func__, ssid);
1781 rc = -EINVAL;
1782 goto out_unlock;
1783 }
1784 tentry = sidtab_search_entry(sidtab, tsid);
1785 if (!tentry) {
1786 pr_err("SELinux: %s: unrecognized SID %d\n",
1787 __func__, tsid);
1788 rc = -EINVAL;
1789 goto out_unlock;
1790 }
1791
1792 scontext = &sentry->context;
1793 tcontext = &tentry->context;
1794
1795 if (tclass && tclass <= policydb->p_classes.nprim)
1796 cladatum = policydb->class_val_to_struct[tclass - 1];
1797
1798 /* Set the user identity. */
1799 switch (specified) {
1800 case AVTAB_TRANSITION:
1801 case AVTAB_CHANGE:
1802 if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1803 newcontext.user = tcontext->user;
1804 } else {
1805 /* notice this gets both DEFAULT_SOURCE and unset */
1806 /* Use the process user identity. */
1807 newcontext.user = scontext->user;
1808 }
1809 break;
1810 case AVTAB_MEMBER:
1811 /* Use the related object owner. */
1812 newcontext.user = tcontext->user;
1813 break;
1814 }
1815
1816 /* Set the role to default values. */
1817 if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1818 newcontext.role = scontext->role;
1819 } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1820 newcontext.role = tcontext->role;
1821 } else {
1822 if ((tclass == policydb->process_class) || sock)
1823 newcontext.role = scontext->role;
1824 else
1825 newcontext.role = OBJECT_R_VAL;
1826 }
1827
1828 /* Set the type to default values. */
1829 if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1830 newcontext.type = scontext->type;
1831 } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1832 newcontext.type = tcontext->type;
1833 } else {
1834 if ((tclass == policydb->process_class) || sock) {
1835 /* Use the type of process. */
1836 newcontext.type = scontext->type;
1837 } else {
1838 /* Use the type of the related object. */
1839 newcontext.type = tcontext->type;
1840 }
1841 }
1842
1843 /* Look for a type transition/member/change rule. */
1844 avkey.source_type = scontext->type;
1845 avkey.target_type = tcontext->type;
1846 avkey.target_class = tclass;
1847 avkey.specified = specified;
1848 avdatum = avtab_search(&policydb->te_avtab, &avkey);
1849
1850 /* If no permanent rule, also check for enabled conditional rules */
1851 if (!avdatum) {
1852 node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1853 for (; node; node = avtab_search_node_next(node, specified)) {
1854 if (node->key.specified & AVTAB_ENABLED) {
1855 avdatum = &node->datum;
1856 break;
1857 }
1858 }
1859 }
1860
1861 if (avdatum) {
1862 /* Use the type from the type transition/member/change rule. */
1863 newcontext.type = avdatum->u.data;
1864 }
1865
1866 /* if we have a objname this is a file trans check so check those rules */
1867 if (objname)
1868 filename_compute_type(policydb, &newcontext, scontext->type,
1869 tcontext->type, tclass, objname);
1870
1871 /* Check for class-specific changes. */
1872 if (specified & AVTAB_TRANSITION) {
1873 /* Look for a role transition rule. */
1874 struct role_trans_datum *rtd;
1875 struct role_trans_key rtk = {
1876 .role = scontext->role,
1877 .type = tcontext->type,
1878 .tclass = tclass,
1879 };
1880
1881 rtd = policydb_roletr_search(policydb, &rtk);
1882 if (rtd)
1883 newcontext.role = rtd->new_role;
1884 }
1885
1886 /* Set the MLS attributes.
1887 This is done last because it may allocate memory. */
1888 rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1889 &newcontext, sock);
1890 if (rc)
1891 goto out_unlock;
1892
1893 /* Check the validity of the context. */
1894 if (!policydb_context_isvalid(policydb, &newcontext)) {
1895 rc = compute_sid_handle_invalid_context(state, policy, sentry,
1896 tentry, tclass,
1897 &newcontext);
1898 if (rc)
1899 goto out_unlock;
1900 }
1901 /* Obtain the sid for the context. */
1902 rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1903 if (rc == -ESTALE) {
1904 rcu_read_unlock();
1905 context_destroy(&newcontext);
1906 goto retry;
1907 }
1908 out_unlock:
1909 rcu_read_unlock();
1910 context_destroy(&newcontext);
1911 out:
1912 return rc;
1913 }
1914
1915 /**
1916 * security_transition_sid - Compute the SID for a new subject/object.
1917 * @state: SELinux state
1918 * @ssid: source security identifier
1919 * @tsid: target security identifier
1920 * @tclass: target security class
1921 * @qstr: object name
1922 * @out_sid: security identifier for new subject/object
1923 *
1924 * Compute a SID to use for labeling a new subject or object in the
1925 * class @tclass based on a SID pair (@ssid, @tsid).
1926 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1927 * if insufficient memory is available, or %0 if the new SID was
1928 * computed successfully.
1929 */
security_transition_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,const struct qstr * qstr,u32 * out_sid)1930 int security_transition_sid(struct selinux_state *state,
1931 u32 ssid, u32 tsid, u16 tclass,
1932 const struct qstr *qstr, u32 *out_sid)
1933 {
1934 return security_compute_sid(state, ssid, tsid, tclass,
1935 AVTAB_TRANSITION,
1936 qstr ? qstr->name : NULL, out_sid, true);
1937 }
1938
security_transition_sid_user(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,const char * objname,u32 * out_sid)1939 int security_transition_sid_user(struct selinux_state *state,
1940 u32 ssid, u32 tsid, u16 tclass,
1941 const char *objname, u32 *out_sid)
1942 {
1943 return security_compute_sid(state, ssid, tsid, tclass,
1944 AVTAB_TRANSITION,
1945 objname, out_sid, false);
1946 }
1947
1948 /**
1949 * security_member_sid - Compute the SID for member selection.
1950 * @state: SELinux state
1951 * @ssid: source security identifier
1952 * @tsid: target security identifier
1953 * @tclass: target security class
1954 * @out_sid: security identifier for selected member
1955 *
1956 * Compute a SID to use when selecting a member of a polyinstantiated
1957 * object of class @tclass based on a SID pair (@ssid, @tsid).
1958 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1959 * if insufficient memory is available, or %0 if the SID was
1960 * computed successfully.
1961 */
security_member_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1962 int security_member_sid(struct selinux_state *state,
1963 u32 ssid,
1964 u32 tsid,
1965 u16 tclass,
1966 u32 *out_sid)
1967 {
1968 return security_compute_sid(state, ssid, tsid, tclass,
1969 AVTAB_MEMBER, NULL,
1970 out_sid, false);
1971 }
1972
1973 /**
1974 * security_change_sid - Compute the SID for object relabeling.
1975 * @state: SELinux state
1976 * @ssid: source security identifier
1977 * @tsid: target security identifier
1978 * @tclass: target security class
1979 * @out_sid: security identifier for selected member
1980 *
1981 * Compute a SID to use for relabeling an object of class @tclass
1982 * based on a SID pair (@ssid, @tsid).
1983 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1984 * if insufficient memory is available, or %0 if the SID was
1985 * computed successfully.
1986 */
security_change_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1987 int security_change_sid(struct selinux_state *state,
1988 u32 ssid,
1989 u32 tsid,
1990 u16 tclass,
1991 u32 *out_sid)
1992 {
1993 return security_compute_sid(state,
1994 ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1995 out_sid, false);
1996 }
1997
convert_context_handle_invalid_context(struct selinux_state * state,struct policydb * policydb,struct context * context)1998 static inline int convert_context_handle_invalid_context(
1999 struct selinux_state *state,
2000 struct policydb *policydb,
2001 struct context *context)
2002 {
2003 char *s;
2004 u32 len;
2005
2006 if (enforcing_enabled(state))
2007 return -EINVAL;
2008
2009 if (!context_struct_to_string(policydb, context, &s, &len)) {
2010 pr_warn("SELinux: Context %s would be invalid if enforcing\n",
2011 s);
2012 kfree(s);
2013 }
2014 return 0;
2015 }
2016
2017 /*
2018 * Convert the values in the security context
2019 * structure `oldc' from the values specified
2020 * in the policy `p->oldp' to the values specified
2021 * in the policy `p->newp', storing the new context
2022 * in `newc'. Verify that the context is valid
2023 * under the new policy.
2024 */
convert_context(struct context * oldc,struct context * newc,void * p,gfp_t gfp_flags)2025 static int convert_context(struct context *oldc, struct context *newc, void *p,
2026 gfp_t gfp_flags)
2027 {
2028 struct convert_context_args *args;
2029 struct ocontext *oc;
2030 struct role_datum *role;
2031 struct type_datum *typdatum;
2032 struct user_datum *usrdatum;
2033 char *s;
2034 u32 len;
2035 int rc;
2036
2037 args = p;
2038
2039 if (oldc->str) {
2040 s = kstrdup(oldc->str, gfp_flags);
2041 if (!s)
2042 return -ENOMEM;
2043
2044 rc = string_to_context_struct(args->newp, NULL, s,
2045 newc, SECSID_NULL);
2046 if (rc == -EINVAL) {
2047 /*
2048 * Retain string representation for later mapping.
2049 *
2050 * IMPORTANT: We need to copy the contents of oldc->str
2051 * back into s again because string_to_context_struct()
2052 * may have garbled it.
2053 */
2054 memcpy(s, oldc->str, oldc->len);
2055 context_init(newc);
2056 newc->str = s;
2057 newc->len = oldc->len;
2058 return 0;
2059 }
2060 kfree(s);
2061 if (rc) {
2062 /* Other error condition, e.g. ENOMEM. */
2063 pr_err("SELinux: Unable to map context %s, rc = %d.\n",
2064 oldc->str, -rc);
2065 return rc;
2066 }
2067 pr_info("SELinux: Context %s became valid (mapped).\n",
2068 oldc->str);
2069 return 0;
2070 }
2071
2072 context_init(newc);
2073
2074 /* Convert the user. */
2075 usrdatum = symtab_search(&args->newp->p_users,
2076 sym_name(args->oldp,
2077 SYM_USERS, oldc->user - 1));
2078 if (!usrdatum)
2079 goto bad;
2080 newc->user = usrdatum->value;
2081
2082 /* Convert the role. */
2083 role = symtab_search(&args->newp->p_roles,
2084 sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2085 if (!role)
2086 goto bad;
2087 newc->role = role->value;
2088
2089 /* Convert the type. */
2090 typdatum = symtab_search(&args->newp->p_types,
2091 sym_name(args->oldp,
2092 SYM_TYPES, oldc->type - 1));
2093 if (!typdatum)
2094 goto bad;
2095 newc->type = typdatum->value;
2096
2097 /* Convert the MLS fields if dealing with MLS policies */
2098 if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2099 rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2100 if (rc)
2101 goto bad;
2102 } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2103 /*
2104 * Switching between non-MLS and MLS policy:
2105 * ensure that the MLS fields of the context for all
2106 * existing entries in the sidtab are filled in with a
2107 * suitable default value, likely taken from one of the
2108 * initial SIDs.
2109 */
2110 oc = args->newp->ocontexts[OCON_ISID];
2111 while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2112 oc = oc->next;
2113 if (!oc) {
2114 pr_err("SELinux: unable to look up"
2115 " the initial SIDs list\n");
2116 goto bad;
2117 }
2118 rc = mls_range_set(newc, &oc->context[0].range);
2119 if (rc)
2120 goto bad;
2121 }
2122
2123 /* Check the validity of the new context. */
2124 if (!policydb_context_isvalid(args->newp, newc)) {
2125 rc = convert_context_handle_invalid_context(args->state,
2126 args->oldp,
2127 oldc);
2128 if (rc)
2129 goto bad;
2130 }
2131
2132 return 0;
2133 bad:
2134 /* Map old representation to string and save it. */
2135 rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2136 if (rc)
2137 return rc;
2138 context_destroy(newc);
2139 newc->str = s;
2140 newc->len = len;
2141 pr_info("SELinux: Context %s became invalid (unmapped).\n",
2142 newc->str);
2143 return 0;
2144 }
2145
security_load_policycaps(struct selinux_state * state,struct selinux_policy * policy)2146 static void security_load_policycaps(struct selinux_state *state,
2147 struct selinux_policy *policy)
2148 {
2149 struct policydb *p;
2150 unsigned int i;
2151 struct ebitmap_node *node;
2152
2153 p = &policy->policydb;
2154
2155 for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2156 WRITE_ONCE(state->policycap[i],
2157 ebitmap_get_bit(&p->policycaps, i));
2158
2159 for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2160 pr_info("SELinux: policy capability %s=%d\n",
2161 selinux_policycap_names[i],
2162 ebitmap_get_bit(&p->policycaps, i));
2163
2164 ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2165 if (i >= ARRAY_SIZE(selinux_policycap_names))
2166 pr_info("SELinux: unknown policy capability %u\n",
2167 i);
2168 }
2169 }
2170
2171 static int security_preserve_bools(struct selinux_policy *oldpolicy,
2172 struct selinux_policy *newpolicy);
2173
selinux_policy_free(struct selinux_policy * policy)2174 static void selinux_policy_free(struct selinux_policy *policy)
2175 {
2176 if (!policy)
2177 return;
2178
2179 sidtab_destroy(policy->sidtab);
2180 kfree(policy->map.mapping);
2181 policydb_destroy(&policy->policydb);
2182 kfree(policy->sidtab);
2183 kfree(policy);
2184 }
2185
selinux_policy_cond_free(struct selinux_policy * policy)2186 static void selinux_policy_cond_free(struct selinux_policy *policy)
2187 {
2188 cond_policydb_destroy_dup(&policy->policydb);
2189 kfree(policy);
2190 }
2191
selinux_policy_cancel(struct selinux_state * state,struct selinux_load_state * load_state)2192 void selinux_policy_cancel(struct selinux_state *state,
2193 struct selinux_load_state *load_state)
2194 {
2195 struct selinux_policy *oldpolicy;
2196
2197 oldpolicy = rcu_dereference_protected(state->policy,
2198 lockdep_is_held(&state->policy_mutex));
2199
2200 sidtab_cancel_convert(oldpolicy->sidtab);
2201 selinux_policy_free(load_state->policy);
2202 kfree(load_state->convert_data);
2203 }
2204
selinux_notify_policy_change(struct selinux_state * state,u32 seqno)2205 static void selinux_notify_policy_change(struct selinux_state *state,
2206 u32 seqno)
2207 {
2208 /* Flush external caches and notify userspace of policy load */
2209 avc_ss_reset(state->avc, seqno);
2210 selnl_notify_policyload(seqno);
2211 selinux_status_update_policyload(state, seqno);
2212 selinux_netlbl_cache_invalidate();
2213 selinux_xfrm_notify_policyload();
2214 selinux_ima_measure_state_locked(state);
2215 }
2216
selinux_policy_commit(struct selinux_state * state,struct selinux_load_state * load_state)2217 void selinux_policy_commit(struct selinux_state *state,
2218 struct selinux_load_state *load_state)
2219 {
2220 struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2221 unsigned long flags;
2222 u32 seqno;
2223
2224 oldpolicy = rcu_dereference_protected(state->policy,
2225 lockdep_is_held(&state->policy_mutex));
2226
2227 /* If switching between different policy types, log MLS status */
2228 if (oldpolicy) {
2229 if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2230 pr_info("SELinux: Disabling MLS support...\n");
2231 else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2232 pr_info("SELinux: Enabling MLS support...\n");
2233 }
2234
2235 /* Set latest granting seqno for new policy. */
2236 if (oldpolicy)
2237 newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2238 else
2239 newpolicy->latest_granting = 1;
2240 seqno = newpolicy->latest_granting;
2241
2242 /* Install the new policy. */
2243 if (oldpolicy) {
2244 sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2245 rcu_assign_pointer(state->policy, newpolicy);
2246 sidtab_freeze_end(oldpolicy->sidtab, &flags);
2247 } else {
2248 rcu_assign_pointer(state->policy, newpolicy);
2249 }
2250
2251 /* Load the policycaps from the new policy */
2252 security_load_policycaps(state, newpolicy);
2253
2254 if (!selinux_initialized(state)) {
2255 /*
2256 * After first policy load, the security server is
2257 * marked as initialized and ready to handle requests and
2258 * any objects created prior to policy load are then labeled.
2259 */
2260 selinux_mark_initialized(state);
2261 selinux_complete_init();
2262 }
2263
2264 /* Free the old policy */
2265 synchronize_rcu();
2266 selinux_policy_free(oldpolicy);
2267 kfree(load_state->convert_data);
2268
2269 /* Notify others of the policy change */
2270 selinux_notify_policy_change(state, seqno);
2271 }
2272
2273 /**
2274 * security_load_policy - Load a security policy configuration.
2275 * @state: SELinux state
2276 * @data: binary policy data
2277 * @len: length of data in bytes
2278 * @load_state: policy load state
2279 *
2280 * Load a new set of security policy configuration data,
2281 * validate it and convert the SID table as necessary.
2282 * This function will flush the access vector cache after
2283 * loading the new policy.
2284 */
security_load_policy(struct selinux_state * state,void * data,size_t len,struct selinux_load_state * load_state)2285 int security_load_policy(struct selinux_state *state, void *data, size_t len,
2286 struct selinux_load_state *load_state)
2287 {
2288 struct selinux_policy *newpolicy, *oldpolicy;
2289 struct selinux_policy_convert_data *convert_data;
2290 int rc = 0;
2291 struct policy_file file = { data, len }, *fp = &file;
2292
2293 newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2294 if (!newpolicy)
2295 return -ENOMEM;
2296
2297 newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2298 if (!newpolicy->sidtab) {
2299 rc = -ENOMEM;
2300 goto err_policy;
2301 }
2302
2303 rc = policydb_read(&newpolicy->policydb, fp);
2304 if (rc)
2305 goto err_sidtab;
2306
2307 newpolicy->policydb.len = len;
2308 rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2309 &newpolicy->map);
2310 if (rc)
2311 goto err_policydb;
2312
2313 rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2314 if (rc) {
2315 pr_err("SELinux: unable to load the initial SIDs\n");
2316 goto err_mapping;
2317 }
2318
2319 if (!selinux_initialized(state)) {
2320 /* First policy load, so no need to preserve state from old policy */
2321 load_state->policy = newpolicy;
2322 load_state->convert_data = NULL;
2323 return 0;
2324 }
2325
2326 oldpolicy = rcu_dereference_protected(state->policy,
2327 lockdep_is_held(&state->policy_mutex));
2328
2329 /* Preserve active boolean values from the old policy */
2330 rc = security_preserve_bools(oldpolicy, newpolicy);
2331 if (rc) {
2332 pr_err("SELinux: unable to preserve booleans\n");
2333 goto err_free_isids;
2334 }
2335
2336 convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2337 if (!convert_data) {
2338 rc = -ENOMEM;
2339 goto err_free_isids;
2340 }
2341
2342 /*
2343 * Convert the internal representations of contexts
2344 * in the new SID table.
2345 */
2346 convert_data->args.state = state;
2347 convert_data->args.oldp = &oldpolicy->policydb;
2348 convert_data->args.newp = &newpolicy->policydb;
2349
2350 convert_data->sidtab_params.func = convert_context;
2351 convert_data->sidtab_params.args = &convert_data->args;
2352 convert_data->sidtab_params.target = newpolicy->sidtab;
2353
2354 rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2355 if (rc) {
2356 pr_err("SELinux: unable to convert the internal"
2357 " representation of contexts in the new SID"
2358 " table\n");
2359 goto err_free_convert_data;
2360 }
2361
2362 load_state->policy = newpolicy;
2363 load_state->convert_data = convert_data;
2364 return 0;
2365
2366 err_free_convert_data:
2367 kfree(convert_data);
2368 err_free_isids:
2369 sidtab_destroy(newpolicy->sidtab);
2370 err_mapping:
2371 kfree(newpolicy->map.mapping);
2372 err_policydb:
2373 policydb_destroy(&newpolicy->policydb);
2374 err_sidtab:
2375 kfree(newpolicy->sidtab);
2376 err_policy:
2377 kfree(newpolicy);
2378
2379 return rc;
2380 }
2381
2382 /**
2383 * ocontext_to_sid - Helper to safely get sid for an ocontext
2384 * @sidtab: SID table
2385 * @c: ocontext structure
2386 * @index: index of the context entry (0 or 1)
2387 * @out_sid: pointer to the resulting SID value
2388 *
2389 * For all ocontexts except OCON_ISID the SID fields are populated
2390 * on-demand when needed. Since updating the SID value is an SMP-sensitive
2391 * operation, this helper must be used to do that safely.
2392 *
2393 * WARNING: This function may return -ESTALE, indicating that the caller
2394 * must retry the operation after re-acquiring the policy pointer!
2395 */
ocontext_to_sid(struct sidtab * sidtab,struct ocontext * c,size_t index,u32 * out_sid)2396 static int ocontext_to_sid(struct sidtab *sidtab, struct ocontext *c,
2397 size_t index, u32 *out_sid)
2398 {
2399 int rc;
2400 u32 sid;
2401
2402 /* Ensure the associated sidtab entry is visible to this thread. */
2403 sid = smp_load_acquire(&c->sid[index]);
2404 if (!sid) {
2405 rc = sidtab_context_to_sid(sidtab, &c->context[index], &sid);
2406 if (rc)
2407 return rc;
2408
2409 /*
2410 * Ensure the new sidtab entry is visible to other threads
2411 * when they see the SID.
2412 */
2413 smp_store_release(&c->sid[index], sid);
2414 }
2415 *out_sid = sid;
2416 return 0;
2417 }
2418
2419 /**
2420 * security_port_sid - Obtain the SID for a port.
2421 * @state: SELinux state
2422 * @protocol: protocol number
2423 * @port: port number
2424 * @out_sid: security identifier
2425 */
security_port_sid(struct selinux_state * state,u8 protocol,u16 port,u32 * out_sid)2426 int security_port_sid(struct selinux_state *state,
2427 u8 protocol, u16 port, u32 *out_sid)
2428 {
2429 struct selinux_policy *policy;
2430 struct policydb *policydb;
2431 struct sidtab *sidtab;
2432 struct ocontext *c;
2433 int rc;
2434
2435 if (!selinux_initialized(state)) {
2436 *out_sid = SECINITSID_PORT;
2437 return 0;
2438 }
2439
2440 retry:
2441 rc = 0;
2442 rcu_read_lock();
2443 policy = rcu_dereference(state->policy);
2444 policydb = &policy->policydb;
2445 sidtab = policy->sidtab;
2446
2447 c = policydb->ocontexts[OCON_PORT];
2448 while (c) {
2449 if (c->u.port.protocol == protocol &&
2450 c->u.port.low_port <= port &&
2451 c->u.port.high_port >= port)
2452 break;
2453 c = c->next;
2454 }
2455
2456 if (c) {
2457 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2458 if (rc == -ESTALE) {
2459 rcu_read_unlock();
2460 goto retry;
2461 }
2462 if (rc)
2463 goto out;
2464 } else {
2465 *out_sid = SECINITSID_PORT;
2466 }
2467
2468 out:
2469 rcu_read_unlock();
2470 return rc;
2471 }
2472
2473 /**
2474 * security_ib_pkey_sid - Obtain the SID for a pkey.
2475 * @state: SELinux state
2476 * @subnet_prefix: Subnet Prefix
2477 * @pkey_num: pkey number
2478 * @out_sid: security identifier
2479 */
security_ib_pkey_sid(struct selinux_state * state,u64 subnet_prefix,u16 pkey_num,u32 * out_sid)2480 int security_ib_pkey_sid(struct selinux_state *state,
2481 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2482 {
2483 struct selinux_policy *policy;
2484 struct policydb *policydb;
2485 struct sidtab *sidtab;
2486 struct ocontext *c;
2487 int rc;
2488
2489 if (!selinux_initialized(state)) {
2490 *out_sid = SECINITSID_UNLABELED;
2491 return 0;
2492 }
2493
2494 retry:
2495 rc = 0;
2496 rcu_read_lock();
2497 policy = rcu_dereference(state->policy);
2498 policydb = &policy->policydb;
2499 sidtab = policy->sidtab;
2500
2501 c = policydb->ocontexts[OCON_IBPKEY];
2502 while (c) {
2503 if (c->u.ibpkey.low_pkey <= pkey_num &&
2504 c->u.ibpkey.high_pkey >= pkey_num &&
2505 c->u.ibpkey.subnet_prefix == subnet_prefix)
2506 break;
2507
2508 c = c->next;
2509 }
2510
2511 if (c) {
2512 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2513 if (rc == -ESTALE) {
2514 rcu_read_unlock();
2515 goto retry;
2516 }
2517 if (rc)
2518 goto out;
2519 } else
2520 *out_sid = SECINITSID_UNLABELED;
2521
2522 out:
2523 rcu_read_unlock();
2524 return rc;
2525 }
2526
2527 /**
2528 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2529 * @state: SELinux state
2530 * @dev_name: device name
2531 * @port_num: port number
2532 * @out_sid: security identifier
2533 */
security_ib_endport_sid(struct selinux_state * state,const char * dev_name,u8 port_num,u32 * out_sid)2534 int security_ib_endport_sid(struct selinux_state *state,
2535 const char *dev_name, u8 port_num, u32 *out_sid)
2536 {
2537 struct selinux_policy *policy;
2538 struct policydb *policydb;
2539 struct sidtab *sidtab;
2540 struct ocontext *c;
2541 int rc;
2542
2543 if (!selinux_initialized(state)) {
2544 *out_sid = SECINITSID_UNLABELED;
2545 return 0;
2546 }
2547
2548 retry:
2549 rc = 0;
2550 rcu_read_lock();
2551 policy = rcu_dereference(state->policy);
2552 policydb = &policy->policydb;
2553 sidtab = policy->sidtab;
2554
2555 c = policydb->ocontexts[OCON_IBENDPORT];
2556 while (c) {
2557 if (c->u.ibendport.port == port_num &&
2558 !strncmp(c->u.ibendport.dev_name,
2559 dev_name,
2560 IB_DEVICE_NAME_MAX))
2561 break;
2562
2563 c = c->next;
2564 }
2565
2566 if (c) {
2567 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2568 if (rc == -ESTALE) {
2569 rcu_read_unlock();
2570 goto retry;
2571 }
2572 if (rc)
2573 goto out;
2574 } else
2575 *out_sid = SECINITSID_UNLABELED;
2576
2577 out:
2578 rcu_read_unlock();
2579 return rc;
2580 }
2581
2582 /**
2583 * security_netif_sid - Obtain the SID for a network interface.
2584 * @state: SELinux state
2585 * @name: interface name
2586 * @if_sid: interface SID
2587 */
security_netif_sid(struct selinux_state * state,char * name,u32 * if_sid)2588 int security_netif_sid(struct selinux_state *state,
2589 char *name, u32 *if_sid)
2590 {
2591 struct selinux_policy *policy;
2592 struct policydb *policydb;
2593 struct sidtab *sidtab;
2594 int rc;
2595 struct ocontext *c;
2596
2597 if (!selinux_initialized(state)) {
2598 *if_sid = SECINITSID_NETIF;
2599 return 0;
2600 }
2601
2602 retry:
2603 rc = 0;
2604 rcu_read_lock();
2605 policy = rcu_dereference(state->policy);
2606 policydb = &policy->policydb;
2607 sidtab = policy->sidtab;
2608
2609 c = policydb->ocontexts[OCON_NETIF];
2610 while (c) {
2611 if (strcmp(name, c->u.name) == 0)
2612 break;
2613 c = c->next;
2614 }
2615
2616 if (c) {
2617 rc = ocontext_to_sid(sidtab, c, 0, if_sid);
2618 if (rc == -ESTALE) {
2619 rcu_read_unlock();
2620 goto retry;
2621 }
2622 if (rc)
2623 goto out;
2624 } else
2625 *if_sid = SECINITSID_NETIF;
2626
2627 out:
2628 rcu_read_unlock();
2629 return rc;
2630 }
2631
match_ipv6_addrmask(u32 * input,u32 * addr,u32 * mask)2632 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2633 {
2634 int i, fail = 0;
2635
2636 for (i = 0; i < 4; i++)
2637 if (addr[i] != (input[i] & mask[i])) {
2638 fail = 1;
2639 break;
2640 }
2641
2642 return !fail;
2643 }
2644
2645 /**
2646 * security_node_sid - Obtain the SID for a node (host).
2647 * @state: SELinux state
2648 * @domain: communication domain aka address family
2649 * @addrp: address
2650 * @addrlen: address length in bytes
2651 * @out_sid: security identifier
2652 */
security_node_sid(struct selinux_state * state,u16 domain,void * addrp,u32 addrlen,u32 * out_sid)2653 int security_node_sid(struct selinux_state *state,
2654 u16 domain,
2655 void *addrp,
2656 u32 addrlen,
2657 u32 *out_sid)
2658 {
2659 struct selinux_policy *policy;
2660 struct policydb *policydb;
2661 struct sidtab *sidtab;
2662 int rc;
2663 struct ocontext *c;
2664
2665 if (!selinux_initialized(state)) {
2666 *out_sid = SECINITSID_NODE;
2667 return 0;
2668 }
2669
2670 retry:
2671 rcu_read_lock();
2672 policy = rcu_dereference(state->policy);
2673 policydb = &policy->policydb;
2674 sidtab = policy->sidtab;
2675
2676 switch (domain) {
2677 case AF_INET: {
2678 u32 addr;
2679
2680 rc = -EINVAL;
2681 if (addrlen != sizeof(u32))
2682 goto out;
2683
2684 addr = *((u32 *)addrp);
2685
2686 c = policydb->ocontexts[OCON_NODE];
2687 while (c) {
2688 if (c->u.node.addr == (addr & c->u.node.mask))
2689 break;
2690 c = c->next;
2691 }
2692 break;
2693 }
2694
2695 case AF_INET6:
2696 rc = -EINVAL;
2697 if (addrlen != sizeof(u64) * 2)
2698 goto out;
2699 c = policydb->ocontexts[OCON_NODE6];
2700 while (c) {
2701 if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2702 c->u.node6.mask))
2703 break;
2704 c = c->next;
2705 }
2706 break;
2707
2708 default:
2709 rc = 0;
2710 *out_sid = SECINITSID_NODE;
2711 goto out;
2712 }
2713
2714 if (c) {
2715 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2716 if (rc == -ESTALE) {
2717 rcu_read_unlock();
2718 goto retry;
2719 }
2720 if (rc)
2721 goto out;
2722 } else {
2723 *out_sid = SECINITSID_NODE;
2724 }
2725
2726 rc = 0;
2727 out:
2728 rcu_read_unlock();
2729 return rc;
2730 }
2731
2732 #define SIDS_NEL 25
2733
2734 /**
2735 * security_get_user_sids - Obtain reachable SIDs for a user.
2736 * @state: SELinux state
2737 * @fromsid: starting SID
2738 * @username: username
2739 * @sids: array of reachable SIDs for user
2740 * @nel: number of elements in @sids
2741 *
2742 * Generate the set of SIDs for legal security contexts
2743 * for a given user that can be reached by @fromsid.
2744 * Set *@sids to point to a dynamically allocated
2745 * array containing the set of SIDs. Set *@nel to the
2746 * number of elements in the array.
2747 */
2748
security_get_user_sids(struct selinux_state * state,u32 fromsid,char * username,u32 ** sids,u32 * nel)2749 int security_get_user_sids(struct selinux_state *state,
2750 u32 fromsid,
2751 char *username,
2752 u32 **sids,
2753 u32 *nel)
2754 {
2755 struct selinux_policy *policy;
2756 struct policydb *policydb;
2757 struct sidtab *sidtab;
2758 struct context *fromcon, usercon;
2759 u32 *mysids = NULL, *mysids2, sid;
2760 u32 i, j, mynel, maxnel = SIDS_NEL;
2761 struct user_datum *user;
2762 struct role_datum *role;
2763 struct ebitmap_node *rnode, *tnode;
2764 int rc;
2765
2766 *sids = NULL;
2767 *nel = 0;
2768
2769 if (!selinux_initialized(state))
2770 return 0;
2771
2772 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2773 if (!mysids)
2774 return -ENOMEM;
2775
2776 retry:
2777 mynel = 0;
2778 rcu_read_lock();
2779 policy = rcu_dereference(state->policy);
2780 policydb = &policy->policydb;
2781 sidtab = policy->sidtab;
2782
2783 context_init(&usercon);
2784
2785 rc = -EINVAL;
2786 fromcon = sidtab_search(sidtab, fromsid);
2787 if (!fromcon)
2788 goto out_unlock;
2789
2790 rc = -EINVAL;
2791 user = symtab_search(&policydb->p_users, username);
2792 if (!user)
2793 goto out_unlock;
2794
2795 usercon.user = user->value;
2796
2797 ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2798 role = policydb->role_val_to_struct[i];
2799 usercon.role = i + 1;
2800 ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2801 usercon.type = j + 1;
2802
2803 if (mls_setup_user_range(policydb, fromcon, user,
2804 &usercon))
2805 continue;
2806
2807 rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2808 if (rc == -ESTALE) {
2809 rcu_read_unlock();
2810 goto retry;
2811 }
2812 if (rc)
2813 goto out_unlock;
2814 if (mynel < maxnel) {
2815 mysids[mynel++] = sid;
2816 } else {
2817 rc = -ENOMEM;
2818 maxnel += SIDS_NEL;
2819 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2820 if (!mysids2)
2821 goto out_unlock;
2822 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2823 kfree(mysids);
2824 mysids = mysids2;
2825 mysids[mynel++] = sid;
2826 }
2827 }
2828 }
2829 rc = 0;
2830 out_unlock:
2831 rcu_read_unlock();
2832 if (rc || !mynel) {
2833 kfree(mysids);
2834 return rc;
2835 }
2836
2837 rc = -ENOMEM;
2838 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2839 if (!mysids2) {
2840 kfree(mysids);
2841 return rc;
2842 }
2843 for (i = 0, j = 0; i < mynel; i++) {
2844 struct av_decision dummy_avd;
2845 rc = avc_has_perm_noaudit(state,
2846 fromsid, mysids[i],
2847 SECCLASS_PROCESS, /* kernel value */
2848 PROCESS__TRANSITION, AVC_STRICT,
2849 &dummy_avd);
2850 if (!rc)
2851 mysids2[j++] = mysids[i];
2852 cond_resched();
2853 }
2854 kfree(mysids);
2855 *sids = mysids2;
2856 *nel = j;
2857 return 0;
2858 }
2859
2860 /**
2861 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2862 * @policy: policy
2863 * @fstype: filesystem type
2864 * @path: path from root of mount
2865 * @orig_sclass: file security class
2866 * @sid: SID for path
2867 *
2868 * Obtain a SID to use for a file in a filesystem that
2869 * cannot support xattr or use a fixed labeling behavior like
2870 * transition SIDs or task SIDs.
2871 *
2872 * WARNING: This function may return -ESTALE, indicating that the caller
2873 * must retry the operation after re-acquiring the policy pointer!
2874 */
__security_genfs_sid(struct selinux_policy * policy,const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2875 static inline int __security_genfs_sid(struct selinux_policy *policy,
2876 const char *fstype,
2877 const char *path,
2878 u16 orig_sclass,
2879 u32 *sid)
2880 {
2881 struct policydb *policydb = &policy->policydb;
2882 struct sidtab *sidtab = policy->sidtab;
2883 int len;
2884 u16 sclass;
2885 struct genfs *genfs;
2886 struct ocontext *c;
2887 int cmp = 0;
2888
2889 while (path[0] == '/' && path[1] == '/')
2890 path++;
2891
2892 sclass = unmap_class(&policy->map, orig_sclass);
2893 *sid = SECINITSID_UNLABELED;
2894
2895 for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2896 cmp = strcmp(fstype, genfs->fstype);
2897 if (cmp <= 0)
2898 break;
2899 }
2900
2901 if (!genfs || cmp)
2902 return -ENOENT;
2903
2904 for (c = genfs->head; c; c = c->next) {
2905 len = strlen(c->u.name);
2906 if ((!c->v.sclass || sclass == c->v.sclass) &&
2907 (strncmp(c->u.name, path, len) == 0))
2908 break;
2909 }
2910
2911 if (!c)
2912 return -ENOENT;
2913
2914 return ocontext_to_sid(sidtab, c, 0, sid);
2915 }
2916
2917 /**
2918 * security_genfs_sid - Obtain a SID for a file in a filesystem
2919 * @state: SELinux state
2920 * @fstype: filesystem type
2921 * @path: path from root of mount
2922 * @orig_sclass: file security class
2923 * @sid: SID for path
2924 *
2925 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2926 * it afterward.
2927 */
security_genfs_sid(struct selinux_state * state,const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2928 int security_genfs_sid(struct selinux_state *state,
2929 const char *fstype,
2930 const char *path,
2931 u16 orig_sclass,
2932 u32 *sid)
2933 {
2934 struct selinux_policy *policy;
2935 int retval;
2936
2937 if (!selinux_initialized(state)) {
2938 *sid = SECINITSID_UNLABELED;
2939 return 0;
2940 }
2941
2942 do {
2943 rcu_read_lock();
2944 policy = rcu_dereference(state->policy);
2945 retval = __security_genfs_sid(policy, fstype, path,
2946 orig_sclass, sid);
2947 rcu_read_unlock();
2948 } while (retval == -ESTALE);
2949 return retval;
2950 }
2951
selinux_policy_genfs_sid(struct selinux_policy * policy,const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2952 int selinux_policy_genfs_sid(struct selinux_policy *policy,
2953 const char *fstype,
2954 const char *path,
2955 u16 orig_sclass,
2956 u32 *sid)
2957 {
2958 /* no lock required, policy is not yet accessible by other threads */
2959 return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2960 }
2961
2962 /**
2963 * security_fs_use - Determine how to handle labeling for a filesystem.
2964 * @state: SELinux state
2965 * @sb: superblock in question
2966 */
security_fs_use(struct selinux_state * state,struct super_block * sb)2967 int security_fs_use(struct selinux_state *state, struct super_block *sb)
2968 {
2969 struct selinux_policy *policy;
2970 struct policydb *policydb;
2971 struct sidtab *sidtab;
2972 int rc;
2973 struct ocontext *c;
2974 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2975 const char *fstype = sb->s_type->name;
2976
2977 if (!selinux_initialized(state)) {
2978 sbsec->behavior = SECURITY_FS_USE_NONE;
2979 sbsec->sid = SECINITSID_UNLABELED;
2980 return 0;
2981 }
2982
2983 retry:
2984 rcu_read_lock();
2985 policy = rcu_dereference(state->policy);
2986 policydb = &policy->policydb;
2987 sidtab = policy->sidtab;
2988
2989 c = policydb->ocontexts[OCON_FSUSE];
2990 while (c) {
2991 if (strcmp(fstype, c->u.name) == 0)
2992 break;
2993 c = c->next;
2994 }
2995
2996 if (c) {
2997 sbsec->behavior = c->v.behavior;
2998 rc = ocontext_to_sid(sidtab, c, 0, &sbsec->sid);
2999 if (rc == -ESTALE) {
3000 rcu_read_unlock();
3001 goto retry;
3002 }
3003 if (rc)
3004 goto out;
3005 } else {
3006 rc = __security_genfs_sid(policy, fstype, "/",
3007 SECCLASS_DIR, &sbsec->sid);
3008 if (rc == -ESTALE) {
3009 rcu_read_unlock();
3010 goto retry;
3011 }
3012 if (rc) {
3013 sbsec->behavior = SECURITY_FS_USE_NONE;
3014 rc = 0;
3015 } else {
3016 sbsec->behavior = SECURITY_FS_USE_GENFS;
3017 }
3018 }
3019
3020 out:
3021 rcu_read_unlock();
3022 return rc;
3023 }
3024
security_get_bools(struct selinux_policy * policy,u32 * len,char *** names,int ** values)3025 int security_get_bools(struct selinux_policy *policy,
3026 u32 *len, char ***names, int **values)
3027 {
3028 struct policydb *policydb;
3029 u32 i;
3030 int rc;
3031
3032 policydb = &policy->policydb;
3033
3034 *names = NULL;
3035 *values = NULL;
3036
3037 rc = 0;
3038 *len = policydb->p_bools.nprim;
3039 if (!*len)
3040 goto out;
3041
3042 rc = -ENOMEM;
3043 *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
3044 if (!*names)
3045 goto err;
3046
3047 rc = -ENOMEM;
3048 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
3049 if (!*values)
3050 goto err;
3051
3052 for (i = 0; i < *len; i++) {
3053 (*values)[i] = policydb->bool_val_to_struct[i]->state;
3054
3055 rc = -ENOMEM;
3056 (*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
3057 GFP_ATOMIC);
3058 if (!(*names)[i])
3059 goto err;
3060 }
3061 rc = 0;
3062 out:
3063 return rc;
3064 err:
3065 if (*names) {
3066 for (i = 0; i < *len; i++)
3067 kfree((*names)[i]);
3068 kfree(*names);
3069 }
3070 kfree(*values);
3071 *len = 0;
3072 *names = NULL;
3073 *values = NULL;
3074 goto out;
3075 }
3076
3077
security_set_bools(struct selinux_state * state,u32 len,int * values)3078 int security_set_bools(struct selinux_state *state, u32 len, int *values)
3079 {
3080 struct selinux_policy *newpolicy, *oldpolicy;
3081 int rc;
3082 u32 i, seqno = 0;
3083
3084 if (!selinux_initialized(state))
3085 return -EINVAL;
3086
3087 oldpolicy = rcu_dereference_protected(state->policy,
3088 lockdep_is_held(&state->policy_mutex));
3089
3090 /* Consistency check on number of booleans, should never fail */
3091 if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3092 return -EINVAL;
3093
3094 newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3095 if (!newpolicy)
3096 return -ENOMEM;
3097
3098 /*
3099 * Deep copy only the parts of the policydb that might be
3100 * modified as a result of changing booleans.
3101 */
3102 rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3103 if (rc) {
3104 kfree(newpolicy);
3105 return -ENOMEM;
3106 }
3107
3108 /* Update the boolean states in the copy */
3109 for (i = 0; i < len; i++) {
3110 int new_state = !!values[i];
3111 int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3112
3113 if (new_state != old_state) {
3114 audit_log(audit_context(), GFP_ATOMIC,
3115 AUDIT_MAC_CONFIG_CHANGE,
3116 "bool=%s val=%d old_val=%d auid=%u ses=%u",
3117 sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3118 new_state,
3119 old_state,
3120 from_kuid(&init_user_ns, audit_get_loginuid(current)),
3121 audit_get_sessionid(current));
3122 newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3123 }
3124 }
3125
3126 /* Re-evaluate the conditional rules in the copy */
3127 evaluate_cond_nodes(&newpolicy->policydb);
3128
3129 /* Set latest granting seqno for new policy */
3130 newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3131 seqno = newpolicy->latest_granting;
3132
3133 /* Install the new policy */
3134 rcu_assign_pointer(state->policy, newpolicy);
3135
3136 /*
3137 * Free the conditional portions of the old policydb
3138 * that were copied for the new policy, and the oldpolicy
3139 * structure itself but not what it references.
3140 */
3141 synchronize_rcu();
3142 selinux_policy_cond_free(oldpolicy);
3143
3144 /* Notify others of the policy change */
3145 selinux_notify_policy_change(state, seqno);
3146 return 0;
3147 }
3148
security_get_bool_value(struct selinux_state * state,u32 index)3149 int security_get_bool_value(struct selinux_state *state,
3150 u32 index)
3151 {
3152 struct selinux_policy *policy;
3153 struct policydb *policydb;
3154 int rc;
3155 u32 len;
3156
3157 if (!selinux_initialized(state))
3158 return 0;
3159
3160 rcu_read_lock();
3161 policy = rcu_dereference(state->policy);
3162 policydb = &policy->policydb;
3163
3164 rc = -EFAULT;
3165 len = policydb->p_bools.nprim;
3166 if (index >= len)
3167 goto out;
3168
3169 rc = policydb->bool_val_to_struct[index]->state;
3170 out:
3171 rcu_read_unlock();
3172 return rc;
3173 }
3174
security_preserve_bools(struct selinux_policy * oldpolicy,struct selinux_policy * newpolicy)3175 static int security_preserve_bools(struct selinux_policy *oldpolicy,
3176 struct selinux_policy *newpolicy)
3177 {
3178 int rc, *bvalues = NULL;
3179 char **bnames = NULL;
3180 struct cond_bool_datum *booldatum;
3181 u32 i, nbools = 0;
3182
3183 rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3184 if (rc)
3185 goto out;
3186 for (i = 0; i < nbools; i++) {
3187 booldatum = symtab_search(&newpolicy->policydb.p_bools,
3188 bnames[i]);
3189 if (booldatum)
3190 booldatum->state = bvalues[i];
3191 }
3192 evaluate_cond_nodes(&newpolicy->policydb);
3193
3194 out:
3195 if (bnames) {
3196 for (i = 0; i < nbools; i++)
3197 kfree(bnames[i]);
3198 }
3199 kfree(bnames);
3200 kfree(bvalues);
3201 return rc;
3202 }
3203
3204 /*
3205 * security_sid_mls_copy() - computes a new sid based on the given
3206 * sid and the mls portion of mls_sid.
3207 */
security_sid_mls_copy(struct selinux_state * state,u32 sid,u32 mls_sid,u32 * new_sid)3208 int security_sid_mls_copy(struct selinux_state *state,
3209 u32 sid, u32 mls_sid, u32 *new_sid)
3210 {
3211 struct selinux_policy *policy;
3212 struct policydb *policydb;
3213 struct sidtab *sidtab;
3214 struct context *context1;
3215 struct context *context2;
3216 struct context newcon;
3217 char *s;
3218 u32 len;
3219 int rc;
3220
3221 if (!selinux_initialized(state)) {
3222 *new_sid = sid;
3223 return 0;
3224 }
3225
3226 retry:
3227 rc = 0;
3228 context_init(&newcon);
3229
3230 rcu_read_lock();
3231 policy = rcu_dereference(state->policy);
3232 policydb = &policy->policydb;
3233 sidtab = policy->sidtab;
3234
3235 if (!policydb->mls_enabled) {
3236 *new_sid = sid;
3237 goto out_unlock;
3238 }
3239
3240 rc = -EINVAL;
3241 context1 = sidtab_search(sidtab, sid);
3242 if (!context1) {
3243 pr_err("SELinux: %s: unrecognized SID %d\n",
3244 __func__, sid);
3245 goto out_unlock;
3246 }
3247
3248 rc = -EINVAL;
3249 context2 = sidtab_search(sidtab, mls_sid);
3250 if (!context2) {
3251 pr_err("SELinux: %s: unrecognized SID %d\n",
3252 __func__, mls_sid);
3253 goto out_unlock;
3254 }
3255
3256 newcon.user = context1->user;
3257 newcon.role = context1->role;
3258 newcon.type = context1->type;
3259 rc = mls_context_cpy(&newcon, context2);
3260 if (rc)
3261 goto out_unlock;
3262
3263 /* Check the validity of the new context. */
3264 if (!policydb_context_isvalid(policydb, &newcon)) {
3265 rc = convert_context_handle_invalid_context(state, policydb,
3266 &newcon);
3267 if (rc) {
3268 if (!context_struct_to_string(policydb, &newcon, &s,
3269 &len)) {
3270 struct audit_buffer *ab;
3271
3272 ab = audit_log_start(audit_context(),
3273 GFP_ATOMIC,
3274 AUDIT_SELINUX_ERR);
3275 audit_log_format(ab,
3276 "op=security_sid_mls_copy invalid_context=");
3277 /* don't record NUL with untrusted strings */
3278 audit_log_n_untrustedstring(ab, s, len - 1);
3279 audit_log_end(ab);
3280 kfree(s);
3281 }
3282 goto out_unlock;
3283 }
3284 }
3285 rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3286 if (rc == -ESTALE) {
3287 rcu_read_unlock();
3288 context_destroy(&newcon);
3289 goto retry;
3290 }
3291 out_unlock:
3292 rcu_read_unlock();
3293 context_destroy(&newcon);
3294 return rc;
3295 }
3296
3297 /**
3298 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3299 * @state: SELinux state
3300 * @nlbl_sid: NetLabel SID
3301 * @nlbl_type: NetLabel labeling protocol type
3302 * @xfrm_sid: XFRM SID
3303 * @peer_sid: network peer sid
3304 *
3305 * Description:
3306 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3307 * resolved into a single SID it is returned via @peer_sid and the function
3308 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
3309 * returns a negative value. A table summarizing the behavior is below:
3310 *
3311 * | function return | @sid
3312 * ------------------------------+-----------------+-----------------
3313 * no peer labels | 0 | SECSID_NULL
3314 * single peer label | 0 | <peer_label>
3315 * multiple, consistent labels | 0 | <peer_label>
3316 * multiple, inconsistent labels | -<errno> | SECSID_NULL
3317 *
3318 */
security_net_peersid_resolve(struct selinux_state * state,u32 nlbl_sid,u32 nlbl_type,u32 xfrm_sid,u32 * peer_sid)3319 int security_net_peersid_resolve(struct selinux_state *state,
3320 u32 nlbl_sid, u32 nlbl_type,
3321 u32 xfrm_sid,
3322 u32 *peer_sid)
3323 {
3324 struct selinux_policy *policy;
3325 struct policydb *policydb;
3326 struct sidtab *sidtab;
3327 int rc;
3328 struct context *nlbl_ctx;
3329 struct context *xfrm_ctx;
3330
3331 *peer_sid = SECSID_NULL;
3332
3333 /* handle the common (which also happens to be the set of easy) cases
3334 * right away, these two if statements catch everything involving a
3335 * single or absent peer SID/label */
3336 if (xfrm_sid == SECSID_NULL) {
3337 *peer_sid = nlbl_sid;
3338 return 0;
3339 }
3340 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3341 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3342 * is present */
3343 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3344 *peer_sid = xfrm_sid;
3345 return 0;
3346 }
3347
3348 if (!selinux_initialized(state))
3349 return 0;
3350
3351 rcu_read_lock();
3352 policy = rcu_dereference(state->policy);
3353 policydb = &policy->policydb;
3354 sidtab = policy->sidtab;
3355
3356 /*
3357 * We don't need to check initialized here since the only way both
3358 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3359 * security server was initialized and state->initialized was true.
3360 */
3361 if (!policydb->mls_enabled) {
3362 rc = 0;
3363 goto out;
3364 }
3365
3366 rc = -EINVAL;
3367 nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3368 if (!nlbl_ctx) {
3369 pr_err("SELinux: %s: unrecognized SID %d\n",
3370 __func__, nlbl_sid);
3371 goto out;
3372 }
3373 rc = -EINVAL;
3374 xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3375 if (!xfrm_ctx) {
3376 pr_err("SELinux: %s: unrecognized SID %d\n",
3377 __func__, xfrm_sid);
3378 goto out;
3379 }
3380 rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3381 if (rc)
3382 goto out;
3383
3384 /* at present NetLabel SIDs/labels really only carry MLS
3385 * information so if the MLS portion of the NetLabel SID
3386 * matches the MLS portion of the labeled XFRM SID/label
3387 * then pass along the XFRM SID as it is the most
3388 * expressive */
3389 *peer_sid = xfrm_sid;
3390 out:
3391 rcu_read_unlock();
3392 return rc;
3393 }
3394
get_classes_callback(void * k,void * d,void * args)3395 static int get_classes_callback(void *k, void *d, void *args)
3396 {
3397 struct class_datum *datum = d;
3398 char *name = k, **classes = args;
3399 int value = datum->value - 1;
3400
3401 classes[value] = kstrdup(name, GFP_ATOMIC);
3402 if (!classes[value])
3403 return -ENOMEM;
3404
3405 return 0;
3406 }
3407
security_get_classes(struct selinux_policy * policy,char *** classes,int * nclasses)3408 int security_get_classes(struct selinux_policy *policy,
3409 char ***classes, int *nclasses)
3410 {
3411 struct policydb *policydb;
3412 int rc;
3413
3414 policydb = &policy->policydb;
3415
3416 rc = -ENOMEM;
3417 *nclasses = policydb->p_classes.nprim;
3418 *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3419 if (!*classes)
3420 goto out;
3421
3422 rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3423 *classes);
3424 if (rc) {
3425 int i;
3426 for (i = 0; i < *nclasses; i++)
3427 kfree((*classes)[i]);
3428 kfree(*classes);
3429 }
3430
3431 out:
3432 return rc;
3433 }
3434
get_permissions_callback(void * k,void * d,void * args)3435 static int get_permissions_callback(void *k, void *d, void *args)
3436 {
3437 struct perm_datum *datum = d;
3438 char *name = k, **perms = args;
3439 int value = datum->value - 1;
3440
3441 perms[value] = kstrdup(name, GFP_ATOMIC);
3442 if (!perms[value])
3443 return -ENOMEM;
3444
3445 return 0;
3446 }
3447
security_get_permissions(struct selinux_policy * policy,char * class,char *** perms,int * nperms)3448 int security_get_permissions(struct selinux_policy *policy,
3449 char *class, char ***perms, int *nperms)
3450 {
3451 struct policydb *policydb;
3452 int rc, i;
3453 struct class_datum *match;
3454
3455 policydb = &policy->policydb;
3456
3457 rc = -EINVAL;
3458 match = symtab_search(&policydb->p_classes, class);
3459 if (!match) {
3460 pr_err("SELinux: %s: unrecognized class %s\n",
3461 __func__, class);
3462 goto out;
3463 }
3464
3465 rc = -ENOMEM;
3466 *nperms = match->permissions.nprim;
3467 *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3468 if (!*perms)
3469 goto out;
3470
3471 if (match->comdatum) {
3472 rc = hashtab_map(&match->comdatum->permissions.table,
3473 get_permissions_callback, *perms);
3474 if (rc)
3475 goto err;
3476 }
3477
3478 rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3479 *perms);
3480 if (rc)
3481 goto err;
3482
3483 out:
3484 return rc;
3485
3486 err:
3487 for (i = 0; i < *nperms; i++)
3488 kfree((*perms)[i]);
3489 kfree(*perms);
3490 return rc;
3491 }
3492
security_get_reject_unknown(struct selinux_state * state)3493 int security_get_reject_unknown(struct selinux_state *state)
3494 {
3495 struct selinux_policy *policy;
3496 int value;
3497
3498 if (!selinux_initialized(state))
3499 return 0;
3500
3501 rcu_read_lock();
3502 policy = rcu_dereference(state->policy);
3503 value = policy->policydb.reject_unknown;
3504 rcu_read_unlock();
3505 return value;
3506 }
3507
security_get_allow_unknown(struct selinux_state * state)3508 int security_get_allow_unknown(struct selinux_state *state)
3509 {
3510 struct selinux_policy *policy;
3511 int value;
3512
3513 if (!selinux_initialized(state))
3514 return 0;
3515
3516 rcu_read_lock();
3517 policy = rcu_dereference(state->policy);
3518 value = policy->policydb.allow_unknown;
3519 rcu_read_unlock();
3520 return value;
3521 }
3522
3523 /**
3524 * security_policycap_supported - Check for a specific policy capability
3525 * @state: SELinux state
3526 * @req_cap: capability
3527 *
3528 * Description:
3529 * This function queries the currently loaded policy to see if it supports the
3530 * capability specified by @req_cap. Returns true (1) if the capability is
3531 * supported, false (0) if it isn't supported.
3532 *
3533 */
security_policycap_supported(struct selinux_state * state,unsigned int req_cap)3534 int security_policycap_supported(struct selinux_state *state,
3535 unsigned int req_cap)
3536 {
3537 struct selinux_policy *policy;
3538 int rc;
3539
3540 if (!selinux_initialized(state))
3541 return 0;
3542
3543 rcu_read_lock();
3544 policy = rcu_dereference(state->policy);
3545 rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3546 rcu_read_unlock();
3547
3548 return rc;
3549 }
3550
3551 struct selinux_audit_rule {
3552 u32 au_seqno;
3553 struct context au_ctxt;
3554 };
3555
selinux_audit_rule_free(void * vrule)3556 void selinux_audit_rule_free(void *vrule)
3557 {
3558 struct selinux_audit_rule *rule = vrule;
3559
3560 if (rule) {
3561 context_destroy(&rule->au_ctxt);
3562 kfree(rule);
3563 }
3564 }
3565
selinux_audit_rule_init(u32 field,u32 op,char * rulestr,void ** vrule)3566 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3567 {
3568 struct selinux_state *state = &selinux_state;
3569 struct selinux_policy *policy;
3570 struct policydb *policydb;
3571 struct selinux_audit_rule *tmprule;
3572 struct role_datum *roledatum;
3573 struct type_datum *typedatum;
3574 struct user_datum *userdatum;
3575 struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3576 int rc = 0;
3577
3578 *rule = NULL;
3579
3580 if (!selinux_initialized(state))
3581 return -EOPNOTSUPP;
3582
3583 switch (field) {
3584 case AUDIT_SUBJ_USER:
3585 case AUDIT_SUBJ_ROLE:
3586 case AUDIT_SUBJ_TYPE:
3587 case AUDIT_OBJ_USER:
3588 case AUDIT_OBJ_ROLE:
3589 case AUDIT_OBJ_TYPE:
3590 /* only 'equals' and 'not equals' fit user, role, and type */
3591 if (op != Audit_equal && op != Audit_not_equal)
3592 return -EINVAL;
3593 break;
3594 case AUDIT_SUBJ_SEN:
3595 case AUDIT_SUBJ_CLR:
3596 case AUDIT_OBJ_LEV_LOW:
3597 case AUDIT_OBJ_LEV_HIGH:
3598 /* we do not allow a range, indicated by the presence of '-' */
3599 if (strchr(rulestr, '-'))
3600 return -EINVAL;
3601 break;
3602 default:
3603 /* only the above fields are valid */
3604 return -EINVAL;
3605 }
3606
3607 tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3608 if (!tmprule)
3609 return -ENOMEM;
3610
3611 context_init(&tmprule->au_ctxt);
3612
3613 rcu_read_lock();
3614 policy = rcu_dereference(state->policy);
3615 policydb = &policy->policydb;
3616
3617 tmprule->au_seqno = policy->latest_granting;
3618
3619 switch (field) {
3620 case AUDIT_SUBJ_USER:
3621 case AUDIT_OBJ_USER:
3622 rc = -EINVAL;
3623 userdatum = symtab_search(&policydb->p_users, rulestr);
3624 if (!userdatum)
3625 goto out;
3626 tmprule->au_ctxt.user = userdatum->value;
3627 break;
3628 case AUDIT_SUBJ_ROLE:
3629 case AUDIT_OBJ_ROLE:
3630 rc = -EINVAL;
3631 roledatum = symtab_search(&policydb->p_roles, rulestr);
3632 if (!roledatum)
3633 goto out;
3634 tmprule->au_ctxt.role = roledatum->value;
3635 break;
3636 case AUDIT_SUBJ_TYPE:
3637 case AUDIT_OBJ_TYPE:
3638 rc = -EINVAL;
3639 typedatum = symtab_search(&policydb->p_types, rulestr);
3640 if (!typedatum)
3641 goto out;
3642 tmprule->au_ctxt.type = typedatum->value;
3643 break;
3644 case AUDIT_SUBJ_SEN:
3645 case AUDIT_SUBJ_CLR:
3646 case AUDIT_OBJ_LEV_LOW:
3647 case AUDIT_OBJ_LEV_HIGH:
3648 rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3649 GFP_ATOMIC);
3650 if (rc)
3651 goto out;
3652 break;
3653 }
3654 rc = 0;
3655 out:
3656 rcu_read_unlock();
3657
3658 if (rc) {
3659 selinux_audit_rule_free(tmprule);
3660 tmprule = NULL;
3661 }
3662
3663 *rule = tmprule;
3664
3665 return rc;
3666 }
3667
3668 /* Check to see if the rule contains any selinux fields */
selinux_audit_rule_known(struct audit_krule * rule)3669 int selinux_audit_rule_known(struct audit_krule *rule)
3670 {
3671 int i;
3672
3673 for (i = 0; i < rule->field_count; i++) {
3674 struct audit_field *f = &rule->fields[i];
3675 switch (f->type) {
3676 case AUDIT_SUBJ_USER:
3677 case AUDIT_SUBJ_ROLE:
3678 case AUDIT_SUBJ_TYPE:
3679 case AUDIT_SUBJ_SEN:
3680 case AUDIT_SUBJ_CLR:
3681 case AUDIT_OBJ_USER:
3682 case AUDIT_OBJ_ROLE:
3683 case AUDIT_OBJ_TYPE:
3684 case AUDIT_OBJ_LEV_LOW:
3685 case AUDIT_OBJ_LEV_HIGH:
3686 return 1;
3687 }
3688 }
3689
3690 return 0;
3691 }
3692
selinux_audit_rule_match(u32 sid,u32 field,u32 op,void * vrule)3693 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3694 {
3695 struct selinux_state *state = &selinux_state;
3696 struct selinux_policy *policy;
3697 struct context *ctxt;
3698 struct mls_level *level;
3699 struct selinux_audit_rule *rule = vrule;
3700 int match = 0;
3701
3702 if (unlikely(!rule)) {
3703 WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3704 return -ENOENT;
3705 }
3706
3707 if (!selinux_initialized(state))
3708 return 0;
3709
3710 rcu_read_lock();
3711
3712 policy = rcu_dereference(state->policy);
3713
3714 if (rule->au_seqno < policy->latest_granting) {
3715 match = -ESTALE;
3716 goto out;
3717 }
3718
3719 ctxt = sidtab_search(policy->sidtab, sid);
3720 if (unlikely(!ctxt)) {
3721 WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3722 sid);
3723 match = -ENOENT;
3724 goto out;
3725 }
3726
3727 /* a field/op pair that is not caught here will simply fall through
3728 without a match */
3729 switch (field) {
3730 case AUDIT_SUBJ_USER:
3731 case AUDIT_OBJ_USER:
3732 switch (op) {
3733 case Audit_equal:
3734 match = (ctxt->user == rule->au_ctxt.user);
3735 break;
3736 case Audit_not_equal:
3737 match = (ctxt->user != rule->au_ctxt.user);
3738 break;
3739 }
3740 break;
3741 case AUDIT_SUBJ_ROLE:
3742 case AUDIT_OBJ_ROLE:
3743 switch (op) {
3744 case Audit_equal:
3745 match = (ctxt->role == rule->au_ctxt.role);
3746 break;
3747 case Audit_not_equal:
3748 match = (ctxt->role != rule->au_ctxt.role);
3749 break;
3750 }
3751 break;
3752 case AUDIT_SUBJ_TYPE:
3753 case AUDIT_OBJ_TYPE:
3754 switch (op) {
3755 case Audit_equal:
3756 match = (ctxt->type == rule->au_ctxt.type);
3757 break;
3758 case Audit_not_equal:
3759 match = (ctxt->type != rule->au_ctxt.type);
3760 break;
3761 }
3762 break;
3763 case AUDIT_SUBJ_SEN:
3764 case AUDIT_SUBJ_CLR:
3765 case AUDIT_OBJ_LEV_LOW:
3766 case AUDIT_OBJ_LEV_HIGH:
3767 level = ((field == AUDIT_SUBJ_SEN ||
3768 field == AUDIT_OBJ_LEV_LOW) ?
3769 &ctxt->range.level[0] : &ctxt->range.level[1]);
3770 switch (op) {
3771 case Audit_equal:
3772 match = mls_level_eq(&rule->au_ctxt.range.level[0],
3773 level);
3774 break;
3775 case Audit_not_equal:
3776 match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3777 level);
3778 break;
3779 case Audit_lt:
3780 match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3781 level) &&
3782 !mls_level_eq(&rule->au_ctxt.range.level[0],
3783 level));
3784 break;
3785 case Audit_le:
3786 match = mls_level_dom(&rule->au_ctxt.range.level[0],
3787 level);
3788 break;
3789 case Audit_gt:
3790 match = (mls_level_dom(level,
3791 &rule->au_ctxt.range.level[0]) &&
3792 !mls_level_eq(level,
3793 &rule->au_ctxt.range.level[0]));
3794 break;
3795 case Audit_ge:
3796 match = mls_level_dom(level,
3797 &rule->au_ctxt.range.level[0]);
3798 break;
3799 }
3800 }
3801
3802 out:
3803 rcu_read_unlock();
3804 return match;
3805 }
3806
aurule_avc_callback(u32 event)3807 static int aurule_avc_callback(u32 event)
3808 {
3809 if (event == AVC_CALLBACK_RESET)
3810 return audit_update_lsm_rules();
3811 return 0;
3812 }
3813
aurule_init(void)3814 static int __init aurule_init(void)
3815 {
3816 int err;
3817
3818 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3819 if (err)
3820 panic("avc_add_callback() failed, error %d\n", err);
3821
3822 return err;
3823 }
3824 __initcall(aurule_init);
3825
3826 #ifdef CONFIG_NETLABEL
3827 /**
3828 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3829 * @secattr: the NetLabel packet security attributes
3830 * @sid: the SELinux SID
3831 *
3832 * Description:
3833 * Attempt to cache the context in @ctx, which was derived from the packet in
3834 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
3835 * already been initialized.
3836 *
3837 */
security_netlbl_cache_add(struct netlbl_lsm_secattr * secattr,u32 sid)3838 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3839 u32 sid)
3840 {
3841 u32 *sid_cache;
3842
3843 sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3844 if (sid_cache == NULL)
3845 return;
3846 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3847 if (secattr->cache == NULL) {
3848 kfree(sid_cache);
3849 return;
3850 }
3851
3852 *sid_cache = sid;
3853 secattr->cache->free = kfree;
3854 secattr->cache->data = sid_cache;
3855 secattr->flags |= NETLBL_SECATTR_CACHE;
3856 }
3857
3858 /**
3859 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3860 * @state: SELinux state
3861 * @secattr: the NetLabel packet security attributes
3862 * @sid: the SELinux SID
3863 *
3864 * Description:
3865 * Convert the given NetLabel security attributes in @secattr into a
3866 * SELinux SID. If the @secattr field does not contain a full SELinux
3867 * SID/context then use SECINITSID_NETMSG as the foundation. If possible the
3868 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3869 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3870 * conversion for future lookups. Returns zero on success, negative values on
3871 * failure.
3872 *
3873 */
security_netlbl_secattr_to_sid(struct selinux_state * state,struct netlbl_lsm_secattr * secattr,u32 * sid)3874 int security_netlbl_secattr_to_sid(struct selinux_state *state,
3875 struct netlbl_lsm_secattr *secattr,
3876 u32 *sid)
3877 {
3878 struct selinux_policy *policy;
3879 struct policydb *policydb;
3880 struct sidtab *sidtab;
3881 int rc;
3882 struct context *ctx;
3883 struct context ctx_new;
3884
3885 if (!selinux_initialized(state)) {
3886 *sid = SECSID_NULL;
3887 return 0;
3888 }
3889
3890 retry:
3891 rc = 0;
3892 rcu_read_lock();
3893 policy = rcu_dereference(state->policy);
3894 policydb = &policy->policydb;
3895 sidtab = policy->sidtab;
3896
3897 if (secattr->flags & NETLBL_SECATTR_CACHE)
3898 *sid = *(u32 *)secattr->cache->data;
3899 else if (secattr->flags & NETLBL_SECATTR_SECID)
3900 *sid = secattr->attr.secid;
3901 else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3902 rc = -EIDRM;
3903 ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3904 if (ctx == NULL)
3905 goto out;
3906
3907 context_init(&ctx_new);
3908 ctx_new.user = ctx->user;
3909 ctx_new.role = ctx->role;
3910 ctx_new.type = ctx->type;
3911 mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3912 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3913 rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3914 if (rc)
3915 goto out;
3916 }
3917 rc = -EIDRM;
3918 if (!mls_context_isvalid(policydb, &ctx_new)) {
3919 ebitmap_destroy(&ctx_new.range.level[0].cat);
3920 goto out;
3921 }
3922
3923 rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3924 ebitmap_destroy(&ctx_new.range.level[0].cat);
3925 if (rc == -ESTALE) {
3926 rcu_read_unlock();
3927 goto retry;
3928 }
3929 if (rc)
3930 goto out;
3931
3932 security_netlbl_cache_add(secattr, *sid);
3933 } else
3934 *sid = SECSID_NULL;
3935
3936 out:
3937 rcu_read_unlock();
3938 return rc;
3939 }
3940
3941 /**
3942 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3943 * @state: SELinux state
3944 * @sid: the SELinux SID
3945 * @secattr: the NetLabel packet security attributes
3946 *
3947 * Description:
3948 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3949 * Returns zero on success, negative values on failure.
3950 *
3951 */
security_netlbl_sid_to_secattr(struct selinux_state * state,u32 sid,struct netlbl_lsm_secattr * secattr)3952 int security_netlbl_sid_to_secattr(struct selinux_state *state,
3953 u32 sid, struct netlbl_lsm_secattr *secattr)
3954 {
3955 struct selinux_policy *policy;
3956 struct policydb *policydb;
3957 int rc;
3958 struct context *ctx;
3959
3960 if (!selinux_initialized(state))
3961 return 0;
3962
3963 rcu_read_lock();
3964 policy = rcu_dereference(state->policy);
3965 policydb = &policy->policydb;
3966
3967 rc = -ENOENT;
3968 ctx = sidtab_search(policy->sidtab, sid);
3969 if (ctx == NULL)
3970 goto out;
3971
3972 rc = -ENOMEM;
3973 secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3974 GFP_ATOMIC);
3975 if (secattr->domain == NULL)
3976 goto out;
3977
3978 secattr->attr.secid = sid;
3979 secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3980 mls_export_netlbl_lvl(policydb, ctx, secattr);
3981 rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3982 out:
3983 rcu_read_unlock();
3984 return rc;
3985 }
3986 #endif /* CONFIG_NETLABEL */
3987
3988 /**
3989 * __security_read_policy - read the policy.
3990 * @policy: SELinux policy
3991 * @data: binary policy data
3992 * @len: length of data in bytes
3993 *
3994 */
__security_read_policy(struct selinux_policy * policy,void * data,size_t * len)3995 static int __security_read_policy(struct selinux_policy *policy,
3996 void *data, size_t *len)
3997 {
3998 int rc;
3999 struct policy_file fp;
4000
4001 fp.data = data;
4002 fp.len = *len;
4003
4004 rc = policydb_write(&policy->policydb, &fp);
4005 if (rc)
4006 return rc;
4007
4008 *len = (unsigned long)fp.data - (unsigned long)data;
4009 return 0;
4010 }
4011
4012 /**
4013 * security_read_policy - read the policy.
4014 * @state: selinux_state
4015 * @data: binary policy data
4016 * @len: length of data in bytes
4017 *
4018 */
security_read_policy(struct selinux_state * state,void ** data,size_t * len)4019 int security_read_policy(struct selinux_state *state,
4020 void **data, size_t *len)
4021 {
4022 struct selinux_policy *policy;
4023
4024 policy = rcu_dereference_protected(
4025 state->policy, lockdep_is_held(&state->policy_mutex));
4026 if (!policy)
4027 return -EINVAL;
4028
4029 *len = policy->policydb.len;
4030 *data = vmalloc_user(*len);
4031 if (!*data)
4032 return -ENOMEM;
4033
4034 return __security_read_policy(policy, *data, len);
4035 }
4036
4037 /**
4038 * security_read_state_kernel - read the policy.
4039 * @state: selinux_state
4040 * @data: binary policy data
4041 * @len: length of data in bytes
4042 *
4043 * Allocates kernel memory for reading SELinux policy.
4044 * This function is for internal use only and should not
4045 * be used for returning data to user space.
4046 *
4047 * This function must be called with policy_mutex held.
4048 */
security_read_state_kernel(struct selinux_state * state,void ** data,size_t * len)4049 int security_read_state_kernel(struct selinux_state *state,
4050 void **data, size_t *len)
4051 {
4052 int err;
4053 struct selinux_policy *policy;
4054
4055 policy = rcu_dereference_protected(
4056 state->policy, lockdep_is_held(&state->policy_mutex));
4057 if (!policy)
4058 return -EINVAL;
4059
4060 *len = policy->policydb.len;
4061 *data = vmalloc(*len);
4062 if (!*data)
4063 return -ENOMEM;
4064
4065 err = __security_read_policy(policy, *data, len);
4066 if (err) {
4067 vfree(*data);
4068 *data = NULL;
4069 *len = 0;
4070 }
4071 return err;
4072 }
4073