1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Security plug functions
4 *
5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8 * Copyright (C) 2016 Mellanox Technologies
9 */
10
11 #define pr_fmt(fmt) "LSM: " fmt
12
13 #include <linux/bpf.h>
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/kernel_read_file.h>
20 #include <linux/lsm_hooks.h>
21 #include <linux/integrity.h>
22 #include <linux/ima.h>
23 #include <linux/evm.h>
24 #include <linux/fsnotify.h>
25 #include <linux/mman.h>
26 #include <linux/mount.h>
27 #include <linux/personality.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/msg.h>
31 #include <net/flow.h>
32
33 #define MAX_LSM_EVM_XATTR 2
34
35 /* How many LSMs were built into the kernel? */
36 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
37
38 /*
39 * These are descriptions of the reasons that can be passed to the
40 * security_locked_down() LSM hook. Placing this array here allows
41 * all security modules to use the same descriptions for auditing
42 * purposes.
43 */
44 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
45 [LOCKDOWN_NONE] = "none",
46 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
47 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
48 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
49 [LOCKDOWN_KEXEC] = "kexec of unsigned images",
50 [LOCKDOWN_HIBERNATION] = "hibernation",
51 [LOCKDOWN_PCI_ACCESS] = "direct PCI access",
52 [LOCKDOWN_IOPORT] = "raw io port access",
53 [LOCKDOWN_MSR] = "raw MSR access",
54 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
55 [LOCKDOWN_DEVICE_TREE] = "modifying device tree contents",
56 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
57 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
58 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
59 [LOCKDOWN_MMIOTRACE] = "unsafe mmio",
60 [LOCKDOWN_DEBUGFS] = "debugfs access",
61 [LOCKDOWN_XMON_WR] = "xmon write access",
62 [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
63 [LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
64 [LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection",
65 [LOCKDOWN_INTEGRITY_MAX] = "integrity",
66 [LOCKDOWN_KCORE] = "/proc/kcore access",
67 [LOCKDOWN_KPROBES] = "use of kprobes",
68 [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
69 [LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
70 [LOCKDOWN_PERF] = "unsafe use of perf",
71 [LOCKDOWN_TRACEFS] = "use of tracefs",
72 [LOCKDOWN_XMON_RW] = "xmon read and write access",
73 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
74 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
75 };
76
77 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
78 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
79
80 static struct kmem_cache *lsm_file_cache;
81 static struct kmem_cache *lsm_inode_cache;
82
83 char *lsm_names;
84 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
85
86 /* Boot-time LSM user choice */
87 static __initdata const char *chosen_lsm_order;
88 static __initdata const char *chosen_major_lsm;
89
90 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
91
92 /* Ordered list of LSMs to initialize. */
93 static __initdata struct lsm_info **ordered_lsms;
94 static __initdata struct lsm_info *exclusive;
95
96 static __initdata bool debug;
97 #define init_debug(...) \
98 do { \
99 if (debug) \
100 pr_info(__VA_ARGS__); \
101 } while (0)
102
is_enabled(struct lsm_info * lsm)103 static bool __init is_enabled(struct lsm_info *lsm)
104 {
105 if (!lsm->enabled)
106 return false;
107
108 return *lsm->enabled;
109 }
110
111 /* Mark an LSM's enabled flag. */
112 static int lsm_enabled_true __initdata = 1;
113 static int lsm_enabled_false __initdata = 0;
set_enabled(struct lsm_info * lsm,bool enabled)114 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
115 {
116 /*
117 * When an LSM hasn't configured an enable variable, we can use
118 * a hard-coded location for storing the default enabled state.
119 */
120 if (!lsm->enabled) {
121 if (enabled)
122 lsm->enabled = &lsm_enabled_true;
123 else
124 lsm->enabled = &lsm_enabled_false;
125 } else if (lsm->enabled == &lsm_enabled_true) {
126 if (!enabled)
127 lsm->enabled = &lsm_enabled_false;
128 } else if (lsm->enabled == &lsm_enabled_false) {
129 if (enabled)
130 lsm->enabled = &lsm_enabled_true;
131 } else {
132 *lsm->enabled = enabled;
133 }
134 }
135
136 /* Is an LSM already listed in the ordered LSMs list? */
exists_ordered_lsm(struct lsm_info * lsm)137 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
138 {
139 struct lsm_info **check;
140
141 for (check = ordered_lsms; *check; check++)
142 if (*check == lsm)
143 return true;
144
145 return false;
146 }
147
148 /* Append an LSM to the list of ordered LSMs to initialize. */
149 static int last_lsm __initdata;
append_ordered_lsm(struct lsm_info * lsm,const char * from)150 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
151 {
152 /* Ignore duplicate selections. */
153 if (exists_ordered_lsm(lsm))
154 return;
155
156 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
157 return;
158
159 /* Enable this LSM, if it is not already set. */
160 if (!lsm->enabled)
161 lsm->enabled = &lsm_enabled_true;
162 ordered_lsms[last_lsm++] = lsm;
163
164 init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
165 is_enabled(lsm) ? "en" : "dis");
166 }
167
168 /* Is an LSM allowed to be initialized? */
lsm_allowed(struct lsm_info * lsm)169 static bool __init lsm_allowed(struct lsm_info *lsm)
170 {
171 /* Skip if the LSM is disabled. */
172 if (!is_enabled(lsm))
173 return false;
174
175 /* Not allowed if another exclusive LSM already initialized. */
176 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
177 init_debug("exclusive disabled: %s\n", lsm->name);
178 return false;
179 }
180
181 return true;
182 }
183
lsm_set_blob_size(int * need,int * lbs)184 static void __init lsm_set_blob_size(int *need, int *lbs)
185 {
186 int offset;
187
188 if (*need > 0) {
189 offset = *lbs;
190 *lbs += *need;
191 *need = offset;
192 }
193 }
194
lsm_set_blob_sizes(struct lsm_blob_sizes * needed)195 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
196 {
197 if (!needed)
198 return;
199
200 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
201 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
202 /*
203 * The inode blob gets an rcu_head in addition to
204 * what the modules might need.
205 */
206 if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
207 blob_sizes.lbs_inode = sizeof(struct rcu_head);
208 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
209 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
210 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
211 lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
212 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
213 }
214
215 /* Prepare LSM for initialization. */
prepare_lsm(struct lsm_info * lsm)216 static void __init prepare_lsm(struct lsm_info *lsm)
217 {
218 int enabled = lsm_allowed(lsm);
219
220 /* Record enablement (to handle any following exclusive LSMs). */
221 set_enabled(lsm, enabled);
222
223 /* If enabled, do pre-initialization work. */
224 if (enabled) {
225 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
226 exclusive = lsm;
227 init_debug("exclusive chosen: %s\n", lsm->name);
228 }
229
230 lsm_set_blob_sizes(lsm->blobs);
231 }
232 }
233
234 /* Initialize a given LSM, if it is enabled. */
initialize_lsm(struct lsm_info * lsm)235 static void __init initialize_lsm(struct lsm_info *lsm)
236 {
237 if (is_enabled(lsm)) {
238 int ret;
239
240 init_debug("initializing %s\n", lsm->name);
241 ret = lsm->init();
242 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
243 }
244 }
245
246 /* Populate ordered LSMs list from comma-separated LSM name list. */
ordered_lsm_parse(const char * order,const char * origin)247 static void __init ordered_lsm_parse(const char *order, const char *origin)
248 {
249 struct lsm_info *lsm;
250 char *sep, *name, *next;
251
252 /* LSM_ORDER_FIRST is always first. */
253 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
254 if (lsm->order == LSM_ORDER_FIRST)
255 append_ordered_lsm(lsm, "first");
256 }
257
258 /* Process "security=", if given. */
259 if (chosen_major_lsm) {
260 struct lsm_info *major;
261
262 /*
263 * To match the original "security=" behavior, this
264 * explicitly does NOT fallback to another Legacy Major
265 * if the selected one was separately disabled: disable
266 * all non-matching Legacy Major LSMs.
267 */
268 for (major = __start_lsm_info; major < __end_lsm_info;
269 major++) {
270 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
271 strcmp(major->name, chosen_major_lsm) != 0) {
272 set_enabled(major, false);
273 init_debug("security=%s disabled: %s\n",
274 chosen_major_lsm, major->name);
275 }
276 }
277 }
278
279 sep = kstrdup(order, GFP_KERNEL);
280 next = sep;
281 /* Walk the list, looking for matching LSMs. */
282 while ((name = strsep(&next, ",")) != NULL) {
283 bool found = false;
284
285 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
286 if (lsm->order == LSM_ORDER_MUTABLE &&
287 strcmp(lsm->name, name) == 0) {
288 append_ordered_lsm(lsm, origin);
289 found = true;
290 }
291 }
292
293 if (!found)
294 init_debug("%s ignored: %s\n", origin, name);
295 }
296
297 /* Process "security=", if given. */
298 if (chosen_major_lsm) {
299 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
300 if (exists_ordered_lsm(lsm))
301 continue;
302 if (strcmp(lsm->name, chosen_major_lsm) == 0)
303 append_ordered_lsm(lsm, "security=");
304 }
305 }
306
307 /* Disable all LSMs not in the ordered list. */
308 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
309 if (exists_ordered_lsm(lsm))
310 continue;
311 set_enabled(lsm, false);
312 init_debug("%s disabled: %s\n", origin, lsm->name);
313 }
314
315 kfree(sep);
316 }
317
318 static void __init lsm_early_cred(struct cred *cred);
319 static void __init lsm_early_task(struct task_struct *task);
320
321 static int lsm_append(const char *new, char **result);
322
ordered_lsm_init(void)323 static void __init ordered_lsm_init(void)
324 {
325 struct lsm_info **lsm;
326
327 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
328 GFP_KERNEL);
329
330 if (chosen_lsm_order) {
331 if (chosen_major_lsm) {
332 pr_info("security= is ignored because it is superseded by lsm=\n");
333 chosen_major_lsm = NULL;
334 }
335 ordered_lsm_parse(chosen_lsm_order, "cmdline");
336 } else
337 ordered_lsm_parse(builtin_lsm_order, "builtin");
338
339 for (lsm = ordered_lsms; *lsm; lsm++)
340 prepare_lsm(*lsm);
341
342 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred);
343 init_debug("file blob size = %d\n", blob_sizes.lbs_file);
344 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode);
345 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc);
346 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg);
347 init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
348 init_debug("task blob size = %d\n", blob_sizes.lbs_task);
349
350 /*
351 * Create any kmem_caches needed for blobs
352 */
353 if (blob_sizes.lbs_file)
354 lsm_file_cache = kmem_cache_create("lsm_file_cache",
355 blob_sizes.lbs_file, 0,
356 SLAB_PANIC, NULL);
357 if (blob_sizes.lbs_inode)
358 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
359 blob_sizes.lbs_inode, 0,
360 SLAB_PANIC, NULL);
361
362 lsm_early_cred((struct cred *) current->cred);
363 lsm_early_task(current);
364 for (lsm = ordered_lsms; *lsm; lsm++)
365 initialize_lsm(*lsm);
366
367 kfree(ordered_lsms);
368 }
369
early_security_init(void)370 int __init early_security_init(void)
371 {
372 struct lsm_info *lsm;
373
374 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
375 INIT_HLIST_HEAD(&security_hook_heads.NAME);
376 #include "linux/lsm_hook_defs.h"
377 #undef LSM_HOOK
378
379 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
380 if (!lsm->enabled)
381 lsm->enabled = &lsm_enabled_true;
382 prepare_lsm(lsm);
383 initialize_lsm(lsm);
384 }
385
386 return 0;
387 }
388
389 /**
390 * security_init - initializes the security framework
391 *
392 * This should be called early in the kernel initialization sequence.
393 */
security_init(void)394 int __init security_init(void)
395 {
396 struct lsm_info *lsm;
397
398 pr_info("Security Framework initializing\n");
399
400 /*
401 * Append the names of the early LSM modules now that kmalloc() is
402 * available
403 */
404 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
405 if (lsm->enabled)
406 lsm_append(lsm->name, &lsm_names);
407 }
408
409 /* Load LSMs in specified order. */
410 ordered_lsm_init();
411
412 return 0;
413 }
414
415 /* Save user chosen LSM */
choose_major_lsm(char * str)416 static int __init choose_major_lsm(char *str)
417 {
418 chosen_major_lsm = str;
419 return 1;
420 }
421 __setup("security=", choose_major_lsm);
422
423 /* Explicitly choose LSM initialization order. */
choose_lsm_order(char * str)424 static int __init choose_lsm_order(char *str)
425 {
426 chosen_lsm_order = str;
427 return 1;
428 }
429 __setup("lsm=", choose_lsm_order);
430
431 /* Enable LSM order debugging. */
enable_debug(char * str)432 static int __init enable_debug(char *str)
433 {
434 debug = true;
435 return 1;
436 }
437 __setup("lsm.debug", enable_debug);
438
match_last_lsm(const char * list,const char * lsm)439 static bool match_last_lsm(const char *list, const char *lsm)
440 {
441 const char *last;
442
443 if (WARN_ON(!list || !lsm))
444 return false;
445 last = strrchr(list, ',');
446 if (last)
447 /* Pass the comma, strcmp() will check for '\0' */
448 last++;
449 else
450 last = list;
451 return !strcmp(last, lsm);
452 }
453
lsm_append(const char * new,char ** result)454 static int lsm_append(const char *new, char **result)
455 {
456 char *cp;
457
458 if (*result == NULL) {
459 *result = kstrdup(new, GFP_KERNEL);
460 if (*result == NULL)
461 return -ENOMEM;
462 } else {
463 /* Check if it is the last registered name */
464 if (match_last_lsm(*result, new))
465 return 0;
466 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
467 if (cp == NULL)
468 return -ENOMEM;
469 kfree(*result);
470 *result = cp;
471 }
472 return 0;
473 }
474
475 /**
476 * security_add_hooks - Add a modules hooks to the hook lists.
477 * @hooks: the hooks to add
478 * @count: the number of hooks to add
479 * @lsm: the name of the security module
480 *
481 * Each LSM has to register its hooks with the infrastructure.
482 */
security_add_hooks(struct security_hook_list * hooks,int count,const char * lsm)483 void __init security_add_hooks(struct security_hook_list *hooks, int count,
484 const char *lsm)
485 {
486 int i;
487
488 for (i = 0; i < count; i++) {
489 hooks[i].lsm = lsm;
490 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
491 }
492
493 /*
494 * Don't try to append during early_security_init(), we'll come back
495 * and fix this up afterwards.
496 */
497 if (slab_is_available()) {
498 if (lsm_append(lsm, &lsm_names) < 0)
499 panic("%s - Cannot get early memory.\n", __func__);
500 }
501 }
502
call_blocking_lsm_notifier(enum lsm_event event,void * data)503 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
504 {
505 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
506 event, data);
507 }
508 EXPORT_SYMBOL(call_blocking_lsm_notifier);
509
register_blocking_lsm_notifier(struct notifier_block * nb)510 int register_blocking_lsm_notifier(struct notifier_block *nb)
511 {
512 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
513 nb);
514 }
515 EXPORT_SYMBOL(register_blocking_lsm_notifier);
516
unregister_blocking_lsm_notifier(struct notifier_block * nb)517 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
518 {
519 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
520 nb);
521 }
522 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
523
524 /**
525 * lsm_cred_alloc - allocate a composite cred blob
526 * @cred: the cred that needs a blob
527 * @gfp: allocation type
528 *
529 * Allocate the cred blob for all the modules
530 *
531 * Returns 0, or -ENOMEM if memory can't be allocated.
532 */
lsm_cred_alloc(struct cred * cred,gfp_t gfp)533 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
534 {
535 if (blob_sizes.lbs_cred == 0) {
536 cred->security = NULL;
537 return 0;
538 }
539
540 cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
541 if (cred->security == NULL)
542 return -ENOMEM;
543 return 0;
544 }
545
546 /**
547 * lsm_early_cred - during initialization allocate a composite cred blob
548 * @cred: the cred that needs a blob
549 *
550 * Allocate the cred blob for all the modules
551 */
lsm_early_cred(struct cred * cred)552 static void __init lsm_early_cred(struct cred *cred)
553 {
554 int rc = lsm_cred_alloc(cred, GFP_KERNEL);
555
556 if (rc)
557 panic("%s: Early cred alloc failed.\n", __func__);
558 }
559
560 /**
561 * lsm_file_alloc - allocate a composite file blob
562 * @file: the file that needs a blob
563 *
564 * Allocate the file blob for all the modules
565 *
566 * Returns 0, or -ENOMEM if memory can't be allocated.
567 */
lsm_file_alloc(struct file * file)568 static int lsm_file_alloc(struct file *file)
569 {
570 if (!lsm_file_cache) {
571 file->f_security = NULL;
572 return 0;
573 }
574
575 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
576 if (file->f_security == NULL)
577 return -ENOMEM;
578 return 0;
579 }
580
581 /**
582 * lsm_inode_alloc - allocate a composite inode blob
583 * @inode: the inode that needs a blob
584 *
585 * Allocate the inode blob for all the modules
586 *
587 * Returns 0, or -ENOMEM if memory can't be allocated.
588 */
lsm_inode_alloc(struct inode * inode)589 int lsm_inode_alloc(struct inode *inode)
590 {
591 if (!lsm_inode_cache) {
592 inode->i_security = NULL;
593 return 0;
594 }
595
596 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
597 if (inode->i_security == NULL)
598 return -ENOMEM;
599 return 0;
600 }
601
602 /**
603 * lsm_task_alloc - allocate a composite task blob
604 * @task: the task that needs a blob
605 *
606 * Allocate the task blob for all the modules
607 *
608 * Returns 0, or -ENOMEM if memory can't be allocated.
609 */
lsm_task_alloc(struct task_struct * task)610 static int lsm_task_alloc(struct task_struct *task)
611 {
612 if (blob_sizes.lbs_task == 0) {
613 task->security = NULL;
614 return 0;
615 }
616
617 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
618 if (task->security == NULL)
619 return -ENOMEM;
620 return 0;
621 }
622
623 /**
624 * lsm_ipc_alloc - allocate a composite ipc blob
625 * @kip: the ipc that needs a blob
626 *
627 * Allocate the ipc blob for all the modules
628 *
629 * Returns 0, or -ENOMEM if memory can't be allocated.
630 */
lsm_ipc_alloc(struct kern_ipc_perm * kip)631 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
632 {
633 if (blob_sizes.lbs_ipc == 0) {
634 kip->security = NULL;
635 return 0;
636 }
637
638 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
639 if (kip->security == NULL)
640 return -ENOMEM;
641 return 0;
642 }
643
644 /**
645 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
646 * @mp: the msg_msg that needs a blob
647 *
648 * Allocate the ipc blob for all the modules
649 *
650 * Returns 0, or -ENOMEM if memory can't be allocated.
651 */
lsm_msg_msg_alloc(struct msg_msg * mp)652 static int lsm_msg_msg_alloc(struct msg_msg *mp)
653 {
654 if (blob_sizes.lbs_msg_msg == 0) {
655 mp->security = NULL;
656 return 0;
657 }
658
659 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
660 if (mp->security == NULL)
661 return -ENOMEM;
662 return 0;
663 }
664
665 /**
666 * lsm_early_task - during initialization allocate a composite task blob
667 * @task: the task that needs a blob
668 *
669 * Allocate the task blob for all the modules
670 */
lsm_early_task(struct task_struct * task)671 static void __init lsm_early_task(struct task_struct *task)
672 {
673 int rc = lsm_task_alloc(task);
674
675 if (rc)
676 panic("%s: Early task alloc failed.\n", __func__);
677 }
678
679 /**
680 * lsm_superblock_alloc - allocate a composite superblock blob
681 * @sb: the superblock that needs a blob
682 *
683 * Allocate the superblock blob for all the modules
684 *
685 * Returns 0, or -ENOMEM if memory can't be allocated.
686 */
lsm_superblock_alloc(struct super_block * sb)687 static int lsm_superblock_alloc(struct super_block *sb)
688 {
689 if (blob_sizes.lbs_superblock == 0) {
690 sb->s_security = NULL;
691 return 0;
692 }
693
694 sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL);
695 if (sb->s_security == NULL)
696 return -ENOMEM;
697 return 0;
698 }
699
700 /*
701 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
702 * can be accessed with:
703 *
704 * LSM_RET_DEFAULT(<hook_name>)
705 *
706 * The macros below define static constants for the default value of each
707 * LSM hook.
708 */
709 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
710 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
711 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
712 static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
713 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
714 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
715
716 #include <linux/lsm_hook_defs.h>
717 #undef LSM_HOOK
718
719 /*
720 * Hook list operation macros.
721 *
722 * call_void_hook:
723 * This is a hook that does not return a value.
724 *
725 * call_int_hook:
726 * This is a hook that returns a value.
727 */
728
729 #define call_void_hook(FUNC, ...) \
730 do { \
731 struct security_hook_list *P; \
732 \
733 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
734 P->hook.FUNC(__VA_ARGS__); \
735 } while (0)
736
737 #define call_int_hook(FUNC, IRC, ...) ({ \
738 int RC = IRC; \
739 do { \
740 struct security_hook_list *P; \
741 \
742 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
743 RC = P->hook.FUNC(__VA_ARGS__); \
744 if (RC != 0) \
745 break; \
746 } \
747 } while (0); \
748 RC; \
749 })
750
751 /* Security operations */
752
security_binder_set_context_mgr(const struct cred * mgr)753 int security_binder_set_context_mgr(const struct cred *mgr)
754 {
755 return call_int_hook(binder_set_context_mgr, 0, mgr);
756 }
757
security_binder_transaction(const struct cred * from,const struct cred * to)758 int security_binder_transaction(const struct cred *from,
759 const struct cred *to)
760 {
761 return call_int_hook(binder_transaction, 0, from, to);
762 }
763
security_binder_transfer_binder(const struct cred * from,const struct cred * to)764 int security_binder_transfer_binder(const struct cred *from,
765 const struct cred *to)
766 {
767 return call_int_hook(binder_transfer_binder, 0, from, to);
768 }
769
security_binder_transfer_file(const struct cred * from,const struct cred * to,struct file * file)770 int security_binder_transfer_file(const struct cred *from,
771 const struct cred *to, struct file *file)
772 {
773 return call_int_hook(binder_transfer_file, 0, from, to, file);
774 }
775
security_ptrace_access_check(struct task_struct * child,unsigned int mode)776 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
777 {
778 return call_int_hook(ptrace_access_check, 0, child, mode);
779 }
780
security_ptrace_traceme(struct task_struct * parent)781 int security_ptrace_traceme(struct task_struct *parent)
782 {
783 return call_int_hook(ptrace_traceme, 0, parent);
784 }
785
security_capget(struct task_struct * target,kernel_cap_t * effective,kernel_cap_t * inheritable,kernel_cap_t * permitted)786 int security_capget(struct task_struct *target,
787 kernel_cap_t *effective,
788 kernel_cap_t *inheritable,
789 kernel_cap_t *permitted)
790 {
791 return call_int_hook(capget, 0, target,
792 effective, inheritable, permitted);
793 }
794
security_capset(struct cred * new,const struct cred * old,const kernel_cap_t * effective,const kernel_cap_t * inheritable,const kernel_cap_t * permitted)795 int security_capset(struct cred *new, const struct cred *old,
796 const kernel_cap_t *effective,
797 const kernel_cap_t *inheritable,
798 const kernel_cap_t *permitted)
799 {
800 return call_int_hook(capset, 0, new, old,
801 effective, inheritable, permitted);
802 }
803
security_capable(const struct cred * cred,struct user_namespace * ns,int cap,unsigned int opts)804 int security_capable(const struct cred *cred,
805 struct user_namespace *ns,
806 int cap,
807 unsigned int opts)
808 {
809 return call_int_hook(capable, 0, cred, ns, cap, opts);
810 }
811
security_quotactl(int cmds,int type,int id,struct super_block * sb)812 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
813 {
814 return call_int_hook(quotactl, 0, cmds, type, id, sb);
815 }
816
security_quota_on(struct dentry * dentry)817 int security_quota_on(struct dentry *dentry)
818 {
819 return call_int_hook(quota_on, 0, dentry);
820 }
821
security_syslog(int type)822 int security_syslog(int type)
823 {
824 return call_int_hook(syslog, 0, type);
825 }
826
security_settime64(const struct timespec64 * ts,const struct timezone * tz)827 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
828 {
829 return call_int_hook(settime, 0, ts, tz);
830 }
831
security_vm_enough_memory_mm(struct mm_struct * mm,long pages)832 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
833 {
834 struct security_hook_list *hp;
835 int cap_sys_admin = 1;
836 int rc;
837
838 /*
839 * The module will respond with a positive value if
840 * it thinks the __vm_enough_memory() call should be
841 * made with the cap_sys_admin set. If all of the modules
842 * agree that it should be set it will. If any module
843 * thinks it should not be set it won't.
844 */
845 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
846 rc = hp->hook.vm_enough_memory(mm, pages);
847 if (rc <= 0) {
848 cap_sys_admin = 0;
849 break;
850 }
851 }
852 return __vm_enough_memory(mm, pages, cap_sys_admin);
853 }
854
security_bprm_creds_for_exec(struct linux_binprm * bprm)855 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
856 {
857 return call_int_hook(bprm_creds_for_exec, 0, bprm);
858 }
859
security_bprm_creds_from_file(struct linux_binprm * bprm,struct file * file)860 int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
861 {
862 return call_int_hook(bprm_creds_from_file, 0, bprm, file);
863 }
864
security_bprm_check(struct linux_binprm * bprm)865 int security_bprm_check(struct linux_binprm *bprm)
866 {
867 int ret;
868
869 ret = call_int_hook(bprm_check_security, 0, bprm);
870 if (ret)
871 return ret;
872 return ima_bprm_check(bprm);
873 }
874
security_bprm_committing_creds(struct linux_binprm * bprm)875 void security_bprm_committing_creds(struct linux_binprm *bprm)
876 {
877 call_void_hook(bprm_committing_creds, bprm);
878 }
879
security_bprm_committed_creds(struct linux_binprm * bprm)880 void security_bprm_committed_creds(struct linux_binprm *bprm)
881 {
882 call_void_hook(bprm_committed_creds, bprm);
883 }
884
security_fs_context_dup(struct fs_context * fc,struct fs_context * src_fc)885 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
886 {
887 return call_int_hook(fs_context_dup, 0, fc, src_fc);
888 }
889
security_fs_context_parse_param(struct fs_context * fc,struct fs_parameter * param)890 int security_fs_context_parse_param(struct fs_context *fc,
891 struct fs_parameter *param)
892 {
893 struct security_hook_list *hp;
894 int trc;
895 int rc = -ENOPARAM;
896
897 hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param,
898 list) {
899 trc = hp->hook.fs_context_parse_param(fc, param);
900 if (trc == 0)
901 rc = 0;
902 else if (trc != -ENOPARAM)
903 return trc;
904 }
905 return rc;
906 }
907
security_sb_alloc(struct super_block * sb)908 int security_sb_alloc(struct super_block *sb)
909 {
910 int rc = lsm_superblock_alloc(sb);
911
912 if (unlikely(rc))
913 return rc;
914 rc = call_int_hook(sb_alloc_security, 0, sb);
915 if (unlikely(rc))
916 security_sb_free(sb);
917 return rc;
918 }
919
security_sb_delete(struct super_block * sb)920 void security_sb_delete(struct super_block *sb)
921 {
922 call_void_hook(sb_delete, sb);
923 }
924
security_sb_free(struct super_block * sb)925 void security_sb_free(struct super_block *sb)
926 {
927 call_void_hook(sb_free_security, sb);
928 kfree(sb->s_security);
929 sb->s_security = NULL;
930 }
931
security_free_mnt_opts(void ** mnt_opts)932 void security_free_mnt_opts(void **mnt_opts)
933 {
934 if (!*mnt_opts)
935 return;
936 call_void_hook(sb_free_mnt_opts, *mnt_opts);
937 *mnt_opts = NULL;
938 }
939 EXPORT_SYMBOL(security_free_mnt_opts);
940
security_sb_eat_lsm_opts(char * options,void ** mnt_opts)941 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
942 {
943 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
944 }
945 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
946
security_sb_mnt_opts_compat(struct super_block * sb,void * mnt_opts)947 int security_sb_mnt_opts_compat(struct super_block *sb,
948 void *mnt_opts)
949 {
950 return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts);
951 }
952 EXPORT_SYMBOL(security_sb_mnt_opts_compat);
953
security_sb_remount(struct super_block * sb,void * mnt_opts)954 int security_sb_remount(struct super_block *sb,
955 void *mnt_opts)
956 {
957 return call_int_hook(sb_remount, 0, sb, mnt_opts);
958 }
959 EXPORT_SYMBOL(security_sb_remount);
960
security_sb_kern_mount(struct super_block * sb)961 int security_sb_kern_mount(struct super_block *sb)
962 {
963 return call_int_hook(sb_kern_mount, 0, sb);
964 }
965
security_sb_show_options(struct seq_file * m,struct super_block * sb)966 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
967 {
968 return call_int_hook(sb_show_options, 0, m, sb);
969 }
970
security_sb_statfs(struct dentry * dentry)971 int security_sb_statfs(struct dentry *dentry)
972 {
973 return call_int_hook(sb_statfs, 0, dentry);
974 }
975
security_sb_mount(const char * dev_name,const struct path * path,const char * type,unsigned long flags,void * data)976 int security_sb_mount(const char *dev_name, const struct path *path,
977 const char *type, unsigned long flags, void *data)
978 {
979 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
980 }
981
security_sb_umount(struct vfsmount * mnt,int flags)982 int security_sb_umount(struct vfsmount *mnt, int flags)
983 {
984 return call_int_hook(sb_umount, 0, mnt, flags);
985 }
986
security_sb_pivotroot(const struct path * old_path,const struct path * new_path)987 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
988 {
989 return call_int_hook(sb_pivotroot, 0, old_path, new_path);
990 }
991
security_sb_set_mnt_opts(struct super_block * sb,void * mnt_opts,unsigned long kern_flags,unsigned long * set_kern_flags)992 int security_sb_set_mnt_opts(struct super_block *sb,
993 void *mnt_opts,
994 unsigned long kern_flags,
995 unsigned long *set_kern_flags)
996 {
997 return call_int_hook(sb_set_mnt_opts,
998 mnt_opts ? -EOPNOTSUPP : 0, sb,
999 mnt_opts, kern_flags, set_kern_flags);
1000 }
1001 EXPORT_SYMBOL(security_sb_set_mnt_opts);
1002
security_sb_clone_mnt_opts(const struct super_block * oldsb,struct super_block * newsb,unsigned long kern_flags,unsigned long * set_kern_flags)1003 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1004 struct super_block *newsb,
1005 unsigned long kern_flags,
1006 unsigned long *set_kern_flags)
1007 {
1008 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
1009 kern_flags, set_kern_flags);
1010 }
1011 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1012
security_move_mount(const struct path * from_path,const struct path * to_path)1013 int security_move_mount(const struct path *from_path, const struct path *to_path)
1014 {
1015 return call_int_hook(move_mount, 0, from_path, to_path);
1016 }
1017
security_path_notify(const struct path * path,u64 mask,unsigned int obj_type)1018 int security_path_notify(const struct path *path, u64 mask,
1019 unsigned int obj_type)
1020 {
1021 return call_int_hook(path_notify, 0, path, mask, obj_type);
1022 }
1023
security_inode_alloc(struct inode * inode)1024 int security_inode_alloc(struct inode *inode)
1025 {
1026 int rc = lsm_inode_alloc(inode);
1027
1028 if (unlikely(rc))
1029 return rc;
1030 rc = call_int_hook(inode_alloc_security, 0, inode);
1031 if (unlikely(rc))
1032 security_inode_free(inode);
1033 return rc;
1034 }
1035
inode_free_by_rcu(struct rcu_head * head)1036 static void inode_free_by_rcu(struct rcu_head *head)
1037 {
1038 /*
1039 * The rcu head is at the start of the inode blob
1040 */
1041 kmem_cache_free(lsm_inode_cache, head);
1042 }
1043
security_inode_free(struct inode * inode)1044 void security_inode_free(struct inode *inode)
1045 {
1046 integrity_inode_free(inode);
1047 call_void_hook(inode_free_security, inode);
1048 /*
1049 * The inode may still be referenced in a path walk and
1050 * a call to security_inode_permission() can be made
1051 * after inode_free_security() is called. Ideally, the VFS
1052 * wouldn't do this, but fixing that is a much harder
1053 * job. For now, simply free the i_security via RCU, and
1054 * leave the current inode->i_security pointer intact.
1055 * The inode will be freed after the RCU grace period too.
1056 */
1057 if (inode->i_security)
1058 call_rcu((struct rcu_head *)inode->i_security,
1059 inode_free_by_rcu);
1060 }
1061
security_dentry_init_security(struct dentry * dentry,int mode,const struct qstr * name,const char ** xattr_name,void ** ctx,u32 * ctxlen)1062 int security_dentry_init_security(struct dentry *dentry, int mode,
1063 const struct qstr *name,
1064 const char **xattr_name, void **ctx,
1065 u32 *ctxlen)
1066 {
1067 struct security_hook_list *hp;
1068 int rc;
1069
1070 /*
1071 * Only one module will provide a security context.
1072 */
1073 hlist_for_each_entry(hp, &security_hook_heads.dentry_init_security, list) {
1074 rc = hp->hook.dentry_init_security(dentry, mode, name,
1075 xattr_name, ctx, ctxlen);
1076 if (rc != LSM_RET_DEFAULT(dentry_init_security))
1077 return rc;
1078 }
1079 return LSM_RET_DEFAULT(dentry_init_security);
1080 }
1081 EXPORT_SYMBOL(security_dentry_init_security);
1082
security_dentry_create_files_as(struct dentry * dentry,int mode,struct qstr * name,const struct cred * old,struct cred * new)1083 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1084 struct qstr *name,
1085 const struct cred *old, struct cred *new)
1086 {
1087 return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1088 name, old, new);
1089 }
1090 EXPORT_SYMBOL(security_dentry_create_files_as);
1091
security_inode_init_security(struct inode * inode,struct inode * dir,const struct qstr * qstr,const initxattrs initxattrs,void * fs_data)1092 int security_inode_init_security(struct inode *inode, struct inode *dir,
1093 const struct qstr *qstr,
1094 const initxattrs initxattrs, void *fs_data)
1095 {
1096 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1097 struct xattr *lsm_xattr, *evm_xattr, *xattr;
1098 int ret;
1099
1100 if (unlikely(IS_PRIVATE(inode)))
1101 return 0;
1102
1103 if (!initxattrs)
1104 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1105 dir, qstr, NULL, NULL, NULL);
1106 memset(new_xattrs, 0, sizeof(new_xattrs));
1107 lsm_xattr = new_xattrs;
1108 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1109 &lsm_xattr->name,
1110 &lsm_xattr->value,
1111 &lsm_xattr->value_len);
1112 if (ret)
1113 goto out;
1114
1115 evm_xattr = lsm_xattr + 1;
1116 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1117 if (ret)
1118 goto out;
1119 ret = initxattrs(inode, new_xattrs, fs_data);
1120 out:
1121 for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1122 kfree(xattr->value);
1123 return (ret == -EOPNOTSUPP) ? 0 : ret;
1124 }
1125 EXPORT_SYMBOL(security_inode_init_security);
1126
security_inode_init_security_anon(struct inode * inode,const struct qstr * name,const struct inode * context_inode)1127 int security_inode_init_security_anon(struct inode *inode,
1128 const struct qstr *name,
1129 const struct inode *context_inode)
1130 {
1131 return call_int_hook(inode_init_security_anon, 0, inode, name,
1132 context_inode);
1133 }
1134
security_old_inode_init_security(struct inode * inode,struct inode * dir,const struct qstr * qstr,const char ** name,void ** value,size_t * len)1135 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1136 const struct qstr *qstr, const char **name,
1137 void **value, size_t *len)
1138 {
1139 if (unlikely(IS_PRIVATE(inode)))
1140 return -EOPNOTSUPP;
1141 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1142 qstr, name, value, len);
1143 }
1144 EXPORT_SYMBOL(security_old_inode_init_security);
1145
1146 #ifdef CONFIG_SECURITY_PATH
security_path_mknod(const struct path * dir,struct dentry * dentry,umode_t mode,unsigned int dev)1147 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1148 unsigned int dev)
1149 {
1150 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1151 return 0;
1152 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1153 }
1154 EXPORT_SYMBOL(security_path_mknod);
1155
security_path_mkdir(const struct path * dir,struct dentry * dentry,umode_t mode)1156 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1157 {
1158 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1159 return 0;
1160 return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1161 }
1162 EXPORT_SYMBOL(security_path_mkdir);
1163
security_path_rmdir(const struct path * dir,struct dentry * dentry)1164 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1165 {
1166 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1167 return 0;
1168 return call_int_hook(path_rmdir, 0, dir, dentry);
1169 }
1170
security_path_unlink(const struct path * dir,struct dentry * dentry)1171 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1172 {
1173 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1174 return 0;
1175 return call_int_hook(path_unlink, 0, dir, dentry);
1176 }
1177 EXPORT_SYMBOL(security_path_unlink);
1178
security_path_symlink(const struct path * dir,struct dentry * dentry,const char * old_name)1179 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1180 const char *old_name)
1181 {
1182 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1183 return 0;
1184 return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1185 }
1186
security_path_link(struct dentry * old_dentry,const struct path * new_dir,struct dentry * new_dentry)1187 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1188 struct dentry *new_dentry)
1189 {
1190 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1191 return 0;
1192 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1193 }
1194
security_path_rename(const struct path * old_dir,struct dentry * old_dentry,const struct path * new_dir,struct dentry * new_dentry,unsigned int flags)1195 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1196 const struct path *new_dir, struct dentry *new_dentry,
1197 unsigned int flags)
1198 {
1199 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1200 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1201 return 0;
1202
1203 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1204 new_dentry, flags);
1205 }
1206 EXPORT_SYMBOL(security_path_rename);
1207
security_path_truncate(const struct path * path)1208 int security_path_truncate(const struct path *path)
1209 {
1210 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1211 return 0;
1212 return call_int_hook(path_truncate, 0, path);
1213 }
1214
security_path_chmod(const struct path * path,umode_t mode)1215 int security_path_chmod(const struct path *path, umode_t mode)
1216 {
1217 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1218 return 0;
1219 return call_int_hook(path_chmod, 0, path, mode);
1220 }
1221
security_path_chown(const struct path * path,kuid_t uid,kgid_t gid)1222 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1223 {
1224 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1225 return 0;
1226 return call_int_hook(path_chown, 0, path, uid, gid);
1227 }
1228
security_path_chroot(const struct path * path)1229 int security_path_chroot(const struct path *path)
1230 {
1231 return call_int_hook(path_chroot, 0, path);
1232 }
1233 #endif
1234
security_inode_create(struct inode * dir,struct dentry * dentry,umode_t mode)1235 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1236 {
1237 if (unlikely(IS_PRIVATE(dir)))
1238 return 0;
1239 return call_int_hook(inode_create, 0, dir, dentry, mode);
1240 }
1241 EXPORT_SYMBOL_GPL(security_inode_create);
1242
security_inode_link(struct dentry * old_dentry,struct inode * dir,struct dentry * new_dentry)1243 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1244 struct dentry *new_dentry)
1245 {
1246 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1247 return 0;
1248 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1249 }
1250
security_inode_unlink(struct inode * dir,struct dentry * dentry)1251 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1252 {
1253 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1254 return 0;
1255 return call_int_hook(inode_unlink, 0, dir, dentry);
1256 }
1257
security_inode_symlink(struct inode * dir,struct dentry * dentry,const char * old_name)1258 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1259 const char *old_name)
1260 {
1261 if (unlikely(IS_PRIVATE(dir)))
1262 return 0;
1263 return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1264 }
1265
security_inode_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)1266 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1267 {
1268 if (unlikely(IS_PRIVATE(dir)))
1269 return 0;
1270 return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1271 }
1272 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1273
security_inode_rmdir(struct inode * dir,struct dentry * dentry)1274 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1275 {
1276 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1277 return 0;
1278 return call_int_hook(inode_rmdir, 0, dir, dentry);
1279 }
1280
security_inode_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)1281 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1282 {
1283 if (unlikely(IS_PRIVATE(dir)))
1284 return 0;
1285 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1286 }
1287
security_inode_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)1288 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1289 struct inode *new_dir, struct dentry *new_dentry,
1290 unsigned int flags)
1291 {
1292 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1293 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1294 return 0;
1295
1296 if (flags & RENAME_EXCHANGE) {
1297 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1298 old_dir, old_dentry);
1299 if (err)
1300 return err;
1301 }
1302
1303 return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1304 new_dir, new_dentry);
1305 }
1306
security_inode_readlink(struct dentry * dentry)1307 int security_inode_readlink(struct dentry *dentry)
1308 {
1309 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1310 return 0;
1311 return call_int_hook(inode_readlink, 0, dentry);
1312 }
1313
security_inode_follow_link(struct dentry * dentry,struct inode * inode,bool rcu)1314 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1315 bool rcu)
1316 {
1317 if (unlikely(IS_PRIVATE(inode)))
1318 return 0;
1319 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1320 }
1321
security_inode_permission(struct inode * inode,int mask)1322 int security_inode_permission(struct inode *inode, int mask)
1323 {
1324 if (unlikely(IS_PRIVATE(inode)))
1325 return 0;
1326 return call_int_hook(inode_permission, 0, inode, mask);
1327 }
1328
security_inode_setattr(struct user_namespace * mnt_userns,struct dentry * dentry,struct iattr * attr)1329 int security_inode_setattr(struct user_namespace *mnt_userns,
1330 struct dentry *dentry, struct iattr *attr)
1331 {
1332 int ret;
1333
1334 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1335 return 0;
1336 ret = call_int_hook(inode_setattr, 0, dentry, attr);
1337 if (ret)
1338 return ret;
1339 return evm_inode_setattr(mnt_userns, dentry, attr);
1340 }
1341 EXPORT_SYMBOL_GPL(security_inode_setattr);
1342
security_inode_getattr(const struct path * path)1343 int security_inode_getattr(const struct path *path)
1344 {
1345 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1346 return 0;
1347 return call_int_hook(inode_getattr, 0, path);
1348 }
1349
security_inode_setxattr(struct user_namespace * mnt_userns,struct dentry * dentry,const char * name,const void * value,size_t size,int flags)1350 int security_inode_setxattr(struct user_namespace *mnt_userns,
1351 struct dentry *dentry, const char *name,
1352 const void *value, size_t size, int flags)
1353 {
1354 int ret;
1355
1356 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1357 return 0;
1358 /*
1359 * SELinux and Smack integrate the cap call,
1360 * so assume that all LSMs supplying this call do so.
1361 */
1362 ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value,
1363 size, flags);
1364
1365 if (ret == 1)
1366 ret = cap_inode_setxattr(dentry, name, value, size, flags);
1367 if (ret)
1368 return ret;
1369 ret = ima_inode_setxattr(dentry, name, value, size);
1370 if (ret)
1371 return ret;
1372 return evm_inode_setxattr(mnt_userns, dentry, name, value, size);
1373 }
1374
security_inode_post_setxattr(struct dentry * dentry,const char * name,const void * value,size_t size,int flags)1375 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1376 const void *value, size_t size, int flags)
1377 {
1378 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1379 return;
1380 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1381 evm_inode_post_setxattr(dentry, name, value, size);
1382 }
1383
security_inode_getxattr(struct dentry * dentry,const char * name)1384 int security_inode_getxattr(struct dentry *dentry, const char *name)
1385 {
1386 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1387 return 0;
1388 return call_int_hook(inode_getxattr, 0, dentry, name);
1389 }
1390
security_inode_listxattr(struct dentry * dentry)1391 int security_inode_listxattr(struct dentry *dentry)
1392 {
1393 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1394 return 0;
1395 return call_int_hook(inode_listxattr, 0, dentry);
1396 }
1397
security_inode_removexattr(struct user_namespace * mnt_userns,struct dentry * dentry,const char * name)1398 int security_inode_removexattr(struct user_namespace *mnt_userns,
1399 struct dentry *dentry, const char *name)
1400 {
1401 int ret;
1402
1403 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1404 return 0;
1405 /*
1406 * SELinux and Smack integrate the cap call,
1407 * so assume that all LSMs supplying this call do so.
1408 */
1409 ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name);
1410 if (ret == 1)
1411 ret = cap_inode_removexattr(mnt_userns, dentry, name);
1412 if (ret)
1413 return ret;
1414 ret = ima_inode_removexattr(dentry, name);
1415 if (ret)
1416 return ret;
1417 return evm_inode_removexattr(mnt_userns, dentry, name);
1418 }
1419
security_inode_need_killpriv(struct dentry * dentry)1420 int security_inode_need_killpriv(struct dentry *dentry)
1421 {
1422 return call_int_hook(inode_need_killpriv, 0, dentry);
1423 }
1424
security_inode_killpriv(struct user_namespace * mnt_userns,struct dentry * dentry)1425 int security_inode_killpriv(struct user_namespace *mnt_userns,
1426 struct dentry *dentry)
1427 {
1428 return call_int_hook(inode_killpriv, 0, mnt_userns, dentry);
1429 }
1430
security_inode_getsecurity(struct user_namespace * mnt_userns,struct inode * inode,const char * name,void ** buffer,bool alloc)1431 int security_inode_getsecurity(struct user_namespace *mnt_userns,
1432 struct inode *inode, const char *name,
1433 void **buffer, bool alloc)
1434 {
1435 struct security_hook_list *hp;
1436 int rc;
1437
1438 if (unlikely(IS_PRIVATE(inode)))
1439 return LSM_RET_DEFAULT(inode_getsecurity);
1440 /*
1441 * Only one module will provide an attribute with a given name.
1442 */
1443 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1444 rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc);
1445 if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1446 return rc;
1447 }
1448 return LSM_RET_DEFAULT(inode_getsecurity);
1449 }
1450
security_inode_setsecurity(struct inode * inode,const char * name,const void * value,size_t size,int flags)1451 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1452 {
1453 struct security_hook_list *hp;
1454 int rc;
1455
1456 if (unlikely(IS_PRIVATE(inode)))
1457 return LSM_RET_DEFAULT(inode_setsecurity);
1458 /*
1459 * Only one module will provide an attribute with a given name.
1460 */
1461 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1462 rc = hp->hook.inode_setsecurity(inode, name, value, size,
1463 flags);
1464 if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1465 return rc;
1466 }
1467 return LSM_RET_DEFAULT(inode_setsecurity);
1468 }
1469
security_inode_listsecurity(struct inode * inode,char * buffer,size_t buffer_size)1470 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1471 {
1472 if (unlikely(IS_PRIVATE(inode)))
1473 return 0;
1474 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1475 }
1476 EXPORT_SYMBOL(security_inode_listsecurity);
1477
security_inode_getsecid(struct inode * inode,u32 * secid)1478 void security_inode_getsecid(struct inode *inode, u32 *secid)
1479 {
1480 call_void_hook(inode_getsecid, inode, secid);
1481 }
1482
security_inode_copy_up(struct dentry * src,struct cred ** new)1483 int security_inode_copy_up(struct dentry *src, struct cred **new)
1484 {
1485 return call_int_hook(inode_copy_up, 0, src, new);
1486 }
1487 EXPORT_SYMBOL(security_inode_copy_up);
1488
security_inode_copy_up_xattr(const char * name)1489 int security_inode_copy_up_xattr(const char *name)
1490 {
1491 struct security_hook_list *hp;
1492 int rc;
1493
1494 /*
1495 * The implementation can return 0 (accept the xattr), 1 (discard the
1496 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
1497 * any other error code incase of an error.
1498 */
1499 hlist_for_each_entry(hp,
1500 &security_hook_heads.inode_copy_up_xattr, list) {
1501 rc = hp->hook.inode_copy_up_xattr(name);
1502 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
1503 return rc;
1504 }
1505
1506 return LSM_RET_DEFAULT(inode_copy_up_xattr);
1507 }
1508 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1509
security_kernfs_init_security(struct kernfs_node * kn_dir,struct kernfs_node * kn)1510 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1511 struct kernfs_node *kn)
1512 {
1513 return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1514 }
1515
security_file_permission(struct file * file,int mask)1516 int security_file_permission(struct file *file, int mask)
1517 {
1518 int ret;
1519
1520 ret = call_int_hook(file_permission, 0, file, mask);
1521 if (ret)
1522 return ret;
1523
1524 return fsnotify_perm(file, mask);
1525 }
1526
security_file_alloc(struct file * file)1527 int security_file_alloc(struct file *file)
1528 {
1529 int rc = lsm_file_alloc(file);
1530
1531 if (rc)
1532 return rc;
1533 rc = call_int_hook(file_alloc_security, 0, file);
1534 if (unlikely(rc))
1535 security_file_free(file);
1536 return rc;
1537 }
1538
security_file_free(struct file * file)1539 void security_file_free(struct file *file)
1540 {
1541 void *blob;
1542
1543 call_void_hook(file_free_security, file);
1544
1545 blob = file->f_security;
1546 if (blob) {
1547 file->f_security = NULL;
1548 kmem_cache_free(lsm_file_cache, blob);
1549 }
1550 }
1551
security_file_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1552 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1553 {
1554 return call_int_hook(file_ioctl, 0, file, cmd, arg);
1555 }
1556 EXPORT_SYMBOL_GPL(security_file_ioctl);
1557
mmap_prot(struct file * file,unsigned long prot)1558 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1559 {
1560 /*
1561 * Does we have PROT_READ and does the application expect
1562 * it to imply PROT_EXEC? If not, nothing to talk about...
1563 */
1564 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1565 return prot;
1566 if (!(current->personality & READ_IMPLIES_EXEC))
1567 return prot;
1568 /*
1569 * if that's an anonymous mapping, let it.
1570 */
1571 if (!file)
1572 return prot | PROT_EXEC;
1573 /*
1574 * ditto if it's not on noexec mount, except that on !MMU we need
1575 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1576 */
1577 if (!path_noexec(&file->f_path)) {
1578 #ifndef CONFIG_MMU
1579 if (file->f_op->mmap_capabilities) {
1580 unsigned caps = file->f_op->mmap_capabilities(file);
1581 if (!(caps & NOMMU_MAP_EXEC))
1582 return prot;
1583 }
1584 #endif
1585 return prot | PROT_EXEC;
1586 }
1587 /* anything on noexec mount won't get PROT_EXEC */
1588 return prot;
1589 }
1590
security_mmap_file(struct file * file,unsigned long prot,unsigned long flags)1591 int security_mmap_file(struct file *file, unsigned long prot,
1592 unsigned long flags)
1593 {
1594 int ret;
1595 ret = call_int_hook(mmap_file, 0, file, prot,
1596 mmap_prot(file, prot), flags);
1597 if (ret)
1598 return ret;
1599 return ima_file_mmap(file, prot);
1600 }
1601
security_mmap_addr(unsigned long addr)1602 int security_mmap_addr(unsigned long addr)
1603 {
1604 return call_int_hook(mmap_addr, 0, addr);
1605 }
1606
security_file_mprotect(struct vm_area_struct * vma,unsigned long reqprot,unsigned long prot)1607 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1608 unsigned long prot)
1609 {
1610 int ret;
1611
1612 ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1613 if (ret)
1614 return ret;
1615 return ima_file_mprotect(vma, prot);
1616 }
1617
security_file_lock(struct file * file,unsigned int cmd)1618 int security_file_lock(struct file *file, unsigned int cmd)
1619 {
1620 return call_int_hook(file_lock, 0, file, cmd);
1621 }
1622
security_file_fcntl(struct file * file,unsigned int cmd,unsigned long arg)1623 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1624 {
1625 return call_int_hook(file_fcntl, 0, file, cmd, arg);
1626 }
1627
security_file_set_fowner(struct file * file)1628 void security_file_set_fowner(struct file *file)
1629 {
1630 call_void_hook(file_set_fowner, file);
1631 }
1632
security_file_send_sigiotask(struct task_struct * tsk,struct fown_struct * fown,int sig)1633 int security_file_send_sigiotask(struct task_struct *tsk,
1634 struct fown_struct *fown, int sig)
1635 {
1636 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1637 }
1638
security_file_receive(struct file * file)1639 int security_file_receive(struct file *file)
1640 {
1641 return call_int_hook(file_receive, 0, file);
1642 }
1643
security_file_open(struct file * file)1644 int security_file_open(struct file *file)
1645 {
1646 int ret;
1647
1648 ret = call_int_hook(file_open, 0, file);
1649 if (ret)
1650 return ret;
1651
1652 return fsnotify_perm(file, MAY_OPEN);
1653 }
1654
security_task_alloc(struct task_struct * task,unsigned long clone_flags)1655 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1656 {
1657 int rc = lsm_task_alloc(task);
1658
1659 if (rc)
1660 return rc;
1661 rc = call_int_hook(task_alloc, 0, task, clone_flags);
1662 if (unlikely(rc))
1663 security_task_free(task);
1664 return rc;
1665 }
1666
security_task_free(struct task_struct * task)1667 void security_task_free(struct task_struct *task)
1668 {
1669 call_void_hook(task_free, task);
1670
1671 kfree(task->security);
1672 task->security = NULL;
1673 }
1674
security_cred_alloc_blank(struct cred * cred,gfp_t gfp)1675 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1676 {
1677 int rc = lsm_cred_alloc(cred, gfp);
1678
1679 if (rc)
1680 return rc;
1681
1682 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1683 if (unlikely(rc))
1684 security_cred_free(cred);
1685 return rc;
1686 }
1687
security_cred_free(struct cred * cred)1688 void security_cred_free(struct cred *cred)
1689 {
1690 /*
1691 * There is a failure case in prepare_creds() that
1692 * may result in a call here with ->security being NULL.
1693 */
1694 if (unlikely(cred->security == NULL))
1695 return;
1696
1697 call_void_hook(cred_free, cred);
1698
1699 kfree(cred->security);
1700 cred->security = NULL;
1701 }
1702
security_prepare_creds(struct cred * new,const struct cred * old,gfp_t gfp)1703 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1704 {
1705 int rc = lsm_cred_alloc(new, gfp);
1706
1707 if (rc)
1708 return rc;
1709
1710 rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1711 if (unlikely(rc))
1712 security_cred_free(new);
1713 return rc;
1714 }
1715
security_transfer_creds(struct cred * new,const struct cred * old)1716 void security_transfer_creds(struct cred *new, const struct cred *old)
1717 {
1718 call_void_hook(cred_transfer, new, old);
1719 }
1720
security_cred_getsecid(const struct cred * c,u32 * secid)1721 void security_cred_getsecid(const struct cred *c, u32 *secid)
1722 {
1723 *secid = 0;
1724 call_void_hook(cred_getsecid, c, secid);
1725 }
1726 EXPORT_SYMBOL(security_cred_getsecid);
1727
security_kernel_act_as(struct cred * new,u32 secid)1728 int security_kernel_act_as(struct cred *new, u32 secid)
1729 {
1730 return call_int_hook(kernel_act_as, 0, new, secid);
1731 }
1732
security_kernel_create_files_as(struct cred * new,struct inode * inode)1733 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1734 {
1735 return call_int_hook(kernel_create_files_as, 0, new, inode);
1736 }
1737
security_kernel_module_request(char * kmod_name)1738 int security_kernel_module_request(char *kmod_name)
1739 {
1740 int ret;
1741
1742 ret = call_int_hook(kernel_module_request, 0, kmod_name);
1743 if (ret)
1744 return ret;
1745 return integrity_kernel_module_request(kmod_name);
1746 }
1747
security_kernel_read_file(struct file * file,enum kernel_read_file_id id,bool contents)1748 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
1749 bool contents)
1750 {
1751 int ret;
1752
1753 ret = call_int_hook(kernel_read_file, 0, file, id, contents);
1754 if (ret)
1755 return ret;
1756 return ima_read_file(file, id, contents);
1757 }
1758 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1759
security_kernel_post_read_file(struct file * file,char * buf,loff_t size,enum kernel_read_file_id id)1760 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1761 enum kernel_read_file_id id)
1762 {
1763 int ret;
1764
1765 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1766 if (ret)
1767 return ret;
1768 return ima_post_read_file(file, buf, size, id);
1769 }
1770 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1771
security_kernel_load_data(enum kernel_load_data_id id,bool contents)1772 int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
1773 {
1774 int ret;
1775
1776 ret = call_int_hook(kernel_load_data, 0, id, contents);
1777 if (ret)
1778 return ret;
1779 return ima_load_data(id, contents);
1780 }
1781 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1782
security_kernel_post_load_data(char * buf,loff_t size,enum kernel_load_data_id id,char * description)1783 int security_kernel_post_load_data(char *buf, loff_t size,
1784 enum kernel_load_data_id id,
1785 char *description)
1786 {
1787 int ret;
1788
1789 ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
1790 description);
1791 if (ret)
1792 return ret;
1793 return ima_post_load_data(buf, size, id, description);
1794 }
1795 EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
1796
security_task_fix_setuid(struct cred * new,const struct cred * old,int flags)1797 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1798 int flags)
1799 {
1800 return call_int_hook(task_fix_setuid, 0, new, old, flags);
1801 }
1802
security_task_fix_setgid(struct cred * new,const struct cred * old,int flags)1803 int security_task_fix_setgid(struct cred *new, const struct cred *old,
1804 int flags)
1805 {
1806 return call_int_hook(task_fix_setgid, 0, new, old, flags);
1807 }
1808
security_task_fix_setgroups(struct cred * new,const struct cred * old)1809 int security_task_fix_setgroups(struct cred *new, const struct cred *old)
1810 {
1811 return call_int_hook(task_fix_setgroups, 0, new, old);
1812 }
1813
security_task_setpgid(struct task_struct * p,pid_t pgid)1814 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1815 {
1816 return call_int_hook(task_setpgid, 0, p, pgid);
1817 }
1818
security_task_getpgid(struct task_struct * p)1819 int security_task_getpgid(struct task_struct *p)
1820 {
1821 return call_int_hook(task_getpgid, 0, p);
1822 }
1823
security_task_getsid(struct task_struct * p)1824 int security_task_getsid(struct task_struct *p)
1825 {
1826 return call_int_hook(task_getsid, 0, p);
1827 }
1828
security_current_getsecid_subj(u32 * secid)1829 void security_current_getsecid_subj(u32 *secid)
1830 {
1831 *secid = 0;
1832 call_void_hook(current_getsecid_subj, secid);
1833 }
1834 EXPORT_SYMBOL(security_current_getsecid_subj);
1835
security_task_getsecid_obj(struct task_struct * p,u32 * secid)1836 void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
1837 {
1838 *secid = 0;
1839 call_void_hook(task_getsecid_obj, p, secid);
1840 }
1841 EXPORT_SYMBOL(security_task_getsecid_obj);
1842
security_task_setnice(struct task_struct * p,int nice)1843 int security_task_setnice(struct task_struct *p, int nice)
1844 {
1845 return call_int_hook(task_setnice, 0, p, nice);
1846 }
1847
security_task_setioprio(struct task_struct * p,int ioprio)1848 int security_task_setioprio(struct task_struct *p, int ioprio)
1849 {
1850 return call_int_hook(task_setioprio, 0, p, ioprio);
1851 }
1852
security_task_getioprio(struct task_struct * p)1853 int security_task_getioprio(struct task_struct *p)
1854 {
1855 return call_int_hook(task_getioprio, 0, p);
1856 }
1857
security_task_prlimit(const struct cred * cred,const struct cred * tcred,unsigned int flags)1858 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1859 unsigned int flags)
1860 {
1861 return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1862 }
1863
security_task_setrlimit(struct task_struct * p,unsigned int resource,struct rlimit * new_rlim)1864 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1865 struct rlimit *new_rlim)
1866 {
1867 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1868 }
1869
security_task_setscheduler(struct task_struct * p)1870 int security_task_setscheduler(struct task_struct *p)
1871 {
1872 return call_int_hook(task_setscheduler, 0, p);
1873 }
1874
security_task_getscheduler(struct task_struct * p)1875 int security_task_getscheduler(struct task_struct *p)
1876 {
1877 return call_int_hook(task_getscheduler, 0, p);
1878 }
1879
security_task_movememory(struct task_struct * p)1880 int security_task_movememory(struct task_struct *p)
1881 {
1882 return call_int_hook(task_movememory, 0, p);
1883 }
1884
security_task_kill(struct task_struct * p,struct kernel_siginfo * info,int sig,const struct cred * cred)1885 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1886 int sig, const struct cred *cred)
1887 {
1888 return call_int_hook(task_kill, 0, p, info, sig, cred);
1889 }
1890
security_task_prctl(int option,unsigned long arg2,unsigned long arg3,unsigned long arg4,unsigned long arg5)1891 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1892 unsigned long arg4, unsigned long arg5)
1893 {
1894 int thisrc;
1895 int rc = LSM_RET_DEFAULT(task_prctl);
1896 struct security_hook_list *hp;
1897
1898 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1899 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1900 if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1901 rc = thisrc;
1902 if (thisrc != 0)
1903 break;
1904 }
1905 }
1906 return rc;
1907 }
1908
security_task_to_inode(struct task_struct * p,struct inode * inode)1909 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1910 {
1911 call_void_hook(task_to_inode, p, inode);
1912 }
1913
security_create_user_ns(const struct cred * cred)1914 int security_create_user_ns(const struct cred *cred)
1915 {
1916 return call_int_hook(userns_create, 0, cred);
1917 }
1918
security_ipc_permission(struct kern_ipc_perm * ipcp,short flag)1919 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1920 {
1921 return call_int_hook(ipc_permission, 0, ipcp, flag);
1922 }
1923
security_ipc_getsecid(struct kern_ipc_perm * ipcp,u32 * secid)1924 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1925 {
1926 *secid = 0;
1927 call_void_hook(ipc_getsecid, ipcp, secid);
1928 }
1929
security_msg_msg_alloc(struct msg_msg * msg)1930 int security_msg_msg_alloc(struct msg_msg *msg)
1931 {
1932 int rc = lsm_msg_msg_alloc(msg);
1933
1934 if (unlikely(rc))
1935 return rc;
1936 rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1937 if (unlikely(rc))
1938 security_msg_msg_free(msg);
1939 return rc;
1940 }
1941
security_msg_msg_free(struct msg_msg * msg)1942 void security_msg_msg_free(struct msg_msg *msg)
1943 {
1944 call_void_hook(msg_msg_free_security, msg);
1945 kfree(msg->security);
1946 msg->security = NULL;
1947 }
1948
security_msg_queue_alloc(struct kern_ipc_perm * msq)1949 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1950 {
1951 int rc = lsm_ipc_alloc(msq);
1952
1953 if (unlikely(rc))
1954 return rc;
1955 rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1956 if (unlikely(rc))
1957 security_msg_queue_free(msq);
1958 return rc;
1959 }
1960
security_msg_queue_free(struct kern_ipc_perm * msq)1961 void security_msg_queue_free(struct kern_ipc_perm *msq)
1962 {
1963 call_void_hook(msg_queue_free_security, msq);
1964 kfree(msq->security);
1965 msq->security = NULL;
1966 }
1967
security_msg_queue_associate(struct kern_ipc_perm * msq,int msqflg)1968 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1969 {
1970 return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1971 }
1972
security_msg_queue_msgctl(struct kern_ipc_perm * msq,int cmd)1973 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1974 {
1975 return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1976 }
1977
security_msg_queue_msgsnd(struct kern_ipc_perm * msq,struct msg_msg * msg,int msqflg)1978 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1979 struct msg_msg *msg, int msqflg)
1980 {
1981 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1982 }
1983
security_msg_queue_msgrcv(struct kern_ipc_perm * msq,struct msg_msg * msg,struct task_struct * target,long type,int mode)1984 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1985 struct task_struct *target, long type, int mode)
1986 {
1987 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1988 }
1989
security_shm_alloc(struct kern_ipc_perm * shp)1990 int security_shm_alloc(struct kern_ipc_perm *shp)
1991 {
1992 int rc = lsm_ipc_alloc(shp);
1993
1994 if (unlikely(rc))
1995 return rc;
1996 rc = call_int_hook(shm_alloc_security, 0, shp);
1997 if (unlikely(rc))
1998 security_shm_free(shp);
1999 return rc;
2000 }
2001
security_shm_free(struct kern_ipc_perm * shp)2002 void security_shm_free(struct kern_ipc_perm *shp)
2003 {
2004 call_void_hook(shm_free_security, shp);
2005 kfree(shp->security);
2006 shp->security = NULL;
2007 }
2008
security_shm_associate(struct kern_ipc_perm * shp,int shmflg)2009 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
2010 {
2011 return call_int_hook(shm_associate, 0, shp, shmflg);
2012 }
2013
security_shm_shmctl(struct kern_ipc_perm * shp,int cmd)2014 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
2015 {
2016 return call_int_hook(shm_shmctl, 0, shp, cmd);
2017 }
2018
security_shm_shmat(struct kern_ipc_perm * shp,char __user * shmaddr,int shmflg)2019 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
2020 {
2021 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
2022 }
2023
security_sem_alloc(struct kern_ipc_perm * sma)2024 int security_sem_alloc(struct kern_ipc_perm *sma)
2025 {
2026 int rc = lsm_ipc_alloc(sma);
2027
2028 if (unlikely(rc))
2029 return rc;
2030 rc = call_int_hook(sem_alloc_security, 0, sma);
2031 if (unlikely(rc))
2032 security_sem_free(sma);
2033 return rc;
2034 }
2035
security_sem_free(struct kern_ipc_perm * sma)2036 void security_sem_free(struct kern_ipc_perm *sma)
2037 {
2038 call_void_hook(sem_free_security, sma);
2039 kfree(sma->security);
2040 sma->security = NULL;
2041 }
2042
security_sem_associate(struct kern_ipc_perm * sma,int semflg)2043 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
2044 {
2045 return call_int_hook(sem_associate, 0, sma, semflg);
2046 }
2047
security_sem_semctl(struct kern_ipc_perm * sma,int cmd)2048 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
2049 {
2050 return call_int_hook(sem_semctl, 0, sma, cmd);
2051 }
2052
security_sem_semop(struct kern_ipc_perm * sma,struct sembuf * sops,unsigned nsops,int alter)2053 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
2054 unsigned nsops, int alter)
2055 {
2056 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
2057 }
2058
security_d_instantiate(struct dentry * dentry,struct inode * inode)2059 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
2060 {
2061 if (unlikely(inode && IS_PRIVATE(inode)))
2062 return;
2063 call_void_hook(d_instantiate, dentry, inode);
2064 }
2065 EXPORT_SYMBOL(security_d_instantiate);
2066
security_getprocattr(struct task_struct * p,const char * lsm,const char * name,char ** value)2067 int security_getprocattr(struct task_struct *p, const char *lsm,
2068 const char *name, char **value)
2069 {
2070 struct security_hook_list *hp;
2071
2072 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
2073 if (lsm != NULL && strcmp(lsm, hp->lsm))
2074 continue;
2075 return hp->hook.getprocattr(p, name, value);
2076 }
2077 return LSM_RET_DEFAULT(getprocattr);
2078 }
2079
security_setprocattr(const char * lsm,const char * name,void * value,size_t size)2080 int security_setprocattr(const char *lsm, const char *name, void *value,
2081 size_t size)
2082 {
2083 struct security_hook_list *hp;
2084
2085 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
2086 if (lsm != NULL && strcmp(lsm, hp->lsm))
2087 continue;
2088 return hp->hook.setprocattr(name, value, size);
2089 }
2090 return LSM_RET_DEFAULT(setprocattr);
2091 }
2092
security_netlink_send(struct sock * sk,struct sk_buff * skb)2093 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
2094 {
2095 return call_int_hook(netlink_send, 0, sk, skb);
2096 }
2097
security_ismaclabel(const char * name)2098 int security_ismaclabel(const char *name)
2099 {
2100 return call_int_hook(ismaclabel, 0, name);
2101 }
2102 EXPORT_SYMBOL(security_ismaclabel);
2103
security_secid_to_secctx(u32 secid,char ** secdata,u32 * seclen)2104 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2105 {
2106 struct security_hook_list *hp;
2107 int rc;
2108
2109 /*
2110 * Currently, only one LSM can implement secid_to_secctx (i.e this
2111 * LSM hook is not "stackable").
2112 */
2113 hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
2114 rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
2115 if (rc != LSM_RET_DEFAULT(secid_to_secctx))
2116 return rc;
2117 }
2118
2119 return LSM_RET_DEFAULT(secid_to_secctx);
2120 }
2121 EXPORT_SYMBOL(security_secid_to_secctx);
2122
security_secctx_to_secid(const char * secdata,u32 seclen,u32 * secid)2123 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2124 {
2125 *secid = 0;
2126 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2127 }
2128 EXPORT_SYMBOL(security_secctx_to_secid);
2129
security_release_secctx(char * secdata,u32 seclen)2130 void security_release_secctx(char *secdata, u32 seclen)
2131 {
2132 call_void_hook(release_secctx, secdata, seclen);
2133 }
2134 EXPORT_SYMBOL(security_release_secctx);
2135
security_inode_invalidate_secctx(struct inode * inode)2136 void security_inode_invalidate_secctx(struct inode *inode)
2137 {
2138 call_void_hook(inode_invalidate_secctx, inode);
2139 }
2140 EXPORT_SYMBOL(security_inode_invalidate_secctx);
2141
security_inode_notifysecctx(struct inode * inode,void * ctx,u32 ctxlen)2142 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2143 {
2144 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2145 }
2146 EXPORT_SYMBOL(security_inode_notifysecctx);
2147
security_inode_setsecctx(struct dentry * dentry,void * ctx,u32 ctxlen)2148 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2149 {
2150 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2151 }
2152 EXPORT_SYMBOL(security_inode_setsecctx);
2153
security_inode_getsecctx(struct inode * inode,void ** ctx,u32 * ctxlen)2154 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2155 {
2156 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
2157 }
2158 EXPORT_SYMBOL(security_inode_getsecctx);
2159
2160 #ifdef CONFIG_WATCH_QUEUE
security_post_notification(const struct cred * w_cred,const struct cred * cred,struct watch_notification * n)2161 int security_post_notification(const struct cred *w_cred,
2162 const struct cred *cred,
2163 struct watch_notification *n)
2164 {
2165 return call_int_hook(post_notification, 0, w_cred, cred, n);
2166 }
2167 #endif /* CONFIG_WATCH_QUEUE */
2168
2169 #ifdef CONFIG_KEY_NOTIFICATIONS
security_watch_key(struct key * key)2170 int security_watch_key(struct key *key)
2171 {
2172 return call_int_hook(watch_key, 0, key);
2173 }
2174 #endif
2175
2176 #ifdef CONFIG_SECURITY_NETWORK
2177
security_unix_stream_connect(struct sock * sock,struct sock * other,struct sock * newsk)2178 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2179 {
2180 return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2181 }
2182 EXPORT_SYMBOL(security_unix_stream_connect);
2183
security_unix_may_send(struct socket * sock,struct socket * other)2184 int security_unix_may_send(struct socket *sock, struct socket *other)
2185 {
2186 return call_int_hook(unix_may_send, 0, sock, other);
2187 }
2188 EXPORT_SYMBOL(security_unix_may_send);
2189
security_socket_create(int family,int type,int protocol,int kern)2190 int security_socket_create(int family, int type, int protocol, int kern)
2191 {
2192 return call_int_hook(socket_create, 0, family, type, protocol, kern);
2193 }
2194
security_socket_post_create(struct socket * sock,int family,int type,int protocol,int kern)2195 int security_socket_post_create(struct socket *sock, int family,
2196 int type, int protocol, int kern)
2197 {
2198 return call_int_hook(socket_post_create, 0, sock, family, type,
2199 protocol, kern);
2200 }
2201
security_socket_socketpair(struct socket * socka,struct socket * sockb)2202 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2203 {
2204 return call_int_hook(socket_socketpair, 0, socka, sockb);
2205 }
2206 EXPORT_SYMBOL(security_socket_socketpair);
2207
security_socket_bind(struct socket * sock,struct sockaddr * address,int addrlen)2208 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2209 {
2210 return call_int_hook(socket_bind, 0, sock, address, addrlen);
2211 }
2212
security_socket_connect(struct socket * sock,struct sockaddr * address,int addrlen)2213 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2214 {
2215 return call_int_hook(socket_connect, 0, sock, address, addrlen);
2216 }
2217
security_socket_listen(struct socket * sock,int backlog)2218 int security_socket_listen(struct socket *sock, int backlog)
2219 {
2220 return call_int_hook(socket_listen, 0, sock, backlog);
2221 }
2222
security_socket_accept(struct socket * sock,struct socket * newsock)2223 int security_socket_accept(struct socket *sock, struct socket *newsock)
2224 {
2225 return call_int_hook(socket_accept, 0, sock, newsock);
2226 }
2227
security_socket_sendmsg(struct socket * sock,struct msghdr * msg,int size)2228 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2229 {
2230 return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2231 }
2232
security_socket_recvmsg(struct socket * sock,struct msghdr * msg,int size,int flags)2233 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2234 int size, int flags)
2235 {
2236 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2237 }
2238
security_socket_getsockname(struct socket * sock)2239 int security_socket_getsockname(struct socket *sock)
2240 {
2241 return call_int_hook(socket_getsockname, 0, sock);
2242 }
2243
security_socket_getpeername(struct socket * sock)2244 int security_socket_getpeername(struct socket *sock)
2245 {
2246 return call_int_hook(socket_getpeername, 0, sock);
2247 }
2248
security_socket_getsockopt(struct socket * sock,int level,int optname)2249 int security_socket_getsockopt(struct socket *sock, int level, int optname)
2250 {
2251 return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2252 }
2253
security_socket_setsockopt(struct socket * sock,int level,int optname)2254 int security_socket_setsockopt(struct socket *sock, int level, int optname)
2255 {
2256 return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2257 }
2258
security_socket_shutdown(struct socket * sock,int how)2259 int security_socket_shutdown(struct socket *sock, int how)
2260 {
2261 return call_int_hook(socket_shutdown, 0, sock, how);
2262 }
2263
security_sock_rcv_skb(struct sock * sk,struct sk_buff * skb)2264 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2265 {
2266 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2267 }
2268 EXPORT_SYMBOL(security_sock_rcv_skb);
2269
security_socket_getpeersec_stream(struct socket * sock,char __user * optval,int __user * optlen,unsigned len)2270 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2271 int __user *optlen, unsigned len)
2272 {
2273 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2274 optval, optlen, len);
2275 }
2276
security_socket_getpeersec_dgram(struct socket * sock,struct sk_buff * skb,u32 * secid)2277 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2278 {
2279 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2280 skb, secid);
2281 }
2282 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2283
security_sk_alloc(struct sock * sk,int family,gfp_t priority)2284 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2285 {
2286 return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2287 }
2288
security_sk_free(struct sock * sk)2289 void security_sk_free(struct sock *sk)
2290 {
2291 call_void_hook(sk_free_security, sk);
2292 }
2293
security_sk_clone(const struct sock * sk,struct sock * newsk)2294 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2295 {
2296 call_void_hook(sk_clone_security, sk, newsk);
2297 }
2298 EXPORT_SYMBOL(security_sk_clone);
2299
security_sk_classify_flow(struct sock * sk,struct flowi_common * flic)2300 void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic)
2301 {
2302 call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
2303 }
2304 EXPORT_SYMBOL(security_sk_classify_flow);
2305
security_req_classify_flow(const struct request_sock * req,struct flowi_common * flic)2306 void security_req_classify_flow(const struct request_sock *req,
2307 struct flowi_common *flic)
2308 {
2309 call_void_hook(req_classify_flow, req, flic);
2310 }
2311 EXPORT_SYMBOL(security_req_classify_flow);
2312
security_sock_graft(struct sock * sk,struct socket * parent)2313 void security_sock_graft(struct sock *sk, struct socket *parent)
2314 {
2315 call_void_hook(sock_graft, sk, parent);
2316 }
2317 EXPORT_SYMBOL(security_sock_graft);
2318
security_inet_conn_request(const struct sock * sk,struct sk_buff * skb,struct request_sock * req)2319 int security_inet_conn_request(const struct sock *sk,
2320 struct sk_buff *skb, struct request_sock *req)
2321 {
2322 return call_int_hook(inet_conn_request, 0, sk, skb, req);
2323 }
2324 EXPORT_SYMBOL(security_inet_conn_request);
2325
security_inet_csk_clone(struct sock * newsk,const struct request_sock * req)2326 void security_inet_csk_clone(struct sock *newsk,
2327 const struct request_sock *req)
2328 {
2329 call_void_hook(inet_csk_clone, newsk, req);
2330 }
2331
security_inet_conn_established(struct sock * sk,struct sk_buff * skb)2332 void security_inet_conn_established(struct sock *sk,
2333 struct sk_buff *skb)
2334 {
2335 call_void_hook(inet_conn_established, sk, skb);
2336 }
2337 EXPORT_SYMBOL(security_inet_conn_established);
2338
security_secmark_relabel_packet(u32 secid)2339 int security_secmark_relabel_packet(u32 secid)
2340 {
2341 return call_int_hook(secmark_relabel_packet, 0, secid);
2342 }
2343 EXPORT_SYMBOL(security_secmark_relabel_packet);
2344
security_secmark_refcount_inc(void)2345 void security_secmark_refcount_inc(void)
2346 {
2347 call_void_hook(secmark_refcount_inc);
2348 }
2349 EXPORT_SYMBOL(security_secmark_refcount_inc);
2350
security_secmark_refcount_dec(void)2351 void security_secmark_refcount_dec(void)
2352 {
2353 call_void_hook(secmark_refcount_dec);
2354 }
2355 EXPORT_SYMBOL(security_secmark_refcount_dec);
2356
security_tun_dev_alloc_security(void ** security)2357 int security_tun_dev_alloc_security(void **security)
2358 {
2359 return call_int_hook(tun_dev_alloc_security, 0, security);
2360 }
2361 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2362
security_tun_dev_free_security(void * security)2363 void security_tun_dev_free_security(void *security)
2364 {
2365 call_void_hook(tun_dev_free_security, security);
2366 }
2367 EXPORT_SYMBOL(security_tun_dev_free_security);
2368
security_tun_dev_create(void)2369 int security_tun_dev_create(void)
2370 {
2371 return call_int_hook(tun_dev_create, 0);
2372 }
2373 EXPORT_SYMBOL(security_tun_dev_create);
2374
security_tun_dev_attach_queue(void * security)2375 int security_tun_dev_attach_queue(void *security)
2376 {
2377 return call_int_hook(tun_dev_attach_queue, 0, security);
2378 }
2379 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2380
security_tun_dev_attach(struct sock * sk,void * security)2381 int security_tun_dev_attach(struct sock *sk, void *security)
2382 {
2383 return call_int_hook(tun_dev_attach, 0, sk, security);
2384 }
2385 EXPORT_SYMBOL(security_tun_dev_attach);
2386
security_tun_dev_open(void * security)2387 int security_tun_dev_open(void *security)
2388 {
2389 return call_int_hook(tun_dev_open, 0, security);
2390 }
2391 EXPORT_SYMBOL(security_tun_dev_open);
2392
security_sctp_assoc_request(struct sctp_association * asoc,struct sk_buff * skb)2393 int security_sctp_assoc_request(struct sctp_association *asoc, struct sk_buff *skb)
2394 {
2395 return call_int_hook(sctp_assoc_request, 0, asoc, skb);
2396 }
2397 EXPORT_SYMBOL(security_sctp_assoc_request);
2398
security_sctp_bind_connect(struct sock * sk,int optname,struct sockaddr * address,int addrlen)2399 int security_sctp_bind_connect(struct sock *sk, int optname,
2400 struct sockaddr *address, int addrlen)
2401 {
2402 return call_int_hook(sctp_bind_connect, 0, sk, optname,
2403 address, addrlen);
2404 }
2405 EXPORT_SYMBOL(security_sctp_bind_connect);
2406
security_sctp_sk_clone(struct sctp_association * asoc,struct sock * sk,struct sock * newsk)2407 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
2408 struct sock *newsk)
2409 {
2410 call_void_hook(sctp_sk_clone, asoc, sk, newsk);
2411 }
2412 EXPORT_SYMBOL(security_sctp_sk_clone);
2413
security_sctp_assoc_established(struct sctp_association * asoc,struct sk_buff * skb)2414 int security_sctp_assoc_established(struct sctp_association *asoc,
2415 struct sk_buff *skb)
2416 {
2417 return call_int_hook(sctp_assoc_established, 0, asoc, skb);
2418 }
2419 EXPORT_SYMBOL(security_sctp_assoc_established);
2420
2421 #endif /* CONFIG_SECURITY_NETWORK */
2422
2423 #ifdef CONFIG_SECURITY_INFINIBAND
2424
security_ib_pkey_access(void * sec,u64 subnet_prefix,u16 pkey)2425 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2426 {
2427 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2428 }
2429 EXPORT_SYMBOL(security_ib_pkey_access);
2430
security_ib_endport_manage_subnet(void * sec,const char * dev_name,u8 port_num)2431 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2432 {
2433 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2434 }
2435 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2436
security_ib_alloc_security(void ** sec)2437 int security_ib_alloc_security(void **sec)
2438 {
2439 return call_int_hook(ib_alloc_security, 0, sec);
2440 }
2441 EXPORT_SYMBOL(security_ib_alloc_security);
2442
security_ib_free_security(void * sec)2443 void security_ib_free_security(void *sec)
2444 {
2445 call_void_hook(ib_free_security, sec);
2446 }
2447 EXPORT_SYMBOL(security_ib_free_security);
2448 #endif /* CONFIG_SECURITY_INFINIBAND */
2449
2450 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2451
security_xfrm_policy_alloc(struct xfrm_sec_ctx ** ctxp,struct xfrm_user_sec_ctx * sec_ctx,gfp_t gfp)2452 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2453 struct xfrm_user_sec_ctx *sec_ctx,
2454 gfp_t gfp)
2455 {
2456 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2457 }
2458 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2459
security_xfrm_policy_clone(struct xfrm_sec_ctx * old_ctx,struct xfrm_sec_ctx ** new_ctxp)2460 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2461 struct xfrm_sec_ctx **new_ctxp)
2462 {
2463 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2464 }
2465
security_xfrm_policy_free(struct xfrm_sec_ctx * ctx)2466 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2467 {
2468 call_void_hook(xfrm_policy_free_security, ctx);
2469 }
2470 EXPORT_SYMBOL(security_xfrm_policy_free);
2471
security_xfrm_policy_delete(struct xfrm_sec_ctx * ctx)2472 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2473 {
2474 return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2475 }
2476
security_xfrm_state_alloc(struct xfrm_state * x,struct xfrm_user_sec_ctx * sec_ctx)2477 int security_xfrm_state_alloc(struct xfrm_state *x,
2478 struct xfrm_user_sec_ctx *sec_ctx)
2479 {
2480 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2481 }
2482 EXPORT_SYMBOL(security_xfrm_state_alloc);
2483
security_xfrm_state_alloc_acquire(struct xfrm_state * x,struct xfrm_sec_ctx * polsec,u32 secid)2484 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2485 struct xfrm_sec_ctx *polsec, u32 secid)
2486 {
2487 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2488 }
2489
security_xfrm_state_delete(struct xfrm_state * x)2490 int security_xfrm_state_delete(struct xfrm_state *x)
2491 {
2492 return call_int_hook(xfrm_state_delete_security, 0, x);
2493 }
2494 EXPORT_SYMBOL(security_xfrm_state_delete);
2495
security_xfrm_state_free(struct xfrm_state * x)2496 void security_xfrm_state_free(struct xfrm_state *x)
2497 {
2498 call_void_hook(xfrm_state_free_security, x);
2499 }
2500
security_xfrm_policy_lookup(struct xfrm_sec_ctx * ctx,u32 fl_secid)2501 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
2502 {
2503 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid);
2504 }
2505
security_xfrm_state_pol_flow_match(struct xfrm_state * x,struct xfrm_policy * xp,const struct flowi_common * flic)2506 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2507 struct xfrm_policy *xp,
2508 const struct flowi_common *flic)
2509 {
2510 struct security_hook_list *hp;
2511 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2512
2513 /*
2514 * Since this function is expected to return 0 or 1, the judgment
2515 * becomes difficult if multiple LSMs supply this call. Fortunately,
2516 * we can use the first LSM's judgment because currently only SELinux
2517 * supplies this call.
2518 *
2519 * For speed optimization, we explicitly break the loop rather than
2520 * using the macro
2521 */
2522 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2523 list) {
2524 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
2525 break;
2526 }
2527 return rc;
2528 }
2529
security_xfrm_decode_session(struct sk_buff * skb,u32 * secid)2530 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2531 {
2532 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2533 }
2534
security_skb_classify_flow(struct sk_buff * skb,struct flowi_common * flic)2535 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
2536 {
2537 int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid,
2538 0);
2539
2540 BUG_ON(rc);
2541 }
2542 EXPORT_SYMBOL(security_skb_classify_flow);
2543
2544 #endif /* CONFIG_SECURITY_NETWORK_XFRM */
2545
2546 #ifdef CONFIG_KEYS
2547
security_key_alloc(struct key * key,const struct cred * cred,unsigned long flags)2548 int security_key_alloc(struct key *key, const struct cred *cred,
2549 unsigned long flags)
2550 {
2551 return call_int_hook(key_alloc, 0, key, cred, flags);
2552 }
2553
security_key_free(struct key * key)2554 void security_key_free(struct key *key)
2555 {
2556 call_void_hook(key_free, key);
2557 }
2558
security_key_permission(key_ref_t key_ref,const struct cred * cred,enum key_need_perm need_perm)2559 int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2560 enum key_need_perm need_perm)
2561 {
2562 return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2563 }
2564
security_key_getsecurity(struct key * key,char ** _buffer)2565 int security_key_getsecurity(struct key *key, char **_buffer)
2566 {
2567 *_buffer = NULL;
2568 return call_int_hook(key_getsecurity, 0, key, _buffer);
2569 }
2570
2571 #endif /* CONFIG_KEYS */
2572
2573 #ifdef CONFIG_AUDIT
2574
security_audit_rule_init(u32 field,u32 op,char * rulestr,void ** lsmrule)2575 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2576 {
2577 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2578 }
2579
security_audit_rule_known(struct audit_krule * krule)2580 int security_audit_rule_known(struct audit_krule *krule)
2581 {
2582 return call_int_hook(audit_rule_known, 0, krule);
2583 }
2584
security_audit_rule_free(void * lsmrule)2585 void security_audit_rule_free(void *lsmrule)
2586 {
2587 call_void_hook(audit_rule_free, lsmrule);
2588 }
2589
security_audit_rule_match(u32 secid,u32 field,u32 op,void * lsmrule)2590 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2591 {
2592 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2593 }
2594 #endif /* CONFIG_AUDIT */
2595
2596 #ifdef CONFIG_BPF_SYSCALL
security_bpf(int cmd,union bpf_attr * attr,unsigned int size)2597 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2598 {
2599 return call_int_hook(bpf, 0, cmd, attr, size);
2600 }
security_bpf_map(struct bpf_map * map,fmode_t fmode)2601 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2602 {
2603 return call_int_hook(bpf_map, 0, map, fmode);
2604 }
security_bpf_prog(struct bpf_prog * prog)2605 int security_bpf_prog(struct bpf_prog *prog)
2606 {
2607 return call_int_hook(bpf_prog, 0, prog);
2608 }
security_bpf_map_alloc(struct bpf_map * map)2609 int security_bpf_map_alloc(struct bpf_map *map)
2610 {
2611 return call_int_hook(bpf_map_alloc_security, 0, map);
2612 }
security_bpf_prog_alloc(struct bpf_prog_aux * aux)2613 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2614 {
2615 return call_int_hook(bpf_prog_alloc_security, 0, aux);
2616 }
security_bpf_map_free(struct bpf_map * map)2617 void security_bpf_map_free(struct bpf_map *map)
2618 {
2619 call_void_hook(bpf_map_free_security, map);
2620 }
security_bpf_prog_free(struct bpf_prog_aux * aux)2621 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2622 {
2623 call_void_hook(bpf_prog_free_security, aux);
2624 }
2625 #endif /* CONFIG_BPF_SYSCALL */
2626
security_locked_down(enum lockdown_reason what)2627 int security_locked_down(enum lockdown_reason what)
2628 {
2629 return call_int_hook(locked_down, 0, what);
2630 }
2631 EXPORT_SYMBOL(security_locked_down);
2632
2633 #ifdef CONFIG_PERF_EVENTS
security_perf_event_open(struct perf_event_attr * attr,int type)2634 int security_perf_event_open(struct perf_event_attr *attr, int type)
2635 {
2636 return call_int_hook(perf_event_open, 0, attr, type);
2637 }
2638
security_perf_event_alloc(struct perf_event * event)2639 int security_perf_event_alloc(struct perf_event *event)
2640 {
2641 return call_int_hook(perf_event_alloc, 0, event);
2642 }
2643
security_perf_event_free(struct perf_event * event)2644 void security_perf_event_free(struct perf_event *event)
2645 {
2646 call_void_hook(perf_event_free, event);
2647 }
2648
security_perf_event_read(struct perf_event * event)2649 int security_perf_event_read(struct perf_event *event)
2650 {
2651 return call_int_hook(perf_event_read, 0, event);
2652 }
2653
security_perf_event_write(struct perf_event * event)2654 int security_perf_event_write(struct perf_event *event)
2655 {
2656 return call_int_hook(perf_event_write, 0, event);
2657 }
2658 #endif /* CONFIG_PERF_EVENTS */
2659
2660 #ifdef CONFIG_IO_URING
security_uring_override_creds(const struct cred * new)2661 int security_uring_override_creds(const struct cred *new)
2662 {
2663 return call_int_hook(uring_override_creds, 0, new);
2664 }
2665
security_uring_sqpoll(void)2666 int security_uring_sqpoll(void)
2667 {
2668 return call_int_hook(uring_sqpoll, 0);
2669 }
security_uring_cmd(struct io_uring_cmd * ioucmd)2670 int security_uring_cmd(struct io_uring_cmd *ioucmd)
2671 {
2672 return call_int_hook(uring_cmd, 0, ioucmd);
2673 }
2674 #endif /* CONFIG_IO_URING */
2675