1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2 *
3 * This software is available to you under a choice of one of two
4 * licenses. You may choose to be licensed under the terms of the GNU
5 * General Public License (GPL) Version 2, available from the file
6 * COPYING in the main directory of this source tree, or the
7 * OpenIB.org BSD license below:
8 *
9 * Redistribution and use in source and binary forms, with or
10 * without modification, are permitted provided that the following
11 * conditions are met:
12 *
13 * - Redistributions of source code must retain the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer.
16 *
17 * - Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials
20 * provided with the distribution.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29 * SOFTWARE.
30 */
31
32 #include <crypto/aead.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/netdevice.h>
36 #include <net/dst.h>
37 #include <net/inet_connection_sock.h>
38 #include <net/tcp.h>
39 #include <net/tls.h>
40
41 #include "tls.h"
42 #include "trace.h"
43
44 /* device_offload_lock is used to synchronize tls_dev_add
45 * against NETDEV_DOWN notifications.
46 */
47 static DECLARE_RWSEM(device_offload_lock);
48
49 static struct workqueue_struct *destruct_wq __read_mostly;
50
51 static LIST_HEAD(tls_device_list);
52 static LIST_HEAD(tls_device_down_list);
53 static DEFINE_SPINLOCK(tls_device_lock);
54
tls_device_free_ctx(struct tls_context * ctx)55 static void tls_device_free_ctx(struct tls_context *ctx)
56 {
57 if (ctx->tx_conf == TLS_HW) {
58 kfree(tls_offload_ctx_tx(ctx));
59 kfree(ctx->tx.rec_seq);
60 kfree(ctx->tx.iv);
61 }
62
63 if (ctx->rx_conf == TLS_HW)
64 kfree(tls_offload_ctx_rx(ctx));
65
66 tls_ctx_free(NULL, ctx);
67 }
68
tls_device_tx_del_task(struct work_struct * work)69 static void tls_device_tx_del_task(struct work_struct *work)
70 {
71 struct tls_offload_context_tx *offload_ctx =
72 container_of(work, struct tls_offload_context_tx, destruct_work);
73 struct tls_context *ctx = offload_ctx->ctx;
74 struct net_device *netdev;
75
76 /* Safe, because this is the destroy flow, refcount is 0, so
77 * tls_device_down can't store this field in parallel.
78 */
79 netdev = rcu_dereference_protected(ctx->netdev,
80 !refcount_read(&ctx->refcount));
81
82 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, TLS_OFFLOAD_CTX_DIR_TX);
83 dev_put(netdev);
84 ctx->netdev = NULL;
85 tls_device_free_ctx(ctx);
86 }
87
tls_device_queue_ctx_destruction(struct tls_context * ctx)88 static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
89 {
90 struct net_device *netdev;
91 unsigned long flags;
92 bool async_cleanup;
93
94 spin_lock_irqsave(&tls_device_lock, flags);
95 if (unlikely(!refcount_dec_and_test(&ctx->refcount))) {
96 spin_unlock_irqrestore(&tls_device_lock, flags);
97 return;
98 }
99
100 list_del(&ctx->list); /* Remove from tls_device_list / tls_device_down_list */
101
102 /* Safe, because this is the destroy flow, refcount is 0, so
103 * tls_device_down can't store this field in parallel.
104 */
105 netdev = rcu_dereference_protected(ctx->netdev,
106 !refcount_read(&ctx->refcount));
107
108 async_cleanup = netdev && ctx->tx_conf == TLS_HW;
109 if (async_cleanup) {
110 struct tls_offload_context_tx *offload_ctx = tls_offload_ctx_tx(ctx);
111
112 /* queue_work inside the spinlock
113 * to make sure tls_device_down waits for that work.
114 */
115 queue_work(destruct_wq, &offload_ctx->destruct_work);
116 }
117 spin_unlock_irqrestore(&tls_device_lock, flags);
118
119 if (!async_cleanup)
120 tls_device_free_ctx(ctx);
121 }
122
123 /* We assume that the socket is already connected */
get_netdev_for_sock(struct sock * sk)124 static struct net_device *get_netdev_for_sock(struct sock *sk)
125 {
126 struct dst_entry *dst = sk_dst_get(sk);
127 struct net_device *netdev = NULL;
128
129 if (likely(dst)) {
130 netdev = netdev_sk_get_lowest_dev(dst->dev, sk);
131 dev_hold(netdev);
132 }
133
134 dst_release(dst);
135
136 return netdev;
137 }
138
destroy_record(struct tls_record_info * record)139 static void destroy_record(struct tls_record_info *record)
140 {
141 int i;
142
143 for (i = 0; i < record->num_frags; i++)
144 __skb_frag_unref(&record->frags[i], false);
145 kfree(record);
146 }
147
delete_all_records(struct tls_offload_context_tx * offload_ctx)148 static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
149 {
150 struct tls_record_info *info, *temp;
151
152 list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
153 list_del(&info->list);
154 destroy_record(info);
155 }
156
157 offload_ctx->retransmit_hint = NULL;
158 }
159
tls_icsk_clean_acked(struct sock * sk,u32 acked_seq)160 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
161 {
162 struct tls_context *tls_ctx = tls_get_ctx(sk);
163 struct tls_record_info *info, *temp;
164 struct tls_offload_context_tx *ctx;
165 u64 deleted_records = 0;
166 unsigned long flags;
167
168 if (!tls_ctx)
169 return;
170
171 ctx = tls_offload_ctx_tx(tls_ctx);
172
173 spin_lock_irqsave(&ctx->lock, flags);
174 info = ctx->retransmit_hint;
175 if (info && !before(acked_seq, info->end_seq))
176 ctx->retransmit_hint = NULL;
177
178 list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
179 if (before(acked_seq, info->end_seq))
180 break;
181 list_del(&info->list);
182
183 destroy_record(info);
184 deleted_records++;
185 }
186
187 ctx->unacked_record_sn += deleted_records;
188 spin_unlock_irqrestore(&ctx->lock, flags);
189 }
190
191 /* At this point, there should be no references on this
192 * socket and no in-flight SKBs associated with this
193 * socket, so it is safe to free all the resources.
194 */
tls_device_sk_destruct(struct sock * sk)195 void tls_device_sk_destruct(struct sock *sk)
196 {
197 struct tls_context *tls_ctx = tls_get_ctx(sk);
198 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
199
200 tls_ctx->sk_destruct(sk);
201
202 if (tls_ctx->tx_conf == TLS_HW) {
203 if (ctx->open_record)
204 destroy_record(ctx->open_record);
205 delete_all_records(ctx);
206 crypto_free_aead(ctx->aead_send);
207 clean_acked_data_disable(inet_csk(sk));
208 }
209
210 tls_device_queue_ctx_destruction(tls_ctx);
211 }
212 EXPORT_SYMBOL_GPL(tls_device_sk_destruct);
213
tls_device_free_resources_tx(struct sock * sk)214 void tls_device_free_resources_tx(struct sock *sk)
215 {
216 struct tls_context *tls_ctx = tls_get_ctx(sk);
217
218 tls_free_partial_record(sk, tls_ctx);
219 }
220
tls_offload_tx_resync_request(struct sock * sk,u32 got_seq,u32 exp_seq)221 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq)
222 {
223 struct tls_context *tls_ctx = tls_get_ctx(sk);
224
225 trace_tls_device_tx_resync_req(sk, got_seq, exp_seq);
226 WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags));
227 }
228 EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request);
229
tls_device_resync_tx(struct sock * sk,struct tls_context * tls_ctx,u32 seq)230 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
231 u32 seq)
232 {
233 struct net_device *netdev;
234 struct sk_buff *skb;
235 int err = 0;
236 u8 *rcd_sn;
237
238 skb = tcp_write_queue_tail(sk);
239 if (skb)
240 TCP_SKB_CB(skb)->eor = 1;
241
242 rcd_sn = tls_ctx->tx.rec_seq;
243
244 trace_tls_device_tx_resync_send(sk, seq, rcd_sn);
245 down_read(&device_offload_lock);
246 netdev = rcu_dereference_protected(tls_ctx->netdev,
247 lockdep_is_held(&device_offload_lock));
248 if (netdev)
249 err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
250 rcd_sn,
251 TLS_OFFLOAD_CTX_DIR_TX);
252 up_read(&device_offload_lock);
253 if (err)
254 return;
255
256 clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
257 }
258
tls_append_frag(struct tls_record_info * record,struct page_frag * pfrag,int size)259 static void tls_append_frag(struct tls_record_info *record,
260 struct page_frag *pfrag,
261 int size)
262 {
263 skb_frag_t *frag;
264
265 frag = &record->frags[record->num_frags - 1];
266 if (skb_frag_page(frag) == pfrag->page &&
267 skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) {
268 skb_frag_size_add(frag, size);
269 } else {
270 ++frag;
271 __skb_frag_set_page(frag, pfrag->page);
272 skb_frag_off_set(frag, pfrag->offset);
273 skb_frag_size_set(frag, size);
274 ++record->num_frags;
275 get_page(pfrag->page);
276 }
277
278 pfrag->offset += size;
279 record->len += size;
280 }
281
tls_push_record(struct sock * sk,struct tls_context * ctx,struct tls_offload_context_tx * offload_ctx,struct tls_record_info * record,int flags)282 static int tls_push_record(struct sock *sk,
283 struct tls_context *ctx,
284 struct tls_offload_context_tx *offload_ctx,
285 struct tls_record_info *record,
286 int flags)
287 {
288 struct tls_prot_info *prot = &ctx->prot_info;
289 struct tcp_sock *tp = tcp_sk(sk);
290 skb_frag_t *frag;
291 int i;
292
293 record->end_seq = tp->write_seq + record->len;
294 list_add_tail_rcu(&record->list, &offload_ctx->records_list);
295 offload_ctx->open_record = NULL;
296
297 if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
298 tls_device_resync_tx(sk, ctx, tp->write_seq);
299
300 tls_advance_record_sn(sk, prot, &ctx->tx);
301
302 for (i = 0; i < record->num_frags; i++) {
303 frag = &record->frags[i];
304 sg_unmark_end(&offload_ctx->sg_tx_data[i]);
305 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
306 skb_frag_size(frag), skb_frag_off(frag));
307 sk_mem_charge(sk, skb_frag_size(frag));
308 get_page(skb_frag_page(frag));
309 }
310 sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
311
312 /* all ready, send */
313 return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
314 }
315
tls_device_record_close(struct sock * sk,struct tls_context * ctx,struct tls_record_info * record,struct page_frag * pfrag,unsigned char record_type)316 static int tls_device_record_close(struct sock *sk,
317 struct tls_context *ctx,
318 struct tls_record_info *record,
319 struct page_frag *pfrag,
320 unsigned char record_type)
321 {
322 struct tls_prot_info *prot = &ctx->prot_info;
323 int ret;
324
325 /* append tag
326 * device will fill in the tag, we just need to append a placeholder
327 * use socket memory to improve coalescing (re-using a single buffer
328 * increases frag count)
329 * if we can't allocate memory now, steal some back from data
330 */
331 if (likely(skb_page_frag_refill(prot->tag_size, pfrag,
332 sk->sk_allocation))) {
333 ret = 0;
334 tls_append_frag(record, pfrag, prot->tag_size);
335 } else {
336 ret = prot->tag_size;
337 if (record->len <= prot->overhead_size)
338 return -ENOMEM;
339 }
340
341 /* fill prepend */
342 tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]),
343 record->len - prot->overhead_size,
344 record_type);
345 return ret;
346 }
347
tls_create_new_record(struct tls_offload_context_tx * offload_ctx,struct page_frag * pfrag,size_t prepend_size)348 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
349 struct page_frag *pfrag,
350 size_t prepend_size)
351 {
352 struct tls_record_info *record;
353 skb_frag_t *frag;
354
355 record = kmalloc(sizeof(*record), GFP_KERNEL);
356 if (!record)
357 return -ENOMEM;
358
359 frag = &record->frags[0];
360 __skb_frag_set_page(frag, pfrag->page);
361 skb_frag_off_set(frag, pfrag->offset);
362 skb_frag_size_set(frag, prepend_size);
363
364 get_page(pfrag->page);
365 pfrag->offset += prepend_size;
366
367 record->num_frags = 1;
368 record->len = prepend_size;
369 offload_ctx->open_record = record;
370 return 0;
371 }
372
tls_do_allocation(struct sock * sk,struct tls_offload_context_tx * offload_ctx,struct page_frag * pfrag,size_t prepend_size)373 static int tls_do_allocation(struct sock *sk,
374 struct tls_offload_context_tx *offload_ctx,
375 struct page_frag *pfrag,
376 size_t prepend_size)
377 {
378 int ret;
379
380 if (!offload_ctx->open_record) {
381 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
382 sk->sk_allocation))) {
383 READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk);
384 sk_stream_moderate_sndbuf(sk);
385 return -ENOMEM;
386 }
387
388 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
389 if (ret)
390 return ret;
391
392 if (pfrag->size > pfrag->offset)
393 return 0;
394 }
395
396 if (!sk_page_frag_refill(sk, pfrag))
397 return -ENOMEM;
398
399 return 0;
400 }
401
tls_device_copy_data(void * addr,size_t bytes,struct iov_iter * i)402 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i)
403 {
404 size_t pre_copy, nocache;
405
406 pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1);
407 if (pre_copy) {
408 pre_copy = min(pre_copy, bytes);
409 if (copy_from_iter(addr, pre_copy, i) != pre_copy)
410 return -EFAULT;
411 bytes -= pre_copy;
412 addr += pre_copy;
413 }
414
415 nocache = round_down(bytes, SMP_CACHE_BYTES);
416 if (copy_from_iter_nocache(addr, nocache, i) != nocache)
417 return -EFAULT;
418 bytes -= nocache;
419 addr += nocache;
420
421 if (bytes && copy_from_iter(addr, bytes, i) != bytes)
422 return -EFAULT;
423
424 return 0;
425 }
426
427 union tls_iter_offset {
428 struct iov_iter *msg_iter;
429 int offset;
430 };
431
tls_push_data(struct sock * sk,union tls_iter_offset iter_offset,size_t size,int flags,unsigned char record_type,struct page * zc_page)432 static int tls_push_data(struct sock *sk,
433 union tls_iter_offset iter_offset,
434 size_t size, int flags,
435 unsigned char record_type,
436 struct page *zc_page)
437 {
438 struct tls_context *tls_ctx = tls_get_ctx(sk);
439 struct tls_prot_info *prot = &tls_ctx->prot_info;
440 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
441 struct tls_record_info *record;
442 int tls_push_record_flags;
443 struct page_frag *pfrag;
444 size_t orig_size = size;
445 u32 max_open_record_len;
446 bool more = false;
447 bool done = false;
448 int copy, rc = 0;
449 long timeo;
450
451 if (flags &
452 ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST))
453 return -EOPNOTSUPP;
454
455 if (unlikely(sk->sk_err))
456 return -sk->sk_err;
457
458 flags |= MSG_SENDPAGE_DECRYPTED;
459 tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST;
460
461 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
462 if (tls_is_partially_sent_record(tls_ctx)) {
463 rc = tls_push_partial_record(sk, tls_ctx, flags);
464 if (rc < 0)
465 return rc;
466 }
467
468 pfrag = sk_page_frag(sk);
469
470 /* TLS_HEADER_SIZE is not counted as part of the TLS record, and
471 * we need to leave room for an authentication tag.
472 */
473 max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
474 prot->prepend_size;
475 do {
476 rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size);
477 if (unlikely(rc)) {
478 rc = sk_stream_wait_memory(sk, &timeo);
479 if (!rc)
480 continue;
481
482 record = ctx->open_record;
483 if (!record)
484 break;
485 handle_error:
486 if (record_type != TLS_RECORD_TYPE_DATA) {
487 /* avoid sending partial
488 * record with type !=
489 * application_data
490 */
491 size = orig_size;
492 destroy_record(record);
493 ctx->open_record = NULL;
494 } else if (record->len > prot->prepend_size) {
495 goto last_record;
496 }
497
498 break;
499 }
500
501 record = ctx->open_record;
502
503 copy = min_t(size_t, size, max_open_record_len - record->len);
504 if (copy && zc_page) {
505 struct page_frag zc_pfrag;
506
507 zc_pfrag.page = zc_page;
508 zc_pfrag.offset = iter_offset.offset;
509 zc_pfrag.size = copy;
510 tls_append_frag(record, &zc_pfrag, copy);
511 } else if (copy) {
512 copy = min_t(size_t, copy, pfrag->size - pfrag->offset);
513
514 rc = tls_device_copy_data(page_address(pfrag->page) +
515 pfrag->offset, copy,
516 iter_offset.msg_iter);
517 if (rc)
518 goto handle_error;
519 tls_append_frag(record, pfrag, copy);
520 }
521
522 size -= copy;
523 if (!size) {
524 last_record:
525 tls_push_record_flags = flags;
526 if (flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE)) {
527 more = true;
528 break;
529 }
530
531 done = true;
532 }
533
534 if (done || record->len >= max_open_record_len ||
535 (record->num_frags >= MAX_SKB_FRAGS - 1)) {
536 rc = tls_device_record_close(sk, tls_ctx, record,
537 pfrag, record_type);
538 if (rc) {
539 if (rc > 0) {
540 size += rc;
541 } else {
542 size = orig_size;
543 destroy_record(record);
544 ctx->open_record = NULL;
545 break;
546 }
547 }
548
549 rc = tls_push_record(sk,
550 tls_ctx,
551 ctx,
552 record,
553 tls_push_record_flags);
554 if (rc < 0)
555 break;
556 }
557 } while (!done);
558
559 tls_ctx->pending_open_record_frags = more;
560
561 if (orig_size - size > 0)
562 rc = orig_size - size;
563
564 return rc;
565 }
566
tls_device_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)567 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
568 {
569 unsigned char record_type = TLS_RECORD_TYPE_DATA;
570 struct tls_context *tls_ctx = tls_get_ctx(sk);
571 union tls_iter_offset iter;
572 int rc;
573
574 mutex_lock(&tls_ctx->tx_lock);
575 lock_sock(sk);
576
577 if (unlikely(msg->msg_controllen)) {
578 rc = tls_process_cmsg(sk, msg, &record_type);
579 if (rc)
580 goto out;
581 }
582
583 iter.msg_iter = &msg->msg_iter;
584 rc = tls_push_data(sk, iter, size, msg->msg_flags, record_type, NULL);
585
586 out:
587 release_sock(sk);
588 mutex_unlock(&tls_ctx->tx_lock);
589 return rc;
590 }
591
tls_device_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)592 int tls_device_sendpage(struct sock *sk, struct page *page,
593 int offset, size_t size, int flags)
594 {
595 struct tls_context *tls_ctx = tls_get_ctx(sk);
596 union tls_iter_offset iter_offset;
597 struct iov_iter msg_iter;
598 char *kaddr;
599 struct kvec iov;
600 int rc;
601
602 if (flags & MSG_SENDPAGE_NOTLAST)
603 flags |= MSG_MORE;
604
605 mutex_lock(&tls_ctx->tx_lock);
606 lock_sock(sk);
607
608 if (flags & MSG_OOB) {
609 rc = -EOPNOTSUPP;
610 goto out;
611 }
612
613 if (tls_ctx->zerocopy_sendfile) {
614 iter_offset.offset = offset;
615 rc = tls_push_data(sk, iter_offset, size,
616 flags, TLS_RECORD_TYPE_DATA, page);
617 goto out;
618 }
619
620 kaddr = kmap(page);
621 iov.iov_base = kaddr + offset;
622 iov.iov_len = size;
623 iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size);
624 iter_offset.msg_iter = &msg_iter;
625 rc = tls_push_data(sk, iter_offset, size, flags, TLS_RECORD_TYPE_DATA,
626 NULL);
627 kunmap(page);
628
629 out:
630 release_sock(sk);
631 mutex_unlock(&tls_ctx->tx_lock);
632 return rc;
633 }
634
tls_get_record(struct tls_offload_context_tx * context,u32 seq,u64 * p_record_sn)635 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
636 u32 seq, u64 *p_record_sn)
637 {
638 u64 record_sn = context->hint_record_sn;
639 struct tls_record_info *info, *last;
640
641 info = context->retransmit_hint;
642 if (!info ||
643 before(seq, info->end_seq - info->len)) {
644 /* if retransmit_hint is irrelevant start
645 * from the beginning of the list
646 */
647 info = list_first_entry_or_null(&context->records_list,
648 struct tls_record_info, list);
649 if (!info)
650 return NULL;
651 /* send the start_marker record if seq number is before the
652 * tls offload start marker sequence number. This record is
653 * required to handle TCP packets which are before TLS offload
654 * started.
655 * And if it's not start marker, look if this seq number
656 * belongs to the list.
657 */
658 if (likely(!tls_record_is_start_marker(info))) {
659 /* we have the first record, get the last record to see
660 * if this seq number belongs to the list.
661 */
662 last = list_last_entry(&context->records_list,
663 struct tls_record_info, list);
664
665 if (!between(seq, tls_record_start_seq(info),
666 last->end_seq))
667 return NULL;
668 }
669 record_sn = context->unacked_record_sn;
670 }
671
672 /* We just need the _rcu for the READ_ONCE() */
673 rcu_read_lock();
674 list_for_each_entry_from_rcu(info, &context->records_list, list) {
675 if (before(seq, info->end_seq)) {
676 if (!context->retransmit_hint ||
677 after(info->end_seq,
678 context->retransmit_hint->end_seq)) {
679 context->hint_record_sn = record_sn;
680 context->retransmit_hint = info;
681 }
682 *p_record_sn = record_sn;
683 goto exit_rcu_unlock;
684 }
685 record_sn++;
686 }
687 info = NULL;
688
689 exit_rcu_unlock:
690 rcu_read_unlock();
691 return info;
692 }
693 EXPORT_SYMBOL(tls_get_record);
694
tls_device_push_pending_record(struct sock * sk,int flags)695 static int tls_device_push_pending_record(struct sock *sk, int flags)
696 {
697 union tls_iter_offset iter;
698 struct iov_iter msg_iter;
699
700 iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0);
701 iter.msg_iter = &msg_iter;
702 return tls_push_data(sk, iter, 0, flags, TLS_RECORD_TYPE_DATA, NULL);
703 }
704
tls_device_write_space(struct sock * sk,struct tls_context * ctx)705 void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
706 {
707 if (tls_is_partially_sent_record(ctx)) {
708 gfp_t sk_allocation = sk->sk_allocation;
709
710 WARN_ON_ONCE(sk->sk_write_pending);
711
712 sk->sk_allocation = GFP_ATOMIC;
713 tls_push_partial_record(sk, ctx,
714 MSG_DONTWAIT | MSG_NOSIGNAL |
715 MSG_SENDPAGE_DECRYPTED);
716 sk->sk_allocation = sk_allocation;
717 }
718 }
719
tls_device_resync_rx(struct tls_context * tls_ctx,struct sock * sk,u32 seq,u8 * rcd_sn)720 static void tls_device_resync_rx(struct tls_context *tls_ctx,
721 struct sock *sk, u32 seq, u8 *rcd_sn)
722 {
723 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
724 struct net_device *netdev;
725
726 trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type);
727 rcu_read_lock();
728 netdev = rcu_dereference(tls_ctx->netdev);
729 if (netdev)
730 netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
731 TLS_OFFLOAD_CTX_DIR_RX);
732 rcu_read_unlock();
733 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC);
734 }
735
736 static bool
tls_device_rx_resync_async(struct tls_offload_resync_async * resync_async,s64 resync_req,u32 * seq,u16 * rcd_delta)737 tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async,
738 s64 resync_req, u32 *seq, u16 *rcd_delta)
739 {
740 u32 is_async = resync_req & RESYNC_REQ_ASYNC;
741 u32 req_seq = resync_req >> 32;
742 u32 req_end = req_seq + ((resync_req >> 16) & 0xffff);
743 u16 i;
744
745 *rcd_delta = 0;
746
747 if (is_async) {
748 /* shouldn't get to wraparound:
749 * too long in async stage, something bad happened
750 */
751 if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX))
752 return false;
753
754 /* asynchronous stage: log all headers seq such that
755 * req_seq <= seq <= end_seq, and wait for real resync request
756 */
757 if (before(*seq, req_seq))
758 return false;
759 if (!after(*seq, req_end) &&
760 resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX)
761 resync_async->log[resync_async->loglen++] = *seq;
762
763 resync_async->rcd_delta++;
764
765 return false;
766 }
767
768 /* synchronous stage: check against the logged entries and
769 * proceed to check the next entries if no match was found
770 */
771 for (i = 0; i < resync_async->loglen; i++)
772 if (req_seq == resync_async->log[i] &&
773 atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) {
774 *rcd_delta = resync_async->rcd_delta - i;
775 *seq = req_seq;
776 resync_async->loglen = 0;
777 resync_async->rcd_delta = 0;
778 return true;
779 }
780
781 resync_async->loglen = 0;
782 resync_async->rcd_delta = 0;
783
784 if (req_seq == *seq &&
785 atomic64_try_cmpxchg(&resync_async->req,
786 &resync_req, 0))
787 return true;
788
789 return false;
790 }
791
tls_device_rx_resync_new_rec(struct sock * sk,u32 rcd_len,u32 seq)792 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
793 {
794 struct tls_context *tls_ctx = tls_get_ctx(sk);
795 struct tls_offload_context_rx *rx_ctx;
796 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
797 u32 sock_data, is_req_pending;
798 struct tls_prot_info *prot;
799 s64 resync_req;
800 u16 rcd_delta;
801 u32 req_seq;
802
803 if (tls_ctx->rx_conf != TLS_HW)
804 return;
805 if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags)))
806 return;
807
808 prot = &tls_ctx->prot_info;
809 rx_ctx = tls_offload_ctx_rx(tls_ctx);
810 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
811
812 switch (rx_ctx->resync_type) {
813 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
814 resync_req = atomic64_read(&rx_ctx->resync_req);
815 req_seq = resync_req >> 32;
816 seq += TLS_HEADER_SIZE - 1;
817 is_req_pending = resync_req;
818
819 if (likely(!is_req_pending) || req_seq != seq ||
820 !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
821 return;
822 break;
823 case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
824 if (likely(!rx_ctx->resync_nh_do_now))
825 return;
826
827 /* head of next rec is already in, note that the sock_inq will
828 * include the currently parsed message when called from parser
829 */
830 sock_data = tcp_inq(sk);
831 if (sock_data > rcd_len) {
832 trace_tls_device_rx_resync_nh_delay(sk, sock_data,
833 rcd_len);
834 return;
835 }
836
837 rx_ctx->resync_nh_do_now = 0;
838 seq += rcd_len;
839 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
840 break;
841 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC:
842 resync_req = atomic64_read(&rx_ctx->resync_async->req);
843 is_req_pending = resync_req;
844 if (likely(!is_req_pending))
845 return;
846
847 if (!tls_device_rx_resync_async(rx_ctx->resync_async,
848 resync_req, &seq, &rcd_delta))
849 return;
850 tls_bigint_subtract(rcd_sn, rcd_delta);
851 break;
852 }
853
854 tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
855 }
856
tls_device_core_ctrl_rx_resync(struct tls_context * tls_ctx,struct tls_offload_context_rx * ctx,struct sock * sk,struct sk_buff * skb)857 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
858 struct tls_offload_context_rx *ctx,
859 struct sock *sk, struct sk_buff *skb)
860 {
861 struct strp_msg *rxm;
862
863 /* device will request resyncs by itself based on stream scan */
864 if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
865 return;
866 /* already scheduled */
867 if (ctx->resync_nh_do_now)
868 return;
869 /* seen decrypted fragments since last fully-failed record */
870 if (ctx->resync_nh_reset) {
871 ctx->resync_nh_reset = 0;
872 ctx->resync_nh.decrypted_failed = 1;
873 ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
874 return;
875 }
876
877 if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
878 return;
879
880 /* doing resync, bump the next target in case it fails */
881 if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
882 ctx->resync_nh.decrypted_tgt *= 2;
883 else
884 ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
885
886 rxm = strp_msg(skb);
887
888 /* head of next rec is already in, parser will sync for us */
889 if (tcp_inq(sk) > rxm->full_len) {
890 trace_tls_device_rx_resync_nh_schedule(sk);
891 ctx->resync_nh_do_now = 1;
892 } else {
893 struct tls_prot_info *prot = &tls_ctx->prot_info;
894 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
895
896 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
897 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
898
899 tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
900 rcd_sn);
901 }
902 }
903
904 static int
tls_device_reencrypt(struct sock * sk,struct tls_context * tls_ctx)905 tls_device_reencrypt(struct sock *sk, struct tls_context *tls_ctx)
906 {
907 struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx);
908 const struct tls_cipher_size_desc *cipher_sz;
909 int err, offset, copy, data_len, pos;
910 struct sk_buff *skb, *skb_iter;
911 struct scatterlist sg[1];
912 struct strp_msg *rxm;
913 char *orig_buf, *buf;
914
915 switch (tls_ctx->crypto_recv.info.cipher_type) {
916 case TLS_CIPHER_AES_GCM_128:
917 case TLS_CIPHER_AES_GCM_256:
918 break;
919 default:
920 return -EINVAL;
921 }
922 cipher_sz = &tls_cipher_size_desc[tls_ctx->crypto_recv.info.cipher_type];
923
924 rxm = strp_msg(tls_strp_msg(sw_ctx));
925 orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE + cipher_sz->iv,
926 sk->sk_allocation);
927 if (!orig_buf)
928 return -ENOMEM;
929 buf = orig_buf;
930
931 err = tls_strp_msg_cow(sw_ctx);
932 if (unlikely(err))
933 goto free_buf;
934
935 skb = tls_strp_msg(sw_ctx);
936 rxm = strp_msg(skb);
937 offset = rxm->offset;
938
939 sg_init_table(sg, 1);
940 sg_set_buf(&sg[0], buf,
941 rxm->full_len + TLS_HEADER_SIZE + cipher_sz->iv);
942 err = skb_copy_bits(skb, offset, buf, TLS_HEADER_SIZE + cipher_sz->iv);
943 if (err)
944 goto free_buf;
945
946 /* We are interested only in the decrypted data not the auth */
947 err = decrypt_skb(sk, sg);
948 if (err != -EBADMSG)
949 goto free_buf;
950 else
951 err = 0;
952
953 data_len = rxm->full_len - cipher_sz->tag;
954
955 if (skb_pagelen(skb) > offset) {
956 copy = min_t(int, skb_pagelen(skb) - offset, data_len);
957
958 if (skb->decrypted) {
959 err = skb_store_bits(skb, offset, buf, copy);
960 if (err)
961 goto free_buf;
962 }
963
964 offset += copy;
965 buf += copy;
966 }
967
968 pos = skb_pagelen(skb);
969 skb_walk_frags(skb, skb_iter) {
970 int frag_pos;
971
972 /* Practically all frags must belong to msg if reencrypt
973 * is needed with current strparser and coalescing logic,
974 * but strparser may "get optimized", so let's be safe.
975 */
976 if (pos + skb_iter->len <= offset)
977 goto done_with_frag;
978 if (pos >= data_len + rxm->offset)
979 break;
980
981 frag_pos = offset - pos;
982 copy = min_t(int, skb_iter->len - frag_pos,
983 data_len + rxm->offset - offset);
984
985 if (skb_iter->decrypted) {
986 err = skb_store_bits(skb_iter, frag_pos, buf, copy);
987 if (err)
988 goto free_buf;
989 }
990
991 offset += copy;
992 buf += copy;
993 done_with_frag:
994 pos += skb_iter->len;
995 }
996
997 free_buf:
998 kfree(orig_buf);
999 return err;
1000 }
1001
tls_device_decrypted(struct sock * sk,struct tls_context * tls_ctx)1002 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx)
1003 {
1004 struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
1005 struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx);
1006 struct sk_buff *skb = tls_strp_msg(sw_ctx);
1007 struct strp_msg *rxm = strp_msg(skb);
1008 int is_decrypted = skb->decrypted;
1009 int is_encrypted = !is_decrypted;
1010 struct sk_buff *skb_iter;
1011 int left;
1012
1013 left = rxm->full_len - skb->len;
1014 /* Check if all the data is decrypted already */
1015 skb_iter = skb_shinfo(skb)->frag_list;
1016 while (skb_iter && left > 0) {
1017 is_decrypted &= skb_iter->decrypted;
1018 is_encrypted &= !skb_iter->decrypted;
1019
1020 left -= skb_iter->len;
1021 skb_iter = skb_iter->next;
1022 }
1023
1024 trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len,
1025 tls_ctx->rx.rec_seq, rxm->full_len,
1026 is_encrypted, is_decrypted);
1027
1028 if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) {
1029 if (likely(is_encrypted || is_decrypted))
1030 return is_decrypted;
1031
1032 /* After tls_device_down disables the offload, the next SKB will
1033 * likely have initial fragments decrypted, and final ones not
1034 * decrypted. We need to reencrypt that single SKB.
1035 */
1036 return tls_device_reencrypt(sk, tls_ctx);
1037 }
1038
1039 /* Return immediately if the record is either entirely plaintext or
1040 * entirely ciphertext. Otherwise handle reencrypt partially decrypted
1041 * record.
1042 */
1043 if (is_decrypted) {
1044 ctx->resync_nh_reset = 1;
1045 return is_decrypted;
1046 }
1047 if (is_encrypted) {
1048 tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
1049 return 0;
1050 }
1051
1052 ctx->resync_nh_reset = 1;
1053 return tls_device_reencrypt(sk, tls_ctx);
1054 }
1055
tls_device_attach(struct tls_context * ctx,struct sock * sk,struct net_device * netdev)1056 static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
1057 struct net_device *netdev)
1058 {
1059 if (sk->sk_destruct != tls_device_sk_destruct) {
1060 refcount_set(&ctx->refcount, 1);
1061 dev_hold(netdev);
1062 RCU_INIT_POINTER(ctx->netdev, netdev);
1063 spin_lock_irq(&tls_device_lock);
1064 list_add_tail(&ctx->list, &tls_device_list);
1065 spin_unlock_irq(&tls_device_lock);
1066
1067 ctx->sk_destruct = sk->sk_destruct;
1068 smp_store_release(&sk->sk_destruct, tls_device_sk_destruct);
1069 }
1070 }
1071
tls_set_device_offload(struct sock * sk,struct tls_context * ctx)1072 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
1073 {
1074 struct tls_context *tls_ctx = tls_get_ctx(sk);
1075 struct tls_prot_info *prot = &tls_ctx->prot_info;
1076 const struct tls_cipher_size_desc *cipher_sz;
1077 struct tls_record_info *start_marker_record;
1078 struct tls_offload_context_tx *offload_ctx;
1079 struct tls_crypto_info *crypto_info;
1080 struct net_device *netdev;
1081 char *iv, *rec_seq;
1082 struct sk_buff *skb;
1083 __be64 rcd_sn;
1084 int rc;
1085
1086 if (!ctx)
1087 return -EINVAL;
1088
1089 if (ctx->priv_ctx_tx)
1090 return -EEXIST;
1091
1092 netdev = get_netdev_for_sock(sk);
1093 if (!netdev) {
1094 pr_err_ratelimited("%s: netdev not found\n", __func__);
1095 return -EINVAL;
1096 }
1097
1098 if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
1099 rc = -EOPNOTSUPP;
1100 goto release_netdev;
1101 }
1102
1103 crypto_info = &ctx->crypto_send.info;
1104 if (crypto_info->version != TLS_1_2_VERSION) {
1105 rc = -EOPNOTSUPP;
1106 goto release_netdev;
1107 }
1108
1109 switch (crypto_info->cipher_type) {
1110 case TLS_CIPHER_AES_GCM_128:
1111 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
1112 rec_seq =
1113 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
1114 break;
1115 case TLS_CIPHER_AES_GCM_256:
1116 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
1117 rec_seq =
1118 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
1119 break;
1120 default:
1121 rc = -EINVAL;
1122 goto release_netdev;
1123 }
1124 cipher_sz = &tls_cipher_size_desc[crypto_info->cipher_type];
1125
1126 /* Sanity-check the rec_seq_size for stack allocations */
1127 if (cipher_sz->rec_seq > TLS_MAX_REC_SEQ_SIZE) {
1128 rc = -EINVAL;
1129 goto release_netdev;
1130 }
1131
1132 prot->version = crypto_info->version;
1133 prot->cipher_type = crypto_info->cipher_type;
1134 prot->prepend_size = TLS_HEADER_SIZE + cipher_sz->iv;
1135 prot->tag_size = cipher_sz->tag;
1136 prot->overhead_size = prot->prepend_size + prot->tag_size;
1137 prot->iv_size = cipher_sz->iv;
1138 prot->salt_size = cipher_sz->salt;
1139 ctx->tx.iv = kmalloc(cipher_sz->iv + cipher_sz->salt, GFP_KERNEL);
1140 if (!ctx->tx.iv) {
1141 rc = -ENOMEM;
1142 goto release_netdev;
1143 }
1144
1145 memcpy(ctx->tx.iv + cipher_sz->salt, iv, cipher_sz->iv);
1146
1147 prot->rec_seq_size = cipher_sz->rec_seq;
1148 ctx->tx.rec_seq = kmemdup(rec_seq, cipher_sz->rec_seq, GFP_KERNEL);
1149 if (!ctx->tx.rec_seq) {
1150 rc = -ENOMEM;
1151 goto free_iv;
1152 }
1153
1154 start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
1155 if (!start_marker_record) {
1156 rc = -ENOMEM;
1157 goto free_rec_seq;
1158 }
1159
1160 offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
1161 if (!offload_ctx) {
1162 rc = -ENOMEM;
1163 goto free_marker_record;
1164 }
1165
1166 rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
1167 if (rc)
1168 goto free_offload_ctx;
1169
1170 /* start at rec_seq - 1 to account for the start marker record */
1171 memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
1172 offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
1173
1174 start_marker_record->end_seq = tcp_sk(sk)->write_seq;
1175 start_marker_record->len = 0;
1176 start_marker_record->num_frags = 0;
1177
1178 INIT_WORK(&offload_ctx->destruct_work, tls_device_tx_del_task);
1179 offload_ctx->ctx = ctx;
1180
1181 INIT_LIST_HEAD(&offload_ctx->records_list);
1182 list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
1183 spin_lock_init(&offload_ctx->lock);
1184 sg_init_table(offload_ctx->sg_tx_data,
1185 ARRAY_SIZE(offload_ctx->sg_tx_data));
1186
1187 clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
1188 ctx->push_pending_record = tls_device_push_pending_record;
1189
1190 /* TLS offload is greatly simplified if we don't send
1191 * SKBs where only part of the payload needs to be encrypted.
1192 * So mark the last skb in the write queue as end of record.
1193 */
1194 skb = tcp_write_queue_tail(sk);
1195 if (skb)
1196 TCP_SKB_CB(skb)->eor = 1;
1197
1198 /* Avoid offloading if the device is down
1199 * We don't want to offload new flows after
1200 * the NETDEV_DOWN event
1201 *
1202 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1203 * handler thus protecting from the device going down before
1204 * ctx was added to tls_device_list.
1205 */
1206 down_read(&device_offload_lock);
1207 if (!(netdev->flags & IFF_UP)) {
1208 rc = -EINVAL;
1209 goto release_lock;
1210 }
1211
1212 ctx->priv_ctx_tx = offload_ctx;
1213 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
1214 &ctx->crypto_send.info,
1215 tcp_sk(sk)->write_seq);
1216 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX,
1217 tcp_sk(sk)->write_seq, rec_seq, rc);
1218 if (rc)
1219 goto release_lock;
1220
1221 tls_device_attach(ctx, sk, netdev);
1222 up_read(&device_offload_lock);
1223
1224 /* following this assignment tls_is_sk_tx_device_offloaded
1225 * will return true and the context might be accessed
1226 * by the netdev's xmit function.
1227 */
1228 smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
1229 dev_put(netdev);
1230
1231 return 0;
1232
1233 release_lock:
1234 up_read(&device_offload_lock);
1235 clean_acked_data_disable(inet_csk(sk));
1236 crypto_free_aead(offload_ctx->aead_send);
1237 free_offload_ctx:
1238 kfree(offload_ctx);
1239 ctx->priv_ctx_tx = NULL;
1240 free_marker_record:
1241 kfree(start_marker_record);
1242 free_rec_seq:
1243 kfree(ctx->tx.rec_seq);
1244 free_iv:
1245 kfree(ctx->tx.iv);
1246 release_netdev:
1247 dev_put(netdev);
1248 return rc;
1249 }
1250
tls_set_device_offload_rx(struct sock * sk,struct tls_context * ctx)1251 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
1252 {
1253 struct tls12_crypto_info_aes_gcm_128 *info;
1254 struct tls_offload_context_rx *context;
1255 struct net_device *netdev;
1256 int rc = 0;
1257
1258 if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
1259 return -EOPNOTSUPP;
1260
1261 netdev = get_netdev_for_sock(sk);
1262 if (!netdev) {
1263 pr_err_ratelimited("%s: netdev not found\n", __func__);
1264 return -EINVAL;
1265 }
1266
1267 if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
1268 rc = -EOPNOTSUPP;
1269 goto release_netdev;
1270 }
1271
1272 /* Avoid offloading if the device is down
1273 * We don't want to offload new flows after
1274 * the NETDEV_DOWN event
1275 *
1276 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1277 * handler thus protecting from the device going down before
1278 * ctx was added to tls_device_list.
1279 */
1280 down_read(&device_offload_lock);
1281 if (!(netdev->flags & IFF_UP)) {
1282 rc = -EINVAL;
1283 goto release_lock;
1284 }
1285
1286 context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
1287 if (!context) {
1288 rc = -ENOMEM;
1289 goto release_lock;
1290 }
1291 context->resync_nh_reset = 1;
1292
1293 ctx->priv_ctx_rx = context;
1294 rc = tls_set_sw_offload(sk, ctx, 0);
1295 if (rc)
1296 goto release_ctx;
1297
1298 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
1299 &ctx->crypto_recv.info,
1300 tcp_sk(sk)->copied_seq);
1301 info = (void *)&ctx->crypto_recv.info;
1302 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX,
1303 tcp_sk(sk)->copied_seq, info->rec_seq, rc);
1304 if (rc)
1305 goto free_sw_resources;
1306
1307 tls_device_attach(ctx, sk, netdev);
1308 up_read(&device_offload_lock);
1309
1310 dev_put(netdev);
1311
1312 return 0;
1313
1314 free_sw_resources:
1315 up_read(&device_offload_lock);
1316 tls_sw_free_resources_rx(sk);
1317 down_read(&device_offload_lock);
1318 release_ctx:
1319 ctx->priv_ctx_rx = NULL;
1320 release_lock:
1321 up_read(&device_offload_lock);
1322 release_netdev:
1323 dev_put(netdev);
1324 return rc;
1325 }
1326
tls_device_offload_cleanup_rx(struct sock * sk)1327 void tls_device_offload_cleanup_rx(struct sock *sk)
1328 {
1329 struct tls_context *tls_ctx = tls_get_ctx(sk);
1330 struct net_device *netdev;
1331
1332 down_read(&device_offload_lock);
1333 netdev = rcu_dereference_protected(tls_ctx->netdev,
1334 lockdep_is_held(&device_offload_lock));
1335 if (!netdev)
1336 goto out;
1337
1338 netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
1339 TLS_OFFLOAD_CTX_DIR_RX);
1340
1341 if (tls_ctx->tx_conf != TLS_HW) {
1342 dev_put(netdev);
1343 rcu_assign_pointer(tls_ctx->netdev, NULL);
1344 } else {
1345 set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags);
1346 }
1347 out:
1348 up_read(&device_offload_lock);
1349 tls_sw_release_resources_rx(sk);
1350 }
1351
tls_device_down(struct net_device * netdev)1352 static int tls_device_down(struct net_device *netdev)
1353 {
1354 struct tls_context *ctx, *tmp;
1355 unsigned long flags;
1356 LIST_HEAD(list);
1357
1358 /* Request a write lock to block new offload attempts */
1359 down_write(&device_offload_lock);
1360
1361 spin_lock_irqsave(&tls_device_lock, flags);
1362 list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
1363 struct net_device *ctx_netdev =
1364 rcu_dereference_protected(ctx->netdev,
1365 lockdep_is_held(&device_offload_lock));
1366
1367 if (ctx_netdev != netdev ||
1368 !refcount_inc_not_zero(&ctx->refcount))
1369 continue;
1370
1371 list_move(&ctx->list, &list);
1372 }
1373 spin_unlock_irqrestore(&tls_device_lock, flags);
1374
1375 list_for_each_entry_safe(ctx, tmp, &list, list) {
1376 /* Stop offloaded TX and switch to the fallback.
1377 * tls_is_sk_tx_device_offloaded will return false.
1378 */
1379 WRITE_ONCE(ctx->sk->sk_validate_xmit_skb, tls_validate_xmit_skb_sw);
1380
1381 /* Stop the RX and TX resync.
1382 * tls_dev_resync must not be called after tls_dev_del.
1383 */
1384 rcu_assign_pointer(ctx->netdev, NULL);
1385
1386 /* Start skipping the RX resync logic completely. */
1387 set_bit(TLS_RX_DEV_DEGRADED, &ctx->flags);
1388
1389 /* Sync with inflight packets. After this point:
1390 * TX: no non-encrypted packets will be passed to the driver.
1391 * RX: resync requests from the driver will be ignored.
1392 */
1393 synchronize_net();
1394
1395 /* Release the offload context on the driver side. */
1396 if (ctx->tx_conf == TLS_HW)
1397 netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1398 TLS_OFFLOAD_CTX_DIR_TX);
1399 if (ctx->rx_conf == TLS_HW &&
1400 !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags))
1401 netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1402 TLS_OFFLOAD_CTX_DIR_RX);
1403
1404 dev_put(netdev);
1405
1406 /* Move the context to a separate list for two reasons:
1407 * 1. When the context is deallocated, list_del is called.
1408 * 2. It's no longer an offloaded context, so we don't want to
1409 * run offload-specific code on this context.
1410 */
1411 spin_lock_irqsave(&tls_device_lock, flags);
1412 list_move_tail(&ctx->list, &tls_device_down_list);
1413 spin_unlock_irqrestore(&tls_device_lock, flags);
1414
1415 /* Device contexts for RX and TX will be freed in on sk_destruct
1416 * by tls_device_free_ctx. rx_conf and tx_conf stay in TLS_HW.
1417 * Now release the ref taken above.
1418 */
1419 if (refcount_dec_and_test(&ctx->refcount)) {
1420 /* sk_destruct ran after tls_device_down took a ref, and
1421 * it returned early. Complete the destruction here.
1422 */
1423 list_del(&ctx->list);
1424 tls_device_free_ctx(ctx);
1425 }
1426 }
1427
1428 up_write(&device_offload_lock);
1429
1430 flush_workqueue(destruct_wq);
1431
1432 return NOTIFY_DONE;
1433 }
1434
tls_dev_event(struct notifier_block * this,unsigned long event,void * ptr)1435 static int tls_dev_event(struct notifier_block *this, unsigned long event,
1436 void *ptr)
1437 {
1438 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1439
1440 if (!dev->tlsdev_ops &&
1441 !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1442 return NOTIFY_DONE;
1443
1444 switch (event) {
1445 case NETDEV_REGISTER:
1446 case NETDEV_FEAT_CHANGE:
1447 if (netif_is_bond_master(dev))
1448 return NOTIFY_DONE;
1449 if ((dev->features & NETIF_F_HW_TLS_RX) &&
1450 !dev->tlsdev_ops->tls_dev_resync)
1451 return NOTIFY_BAD;
1452
1453 if (dev->tlsdev_ops &&
1454 dev->tlsdev_ops->tls_dev_add &&
1455 dev->tlsdev_ops->tls_dev_del)
1456 return NOTIFY_DONE;
1457 else
1458 return NOTIFY_BAD;
1459 case NETDEV_DOWN:
1460 return tls_device_down(dev);
1461 }
1462 return NOTIFY_DONE;
1463 }
1464
1465 static struct notifier_block tls_dev_notifier = {
1466 .notifier_call = tls_dev_event,
1467 };
1468
tls_device_init(void)1469 int __init tls_device_init(void)
1470 {
1471 int err;
1472
1473 destruct_wq = alloc_workqueue("ktls_device_destruct", 0, 0);
1474 if (!destruct_wq)
1475 return -ENOMEM;
1476
1477 err = register_netdevice_notifier(&tls_dev_notifier);
1478 if (err)
1479 destroy_workqueue(destruct_wq);
1480
1481 return err;
1482 }
1483
tls_device_cleanup(void)1484 void __exit tls_device_cleanup(void)
1485 {
1486 unregister_netdevice_notifier(&tls_dev_notifier);
1487 destroy_workqueue(destruct_wq);
1488 clean_acked_data_flush();
1489 }
1490