1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3 *
4 * Copyright (c) 2017 - 2019, Intel Corporation.
5 */
6
7 #define pr_fmt(fmt) "MPTCP: " fmt
8
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp.h>
19 #include <net/tcp_states.h>
20 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
21 #include <net/transp_v6.h>
22 #endif
23 #include <net/mptcp.h>
24 #include <net/xfrm.h>
25 #include <asm/ioctls.h>
26 #include "protocol.h"
27 #include "mib.h"
28
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/mptcp.h>
31
32 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
33 struct mptcp6_sock {
34 struct mptcp_sock msk;
35 struct ipv6_pinfo np;
36 };
37 #endif
38
39 struct mptcp_skb_cb {
40 u64 map_seq;
41 u64 end_seq;
42 u32 offset;
43 u8 has_rxtstamp:1;
44 };
45
46 #define MPTCP_SKB_CB(__skb) ((struct mptcp_skb_cb *)&((__skb)->cb[0]))
47
48 enum {
49 MPTCP_CMSG_TS = BIT(0),
50 MPTCP_CMSG_INQ = BIT(1),
51 };
52
53 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
54
55 static void __mptcp_destroy_sock(struct sock *sk);
56 static void __mptcp_check_send_data_fin(struct sock *sk);
57
58 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
59 static struct net_device mptcp_napi_dev;
60
61 /* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not
62 * completed yet or has failed, return the subflow socket.
63 * Otherwise return NULL.
64 */
__mptcp_nmpc_socket(const struct mptcp_sock * msk)65 struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk)
66 {
67 if (!msk->subflow || READ_ONCE(msk->can_ack))
68 return NULL;
69
70 return msk->subflow;
71 }
72
73 /* Returns end sequence number of the receiver's advertised window */
mptcp_wnd_end(const struct mptcp_sock * msk)74 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
75 {
76 return READ_ONCE(msk->wnd_end);
77 }
78
mptcp_is_tcpsk(struct sock * sk)79 static bool mptcp_is_tcpsk(struct sock *sk)
80 {
81 struct socket *sock = sk->sk_socket;
82
83 if (unlikely(sk->sk_prot == &tcp_prot)) {
84 /* we are being invoked after mptcp_accept() has
85 * accepted a non-mp-capable flow: sk is a tcp_sk,
86 * not an mptcp one.
87 *
88 * Hand the socket over to tcp so all further socket ops
89 * bypass mptcp.
90 */
91 sock->ops = &inet_stream_ops;
92 return true;
93 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
94 } else if (unlikely(sk->sk_prot == &tcpv6_prot)) {
95 sock->ops = &inet6_stream_ops;
96 return true;
97 #endif
98 }
99
100 return false;
101 }
102
__mptcp_socket_create(struct mptcp_sock * msk)103 static int __mptcp_socket_create(struct mptcp_sock *msk)
104 {
105 struct mptcp_subflow_context *subflow;
106 struct sock *sk = (struct sock *)msk;
107 struct socket *ssock;
108 int err;
109
110 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
111 if (err)
112 return err;
113
114 msk->first = ssock->sk;
115 msk->subflow = ssock;
116 subflow = mptcp_subflow_ctx(ssock->sk);
117 list_add(&subflow->node, &msk->conn_list);
118 sock_hold(ssock->sk);
119 subflow->request_mptcp = 1;
120
121 /* This is the first subflow, always with id 0 */
122 subflow->local_id_valid = 1;
123 mptcp_sock_graft(msk->first, sk->sk_socket);
124
125 return 0;
126 }
127
mptcp_drop(struct sock * sk,struct sk_buff * skb)128 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
129 {
130 sk_drops_add(sk, skb);
131 __kfree_skb(skb);
132 }
133
mptcp_rmem_charge(struct sock * sk,int size)134 static void mptcp_rmem_charge(struct sock *sk, int size)
135 {
136 mptcp_sk(sk)->rmem_fwd_alloc -= size;
137 }
138
mptcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from)139 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
140 struct sk_buff *from)
141 {
142 bool fragstolen;
143 int delta;
144
145 if (MPTCP_SKB_CB(from)->offset ||
146 !skb_try_coalesce(to, from, &fragstolen, &delta))
147 return false;
148
149 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx",
150 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
151 to->len, MPTCP_SKB_CB(from)->end_seq);
152 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
153
154 /* note the fwd memory can reach a negative value after accounting
155 * for the delta, but the later skb free will restore a non
156 * negative one
157 */
158 atomic_add(delta, &sk->sk_rmem_alloc);
159 mptcp_rmem_charge(sk, delta);
160 kfree_skb_partial(from, fragstolen);
161
162 return true;
163 }
164
mptcp_ooo_try_coalesce(struct mptcp_sock * msk,struct sk_buff * to,struct sk_buff * from)165 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
166 struct sk_buff *from)
167 {
168 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
169 return false;
170
171 return mptcp_try_coalesce((struct sock *)msk, to, from);
172 }
173
__mptcp_rmem_reclaim(struct sock * sk,int amount)174 static void __mptcp_rmem_reclaim(struct sock *sk, int amount)
175 {
176 amount >>= PAGE_SHIFT;
177 mptcp_sk(sk)->rmem_fwd_alloc -= amount << PAGE_SHIFT;
178 __sk_mem_reduce_allocated(sk, amount);
179 }
180
mptcp_rmem_uncharge(struct sock * sk,int size)181 static void mptcp_rmem_uncharge(struct sock *sk, int size)
182 {
183 struct mptcp_sock *msk = mptcp_sk(sk);
184 int reclaimable;
185
186 msk->rmem_fwd_alloc += size;
187 reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk);
188
189 /* see sk_mem_uncharge() for the rationale behind the following schema */
190 if (unlikely(reclaimable >= PAGE_SIZE))
191 __mptcp_rmem_reclaim(sk, reclaimable);
192 }
193
mptcp_rfree(struct sk_buff * skb)194 static void mptcp_rfree(struct sk_buff *skb)
195 {
196 unsigned int len = skb->truesize;
197 struct sock *sk = skb->sk;
198
199 atomic_sub(len, &sk->sk_rmem_alloc);
200 mptcp_rmem_uncharge(sk, len);
201 }
202
mptcp_set_owner_r(struct sk_buff * skb,struct sock * sk)203 static void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk)
204 {
205 skb_orphan(skb);
206 skb->sk = sk;
207 skb->destructor = mptcp_rfree;
208 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
209 mptcp_rmem_charge(sk, skb->truesize);
210 }
211
212 /* "inspired" by tcp_data_queue_ofo(), main differences:
213 * - use mptcp seqs
214 * - don't cope with sacks
215 */
mptcp_data_queue_ofo(struct mptcp_sock * msk,struct sk_buff * skb)216 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
217 {
218 struct sock *sk = (struct sock *)msk;
219 struct rb_node **p, *parent;
220 u64 seq, end_seq, max_seq;
221 struct sk_buff *skb1;
222
223 seq = MPTCP_SKB_CB(skb)->map_seq;
224 end_seq = MPTCP_SKB_CB(skb)->end_seq;
225 max_seq = atomic64_read(&msk->rcv_wnd_sent);
226
227 pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq,
228 RB_EMPTY_ROOT(&msk->out_of_order_queue));
229 if (after64(end_seq, max_seq)) {
230 /* out of window */
231 mptcp_drop(sk, skb);
232 pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
233 (unsigned long long)end_seq - (unsigned long)max_seq,
234 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
235 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
236 return;
237 }
238
239 p = &msk->out_of_order_queue.rb_node;
240 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
241 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
242 rb_link_node(&skb->rbnode, NULL, p);
243 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
244 msk->ooo_last_skb = skb;
245 goto end;
246 }
247
248 /* with 2 subflows, adding at end of ooo queue is quite likely
249 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
250 */
251 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
252 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
253 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
254 return;
255 }
256
257 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
258 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
259 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
260 parent = &msk->ooo_last_skb->rbnode;
261 p = &parent->rb_right;
262 goto insert;
263 }
264
265 /* Find place to insert this segment. Handle overlaps on the way. */
266 parent = NULL;
267 while (*p) {
268 parent = *p;
269 skb1 = rb_to_skb(parent);
270 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
271 p = &parent->rb_left;
272 continue;
273 }
274 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
275 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
276 /* All the bits are present. Drop. */
277 mptcp_drop(sk, skb);
278 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
279 return;
280 }
281 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
282 /* partial overlap:
283 * | skb |
284 * | skb1 |
285 * continue traversing
286 */
287 } else {
288 /* skb's seq == skb1's seq and skb covers skb1.
289 * Replace skb1 with skb.
290 */
291 rb_replace_node(&skb1->rbnode, &skb->rbnode,
292 &msk->out_of_order_queue);
293 mptcp_drop(sk, skb1);
294 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
295 goto merge_right;
296 }
297 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
298 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
299 return;
300 }
301 p = &parent->rb_right;
302 }
303
304 insert:
305 /* Insert segment into RB tree. */
306 rb_link_node(&skb->rbnode, parent, p);
307 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
308
309 merge_right:
310 /* Remove other segments covered by skb. */
311 while ((skb1 = skb_rb_next(skb)) != NULL) {
312 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
313 break;
314 rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
315 mptcp_drop(sk, skb1);
316 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
317 }
318 /* If there is no skb after us, we are the last_skb ! */
319 if (!skb1)
320 msk->ooo_last_skb = skb;
321
322 end:
323 skb_condense(skb);
324 mptcp_set_owner_r(skb, sk);
325 }
326
mptcp_rmem_schedule(struct sock * sk,struct sock * ssk,int size)327 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size)
328 {
329 struct mptcp_sock *msk = mptcp_sk(sk);
330 int amt, amount;
331
332 if (size <= msk->rmem_fwd_alloc)
333 return true;
334
335 size -= msk->rmem_fwd_alloc;
336 amt = sk_mem_pages(size);
337 amount = amt << PAGE_SHIFT;
338 if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV))
339 return false;
340
341 msk->rmem_fwd_alloc += amount;
342 return true;
343 }
344
__mptcp_move_skb(struct mptcp_sock * msk,struct sock * ssk,struct sk_buff * skb,unsigned int offset,size_t copy_len)345 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
346 struct sk_buff *skb, unsigned int offset,
347 size_t copy_len)
348 {
349 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
350 struct sock *sk = (struct sock *)msk;
351 struct sk_buff *tail;
352 bool has_rxtstamp;
353
354 __skb_unlink(skb, &ssk->sk_receive_queue);
355
356 skb_ext_reset(skb);
357 skb_orphan(skb);
358
359 /* try to fetch required memory from subflow */
360 if (!mptcp_rmem_schedule(sk, ssk, skb->truesize))
361 goto drop;
362
363 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
364
365 /* the skb map_seq accounts for the skb offset:
366 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
367 * value
368 */
369 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
370 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
371 MPTCP_SKB_CB(skb)->offset = offset;
372 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
373
374 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
375 /* in sequence */
376 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
377 tail = skb_peek_tail(&sk->sk_receive_queue);
378 if (tail && mptcp_try_coalesce(sk, tail, skb))
379 return true;
380
381 mptcp_set_owner_r(skb, sk);
382 __skb_queue_tail(&sk->sk_receive_queue, skb);
383 return true;
384 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
385 mptcp_data_queue_ofo(msk, skb);
386 return false;
387 }
388
389 /* old data, keep it simple and drop the whole pkt, sender
390 * will retransmit as needed, if needed.
391 */
392 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
393 drop:
394 mptcp_drop(sk, skb);
395 return false;
396 }
397
mptcp_stop_timer(struct sock * sk)398 static void mptcp_stop_timer(struct sock *sk)
399 {
400 struct inet_connection_sock *icsk = inet_csk(sk);
401
402 sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
403 mptcp_sk(sk)->timer_ival = 0;
404 }
405
mptcp_close_wake_up(struct sock * sk)406 static void mptcp_close_wake_up(struct sock *sk)
407 {
408 if (sock_flag(sk, SOCK_DEAD))
409 return;
410
411 sk->sk_state_change(sk);
412 if (sk->sk_shutdown == SHUTDOWN_MASK ||
413 sk->sk_state == TCP_CLOSE)
414 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
415 else
416 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
417 }
418
mptcp_pending_data_fin_ack(struct sock * sk)419 static bool mptcp_pending_data_fin_ack(struct sock *sk)
420 {
421 struct mptcp_sock *msk = mptcp_sk(sk);
422
423 return !__mptcp_check_fallback(msk) &&
424 ((1 << sk->sk_state) &
425 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
426 msk->write_seq == READ_ONCE(msk->snd_una);
427 }
428
mptcp_check_data_fin_ack(struct sock * sk)429 static void mptcp_check_data_fin_ack(struct sock *sk)
430 {
431 struct mptcp_sock *msk = mptcp_sk(sk);
432
433 /* Look for an acknowledged DATA_FIN */
434 if (mptcp_pending_data_fin_ack(sk)) {
435 WRITE_ONCE(msk->snd_data_fin_enable, 0);
436
437 switch (sk->sk_state) {
438 case TCP_FIN_WAIT1:
439 inet_sk_state_store(sk, TCP_FIN_WAIT2);
440 break;
441 case TCP_CLOSING:
442 case TCP_LAST_ACK:
443 inet_sk_state_store(sk, TCP_CLOSE);
444 break;
445 }
446
447 mptcp_close_wake_up(sk);
448 }
449 }
450
mptcp_pending_data_fin(struct sock * sk,u64 * seq)451 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
452 {
453 struct mptcp_sock *msk = mptcp_sk(sk);
454
455 if (READ_ONCE(msk->rcv_data_fin) &&
456 ((1 << sk->sk_state) &
457 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
458 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
459
460 if (msk->ack_seq == rcv_data_fin_seq) {
461 if (seq)
462 *seq = rcv_data_fin_seq;
463
464 return true;
465 }
466 }
467
468 return false;
469 }
470
mptcp_set_datafin_timeout(const struct sock * sk)471 static void mptcp_set_datafin_timeout(const struct sock *sk)
472 {
473 struct inet_connection_sock *icsk = inet_csk(sk);
474 u32 retransmits;
475
476 retransmits = min_t(u32, icsk->icsk_retransmits,
477 ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
478
479 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
480 }
481
__mptcp_set_timeout(struct sock * sk,long tout)482 static void __mptcp_set_timeout(struct sock *sk, long tout)
483 {
484 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
485 }
486
mptcp_timeout_from_subflow(const struct mptcp_subflow_context * subflow)487 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
488 {
489 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
490
491 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
492 inet_csk(ssk)->icsk_timeout - jiffies : 0;
493 }
494
mptcp_set_timeout(struct sock * sk)495 static void mptcp_set_timeout(struct sock *sk)
496 {
497 struct mptcp_subflow_context *subflow;
498 long tout = 0;
499
500 mptcp_for_each_subflow(mptcp_sk(sk), subflow)
501 tout = max(tout, mptcp_timeout_from_subflow(subflow));
502 __mptcp_set_timeout(sk, tout);
503 }
504
tcp_can_send_ack(const struct sock * ssk)505 static inline bool tcp_can_send_ack(const struct sock *ssk)
506 {
507 return !((1 << inet_sk_state_load(ssk)) &
508 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
509 }
510
__mptcp_subflow_send_ack(struct sock * ssk)511 void __mptcp_subflow_send_ack(struct sock *ssk)
512 {
513 if (tcp_can_send_ack(ssk))
514 tcp_send_ack(ssk);
515 }
516
mptcp_subflow_send_ack(struct sock * ssk)517 static void mptcp_subflow_send_ack(struct sock *ssk)
518 {
519 bool slow;
520
521 slow = lock_sock_fast(ssk);
522 __mptcp_subflow_send_ack(ssk);
523 unlock_sock_fast(ssk, slow);
524 }
525
mptcp_send_ack(struct mptcp_sock * msk)526 static void mptcp_send_ack(struct mptcp_sock *msk)
527 {
528 struct mptcp_subflow_context *subflow;
529
530 mptcp_for_each_subflow(msk, subflow)
531 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
532 }
533
mptcp_subflow_cleanup_rbuf(struct sock * ssk)534 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk)
535 {
536 bool slow;
537
538 slow = lock_sock_fast(ssk);
539 if (tcp_can_send_ack(ssk))
540 tcp_cleanup_rbuf(ssk, 1);
541 unlock_sock_fast(ssk, slow);
542 }
543
mptcp_subflow_could_cleanup(const struct sock * ssk,bool rx_empty)544 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
545 {
546 const struct inet_connection_sock *icsk = inet_csk(ssk);
547 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
548 const struct tcp_sock *tp = tcp_sk(ssk);
549
550 return (ack_pending & ICSK_ACK_SCHED) &&
551 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
552 READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
553 (rx_empty && ack_pending &
554 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
555 }
556
mptcp_cleanup_rbuf(struct mptcp_sock * msk)557 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk)
558 {
559 int old_space = READ_ONCE(msk->old_wspace);
560 struct mptcp_subflow_context *subflow;
561 struct sock *sk = (struct sock *)msk;
562 int space = __mptcp_space(sk);
563 bool cleanup, rx_empty;
564
565 cleanup = (space > 0) && (space >= (old_space << 1));
566 rx_empty = !__mptcp_rmem(sk);
567
568 mptcp_for_each_subflow(msk, subflow) {
569 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
570
571 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
572 mptcp_subflow_cleanup_rbuf(ssk);
573 }
574 }
575
mptcp_check_data_fin(struct sock * sk)576 static bool mptcp_check_data_fin(struct sock *sk)
577 {
578 struct mptcp_sock *msk = mptcp_sk(sk);
579 u64 rcv_data_fin_seq;
580 bool ret = false;
581
582 if (__mptcp_check_fallback(msk))
583 return ret;
584
585 /* Need to ack a DATA_FIN received from a peer while this side
586 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
587 * msk->rcv_data_fin was set when parsing the incoming options
588 * at the subflow level and the msk lock was not held, so this
589 * is the first opportunity to act on the DATA_FIN and change
590 * the msk state.
591 *
592 * If we are caught up to the sequence number of the incoming
593 * DATA_FIN, send the DATA_ACK now and do state transition. If
594 * not caught up, do nothing and let the recv code send DATA_ACK
595 * when catching up.
596 */
597
598 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
599 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
600 WRITE_ONCE(msk->rcv_data_fin, 0);
601
602 sk->sk_shutdown |= RCV_SHUTDOWN;
603 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
604
605 switch (sk->sk_state) {
606 case TCP_ESTABLISHED:
607 inet_sk_state_store(sk, TCP_CLOSE_WAIT);
608 break;
609 case TCP_FIN_WAIT1:
610 inet_sk_state_store(sk, TCP_CLOSING);
611 break;
612 case TCP_FIN_WAIT2:
613 inet_sk_state_store(sk, TCP_CLOSE);
614 break;
615 default:
616 /* Other states not expected */
617 WARN_ON_ONCE(1);
618 break;
619 }
620
621 ret = true;
622 mptcp_send_ack(msk);
623 mptcp_close_wake_up(sk);
624 }
625 return ret;
626 }
627
__mptcp_move_skbs_from_subflow(struct mptcp_sock * msk,struct sock * ssk,unsigned int * bytes)628 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
629 struct sock *ssk,
630 unsigned int *bytes)
631 {
632 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
633 struct sock *sk = (struct sock *)msk;
634 unsigned int moved = 0;
635 bool more_data_avail;
636 struct tcp_sock *tp;
637 bool done = false;
638 int sk_rbuf;
639
640 sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
641
642 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
643 int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
644
645 if (unlikely(ssk_rbuf > sk_rbuf)) {
646 WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
647 sk_rbuf = ssk_rbuf;
648 }
649 }
650
651 pr_debug("msk=%p ssk=%p", msk, ssk);
652 tp = tcp_sk(ssk);
653 do {
654 u32 map_remaining, offset;
655 u32 seq = tp->copied_seq;
656 struct sk_buff *skb;
657 bool fin;
658
659 /* try to move as much data as available */
660 map_remaining = subflow->map_data_len -
661 mptcp_subflow_get_map_offset(subflow);
662
663 skb = skb_peek(&ssk->sk_receive_queue);
664 if (!skb) {
665 /* With racing move_skbs_to_msk() and __mptcp_move_skbs(),
666 * a different CPU can have already processed the pending
667 * data, stop here or we can enter an infinite loop
668 */
669 if (!moved)
670 done = true;
671 break;
672 }
673
674 if (__mptcp_check_fallback(msk)) {
675 /* Under fallback skbs have no MPTCP extension and TCP could
676 * collapse them between the dummy map creation and the
677 * current dequeue. Be sure to adjust the map size.
678 */
679 map_remaining = skb->len;
680 subflow->map_data_len = skb->len;
681 }
682
683 offset = seq - TCP_SKB_CB(skb)->seq;
684 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
685 if (fin) {
686 done = true;
687 seq++;
688 }
689
690 if (offset < skb->len) {
691 size_t len = skb->len - offset;
692
693 if (tp->urg_data)
694 done = true;
695
696 if (__mptcp_move_skb(msk, ssk, skb, offset, len))
697 moved += len;
698 seq += len;
699
700 if (WARN_ON_ONCE(map_remaining < len))
701 break;
702 } else {
703 WARN_ON_ONCE(!fin);
704 sk_eat_skb(ssk, skb);
705 done = true;
706 }
707
708 WRITE_ONCE(tp->copied_seq, seq);
709 more_data_avail = mptcp_subflow_data_available(ssk);
710
711 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
712 done = true;
713 break;
714 }
715 } while (more_data_avail);
716
717 *bytes += moved;
718 return done;
719 }
720
__mptcp_ofo_queue(struct mptcp_sock * msk)721 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
722 {
723 struct sock *sk = (struct sock *)msk;
724 struct sk_buff *skb, *tail;
725 bool moved = false;
726 struct rb_node *p;
727 u64 end_seq;
728
729 p = rb_first(&msk->out_of_order_queue);
730 pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
731 while (p) {
732 skb = rb_to_skb(p);
733 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
734 break;
735
736 p = rb_next(p);
737 rb_erase(&skb->rbnode, &msk->out_of_order_queue);
738
739 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
740 msk->ack_seq))) {
741 mptcp_drop(sk, skb);
742 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
743 continue;
744 }
745
746 end_seq = MPTCP_SKB_CB(skb)->end_seq;
747 tail = skb_peek_tail(&sk->sk_receive_queue);
748 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
749 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
750
751 /* skip overlapping data, if any */
752 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d",
753 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
754 delta);
755 MPTCP_SKB_CB(skb)->offset += delta;
756 MPTCP_SKB_CB(skb)->map_seq += delta;
757 __skb_queue_tail(&sk->sk_receive_queue, skb);
758 }
759 msk->ack_seq = end_seq;
760 moved = true;
761 }
762 return moved;
763 }
764
765 /* In most cases we will be able to lock the mptcp socket. If its already
766 * owned, we need to defer to the work queue to avoid ABBA deadlock.
767 */
move_skbs_to_msk(struct mptcp_sock * msk,struct sock * ssk)768 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
769 {
770 struct sock *sk = (struct sock *)msk;
771 unsigned int moved = 0;
772
773 __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
774 __mptcp_ofo_queue(msk);
775 if (unlikely(ssk->sk_err)) {
776 if (!sock_owned_by_user(sk))
777 __mptcp_error_report(sk);
778 else
779 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags);
780 }
781
782 /* If the moves have caught up with the DATA_FIN sequence number
783 * it's time to ack the DATA_FIN and change socket state, but
784 * this is not a good place to change state. Let the workqueue
785 * do it.
786 */
787 if (mptcp_pending_data_fin(sk, NULL))
788 mptcp_schedule_work(sk);
789 return moved > 0;
790 }
791
mptcp_data_ready(struct sock * sk,struct sock * ssk)792 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
793 {
794 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
795 struct mptcp_sock *msk = mptcp_sk(sk);
796 int sk_rbuf, ssk_rbuf;
797
798 /* The peer can send data while we are shutting down this
799 * subflow at msk destruction time, but we must avoid enqueuing
800 * more data to the msk receive queue
801 */
802 if (unlikely(subflow->disposable))
803 return;
804
805 ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
806 sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
807 if (unlikely(ssk_rbuf > sk_rbuf))
808 sk_rbuf = ssk_rbuf;
809
810 /* over limit? can't append more skbs to msk, Also, no need to wake-up*/
811 if (__mptcp_rmem(sk) > sk_rbuf) {
812 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
813 return;
814 }
815
816 /* Wake-up the reader only for in-sequence data */
817 mptcp_data_lock(sk);
818 if (move_skbs_to_msk(msk, ssk))
819 sk->sk_data_ready(sk);
820
821 mptcp_data_unlock(sk);
822 }
823
__mptcp_finish_join(struct mptcp_sock * msk,struct sock * ssk)824 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
825 {
826 struct sock *sk = (struct sock *)msk;
827
828 if (sk->sk_state != TCP_ESTABLISHED)
829 return false;
830
831 /* attach to msk socket only after we are sure we will deal with it
832 * at close time
833 */
834 if (sk->sk_socket && !ssk->sk_socket)
835 mptcp_sock_graft(ssk, sk->sk_socket);
836
837 mptcp_propagate_sndbuf((struct sock *)msk, ssk);
838 mptcp_sockopt_sync_locked(msk, ssk);
839 return true;
840 }
841
__mptcp_flush_join_list(struct sock * sk)842 static void __mptcp_flush_join_list(struct sock *sk)
843 {
844 struct mptcp_subflow_context *tmp, *subflow;
845 struct mptcp_sock *msk = mptcp_sk(sk);
846
847 list_for_each_entry_safe(subflow, tmp, &msk->join_list, node) {
848 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
849 bool slow = lock_sock_fast(ssk);
850
851 list_move_tail(&subflow->node, &msk->conn_list);
852 if (!__mptcp_finish_join(msk, ssk))
853 mptcp_subflow_reset(ssk);
854 unlock_sock_fast(ssk, slow);
855 }
856 }
857
mptcp_timer_pending(struct sock * sk)858 static bool mptcp_timer_pending(struct sock *sk)
859 {
860 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
861 }
862
mptcp_reset_timer(struct sock * sk)863 static void mptcp_reset_timer(struct sock *sk)
864 {
865 struct inet_connection_sock *icsk = inet_csk(sk);
866 unsigned long tout;
867
868 /* prevent rescheduling on close */
869 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
870 return;
871
872 tout = mptcp_sk(sk)->timer_ival;
873 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
874 }
875
mptcp_schedule_work(struct sock * sk)876 bool mptcp_schedule_work(struct sock *sk)
877 {
878 if (inet_sk_state_load(sk) != TCP_CLOSE &&
879 schedule_work(&mptcp_sk(sk)->work)) {
880 /* each subflow already holds a reference to the sk, and the
881 * workqueue is invoked by a subflow, so sk can't go away here.
882 */
883 sock_hold(sk);
884 return true;
885 }
886 return false;
887 }
888
mptcp_subflow_eof(struct sock * sk)889 void mptcp_subflow_eof(struct sock *sk)
890 {
891 if (!test_and_set_bit(MPTCP_WORK_EOF, &mptcp_sk(sk)->flags))
892 mptcp_schedule_work(sk);
893 }
894
mptcp_check_for_eof(struct mptcp_sock * msk)895 static void mptcp_check_for_eof(struct mptcp_sock *msk)
896 {
897 struct mptcp_subflow_context *subflow;
898 struct sock *sk = (struct sock *)msk;
899 int receivers = 0;
900
901 mptcp_for_each_subflow(msk, subflow)
902 receivers += !subflow->rx_eof;
903 if (receivers)
904 return;
905
906 if (!(sk->sk_shutdown & RCV_SHUTDOWN)) {
907 /* hopefully temporary hack: propagate shutdown status
908 * to msk, when all subflows agree on it
909 */
910 sk->sk_shutdown |= RCV_SHUTDOWN;
911
912 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
913 sk->sk_data_ready(sk);
914 }
915
916 switch (sk->sk_state) {
917 case TCP_ESTABLISHED:
918 inet_sk_state_store(sk, TCP_CLOSE_WAIT);
919 break;
920 case TCP_FIN_WAIT1:
921 inet_sk_state_store(sk, TCP_CLOSING);
922 break;
923 case TCP_FIN_WAIT2:
924 inet_sk_state_store(sk, TCP_CLOSE);
925 break;
926 default:
927 return;
928 }
929 mptcp_close_wake_up(sk);
930 }
931
mptcp_subflow_recv_lookup(const struct mptcp_sock * msk)932 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
933 {
934 struct mptcp_subflow_context *subflow;
935 struct sock *sk = (struct sock *)msk;
936
937 sock_owned_by_me(sk);
938
939 mptcp_for_each_subflow(msk, subflow) {
940 if (READ_ONCE(subflow->data_avail))
941 return mptcp_subflow_tcp_sock(subflow);
942 }
943
944 return NULL;
945 }
946
mptcp_skb_can_collapse_to(u64 write_seq,const struct sk_buff * skb,const struct mptcp_ext * mpext)947 static bool mptcp_skb_can_collapse_to(u64 write_seq,
948 const struct sk_buff *skb,
949 const struct mptcp_ext *mpext)
950 {
951 if (!tcp_skb_can_collapse_to(skb))
952 return false;
953
954 /* can collapse only if MPTCP level sequence is in order and this
955 * mapping has not been xmitted yet
956 */
957 return mpext && mpext->data_seq + mpext->data_len == write_seq &&
958 !mpext->frozen;
959 }
960
961 /* we can append data to the given data frag if:
962 * - there is space available in the backing page_frag
963 * - the data frag tail matches the current page_frag free offset
964 * - the data frag end sequence number matches the current write seq
965 */
mptcp_frag_can_collapse_to(const struct mptcp_sock * msk,const struct page_frag * pfrag,const struct mptcp_data_frag * df)966 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
967 const struct page_frag *pfrag,
968 const struct mptcp_data_frag *df)
969 {
970 return df && pfrag->page == df->page &&
971 pfrag->size - pfrag->offset > 0 &&
972 pfrag->offset == (df->offset + df->data_len) &&
973 df->data_seq + df->data_len == msk->write_seq;
974 }
975
dfrag_uncharge(struct sock * sk,int len)976 static void dfrag_uncharge(struct sock *sk, int len)
977 {
978 sk_mem_uncharge(sk, len);
979 sk_wmem_queued_add(sk, -len);
980 }
981
dfrag_clear(struct sock * sk,struct mptcp_data_frag * dfrag)982 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
983 {
984 int len = dfrag->data_len + dfrag->overhead;
985
986 list_del(&dfrag->list);
987 dfrag_uncharge(sk, len);
988 put_page(dfrag->page);
989 }
990
__mptcp_clean_una(struct sock * sk)991 static void __mptcp_clean_una(struct sock *sk)
992 {
993 struct mptcp_sock *msk = mptcp_sk(sk);
994 struct mptcp_data_frag *dtmp, *dfrag;
995 u64 snd_una;
996
997 /* on fallback we just need to ignore snd_una, as this is really
998 * plain TCP
999 */
1000 if (__mptcp_check_fallback(msk))
1001 msk->snd_una = READ_ONCE(msk->snd_nxt);
1002
1003 snd_una = msk->snd_una;
1004 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
1005 if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
1006 break;
1007
1008 if (unlikely(dfrag == msk->first_pending)) {
1009 /* in recovery mode can see ack after the current snd head */
1010 if (WARN_ON_ONCE(!msk->recovery))
1011 break;
1012
1013 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1014 }
1015
1016 dfrag_clear(sk, dfrag);
1017 }
1018
1019 dfrag = mptcp_rtx_head(sk);
1020 if (dfrag && after64(snd_una, dfrag->data_seq)) {
1021 u64 delta = snd_una - dfrag->data_seq;
1022
1023 /* prevent wrap around in recovery mode */
1024 if (unlikely(delta > dfrag->already_sent)) {
1025 if (WARN_ON_ONCE(!msk->recovery))
1026 goto out;
1027 if (WARN_ON_ONCE(delta > dfrag->data_len))
1028 goto out;
1029 dfrag->already_sent += delta - dfrag->already_sent;
1030 }
1031
1032 dfrag->data_seq += delta;
1033 dfrag->offset += delta;
1034 dfrag->data_len -= delta;
1035 dfrag->already_sent -= delta;
1036
1037 dfrag_uncharge(sk, delta);
1038 }
1039
1040 /* all retransmitted data acked, recovery completed */
1041 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1042 msk->recovery = false;
1043
1044 out:
1045 if (snd_una == READ_ONCE(msk->snd_nxt) &&
1046 snd_una == READ_ONCE(msk->write_seq)) {
1047 if (mptcp_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1048 mptcp_stop_timer(sk);
1049 } else {
1050 mptcp_reset_timer(sk);
1051 }
1052 }
1053
__mptcp_clean_una_wakeup(struct sock * sk)1054 static void __mptcp_clean_una_wakeup(struct sock *sk)
1055 {
1056 lockdep_assert_held_once(&sk->sk_lock.slock);
1057
1058 __mptcp_clean_una(sk);
1059 mptcp_write_space(sk);
1060 }
1061
mptcp_clean_una_wakeup(struct sock * sk)1062 static void mptcp_clean_una_wakeup(struct sock *sk)
1063 {
1064 mptcp_data_lock(sk);
1065 __mptcp_clean_una_wakeup(sk);
1066 mptcp_data_unlock(sk);
1067 }
1068
mptcp_enter_memory_pressure(struct sock * sk)1069 static void mptcp_enter_memory_pressure(struct sock *sk)
1070 {
1071 struct mptcp_subflow_context *subflow;
1072 struct mptcp_sock *msk = mptcp_sk(sk);
1073 bool first = true;
1074
1075 sk_stream_moderate_sndbuf(sk);
1076 mptcp_for_each_subflow(msk, subflow) {
1077 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1078
1079 if (first)
1080 tcp_enter_memory_pressure(ssk);
1081 sk_stream_moderate_sndbuf(ssk);
1082 first = false;
1083 }
1084 }
1085
1086 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1087 * data
1088 */
mptcp_page_frag_refill(struct sock * sk,struct page_frag * pfrag)1089 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1090 {
1091 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1092 pfrag, sk->sk_allocation)))
1093 return true;
1094
1095 mptcp_enter_memory_pressure(sk);
1096 return false;
1097 }
1098
1099 static struct mptcp_data_frag *
mptcp_carve_data_frag(const struct mptcp_sock * msk,struct page_frag * pfrag,int orig_offset)1100 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1101 int orig_offset)
1102 {
1103 int offset = ALIGN(orig_offset, sizeof(long));
1104 struct mptcp_data_frag *dfrag;
1105
1106 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1107 dfrag->data_len = 0;
1108 dfrag->data_seq = msk->write_seq;
1109 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1110 dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1111 dfrag->already_sent = 0;
1112 dfrag->page = pfrag->page;
1113
1114 return dfrag;
1115 }
1116
1117 struct mptcp_sendmsg_info {
1118 int mss_now;
1119 int size_goal;
1120 u16 limit;
1121 u16 sent;
1122 unsigned int flags;
1123 bool data_lock_held;
1124 };
1125
mptcp_check_allowed_size(const struct mptcp_sock * msk,struct sock * ssk,u64 data_seq,int avail_size)1126 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1127 u64 data_seq, int avail_size)
1128 {
1129 u64 window_end = mptcp_wnd_end(msk);
1130 u64 mptcp_snd_wnd;
1131
1132 if (__mptcp_check_fallback(msk))
1133 return avail_size;
1134
1135 mptcp_snd_wnd = window_end - data_seq;
1136 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1137
1138 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1139 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1140 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1141 }
1142
1143 return avail_size;
1144 }
1145
__mptcp_add_ext(struct sk_buff * skb,gfp_t gfp)1146 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1147 {
1148 struct skb_ext *mpext = __skb_ext_alloc(gfp);
1149
1150 if (!mpext)
1151 return false;
1152 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1153 return true;
1154 }
1155
__mptcp_do_alloc_tx_skb(struct sock * sk,gfp_t gfp)1156 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1157 {
1158 struct sk_buff *skb;
1159
1160 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1161 if (likely(skb)) {
1162 if (likely(__mptcp_add_ext(skb, gfp))) {
1163 skb_reserve(skb, MAX_TCP_HEADER);
1164 skb->ip_summed = CHECKSUM_PARTIAL;
1165 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1166 return skb;
1167 }
1168 __kfree_skb(skb);
1169 } else {
1170 mptcp_enter_memory_pressure(sk);
1171 }
1172 return NULL;
1173 }
1174
__mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,gfp_t gfp)1175 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1176 {
1177 struct sk_buff *skb;
1178
1179 skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1180 if (!skb)
1181 return NULL;
1182
1183 if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1184 tcp_skb_entail(ssk, skb);
1185 return skb;
1186 }
1187 tcp_skb_tsorted_anchor_cleanup(skb);
1188 kfree_skb(skb);
1189 return NULL;
1190 }
1191
mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,bool data_lock_held)1192 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1193 {
1194 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1195
1196 return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1197 }
1198
1199 /* note: this always recompute the csum on the whole skb, even
1200 * if we just appended a single frag. More status info needed
1201 */
mptcp_update_data_checksum(struct sk_buff * skb,int added)1202 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1203 {
1204 struct mptcp_ext *mpext = mptcp_get_ext(skb);
1205 __wsum csum = ~csum_unfold(mpext->csum);
1206 int offset = skb->len - added;
1207
1208 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1209 }
1210
mptcp_update_infinite_map(struct mptcp_sock * msk,struct sock * ssk,struct mptcp_ext * mpext)1211 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1212 struct sock *ssk,
1213 struct mptcp_ext *mpext)
1214 {
1215 if (!mpext)
1216 return;
1217
1218 mpext->infinite_map = 1;
1219 mpext->data_len = 0;
1220
1221 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX);
1222 mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1223 pr_fallback(msk);
1224 mptcp_do_fallback(ssk);
1225 }
1226
mptcp_sendmsg_frag(struct sock * sk,struct sock * ssk,struct mptcp_data_frag * dfrag,struct mptcp_sendmsg_info * info)1227 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1228 struct mptcp_data_frag *dfrag,
1229 struct mptcp_sendmsg_info *info)
1230 {
1231 u64 data_seq = dfrag->data_seq + info->sent;
1232 int offset = dfrag->offset + info->sent;
1233 struct mptcp_sock *msk = mptcp_sk(sk);
1234 bool zero_window_probe = false;
1235 struct mptcp_ext *mpext = NULL;
1236 bool can_coalesce = false;
1237 bool reuse_skb = true;
1238 struct sk_buff *skb;
1239 size_t copy;
1240 int i;
1241
1242 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u",
1243 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1244
1245 if (WARN_ON_ONCE(info->sent > info->limit ||
1246 info->limit > dfrag->data_len))
1247 return 0;
1248
1249 if (unlikely(!__tcp_can_send(ssk)))
1250 return -EAGAIN;
1251
1252 /* compute send limit */
1253 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1254 copy = info->size_goal;
1255
1256 skb = tcp_write_queue_tail(ssk);
1257 if (skb && copy > skb->len) {
1258 /* Limit the write to the size available in the
1259 * current skb, if any, so that we create at most a new skb.
1260 * Explicitly tells TCP internals to avoid collapsing on later
1261 * queue management operation, to avoid breaking the ext <->
1262 * SSN association set here
1263 */
1264 mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1265 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1266 TCP_SKB_CB(skb)->eor = 1;
1267 goto alloc_skb;
1268 }
1269
1270 i = skb_shinfo(skb)->nr_frags;
1271 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1272 if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) {
1273 tcp_mark_push(tcp_sk(ssk), skb);
1274 goto alloc_skb;
1275 }
1276
1277 copy -= skb->len;
1278 } else {
1279 alloc_skb:
1280 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1281 if (!skb)
1282 return -ENOMEM;
1283
1284 i = skb_shinfo(skb)->nr_frags;
1285 reuse_skb = false;
1286 mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1287 }
1288
1289 /* Zero window and all data acked? Probe. */
1290 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1291 if (copy == 0) {
1292 u64 snd_una = READ_ONCE(msk->snd_una);
1293
1294 if (snd_una != msk->snd_nxt) {
1295 tcp_remove_empty_skb(ssk);
1296 return 0;
1297 }
1298
1299 zero_window_probe = true;
1300 data_seq = snd_una - 1;
1301 copy = 1;
1302
1303 /* all mptcp-level data is acked, no skbs should be present into the
1304 * ssk write queue
1305 */
1306 WARN_ON_ONCE(reuse_skb);
1307 }
1308
1309 copy = min_t(size_t, copy, info->limit - info->sent);
1310 if (!sk_wmem_schedule(ssk, copy)) {
1311 tcp_remove_empty_skb(ssk);
1312 return -ENOMEM;
1313 }
1314
1315 if (can_coalesce) {
1316 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1317 } else {
1318 get_page(dfrag->page);
1319 skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1320 }
1321
1322 skb->len += copy;
1323 skb->data_len += copy;
1324 skb->truesize += copy;
1325 sk_wmem_queued_add(ssk, copy);
1326 sk_mem_charge(ssk, copy);
1327 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1328 TCP_SKB_CB(skb)->end_seq += copy;
1329 tcp_skb_pcount_set(skb, 0);
1330
1331 /* on skb reuse we just need to update the DSS len */
1332 if (reuse_skb) {
1333 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1334 mpext->data_len += copy;
1335 WARN_ON_ONCE(zero_window_probe);
1336 goto out;
1337 }
1338
1339 memset(mpext, 0, sizeof(*mpext));
1340 mpext->data_seq = data_seq;
1341 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1342 mpext->data_len = copy;
1343 mpext->use_map = 1;
1344 mpext->dsn64 = 1;
1345
1346 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d",
1347 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1348 mpext->dsn64);
1349
1350 if (zero_window_probe) {
1351 mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1352 mpext->frozen = 1;
1353 if (READ_ONCE(msk->csum_enabled))
1354 mptcp_update_data_checksum(skb, copy);
1355 tcp_push_pending_frames(ssk);
1356 return 0;
1357 }
1358 out:
1359 if (READ_ONCE(msk->csum_enabled))
1360 mptcp_update_data_checksum(skb, copy);
1361 if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1362 mptcp_update_infinite_map(msk, ssk, mpext);
1363 trace_mptcp_sendmsg_frag(mpext);
1364 mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1365 return copy;
1366 }
1367
1368 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \
1369 sizeof(struct tcphdr) - \
1370 MAX_TCP_OPTION_SPACE - \
1371 sizeof(struct ipv6hdr) - \
1372 sizeof(struct frag_hdr))
1373
1374 struct subflow_send_info {
1375 struct sock *ssk;
1376 u64 linger_time;
1377 };
1378
mptcp_subflow_set_active(struct mptcp_subflow_context * subflow)1379 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1380 {
1381 if (!subflow->stale)
1382 return;
1383
1384 subflow->stale = 0;
1385 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1386 }
1387
mptcp_subflow_active(struct mptcp_subflow_context * subflow)1388 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1389 {
1390 if (unlikely(subflow->stale)) {
1391 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1392
1393 if (subflow->stale_rcv_tstamp == rcv_tstamp)
1394 return false;
1395
1396 mptcp_subflow_set_active(subflow);
1397 }
1398 return __mptcp_subflow_active(subflow);
1399 }
1400
1401 #define SSK_MODE_ACTIVE 0
1402 #define SSK_MODE_BACKUP 1
1403 #define SSK_MODE_MAX 2
1404
1405 /* implement the mptcp packet scheduler;
1406 * returns the subflow that will transmit the next DSS
1407 * additionally updates the rtx timeout
1408 */
mptcp_subflow_get_send(struct mptcp_sock * msk)1409 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1410 {
1411 struct subflow_send_info send_info[SSK_MODE_MAX];
1412 struct mptcp_subflow_context *subflow;
1413 struct sock *sk = (struct sock *)msk;
1414 u32 pace, burst, wmem;
1415 int i, nr_active = 0;
1416 struct sock *ssk;
1417 u64 linger_time;
1418 long tout = 0;
1419
1420 sock_owned_by_me(sk);
1421
1422 if (__mptcp_check_fallback(msk)) {
1423 if (!msk->first)
1424 return NULL;
1425 return __tcp_can_send(msk->first) &&
1426 sk_stream_memory_free(msk->first) ? msk->first : NULL;
1427 }
1428
1429 /* re-use last subflow, if the burst allow that */
1430 if (msk->last_snd && msk->snd_burst > 0 &&
1431 sk_stream_memory_free(msk->last_snd) &&
1432 mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd))) {
1433 mptcp_set_timeout(sk);
1434 return msk->last_snd;
1435 }
1436
1437 /* pick the subflow with the lower wmem/wspace ratio */
1438 for (i = 0; i < SSK_MODE_MAX; ++i) {
1439 send_info[i].ssk = NULL;
1440 send_info[i].linger_time = -1;
1441 }
1442
1443 mptcp_for_each_subflow(msk, subflow) {
1444 trace_mptcp_subflow_get_send(subflow);
1445 ssk = mptcp_subflow_tcp_sock(subflow);
1446 if (!mptcp_subflow_active(subflow))
1447 continue;
1448
1449 tout = max(tout, mptcp_timeout_from_subflow(subflow));
1450 nr_active += !subflow->backup;
1451 pace = subflow->avg_pacing_rate;
1452 if (unlikely(!pace)) {
1453 /* init pacing rate from socket */
1454 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1455 pace = subflow->avg_pacing_rate;
1456 if (!pace)
1457 continue;
1458 }
1459
1460 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1461 if (linger_time < send_info[subflow->backup].linger_time) {
1462 send_info[subflow->backup].ssk = ssk;
1463 send_info[subflow->backup].linger_time = linger_time;
1464 }
1465 }
1466 __mptcp_set_timeout(sk, tout);
1467
1468 /* pick the best backup if no other subflow is active */
1469 if (!nr_active)
1470 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1471
1472 /* According to the blest algorithm, to avoid HoL blocking for the
1473 * faster flow, we need to:
1474 * - estimate the faster flow linger time
1475 * - use the above to estimate the amount of byte transferred
1476 * by the faster flow
1477 * - check that the amount of queued data is greter than the above,
1478 * otherwise do not use the picked, slower, subflow
1479 * We select the subflow with the shorter estimated time to flush
1480 * the queued mem, which basically ensure the above. We just need
1481 * to check that subflow has a non empty cwin.
1482 */
1483 ssk = send_info[SSK_MODE_ACTIVE].ssk;
1484 if (!ssk || !sk_stream_memory_free(ssk))
1485 return NULL;
1486
1487 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1488 wmem = READ_ONCE(ssk->sk_wmem_queued);
1489 if (!burst) {
1490 msk->last_snd = NULL;
1491 return ssk;
1492 }
1493
1494 subflow = mptcp_subflow_ctx(ssk);
1495 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1496 READ_ONCE(ssk->sk_pacing_rate) * burst,
1497 burst + wmem);
1498 msk->last_snd = ssk;
1499 msk->snd_burst = burst;
1500 return ssk;
1501 }
1502
mptcp_push_release(struct sock * ssk,struct mptcp_sendmsg_info * info)1503 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1504 {
1505 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1506 release_sock(ssk);
1507 }
1508
mptcp_update_post_push(struct mptcp_sock * msk,struct mptcp_data_frag * dfrag,u32 sent)1509 static void mptcp_update_post_push(struct mptcp_sock *msk,
1510 struct mptcp_data_frag *dfrag,
1511 u32 sent)
1512 {
1513 u64 snd_nxt_new = dfrag->data_seq;
1514
1515 dfrag->already_sent += sent;
1516
1517 msk->snd_burst -= sent;
1518
1519 snd_nxt_new += dfrag->already_sent;
1520
1521 /* snd_nxt_new can be smaller than snd_nxt in case mptcp
1522 * is recovering after a failover. In that event, this re-sends
1523 * old segments.
1524 *
1525 * Thus compute snd_nxt_new candidate based on
1526 * the dfrag->data_seq that was sent and the data
1527 * that has been handed to the subflow for transmission
1528 * and skip update in case it was old dfrag.
1529 */
1530 if (likely(after64(snd_nxt_new, msk->snd_nxt)))
1531 msk->snd_nxt = snd_nxt_new;
1532 }
1533
mptcp_check_and_set_pending(struct sock * sk)1534 void mptcp_check_and_set_pending(struct sock *sk)
1535 {
1536 if (mptcp_send_head(sk))
1537 mptcp_sk(sk)->push_pending |= BIT(MPTCP_PUSH_PENDING);
1538 }
1539
__mptcp_push_pending(struct sock * sk,unsigned int flags)1540 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1541 {
1542 struct sock *prev_ssk = NULL, *ssk = NULL;
1543 struct mptcp_sock *msk = mptcp_sk(sk);
1544 struct mptcp_sendmsg_info info = {
1545 .flags = flags,
1546 };
1547 bool do_check_data_fin = false;
1548 struct mptcp_data_frag *dfrag;
1549 int len;
1550
1551 while ((dfrag = mptcp_send_head(sk))) {
1552 info.sent = dfrag->already_sent;
1553 info.limit = dfrag->data_len;
1554 len = dfrag->data_len - dfrag->already_sent;
1555 while (len > 0) {
1556 int ret = 0;
1557
1558 prev_ssk = ssk;
1559 ssk = mptcp_subflow_get_send(msk);
1560
1561 /* First check. If the ssk has changed since
1562 * the last round, release prev_ssk
1563 */
1564 if (ssk != prev_ssk && prev_ssk)
1565 mptcp_push_release(prev_ssk, &info);
1566 if (!ssk)
1567 goto out;
1568
1569 /* Need to lock the new subflow only if different
1570 * from the previous one, otherwise we are still
1571 * helding the relevant lock
1572 */
1573 if (ssk != prev_ssk)
1574 lock_sock(ssk);
1575
1576 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
1577 if (ret <= 0) {
1578 if (ret == -EAGAIN)
1579 continue;
1580 mptcp_push_release(ssk, &info);
1581 goto out;
1582 }
1583
1584 do_check_data_fin = true;
1585 info.sent += ret;
1586 len -= ret;
1587
1588 mptcp_update_post_push(msk, dfrag, ret);
1589 }
1590 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1591 }
1592
1593 /* at this point we held the socket lock for the last subflow we used */
1594 if (ssk)
1595 mptcp_push_release(ssk, &info);
1596
1597 out:
1598 /* ensure the rtx timer is running */
1599 if (!mptcp_timer_pending(sk))
1600 mptcp_reset_timer(sk);
1601 if (do_check_data_fin)
1602 __mptcp_check_send_data_fin(sk);
1603 }
1604
__mptcp_subflow_push_pending(struct sock * sk,struct sock * ssk)1605 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk)
1606 {
1607 struct mptcp_sock *msk = mptcp_sk(sk);
1608 struct mptcp_sendmsg_info info = {
1609 .data_lock_held = true,
1610 };
1611 struct mptcp_data_frag *dfrag;
1612 struct sock *xmit_ssk;
1613 int len, copied = 0;
1614 bool first = true;
1615
1616 info.flags = 0;
1617 while ((dfrag = mptcp_send_head(sk))) {
1618 info.sent = dfrag->already_sent;
1619 info.limit = dfrag->data_len;
1620 len = dfrag->data_len - dfrag->already_sent;
1621 while (len > 0) {
1622 int ret = 0;
1623
1624 /* the caller already invoked the packet scheduler,
1625 * check for a different subflow usage only after
1626 * spooling the first chunk of data
1627 */
1628 xmit_ssk = first ? ssk : mptcp_subflow_get_send(mptcp_sk(sk));
1629 if (!xmit_ssk)
1630 goto out;
1631 if (xmit_ssk != ssk) {
1632 mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk),
1633 MPTCP_DELEGATE_SEND);
1634 goto out;
1635 }
1636
1637 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
1638 if (ret <= 0)
1639 goto out;
1640
1641 info.sent += ret;
1642 copied += ret;
1643 len -= ret;
1644 first = false;
1645
1646 mptcp_update_post_push(msk, dfrag, ret);
1647 }
1648 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1649 }
1650
1651 out:
1652 /* __mptcp_alloc_tx_skb could have released some wmem and we are
1653 * not going to flush it via release_sock()
1654 */
1655 if (copied) {
1656 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1657 info.size_goal);
1658 if (!mptcp_timer_pending(sk))
1659 mptcp_reset_timer(sk);
1660
1661 if (msk->snd_data_fin_enable &&
1662 msk->snd_nxt + 1 == msk->write_seq)
1663 mptcp_schedule_work(sk);
1664 }
1665 }
1666
mptcp_set_nospace(struct sock * sk)1667 static void mptcp_set_nospace(struct sock *sk)
1668 {
1669 /* enable autotune */
1670 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1671
1672 /* will be cleared on avail space */
1673 set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags);
1674 }
1675
1676 static int mptcp_disconnect(struct sock *sk, int flags);
1677
mptcp_sendmsg_fastopen(struct sock * sk,struct sock * ssk,struct msghdr * msg,size_t len,int * copied_syn)1678 static int mptcp_sendmsg_fastopen(struct sock *sk, struct sock *ssk, struct msghdr *msg,
1679 size_t len, int *copied_syn)
1680 {
1681 unsigned int saved_flags = msg->msg_flags;
1682 struct mptcp_sock *msk = mptcp_sk(sk);
1683 int ret;
1684
1685 lock_sock(ssk);
1686 msg->msg_flags |= MSG_DONTWAIT;
1687 msk->connect_flags = O_NONBLOCK;
1688 msk->fastopening = 1;
1689 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1690 msk->fastopening = 0;
1691 msg->msg_flags = saved_flags;
1692 release_sock(ssk);
1693
1694 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1695 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1696 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1697 msg->msg_namelen, msg->msg_flags, 1);
1698
1699 /* Keep the same behaviour of plain TCP: zero the copied bytes in
1700 * case of any error, except timeout or signal
1701 */
1702 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1703 *copied_syn = 0;
1704 } else if (ret && ret != -EINPROGRESS) {
1705 mptcp_disconnect(sk, 0);
1706 }
1707
1708 return ret;
1709 }
1710
mptcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1711 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1712 {
1713 struct mptcp_sock *msk = mptcp_sk(sk);
1714 struct page_frag *pfrag;
1715 struct socket *ssock;
1716 size_t copied = 0;
1717 int ret = 0;
1718 long timeo;
1719
1720 /* we don't support FASTOPEN yet */
1721 if (msg->msg_flags & MSG_FASTOPEN)
1722 return -EOPNOTSUPP;
1723
1724 /* silently ignore everything else */
1725 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL;
1726
1727 lock_sock(sk);
1728
1729 ssock = __mptcp_nmpc_socket(msk);
1730 if (unlikely(ssock && inet_sk(ssock->sk)->defer_connect)) {
1731 int copied_syn = 0;
1732
1733 ret = mptcp_sendmsg_fastopen(sk, ssock->sk, msg, len, &copied_syn);
1734 copied += copied_syn;
1735 if (ret == -EINPROGRESS && copied_syn > 0)
1736 goto out;
1737 else if (ret)
1738 goto do_error;
1739 }
1740
1741 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1742
1743 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1744 ret = sk_stream_wait_connect(sk, &timeo);
1745 if (ret)
1746 goto do_error;
1747 }
1748
1749 ret = -EPIPE;
1750 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1751 goto do_error;
1752
1753 pfrag = sk_page_frag(sk);
1754
1755 while (msg_data_left(msg)) {
1756 int total_ts, frag_truesize = 0;
1757 struct mptcp_data_frag *dfrag;
1758 bool dfrag_collapsed;
1759 size_t psize, offset;
1760
1761 /* reuse tail pfrag, if possible, or carve a new one from the
1762 * page allocator
1763 */
1764 dfrag = mptcp_pending_tail(sk);
1765 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1766 if (!dfrag_collapsed) {
1767 if (!sk_stream_memory_free(sk))
1768 goto wait_for_memory;
1769
1770 if (!mptcp_page_frag_refill(sk, pfrag))
1771 goto wait_for_memory;
1772
1773 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1774 frag_truesize = dfrag->overhead;
1775 }
1776
1777 /* we do not bound vs wspace, to allow a single packet.
1778 * memory accounting will prevent execessive memory usage
1779 * anyway
1780 */
1781 offset = dfrag->offset + dfrag->data_len;
1782 psize = pfrag->size - offset;
1783 psize = min_t(size_t, psize, msg_data_left(msg));
1784 total_ts = psize + frag_truesize;
1785
1786 if (!sk_wmem_schedule(sk, total_ts))
1787 goto wait_for_memory;
1788
1789 if (copy_page_from_iter(dfrag->page, offset, psize,
1790 &msg->msg_iter) != psize) {
1791 ret = -EFAULT;
1792 goto do_error;
1793 }
1794
1795 /* data successfully copied into the write queue */
1796 sk->sk_forward_alloc -= total_ts;
1797 copied += psize;
1798 dfrag->data_len += psize;
1799 frag_truesize += psize;
1800 pfrag->offset += frag_truesize;
1801 WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1802
1803 /* charge data on mptcp pending queue to the msk socket
1804 * Note: we charge such data both to sk and ssk
1805 */
1806 sk_wmem_queued_add(sk, frag_truesize);
1807 if (!dfrag_collapsed) {
1808 get_page(dfrag->page);
1809 list_add_tail(&dfrag->list, &msk->rtx_queue);
1810 if (!msk->first_pending)
1811 WRITE_ONCE(msk->first_pending, dfrag);
1812 }
1813 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk,
1814 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1815 !dfrag_collapsed);
1816
1817 continue;
1818
1819 wait_for_memory:
1820 mptcp_set_nospace(sk);
1821 __mptcp_push_pending(sk, msg->msg_flags);
1822 ret = sk_stream_wait_memory(sk, &timeo);
1823 if (ret)
1824 goto do_error;
1825 }
1826
1827 if (copied)
1828 __mptcp_push_pending(sk, msg->msg_flags);
1829
1830 out:
1831 release_sock(sk);
1832 return copied;
1833
1834 do_error:
1835 if (copied)
1836 goto out;
1837
1838 copied = sk_stream_error(sk, msg->msg_flags, ret);
1839 goto out;
1840 }
1841
__mptcp_recvmsg_mskq(struct mptcp_sock * msk,struct msghdr * msg,size_t len,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)1842 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1843 struct msghdr *msg,
1844 size_t len, int flags,
1845 struct scm_timestamping_internal *tss,
1846 int *cmsg_flags)
1847 {
1848 struct sk_buff *skb, *tmp;
1849 int copied = 0;
1850
1851 skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
1852 u32 offset = MPTCP_SKB_CB(skb)->offset;
1853 u32 data_len = skb->len - offset;
1854 u32 count = min_t(size_t, len - copied, data_len);
1855 int err;
1856
1857 if (!(flags & MSG_TRUNC)) {
1858 err = skb_copy_datagram_msg(skb, offset, msg, count);
1859 if (unlikely(err < 0)) {
1860 if (!copied)
1861 return err;
1862 break;
1863 }
1864 }
1865
1866 if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1867 tcp_update_recv_tstamps(skb, tss);
1868 *cmsg_flags |= MPTCP_CMSG_TS;
1869 }
1870
1871 copied += count;
1872
1873 if (count < data_len) {
1874 if (!(flags & MSG_PEEK)) {
1875 MPTCP_SKB_CB(skb)->offset += count;
1876 MPTCP_SKB_CB(skb)->map_seq += count;
1877 }
1878 break;
1879 }
1880
1881 if (!(flags & MSG_PEEK)) {
1882 /* we will bulk release the skb memory later */
1883 skb->destructor = NULL;
1884 WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize);
1885 __skb_unlink(skb, &msk->receive_queue);
1886 __kfree_skb(skb);
1887 }
1888
1889 if (copied >= len)
1890 break;
1891 }
1892
1893 return copied;
1894 }
1895
1896 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information.
1897 *
1898 * Only difference: Use highest rtt estimate of the subflows in use.
1899 */
mptcp_rcv_space_adjust(struct mptcp_sock * msk,int copied)1900 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1901 {
1902 struct mptcp_subflow_context *subflow;
1903 struct sock *sk = (struct sock *)msk;
1904 u32 time, advmss = 1;
1905 u64 rtt_us, mstamp;
1906
1907 sock_owned_by_me(sk);
1908
1909 if (copied <= 0)
1910 return;
1911
1912 msk->rcvq_space.copied += copied;
1913
1914 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1915 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1916
1917 rtt_us = msk->rcvq_space.rtt_us;
1918 if (rtt_us && time < (rtt_us >> 3))
1919 return;
1920
1921 rtt_us = 0;
1922 mptcp_for_each_subflow(msk, subflow) {
1923 const struct tcp_sock *tp;
1924 u64 sf_rtt_us;
1925 u32 sf_advmss;
1926
1927 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1928
1929 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1930 sf_advmss = READ_ONCE(tp->advmss);
1931
1932 rtt_us = max(sf_rtt_us, rtt_us);
1933 advmss = max(sf_advmss, advmss);
1934 }
1935
1936 msk->rcvq_space.rtt_us = rtt_us;
1937 if (time < (rtt_us >> 3) || rtt_us == 0)
1938 return;
1939
1940 if (msk->rcvq_space.copied <= msk->rcvq_space.space)
1941 goto new_measure;
1942
1943 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
1944 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1945 int rcvmem, rcvbuf;
1946 u64 rcvwin, grow;
1947
1948 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
1949
1950 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
1951
1952 do_div(grow, msk->rcvq_space.space);
1953 rcvwin += (grow << 1);
1954
1955 rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER);
1956 while (tcp_win_from_space(sk, rcvmem) < advmss)
1957 rcvmem += 128;
1958
1959 do_div(rcvwin, advmss);
1960 rcvbuf = min_t(u64, rcvwin * rcvmem,
1961 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
1962
1963 if (rcvbuf > sk->sk_rcvbuf) {
1964 u32 window_clamp;
1965
1966 window_clamp = tcp_win_from_space(sk, rcvbuf);
1967 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
1968
1969 /* Make subflows follow along. If we do not do this, we
1970 * get drops at subflow level if skbs can't be moved to
1971 * the mptcp rx queue fast enough (announced rcv_win can
1972 * exceed ssk->sk_rcvbuf).
1973 */
1974 mptcp_for_each_subflow(msk, subflow) {
1975 struct sock *ssk;
1976 bool slow;
1977
1978 ssk = mptcp_subflow_tcp_sock(subflow);
1979 slow = lock_sock_fast(ssk);
1980 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
1981 tcp_sk(ssk)->window_clamp = window_clamp;
1982 tcp_cleanup_rbuf(ssk, 1);
1983 unlock_sock_fast(ssk, slow);
1984 }
1985 }
1986 }
1987
1988 msk->rcvq_space.space = msk->rcvq_space.copied;
1989 new_measure:
1990 msk->rcvq_space.copied = 0;
1991 msk->rcvq_space.time = mstamp;
1992 }
1993
__mptcp_update_rmem(struct sock * sk)1994 static void __mptcp_update_rmem(struct sock *sk)
1995 {
1996 struct mptcp_sock *msk = mptcp_sk(sk);
1997
1998 if (!msk->rmem_released)
1999 return;
2000
2001 atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
2002 mptcp_rmem_uncharge(sk, msk->rmem_released);
2003 WRITE_ONCE(msk->rmem_released, 0);
2004 }
2005
__mptcp_splice_receive_queue(struct sock * sk)2006 static void __mptcp_splice_receive_queue(struct sock *sk)
2007 {
2008 struct mptcp_sock *msk = mptcp_sk(sk);
2009
2010 skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
2011 }
2012
__mptcp_move_skbs(struct mptcp_sock * msk)2013 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
2014 {
2015 struct sock *sk = (struct sock *)msk;
2016 unsigned int moved = 0;
2017 bool ret, done;
2018
2019 do {
2020 struct sock *ssk = mptcp_subflow_recv_lookup(msk);
2021 bool slowpath;
2022
2023 /* we can have data pending in the subflows only if the msk
2024 * receive buffer was full at subflow_data_ready() time,
2025 * that is an unlikely slow path.
2026 */
2027 if (likely(!ssk))
2028 break;
2029
2030 slowpath = lock_sock_fast(ssk);
2031 mptcp_data_lock(sk);
2032 __mptcp_update_rmem(sk);
2033 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
2034 mptcp_data_unlock(sk);
2035
2036 if (unlikely(ssk->sk_err))
2037 __mptcp_error_report(sk);
2038 unlock_sock_fast(ssk, slowpath);
2039 } while (!done);
2040
2041 /* acquire the data lock only if some input data is pending */
2042 ret = moved > 0;
2043 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
2044 !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
2045 mptcp_data_lock(sk);
2046 __mptcp_update_rmem(sk);
2047 ret |= __mptcp_ofo_queue(msk);
2048 __mptcp_splice_receive_queue(sk);
2049 mptcp_data_unlock(sk);
2050 }
2051 if (ret)
2052 mptcp_check_data_fin((struct sock *)msk);
2053 return !skb_queue_empty(&msk->receive_queue);
2054 }
2055
mptcp_inq_hint(const struct sock * sk)2056 static unsigned int mptcp_inq_hint(const struct sock *sk)
2057 {
2058 const struct mptcp_sock *msk = mptcp_sk(sk);
2059 const struct sk_buff *skb;
2060
2061 skb = skb_peek(&msk->receive_queue);
2062 if (skb) {
2063 u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
2064
2065 if (hint_val >= INT_MAX)
2066 return INT_MAX;
2067
2068 return (unsigned int)hint_val;
2069 }
2070
2071 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2072 return 1;
2073
2074 return 0;
2075 }
2076
mptcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2077 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2078 int flags, int *addr_len)
2079 {
2080 struct mptcp_sock *msk = mptcp_sk(sk);
2081 struct scm_timestamping_internal tss;
2082 int copied = 0, cmsg_flags = 0;
2083 int target;
2084 long timeo;
2085
2086 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2087 if (unlikely(flags & MSG_ERRQUEUE))
2088 return inet_recv_error(sk, msg, len, addr_len);
2089
2090 lock_sock(sk);
2091 if (unlikely(sk->sk_state == TCP_LISTEN)) {
2092 copied = -ENOTCONN;
2093 goto out_err;
2094 }
2095
2096 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2097
2098 len = min_t(size_t, len, INT_MAX);
2099 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2100
2101 if (unlikely(msk->recvmsg_inq))
2102 cmsg_flags = MPTCP_CMSG_INQ;
2103
2104 while (copied < len) {
2105 int bytes_read;
2106
2107 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags);
2108 if (unlikely(bytes_read < 0)) {
2109 if (!copied)
2110 copied = bytes_read;
2111 goto out_err;
2112 }
2113
2114 copied += bytes_read;
2115
2116 /* be sure to advertise window change */
2117 mptcp_cleanup_rbuf(msk);
2118
2119 if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
2120 continue;
2121
2122 /* only the master socket status is relevant here. The exit
2123 * conditions mirror closely tcp_recvmsg()
2124 */
2125 if (copied >= target)
2126 break;
2127
2128 if (copied) {
2129 if (sk->sk_err ||
2130 sk->sk_state == TCP_CLOSE ||
2131 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2132 !timeo ||
2133 signal_pending(current))
2134 break;
2135 } else {
2136 if (sk->sk_err) {
2137 copied = sock_error(sk);
2138 break;
2139 }
2140
2141 if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
2142 mptcp_check_for_eof(msk);
2143
2144 if (sk->sk_shutdown & RCV_SHUTDOWN) {
2145 /* race breaker: the shutdown could be after the
2146 * previous receive queue check
2147 */
2148 if (__mptcp_move_skbs(msk))
2149 continue;
2150 break;
2151 }
2152
2153 if (sk->sk_state == TCP_CLOSE) {
2154 copied = -ENOTCONN;
2155 break;
2156 }
2157
2158 if (!timeo) {
2159 copied = -EAGAIN;
2160 break;
2161 }
2162
2163 if (signal_pending(current)) {
2164 copied = sock_intr_errno(timeo);
2165 break;
2166 }
2167 }
2168
2169 pr_debug("block timeout %ld", timeo);
2170 sk_wait_data(sk, &timeo, NULL);
2171 }
2172
2173 out_err:
2174 if (cmsg_flags && copied >= 0) {
2175 if (cmsg_flags & MPTCP_CMSG_TS)
2176 tcp_recv_timestamp(msg, sk, &tss);
2177
2178 if (cmsg_flags & MPTCP_CMSG_INQ) {
2179 unsigned int inq = mptcp_inq_hint(sk);
2180
2181 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2182 }
2183 }
2184
2185 pr_debug("msk=%p rx queue empty=%d:%d copied=%d",
2186 msk, skb_queue_empty_lockless(&sk->sk_receive_queue),
2187 skb_queue_empty(&msk->receive_queue), copied);
2188 if (!(flags & MSG_PEEK))
2189 mptcp_rcv_space_adjust(msk, copied);
2190
2191 release_sock(sk);
2192 return copied;
2193 }
2194
mptcp_retransmit_timer(struct timer_list * t)2195 static void mptcp_retransmit_timer(struct timer_list *t)
2196 {
2197 struct inet_connection_sock *icsk = from_timer(icsk, t,
2198 icsk_retransmit_timer);
2199 struct sock *sk = &icsk->icsk_inet.sk;
2200 struct mptcp_sock *msk = mptcp_sk(sk);
2201
2202 bh_lock_sock(sk);
2203 if (!sock_owned_by_user(sk)) {
2204 /* we need a process context to retransmit */
2205 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2206 mptcp_schedule_work(sk);
2207 } else {
2208 /* delegate our work to tcp_release_cb() */
2209 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2210 }
2211 bh_unlock_sock(sk);
2212 sock_put(sk);
2213 }
2214
mptcp_timeout_timer(struct timer_list * t)2215 static void mptcp_timeout_timer(struct timer_list *t)
2216 {
2217 struct sock *sk = from_timer(sk, t, sk_timer);
2218
2219 mptcp_schedule_work(sk);
2220 sock_put(sk);
2221 }
2222
2223 /* Find an idle subflow. Return NULL if there is unacked data at tcp
2224 * level.
2225 *
2226 * A backup subflow is returned only if that is the only kind available.
2227 */
mptcp_subflow_get_retrans(struct mptcp_sock * msk)2228 static struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2229 {
2230 struct sock *backup = NULL, *pick = NULL;
2231 struct mptcp_subflow_context *subflow;
2232 int min_stale_count = INT_MAX;
2233
2234 sock_owned_by_me((const struct sock *)msk);
2235
2236 if (__mptcp_check_fallback(msk))
2237 return NULL;
2238
2239 mptcp_for_each_subflow(msk, subflow) {
2240 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2241
2242 if (!__mptcp_subflow_active(subflow))
2243 continue;
2244
2245 /* still data outstanding at TCP level? skip this */
2246 if (!tcp_rtx_and_write_queues_empty(ssk)) {
2247 mptcp_pm_subflow_chk_stale(msk, ssk);
2248 min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2249 continue;
2250 }
2251
2252 if (subflow->backup) {
2253 if (!backup)
2254 backup = ssk;
2255 continue;
2256 }
2257
2258 if (!pick)
2259 pick = ssk;
2260 }
2261
2262 if (pick)
2263 return pick;
2264
2265 /* use backup only if there are no progresses anywhere */
2266 return min_stale_count > 1 ? backup : NULL;
2267 }
2268
mptcp_dispose_initial_subflow(struct mptcp_sock * msk)2269 static void mptcp_dispose_initial_subflow(struct mptcp_sock *msk)
2270 {
2271 if (msk->subflow) {
2272 iput(SOCK_INODE(msk->subflow));
2273 msk->subflow = NULL;
2274 }
2275 }
2276
__mptcp_retransmit_pending_data(struct sock * sk)2277 bool __mptcp_retransmit_pending_data(struct sock *sk)
2278 {
2279 struct mptcp_data_frag *cur, *rtx_head;
2280 struct mptcp_sock *msk = mptcp_sk(sk);
2281
2282 if (__mptcp_check_fallback(mptcp_sk(sk)))
2283 return false;
2284
2285 if (tcp_rtx_and_write_queues_empty(sk))
2286 return false;
2287
2288 /* the closing socket has some data untransmitted and/or unacked:
2289 * some data in the mptcp rtx queue has not really xmitted yet.
2290 * keep it simple and re-inject the whole mptcp level rtx queue
2291 */
2292 mptcp_data_lock(sk);
2293 __mptcp_clean_una_wakeup(sk);
2294 rtx_head = mptcp_rtx_head(sk);
2295 if (!rtx_head) {
2296 mptcp_data_unlock(sk);
2297 return false;
2298 }
2299
2300 msk->recovery_snd_nxt = msk->snd_nxt;
2301 msk->recovery = true;
2302 mptcp_data_unlock(sk);
2303
2304 msk->first_pending = rtx_head;
2305 msk->snd_burst = 0;
2306
2307 /* be sure to clear the "sent status" on all re-injected fragments */
2308 list_for_each_entry(cur, &msk->rtx_queue, list) {
2309 if (!cur->already_sent)
2310 break;
2311 cur->already_sent = 0;
2312 }
2313
2314 return true;
2315 }
2316
2317 /* flags for __mptcp_close_ssk() */
2318 #define MPTCP_CF_PUSH BIT(1)
2319 #define MPTCP_CF_FASTCLOSE BIT(2)
2320
2321 /* subflow sockets can be either outgoing (connect) or incoming
2322 * (accept).
2323 *
2324 * Outgoing subflows use in-kernel sockets.
2325 * Incoming subflows do not have their own 'struct socket' allocated,
2326 * so we need to use tcp_close() after detaching them from the mptcp
2327 * parent socket.
2328 */
__mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow,unsigned int flags)2329 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2330 struct mptcp_subflow_context *subflow,
2331 unsigned int flags)
2332 {
2333 struct mptcp_sock *msk = mptcp_sk(sk);
2334 bool need_push, dispose_it;
2335
2336 dispose_it = !msk->subflow || ssk != msk->subflow->sk;
2337 if (dispose_it)
2338 list_del(&subflow->node);
2339
2340 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2341
2342 if (flags & MPTCP_CF_FASTCLOSE) {
2343 /* be sure to force the tcp_disconnect() path,
2344 * to generate the egress reset
2345 */
2346 ssk->sk_lingertime = 0;
2347 sock_set_flag(ssk, SOCK_LINGER);
2348 subflow->send_fastclose = 1;
2349 }
2350
2351 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2352 if (!dispose_it) {
2353 tcp_disconnect(ssk, 0);
2354 msk->subflow->state = SS_UNCONNECTED;
2355 mptcp_subflow_ctx_reset(subflow);
2356 release_sock(ssk);
2357
2358 goto out;
2359 }
2360
2361 sock_orphan(ssk);
2362 subflow->disposable = 1;
2363
2364 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2365 * the ssk has been already destroyed, we just need to release the
2366 * reference owned by msk;
2367 */
2368 if (!inet_csk(ssk)->icsk_ulp_ops) {
2369 kfree_rcu(subflow, rcu);
2370 } else {
2371 /* otherwise tcp will dispose of the ssk and subflow ctx */
2372 if (ssk->sk_state == TCP_LISTEN) {
2373 tcp_set_state(ssk, TCP_CLOSE);
2374 mptcp_subflow_queue_clean(sk, ssk);
2375 inet_csk_listen_stop(ssk);
2376 }
2377 __tcp_close(ssk, 0);
2378
2379 /* close acquired an extra ref */
2380 __sock_put(ssk);
2381 }
2382 release_sock(ssk);
2383
2384 sock_put(ssk);
2385
2386 if (ssk == msk->first)
2387 msk->first = NULL;
2388
2389 out:
2390 if (ssk == msk->last_snd)
2391 msk->last_snd = NULL;
2392
2393 if (need_push)
2394 __mptcp_push_pending(sk, 0);
2395 }
2396
mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow)2397 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2398 struct mptcp_subflow_context *subflow)
2399 {
2400 if (sk->sk_state == TCP_ESTABLISHED)
2401 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2402
2403 /* subflow aborted before reaching the fully_established status
2404 * attempt the creation of the next subflow
2405 */
2406 mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow);
2407
2408 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2409 }
2410
mptcp_sync_mss(struct sock * sk,u32 pmtu)2411 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2412 {
2413 return 0;
2414 }
2415
__mptcp_close_subflow(struct mptcp_sock * msk)2416 static void __mptcp_close_subflow(struct mptcp_sock *msk)
2417 {
2418 struct mptcp_subflow_context *subflow, *tmp;
2419
2420 might_sleep();
2421
2422 mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2423 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2424
2425 if (inet_sk_state_load(ssk) != TCP_CLOSE)
2426 continue;
2427
2428 /* 'subflow_data_ready' will re-sched once rx queue is empty */
2429 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2430 continue;
2431
2432 mptcp_close_ssk((struct sock *)msk, ssk, subflow);
2433 }
2434 }
2435
mptcp_check_close_timeout(const struct sock * sk)2436 static bool mptcp_check_close_timeout(const struct sock *sk)
2437 {
2438 s32 delta = tcp_jiffies32 - inet_csk(sk)->icsk_mtup.probe_timestamp;
2439 struct mptcp_subflow_context *subflow;
2440
2441 if (delta >= TCP_TIMEWAIT_LEN)
2442 return true;
2443
2444 /* if all subflows are in closed status don't bother with additional
2445 * timeout
2446 */
2447 mptcp_for_each_subflow(mptcp_sk(sk), subflow) {
2448 if (inet_sk_state_load(mptcp_subflow_tcp_sock(subflow)) !=
2449 TCP_CLOSE)
2450 return false;
2451 }
2452 return true;
2453 }
2454
mptcp_check_fastclose(struct mptcp_sock * msk)2455 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2456 {
2457 struct mptcp_subflow_context *subflow, *tmp;
2458 struct sock *sk = &msk->sk.icsk_inet.sk;
2459
2460 if (likely(!READ_ONCE(msk->rcv_fastclose)))
2461 return;
2462
2463 mptcp_token_destroy(msk);
2464
2465 mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2466 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2467 bool slow;
2468
2469 slow = lock_sock_fast(tcp_sk);
2470 if (tcp_sk->sk_state != TCP_CLOSE) {
2471 tcp_send_active_reset(tcp_sk, GFP_ATOMIC);
2472 tcp_set_state(tcp_sk, TCP_CLOSE);
2473 }
2474 unlock_sock_fast(tcp_sk, slow);
2475 }
2476
2477 /* Mirror the tcp_reset() error propagation */
2478 switch (sk->sk_state) {
2479 case TCP_SYN_SENT:
2480 sk->sk_err = ECONNREFUSED;
2481 break;
2482 case TCP_CLOSE_WAIT:
2483 sk->sk_err = EPIPE;
2484 break;
2485 case TCP_CLOSE:
2486 return;
2487 default:
2488 sk->sk_err = ECONNRESET;
2489 }
2490
2491 inet_sk_state_store(sk, TCP_CLOSE);
2492 sk->sk_shutdown = SHUTDOWN_MASK;
2493 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2494 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2495
2496 /* the calling mptcp_worker will properly destroy the socket */
2497 if (sock_flag(sk, SOCK_DEAD))
2498 return;
2499
2500 sk->sk_state_change(sk);
2501 sk_error_report(sk);
2502 }
2503
__mptcp_retrans(struct sock * sk)2504 static void __mptcp_retrans(struct sock *sk)
2505 {
2506 struct mptcp_sock *msk = mptcp_sk(sk);
2507 struct mptcp_sendmsg_info info = {};
2508 struct mptcp_data_frag *dfrag;
2509 size_t copied = 0;
2510 struct sock *ssk;
2511 int ret;
2512
2513 mptcp_clean_una_wakeup(sk);
2514
2515 /* first check ssk: need to kick "stale" logic */
2516 ssk = mptcp_subflow_get_retrans(msk);
2517 dfrag = mptcp_rtx_head(sk);
2518 if (!dfrag) {
2519 if (mptcp_data_fin_enabled(msk)) {
2520 struct inet_connection_sock *icsk = inet_csk(sk);
2521
2522 icsk->icsk_retransmits++;
2523 mptcp_set_datafin_timeout(sk);
2524 mptcp_send_ack(msk);
2525
2526 goto reset_timer;
2527 }
2528
2529 if (!mptcp_send_head(sk))
2530 return;
2531
2532 goto reset_timer;
2533 }
2534
2535 if (!ssk)
2536 goto reset_timer;
2537
2538 lock_sock(ssk);
2539
2540 /* limit retransmission to the bytes already sent on some subflows */
2541 info.sent = 0;
2542 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : dfrag->already_sent;
2543 while (info.sent < info.limit) {
2544 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2545 if (ret <= 0)
2546 break;
2547
2548 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2549 copied += ret;
2550 info.sent += ret;
2551 }
2552 if (copied) {
2553 dfrag->already_sent = max(dfrag->already_sent, info.sent);
2554 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2555 info.size_goal);
2556 WRITE_ONCE(msk->allow_infinite_fallback, false);
2557 }
2558
2559 release_sock(ssk);
2560
2561 reset_timer:
2562 mptcp_check_and_set_pending(sk);
2563
2564 if (!mptcp_timer_pending(sk))
2565 mptcp_reset_timer(sk);
2566 }
2567
2568 /* schedule the timeout timer for the relevant event: either close timeout
2569 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2570 */
mptcp_reset_timeout(struct mptcp_sock * msk,unsigned long fail_tout)2571 void mptcp_reset_timeout(struct mptcp_sock *msk, unsigned long fail_tout)
2572 {
2573 struct sock *sk = (struct sock *)msk;
2574 unsigned long timeout, close_timeout;
2575
2576 if (!fail_tout && !sock_flag(sk, SOCK_DEAD))
2577 return;
2578
2579 close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies + TCP_TIMEWAIT_LEN;
2580
2581 /* the close timeout takes precedence on the fail one, and here at least one of
2582 * them is active
2583 */
2584 timeout = sock_flag(sk, SOCK_DEAD) ? close_timeout : fail_tout;
2585
2586 sk_reset_timer(sk, &sk->sk_timer, timeout);
2587 }
2588
mptcp_mp_fail_no_response(struct mptcp_sock * msk)2589 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2590 {
2591 struct sock *ssk = msk->first;
2592 bool slow;
2593
2594 if (!ssk)
2595 return;
2596
2597 pr_debug("MP_FAIL doesn't respond, reset the subflow");
2598
2599 slow = lock_sock_fast(ssk);
2600 mptcp_subflow_reset(ssk);
2601 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2602 unlock_sock_fast(ssk, slow);
2603
2604 mptcp_reset_timeout(msk, 0);
2605 }
2606
mptcp_do_fastclose(struct sock * sk)2607 static void mptcp_do_fastclose(struct sock *sk)
2608 {
2609 struct mptcp_subflow_context *subflow, *tmp;
2610 struct mptcp_sock *msk = mptcp_sk(sk);
2611
2612 mptcp_for_each_subflow_safe(msk, subflow, tmp)
2613 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
2614 subflow, MPTCP_CF_FASTCLOSE);
2615 }
2616
mptcp_worker(struct work_struct * work)2617 static void mptcp_worker(struct work_struct *work)
2618 {
2619 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2620 struct sock *sk = &msk->sk.icsk_inet.sk;
2621 unsigned long fail_tout;
2622 int state;
2623
2624 lock_sock(sk);
2625 state = sk->sk_state;
2626 if (unlikely(state == TCP_CLOSE))
2627 goto unlock;
2628
2629 mptcp_check_data_fin_ack(sk);
2630
2631 mptcp_check_fastclose(msk);
2632
2633 mptcp_pm_nl_work(msk);
2634
2635 if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
2636 mptcp_check_for_eof(msk);
2637
2638 __mptcp_check_send_data_fin(sk);
2639 mptcp_check_data_fin(sk);
2640
2641 /* There is no point in keeping around an orphaned sk timedout or
2642 * closed, but we need the msk around to reply to incoming DATA_FIN,
2643 * even if it is orphaned and in FIN_WAIT2 state
2644 */
2645 if (sock_flag(sk, SOCK_DEAD)) {
2646 if (mptcp_check_close_timeout(sk)) {
2647 inet_sk_state_store(sk, TCP_CLOSE);
2648 mptcp_do_fastclose(sk);
2649 }
2650 if (sk->sk_state == TCP_CLOSE) {
2651 __mptcp_destroy_sock(sk);
2652 goto unlock;
2653 }
2654 }
2655
2656 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2657 __mptcp_close_subflow(msk);
2658
2659 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2660 __mptcp_retrans(sk);
2661
2662 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2663 if (fail_tout && time_after(jiffies, fail_tout))
2664 mptcp_mp_fail_no_response(msk);
2665
2666 unlock:
2667 release_sock(sk);
2668 sock_put(sk);
2669 }
2670
__mptcp_init_sock(struct sock * sk)2671 static int __mptcp_init_sock(struct sock *sk)
2672 {
2673 struct mptcp_sock *msk = mptcp_sk(sk);
2674
2675 INIT_LIST_HEAD(&msk->conn_list);
2676 INIT_LIST_HEAD(&msk->join_list);
2677 INIT_LIST_HEAD(&msk->rtx_queue);
2678 INIT_WORK(&msk->work, mptcp_worker);
2679 __skb_queue_head_init(&msk->receive_queue);
2680 msk->out_of_order_queue = RB_ROOT;
2681 msk->first_pending = NULL;
2682 msk->rmem_fwd_alloc = 0;
2683 WRITE_ONCE(msk->rmem_released, 0);
2684 msk->timer_ival = TCP_RTO_MIN;
2685
2686 msk->first = NULL;
2687 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2688 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2689 WRITE_ONCE(msk->allow_infinite_fallback, true);
2690 msk->recovery = false;
2691
2692 mptcp_pm_data_init(msk);
2693
2694 /* re-use the csk retrans timer for MPTCP-level retrans */
2695 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2696 timer_setup(&sk->sk_timer, mptcp_timeout_timer, 0);
2697
2698 return 0;
2699 }
2700
mptcp_ca_reset(struct sock * sk)2701 static void mptcp_ca_reset(struct sock *sk)
2702 {
2703 struct inet_connection_sock *icsk = inet_csk(sk);
2704
2705 tcp_assign_congestion_control(sk);
2706 strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name);
2707
2708 /* no need to keep a reference to the ops, the name will suffice */
2709 tcp_cleanup_congestion_control(sk);
2710 icsk->icsk_ca_ops = NULL;
2711 }
2712
mptcp_init_sock(struct sock * sk)2713 static int mptcp_init_sock(struct sock *sk)
2714 {
2715 struct net *net = sock_net(sk);
2716 int ret;
2717
2718 ret = __mptcp_init_sock(sk);
2719 if (ret)
2720 return ret;
2721
2722 if (!mptcp_is_enabled(net))
2723 return -ENOPROTOOPT;
2724
2725 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2726 return -ENOMEM;
2727
2728 ret = __mptcp_socket_create(mptcp_sk(sk));
2729 if (ret)
2730 return ret;
2731
2732 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2733 * propagate the correct value
2734 */
2735 mptcp_ca_reset(sk);
2736
2737 sk_sockets_allocated_inc(sk);
2738 sk->sk_rcvbuf = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]);
2739 sk->sk_sndbuf = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]);
2740
2741 return 0;
2742 }
2743
__mptcp_clear_xmit(struct sock * sk)2744 static void __mptcp_clear_xmit(struct sock *sk)
2745 {
2746 struct mptcp_sock *msk = mptcp_sk(sk);
2747 struct mptcp_data_frag *dtmp, *dfrag;
2748
2749 WRITE_ONCE(msk->first_pending, NULL);
2750 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2751 dfrag_clear(sk, dfrag);
2752 }
2753
mptcp_cancel_work(struct sock * sk)2754 void mptcp_cancel_work(struct sock *sk)
2755 {
2756 struct mptcp_sock *msk = mptcp_sk(sk);
2757
2758 if (cancel_work_sync(&msk->work))
2759 __sock_put(sk);
2760 }
2761
mptcp_subflow_shutdown(struct sock * sk,struct sock * ssk,int how)2762 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2763 {
2764 lock_sock(ssk);
2765
2766 switch (ssk->sk_state) {
2767 case TCP_LISTEN:
2768 if (!(how & RCV_SHUTDOWN))
2769 break;
2770 fallthrough;
2771 case TCP_SYN_SENT:
2772 tcp_disconnect(ssk, O_NONBLOCK);
2773 break;
2774 default:
2775 if (__mptcp_check_fallback(mptcp_sk(sk))) {
2776 pr_debug("Fallback");
2777 ssk->sk_shutdown |= how;
2778 tcp_shutdown(ssk, how);
2779 } else {
2780 pr_debug("Sending DATA_FIN on subflow %p", ssk);
2781 tcp_send_ack(ssk);
2782 if (!mptcp_timer_pending(sk))
2783 mptcp_reset_timer(sk);
2784 }
2785 break;
2786 }
2787
2788 release_sock(ssk);
2789 }
2790
2791 static const unsigned char new_state[16] = {
2792 /* current state: new state: action: */
2793 [0 /* (Invalid) */] = TCP_CLOSE,
2794 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2795 [TCP_SYN_SENT] = TCP_CLOSE,
2796 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2797 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2798 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2799 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */
2800 [TCP_CLOSE] = TCP_CLOSE,
2801 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2802 [TCP_LAST_ACK] = TCP_LAST_ACK,
2803 [TCP_LISTEN] = TCP_CLOSE,
2804 [TCP_CLOSING] = TCP_CLOSING,
2805 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2806 };
2807
mptcp_close_state(struct sock * sk)2808 static int mptcp_close_state(struct sock *sk)
2809 {
2810 int next = (int)new_state[sk->sk_state];
2811 int ns = next & TCP_STATE_MASK;
2812
2813 inet_sk_state_store(sk, ns);
2814
2815 return next & TCP_ACTION_FIN;
2816 }
2817
__mptcp_check_send_data_fin(struct sock * sk)2818 static void __mptcp_check_send_data_fin(struct sock *sk)
2819 {
2820 struct mptcp_subflow_context *subflow;
2821 struct mptcp_sock *msk = mptcp_sk(sk);
2822
2823 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu",
2824 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2825 msk->snd_nxt, msk->write_seq);
2826
2827 /* we still need to enqueue subflows or not really shutting down,
2828 * skip this
2829 */
2830 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2831 mptcp_send_head(sk))
2832 return;
2833
2834 WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2835
2836 /* fallback socket will not get data_fin/ack, can move to the next
2837 * state now
2838 */
2839 if (__mptcp_check_fallback(msk)) {
2840 WRITE_ONCE(msk->snd_una, msk->write_seq);
2841 if ((1 << sk->sk_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) {
2842 inet_sk_state_store(sk, TCP_CLOSE);
2843 mptcp_close_wake_up(sk);
2844 } else if (sk->sk_state == TCP_FIN_WAIT1) {
2845 inet_sk_state_store(sk, TCP_FIN_WAIT2);
2846 }
2847 }
2848
2849 mptcp_for_each_subflow(msk, subflow) {
2850 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2851
2852 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2853 }
2854 }
2855
__mptcp_wr_shutdown(struct sock * sk)2856 static void __mptcp_wr_shutdown(struct sock *sk)
2857 {
2858 struct mptcp_sock *msk = mptcp_sk(sk);
2859
2860 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d",
2861 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2862 !!mptcp_send_head(sk));
2863
2864 /* will be ignored by fallback sockets */
2865 WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2866 WRITE_ONCE(msk->snd_data_fin_enable, 1);
2867
2868 __mptcp_check_send_data_fin(sk);
2869 }
2870
__mptcp_destroy_sock(struct sock * sk)2871 static void __mptcp_destroy_sock(struct sock *sk)
2872 {
2873 struct mptcp_sock *msk = mptcp_sk(sk);
2874
2875 pr_debug("msk=%p", msk);
2876
2877 might_sleep();
2878
2879 mptcp_stop_timer(sk);
2880 sk_stop_timer(sk, &sk->sk_timer);
2881 msk->pm.status = 0;
2882
2883 sk->sk_prot->destroy(sk);
2884
2885 WARN_ON_ONCE(msk->rmem_fwd_alloc);
2886 WARN_ON_ONCE(msk->rmem_released);
2887 sk_stream_kill_queues(sk);
2888 xfrm_sk_free_policy(sk);
2889
2890 sk_refcnt_debug_release(sk);
2891 sock_put(sk);
2892 }
2893
mptcp_check_readable(struct mptcp_sock * msk)2894 static __poll_t mptcp_check_readable(struct mptcp_sock *msk)
2895 {
2896 /* Concurrent splices from sk_receive_queue into receive_queue will
2897 * always show at least one non-empty queue when checked in this order.
2898 */
2899 if (skb_queue_empty_lockless(&((struct sock *)msk)->sk_receive_queue) &&
2900 skb_queue_empty_lockless(&msk->receive_queue))
2901 return 0;
2902
2903 return EPOLLIN | EPOLLRDNORM;
2904 }
2905
__mptcp_close(struct sock * sk,long timeout)2906 bool __mptcp_close(struct sock *sk, long timeout)
2907 {
2908 struct mptcp_subflow_context *subflow;
2909 struct mptcp_sock *msk = mptcp_sk(sk);
2910 bool do_cancel_work = false;
2911
2912 sk->sk_shutdown = SHUTDOWN_MASK;
2913
2914 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
2915 inet_sk_state_store(sk, TCP_CLOSE);
2916 goto cleanup;
2917 }
2918
2919 if (mptcp_check_readable(msk)) {
2920 /* the msk has read data, do the MPTCP equivalent of TCP reset */
2921 inet_sk_state_store(sk, TCP_CLOSE);
2922 mptcp_do_fastclose(sk);
2923 } else if (mptcp_close_state(sk)) {
2924 __mptcp_wr_shutdown(sk);
2925 }
2926
2927 sk_stream_wait_close(sk, timeout);
2928
2929 cleanup:
2930 /* orphan all the subflows */
2931 inet_csk(sk)->icsk_mtup.probe_timestamp = tcp_jiffies32;
2932 mptcp_for_each_subflow(msk, subflow) {
2933 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2934 bool slow = lock_sock_fast_nested(ssk);
2935
2936 /* since the close timeout takes precedence on the fail one,
2937 * cancel the latter
2938 */
2939 if (ssk == msk->first)
2940 subflow->fail_tout = 0;
2941
2942 /* detach from the parent socket, but allow data_ready to
2943 * push incoming data into the mptcp stack, to properly ack it
2944 */
2945 ssk->sk_socket = NULL;
2946 ssk->sk_wq = NULL;
2947 unlock_sock_fast(ssk, slow);
2948 }
2949 sock_orphan(sk);
2950
2951 sock_hold(sk);
2952 pr_debug("msk=%p state=%d", sk, sk->sk_state);
2953 if (mptcp_sk(sk)->token)
2954 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
2955
2956 if (sk->sk_state == TCP_CLOSE) {
2957 __mptcp_destroy_sock(sk);
2958 do_cancel_work = true;
2959 } else {
2960 mptcp_reset_timeout(msk, 0);
2961 }
2962
2963 return do_cancel_work;
2964 }
2965
mptcp_close(struct sock * sk,long timeout)2966 static void mptcp_close(struct sock *sk, long timeout)
2967 {
2968 bool do_cancel_work;
2969
2970 lock_sock(sk);
2971
2972 do_cancel_work = __mptcp_close(sk, timeout);
2973 release_sock(sk);
2974 if (do_cancel_work)
2975 mptcp_cancel_work(sk);
2976
2977 sock_put(sk);
2978 }
2979
mptcp_copy_inaddrs(struct sock * msk,const struct sock * ssk)2980 void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
2981 {
2982 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2983 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
2984 struct ipv6_pinfo *msk6 = inet6_sk(msk);
2985
2986 msk->sk_v6_daddr = ssk->sk_v6_daddr;
2987 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
2988
2989 if (msk6 && ssk6) {
2990 msk6->saddr = ssk6->saddr;
2991 msk6->flow_label = ssk6->flow_label;
2992 }
2993 #endif
2994
2995 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
2996 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
2997 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
2998 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
2999 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3000 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3001 }
3002
mptcp_disconnect(struct sock * sk,int flags)3003 static int mptcp_disconnect(struct sock *sk, int flags)
3004 {
3005 struct mptcp_sock *msk = mptcp_sk(sk);
3006
3007 /* We are on the fastopen error path. We can't call straight into the
3008 * subflows cleanup code due to lock nesting (we are already under
3009 * msk->firstsocket lock). Do nothing and leave the cleanup to the
3010 * caller.
3011 */
3012 if (msk->fastopening)
3013 return 0;
3014
3015 inet_sk_state_store(sk, TCP_CLOSE);
3016
3017 mptcp_stop_timer(sk);
3018 sk_stop_timer(sk, &sk->sk_timer);
3019
3020 if (mptcp_sk(sk)->token)
3021 mptcp_event(MPTCP_EVENT_CLOSED, mptcp_sk(sk), NULL, GFP_KERNEL);
3022
3023 /* msk->subflow is still intact, the following will not free the first
3024 * subflow
3025 */
3026 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
3027 msk->last_snd = NULL;
3028 WRITE_ONCE(msk->flags, 0);
3029 msk->cb_flags = 0;
3030 msk->push_pending = 0;
3031 msk->recovery = false;
3032 msk->can_ack = false;
3033 msk->fully_established = false;
3034 msk->rcv_data_fin = false;
3035 msk->snd_data_fin_enable = false;
3036 msk->rcv_fastclose = false;
3037 msk->use_64bit_ack = false;
3038 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3039 mptcp_pm_data_reset(msk);
3040 mptcp_ca_reset(sk);
3041
3042 sk->sk_shutdown = 0;
3043 sk_error_report(sk);
3044 return 0;
3045 }
3046
3047 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
mptcp_inet6_sk(const struct sock * sk)3048 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3049 {
3050 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
3051
3052 return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
3053 }
3054 #endif
3055
mptcp_sk_clone(const struct sock * sk,const struct mptcp_options_received * mp_opt,struct request_sock * req)3056 struct sock *mptcp_sk_clone(const struct sock *sk,
3057 const struct mptcp_options_received *mp_opt,
3058 struct request_sock *req)
3059 {
3060 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3061 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3062 struct mptcp_sock *msk;
3063 u64 ack_seq;
3064
3065 if (!nsk)
3066 return NULL;
3067
3068 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3069 if (nsk->sk_family == AF_INET6)
3070 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3071 #endif
3072
3073 __mptcp_init_sock(nsk);
3074
3075 msk = mptcp_sk(nsk);
3076 msk->local_key = subflow_req->local_key;
3077 msk->token = subflow_req->token;
3078 msk->subflow = NULL;
3079 WRITE_ONCE(msk->fully_established, false);
3080 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3081 WRITE_ONCE(msk->csum_enabled, true);
3082
3083 msk->write_seq = subflow_req->idsn + 1;
3084 msk->snd_nxt = msk->write_seq;
3085 msk->snd_una = msk->write_seq;
3086 msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd;
3087 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3088
3089 if (mp_opt->suboptions & OPTIONS_MPTCP_MPC) {
3090 msk->can_ack = true;
3091 msk->remote_key = mp_opt->sndr_key;
3092 mptcp_crypto_key_sha(msk->remote_key, NULL, &ack_seq);
3093 ack_seq++;
3094 WRITE_ONCE(msk->ack_seq, ack_seq);
3095 atomic64_set(&msk->rcv_wnd_sent, ack_seq);
3096 }
3097
3098 sock_reset_flag(nsk, SOCK_RCU_FREE);
3099 /* will be fully established after successful MPC subflow creation */
3100 inet_sk_state_store(nsk, TCP_SYN_RECV);
3101
3102 security_inet_csk_clone(nsk, req);
3103 bh_unlock_sock(nsk);
3104
3105 /* keep a single reference */
3106 __sock_put(nsk);
3107 return nsk;
3108 }
3109
mptcp_rcv_space_init(struct mptcp_sock * msk,const struct sock * ssk)3110 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3111 {
3112 const struct tcp_sock *tp = tcp_sk(ssk);
3113
3114 msk->rcvq_space.copied = 0;
3115 msk->rcvq_space.rtt_us = 0;
3116
3117 msk->rcvq_space.time = tp->tcp_mstamp;
3118
3119 /* initial rcv_space offering made to peer */
3120 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3121 TCP_INIT_CWND * tp->advmss);
3122 if (msk->rcvq_space.space == 0)
3123 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3124
3125 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
3126 }
3127
mptcp_accept(struct sock * sk,int flags,int * err,bool kern)3128 static struct sock *mptcp_accept(struct sock *sk, int flags, int *err,
3129 bool kern)
3130 {
3131 struct mptcp_sock *msk = mptcp_sk(sk);
3132 struct socket *listener;
3133 struct sock *newsk;
3134
3135 listener = __mptcp_nmpc_socket(msk);
3136 if (WARN_ON_ONCE(!listener)) {
3137 *err = -EINVAL;
3138 return NULL;
3139 }
3140
3141 pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk));
3142 newsk = inet_csk_accept(listener->sk, flags, err, kern);
3143 if (!newsk)
3144 return NULL;
3145
3146 pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk));
3147 if (sk_is_mptcp(newsk)) {
3148 struct mptcp_subflow_context *subflow;
3149 struct sock *new_mptcp_sock;
3150
3151 subflow = mptcp_subflow_ctx(newsk);
3152 new_mptcp_sock = subflow->conn;
3153
3154 /* is_mptcp should be false if subflow->conn is missing, see
3155 * subflow_syn_recv_sock()
3156 */
3157 if (WARN_ON_ONCE(!new_mptcp_sock)) {
3158 tcp_sk(newsk)->is_mptcp = 0;
3159 goto out;
3160 }
3161
3162 /* acquire the 2nd reference for the owning socket */
3163 sock_hold(new_mptcp_sock);
3164 newsk = new_mptcp_sock;
3165 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3166 } else {
3167 MPTCP_INC_STATS(sock_net(sk),
3168 MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK);
3169 }
3170
3171 out:
3172 newsk->sk_kern_sock = kern;
3173 return newsk;
3174 }
3175
mptcp_destroy_common(struct mptcp_sock * msk,unsigned int flags)3176 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
3177 {
3178 struct mptcp_subflow_context *subflow, *tmp;
3179 struct sock *sk = (struct sock *)msk;
3180
3181 __mptcp_clear_xmit(sk);
3182
3183 /* join list will be eventually flushed (with rst) at sock lock release time */
3184 mptcp_for_each_subflow_safe(msk, subflow, tmp)
3185 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
3186
3187 /* move to sk_receive_queue, sk_stream_kill_queues will purge it */
3188 mptcp_data_lock(sk);
3189 skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
3190 __skb_queue_purge(&sk->sk_receive_queue);
3191 skb_rbtree_purge(&msk->out_of_order_queue);
3192 mptcp_data_unlock(sk);
3193
3194 /* move all the rx fwd alloc into the sk_mem_reclaim_final in
3195 * inet_sock_destruct() will dispose it
3196 */
3197 sk->sk_forward_alloc += msk->rmem_fwd_alloc;
3198 msk->rmem_fwd_alloc = 0;
3199 mptcp_token_destroy(msk);
3200 mptcp_pm_free_anno_list(msk);
3201 mptcp_free_local_addr_list(msk);
3202 }
3203
mptcp_destroy(struct sock * sk)3204 static void mptcp_destroy(struct sock *sk)
3205 {
3206 struct mptcp_sock *msk = mptcp_sk(sk);
3207
3208 /* clears msk->subflow, allowing the following to close
3209 * even the initial subflow
3210 */
3211 mptcp_dispose_initial_subflow(msk);
3212 mptcp_destroy_common(msk, 0);
3213 sk_sockets_allocated_dec(sk);
3214 }
3215
__mptcp_data_acked(struct sock * sk)3216 void __mptcp_data_acked(struct sock *sk)
3217 {
3218 if (!sock_owned_by_user(sk))
3219 __mptcp_clean_una(sk);
3220 else
3221 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3222
3223 if (mptcp_pending_data_fin_ack(sk))
3224 mptcp_schedule_work(sk);
3225 }
3226
__mptcp_check_push(struct sock * sk,struct sock * ssk)3227 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3228 {
3229 if (!mptcp_send_head(sk))
3230 return;
3231
3232 if (!sock_owned_by_user(sk)) {
3233 struct sock *xmit_ssk = mptcp_subflow_get_send(mptcp_sk(sk));
3234
3235 if (xmit_ssk == ssk)
3236 __mptcp_subflow_push_pending(sk, ssk);
3237 else if (xmit_ssk)
3238 mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk), MPTCP_DELEGATE_SEND);
3239 } else {
3240 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3241 }
3242 }
3243
3244 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3245 BIT(MPTCP_RETRANSMIT) | \
3246 BIT(MPTCP_FLUSH_JOIN_LIST))
3247
3248 /* processes deferred events and flush wmem */
mptcp_release_cb(struct sock * sk)3249 static void mptcp_release_cb(struct sock *sk)
3250 __must_hold(&sk->sk_lock.slock)
3251 {
3252 struct mptcp_sock *msk = mptcp_sk(sk);
3253
3254 for (;;) {
3255 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED) |
3256 msk->push_pending;
3257 if (!flags)
3258 break;
3259
3260 /* the following actions acquire the subflow socket lock
3261 *
3262 * 1) can't be invoked in atomic scope
3263 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3264 * datapath acquires the msk socket spinlock while helding
3265 * the subflow socket lock
3266 */
3267 msk->push_pending = 0;
3268 msk->cb_flags &= ~flags;
3269 spin_unlock_bh(&sk->sk_lock.slock);
3270 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3271 __mptcp_flush_join_list(sk);
3272 if (flags & BIT(MPTCP_PUSH_PENDING))
3273 __mptcp_push_pending(sk, 0);
3274 if (flags & BIT(MPTCP_RETRANSMIT))
3275 __mptcp_retrans(sk);
3276
3277 cond_resched();
3278 spin_lock_bh(&sk->sk_lock.slock);
3279 }
3280
3281 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3282 __mptcp_clean_una_wakeup(sk);
3283 if (unlikely(&msk->cb_flags)) {
3284 /* be sure to set the current sk state before tacking actions
3285 * depending on sk_state, that is processing MPTCP_ERROR_REPORT
3286 */
3287 if (__test_and_clear_bit(MPTCP_CONNECTED, &msk->cb_flags))
3288 __mptcp_set_connected(sk);
3289 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3290 __mptcp_error_report(sk);
3291 if (__test_and_clear_bit(MPTCP_RESET_SCHEDULER, &msk->cb_flags))
3292 msk->last_snd = NULL;
3293 }
3294
3295 __mptcp_update_rmem(sk);
3296 }
3297
3298 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3299 * TCP can't schedule delack timer before the subflow is fully established.
3300 * MPTCP uses the delack timer to do 3rd ack retransmissions
3301 */
schedule_3rdack_retransmission(struct sock * ssk)3302 static void schedule_3rdack_retransmission(struct sock *ssk)
3303 {
3304 struct inet_connection_sock *icsk = inet_csk(ssk);
3305 struct tcp_sock *tp = tcp_sk(ssk);
3306 unsigned long timeout;
3307
3308 if (mptcp_subflow_ctx(ssk)->fully_established)
3309 return;
3310
3311 /* reschedule with a timeout above RTT, as we must look only for drop */
3312 if (tp->srtt_us)
3313 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3314 else
3315 timeout = TCP_TIMEOUT_INIT;
3316 timeout += jiffies;
3317
3318 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3319 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3320 icsk->icsk_ack.timeout = timeout;
3321 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3322 }
3323
mptcp_subflow_process_delegated(struct sock * ssk)3324 void mptcp_subflow_process_delegated(struct sock *ssk)
3325 {
3326 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3327 struct sock *sk = subflow->conn;
3328
3329 if (test_bit(MPTCP_DELEGATE_SEND, &subflow->delegated_status)) {
3330 mptcp_data_lock(sk);
3331 if (!sock_owned_by_user(sk))
3332 __mptcp_subflow_push_pending(sk, ssk);
3333 else
3334 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3335 mptcp_data_unlock(sk);
3336 mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_SEND);
3337 }
3338 if (test_bit(MPTCP_DELEGATE_ACK, &subflow->delegated_status)) {
3339 schedule_3rdack_retransmission(ssk);
3340 mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_ACK);
3341 }
3342 }
3343
mptcp_hash(struct sock * sk)3344 static int mptcp_hash(struct sock *sk)
3345 {
3346 /* should never be called,
3347 * we hash the TCP subflows not the master socket
3348 */
3349 WARN_ON_ONCE(1);
3350 return 0;
3351 }
3352
mptcp_unhash(struct sock * sk)3353 static void mptcp_unhash(struct sock *sk)
3354 {
3355 /* called from sk_common_release(), but nothing to do here */
3356 }
3357
mptcp_get_port(struct sock * sk,unsigned short snum)3358 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3359 {
3360 struct mptcp_sock *msk = mptcp_sk(sk);
3361 struct socket *ssock;
3362
3363 ssock = __mptcp_nmpc_socket(msk);
3364 pr_debug("msk=%p, subflow=%p", msk, ssock);
3365 if (WARN_ON_ONCE(!ssock))
3366 return -EINVAL;
3367
3368 return inet_csk_get_port(ssock->sk, snum);
3369 }
3370
mptcp_finish_connect(struct sock * ssk)3371 void mptcp_finish_connect(struct sock *ssk)
3372 {
3373 struct mptcp_subflow_context *subflow;
3374 struct mptcp_sock *msk;
3375 struct sock *sk;
3376 u64 ack_seq;
3377
3378 subflow = mptcp_subflow_ctx(ssk);
3379 sk = subflow->conn;
3380 msk = mptcp_sk(sk);
3381
3382 pr_debug("msk=%p, token=%u", sk, subflow->token);
3383
3384 mptcp_crypto_key_sha(subflow->remote_key, NULL, &ack_seq);
3385 ack_seq++;
3386 subflow->map_seq = ack_seq;
3387 subflow->map_subflow_seq = 1;
3388
3389 /* the socket is not connected yet, no msk/subflow ops can access/race
3390 * accessing the field below
3391 */
3392 WRITE_ONCE(msk->remote_key, subflow->remote_key);
3393 WRITE_ONCE(msk->local_key, subflow->local_key);
3394 WRITE_ONCE(msk->write_seq, subflow->idsn + 1);
3395 WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3396 WRITE_ONCE(msk->ack_seq, ack_seq);
3397 WRITE_ONCE(msk->can_ack, 1);
3398 WRITE_ONCE(msk->snd_una, msk->write_seq);
3399 atomic64_set(&msk->rcv_wnd_sent, ack_seq);
3400
3401 mptcp_pm_new_connection(msk, ssk, 0);
3402
3403 mptcp_rcv_space_init(msk, ssk);
3404 }
3405
mptcp_sock_graft(struct sock * sk,struct socket * parent)3406 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3407 {
3408 write_lock_bh(&sk->sk_callback_lock);
3409 rcu_assign_pointer(sk->sk_wq, &parent->wq);
3410 sk_set_socket(sk, parent);
3411 sk->sk_uid = SOCK_INODE(parent)->i_uid;
3412 write_unlock_bh(&sk->sk_callback_lock);
3413 }
3414
mptcp_finish_join(struct sock * ssk)3415 bool mptcp_finish_join(struct sock *ssk)
3416 {
3417 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3418 struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3419 struct sock *parent = (void *)msk;
3420 bool ret = true;
3421
3422 pr_debug("msk=%p, subflow=%p", msk, subflow);
3423
3424 /* mptcp socket already closing? */
3425 if (!mptcp_is_fully_established(parent)) {
3426 subflow->reset_reason = MPTCP_RST_EMPTCP;
3427 return false;
3428 }
3429
3430 if (!list_empty(&subflow->node))
3431 goto out;
3432
3433 if (!mptcp_pm_allow_new_subflow(msk))
3434 goto err_prohibited;
3435
3436 /* active connections are already on conn_list.
3437 * If we can't acquire msk socket lock here, let the release callback
3438 * handle it
3439 */
3440 mptcp_data_lock(parent);
3441 if (!sock_owned_by_user(parent)) {
3442 ret = __mptcp_finish_join(msk, ssk);
3443 if (ret) {
3444 sock_hold(ssk);
3445 list_add_tail(&subflow->node, &msk->conn_list);
3446 }
3447 } else {
3448 sock_hold(ssk);
3449 list_add_tail(&subflow->node, &msk->join_list);
3450 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3451 }
3452 mptcp_data_unlock(parent);
3453
3454 if (!ret) {
3455 err_prohibited:
3456 subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3457 return false;
3458 }
3459
3460 subflow->map_seq = READ_ONCE(msk->ack_seq);
3461 WRITE_ONCE(msk->allow_infinite_fallback, false);
3462
3463 out:
3464 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
3465 return true;
3466 }
3467
mptcp_shutdown(struct sock * sk,int how)3468 static void mptcp_shutdown(struct sock *sk, int how)
3469 {
3470 pr_debug("sk=%p, how=%d", sk, how);
3471
3472 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3473 __mptcp_wr_shutdown(sk);
3474 }
3475
mptcp_forward_alloc_get(const struct sock * sk)3476 static int mptcp_forward_alloc_get(const struct sock *sk)
3477 {
3478 return sk->sk_forward_alloc + mptcp_sk(sk)->rmem_fwd_alloc;
3479 }
3480
mptcp_ioctl_outq(const struct mptcp_sock * msk,u64 v)3481 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3482 {
3483 const struct sock *sk = (void *)msk;
3484 u64 delta;
3485
3486 if (sk->sk_state == TCP_LISTEN)
3487 return -EINVAL;
3488
3489 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3490 return 0;
3491
3492 delta = msk->write_seq - v;
3493 if (__mptcp_check_fallback(msk) && msk->first) {
3494 struct tcp_sock *tp = tcp_sk(msk->first);
3495
3496 /* the first subflow is disconnected after close - see
3497 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3498 * so ignore that status, too.
3499 */
3500 if (!((1 << msk->first->sk_state) &
3501 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3502 delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3503 }
3504 if (delta > INT_MAX)
3505 delta = INT_MAX;
3506
3507 return (int)delta;
3508 }
3509
mptcp_ioctl(struct sock * sk,int cmd,unsigned long arg)3510 static int mptcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3511 {
3512 struct mptcp_sock *msk = mptcp_sk(sk);
3513 bool slow;
3514 int answ;
3515
3516 switch (cmd) {
3517 case SIOCINQ:
3518 if (sk->sk_state == TCP_LISTEN)
3519 return -EINVAL;
3520
3521 lock_sock(sk);
3522 __mptcp_move_skbs(msk);
3523 answ = mptcp_inq_hint(sk);
3524 release_sock(sk);
3525 break;
3526 case SIOCOUTQ:
3527 slow = lock_sock_fast(sk);
3528 answ = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3529 unlock_sock_fast(sk, slow);
3530 break;
3531 case SIOCOUTQNSD:
3532 slow = lock_sock_fast(sk);
3533 answ = mptcp_ioctl_outq(msk, msk->snd_nxt);
3534 unlock_sock_fast(sk, slow);
3535 break;
3536 default:
3537 return -ENOIOCTLCMD;
3538 }
3539
3540 return put_user(answ, (int __user *)arg);
3541 }
3542
mptcp_subflow_early_fallback(struct mptcp_sock * msk,struct mptcp_subflow_context * subflow)3543 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
3544 struct mptcp_subflow_context *subflow)
3545 {
3546 subflow->request_mptcp = 0;
3547 __mptcp_do_fallback(msk);
3548 }
3549
mptcp_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)3550 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
3551 {
3552 struct mptcp_subflow_context *subflow;
3553 struct mptcp_sock *msk = mptcp_sk(sk);
3554 struct socket *ssock;
3555 int err = -EINVAL;
3556
3557 ssock = __mptcp_nmpc_socket(msk);
3558 if (!ssock)
3559 return -EINVAL;
3560
3561 mptcp_token_destroy(msk);
3562 inet_sk_state_store(sk, TCP_SYN_SENT);
3563 subflow = mptcp_subflow_ctx(ssock->sk);
3564 #ifdef CONFIG_TCP_MD5SIG
3565 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3566 * TCP option space.
3567 */
3568 if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info))
3569 mptcp_subflow_early_fallback(msk, subflow);
3570 #endif
3571 if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk)) {
3572 MPTCP_INC_STATS(sock_net(ssock->sk), MPTCP_MIB_TOKENFALLBACKINIT);
3573 mptcp_subflow_early_fallback(msk, subflow);
3574 }
3575 if (likely(!__mptcp_check_fallback(msk)))
3576 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3577
3578 /* if reaching here via the fastopen/sendmsg path, the caller already
3579 * acquired the subflow socket lock, too.
3580 */
3581 if (msk->fastopening)
3582 err = __inet_stream_connect(ssock, uaddr, addr_len, msk->connect_flags, 1);
3583 else
3584 err = inet_stream_connect(ssock, uaddr, addr_len, msk->connect_flags);
3585 inet_sk(sk)->defer_connect = inet_sk(ssock->sk)->defer_connect;
3586
3587 /* on successful connect, the msk state will be moved to established by
3588 * subflow_finish_connect()
3589 */
3590 if (unlikely(err && err != -EINPROGRESS)) {
3591 inet_sk_state_store(sk, inet_sk_state_load(ssock->sk));
3592 return err;
3593 }
3594
3595 mptcp_copy_inaddrs(sk, ssock->sk);
3596
3597 /* unblocking connect, mptcp-level inet_stream_connect will error out
3598 * without changing the socket state, update it here.
3599 */
3600 if (err == -EINPROGRESS)
3601 sk->sk_socket->state = ssock->state;
3602 return err;
3603 }
3604
3605 static struct proto mptcp_prot = {
3606 .name = "MPTCP",
3607 .owner = THIS_MODULE,
3608 .init = mptcp_init_sock,
3609 .connect = mptcp_connect,
3610 .disconnect = mptcp_disconnect,
3611 .close = mptcp_close,
3612 .accept = mptcp_accept,
3613 .setsockopt = mptcp_setsockopt,
3614 .getsockopt = mptcp_getsockopt,
3615 .shutdown = mptcp_shutdown,
3616 .destroy = mptcp_destroy,
3617 .sendmsg = mptcp_sendmsg,
3618 .ioctl = mptcp_ioctl,
3619 .recvmsg = mptcp_recvmsg,
3620 .release_cb = mptcp_release_cb,
3621 .hash = mptcp_hash,
3622 .unhash = mptcp_unhash,
3623 .get_port = mptcp_get_port,
3624 .forward_alloc_get = mptcp_forward_alloc_get,
3625 .sockets_allocated = &mptcp_sockets_allocated,
3626
3627 .memory_allocated = &tcp_memory_allocated,
3628 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc,
3629
3630 .memory_pressure = &tcp_memory_pressure,
3631 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem),
3632 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem),
3633 .sysctl_mem = sysctl_tcp_mem,
3634 .obj_size = sizeof(struct mptcp_sock),
3635 .slab_flags = SLAB_TYPESAFE_BY_RCU,
3636 .no_autobind = true,
3637 };
3638
mptcp_bind(struct socket * sock,struct sockaddr * uaddr,int addr_len)3639 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3640 {
3641 struct mptcp_sock *msk = mptcp_sk(sock->sk);
3642 struct socket *ssock;
3643 int err;
3644
3645 lock_sock(sock->sk);
3646 ssock = __mptcp_nmpc_socket(msk);
3647 if (!ssock) {
3648 err = -EINVAL;
3649 goto unlock;
3650 }
3651
3652 err = ssock->ops->bind(ssock, uaddr, addr_len);
3653 if (!err)
3654 mptcp_copy_inaddrs(sock->sk, ssock->sk);
3655
3656 unlock:
3657 release_sock(sock->sk);
3658 return err;
3659 }
3660
mptcp_stream_connect(struct socket * sock,struct sockaddr * uaddr,int addr_len,int flags)3661 static int mptcp_stream_connect(struct socket *sock, struct sockaddr *uaddr,
3662 int addr_len, int flags)
3663 {
3664 int ret;
3665
3666 lock_sock(sock->sk);
3667 mptcp_sk(sock->sk)->connect_flags = flags;
3668 ret = __inet_stream_connect(sock, uaddr, addr_len, flags, 0);
3669 release_sock(sock->sk);
3670 return ret;
3671 }
3672
mptcp_listen(struct socket * sock,int backlog)3673 static int mptcp_listen(struct socket *sock, int backlog)
3674 {
3675 struct mptcp_sock *msk = mptcp_sk(sock->sk);
3676 struct socket *ssock;
3677 int err;
3678
3679 pr_debug("msk=%p", msk);
3680
3681 lock_sock(sock->sk);
3682 ssock = __mptcp_nmpc_socket(msk);
3683 if (!ssock) {
3684 err = -EINVAL;
3685 goto unlock;
3686 }
3687
3688 mptcp_token_destroy(msk);
3689 inet_sk_state_store(sock->sk, TCP_LISTEN);
3690 sock_set_flag(sock->sk, SOCK_RCU_FREE);
3691
3692 err = ssock->ops->listen(ssock, backlog);
3693 inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
3694 if (!err)
3695 mptcp_copy_inaddrs(sock->sk, ssock->sk);
3696
3697 unlock:
3698 release_sock(sock->sk);
3699 return err;
3700 }
3701
mptcp_stream_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)3702 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3703 int flags, bool kern)
3704 {
3705 struct mptcp_sock *msk = mptcp_sk(sock->sk);
3706 struct socket *ssock;
3707 int err;
3708
3709 pr_debug("msk=%p", msk);
3710
3711 ssock = __mptcp_nmpc_socket(msk);
3712 if (!ssock)
3713 return -EINVAL;
3714
3715 err = ssock->ops->accept(sock, newsock, flags, kern);
3716 if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) {
3717 struct mptcp_sock *msk = mptcp_sk(newsock->sk);
3718 struct mptcp_subflow_context *subflow;
3719 struct sock *newsk = newsock->sk;
3720
3721 lock_sock(newsk);
3722
3723 /* PM/worker can now acquire the first subflow socket
3724 * lock without racing with listener queue cleanup,
3725 * we can notify it, if needed.
3726 *
3727 * Even if remote has reset the initial subflow by now
3728 * the refcnt is still at least one.
3729 */
3730 subflow = mptcp_subflow_ctx(msk->first);
3731 list_add(&subflow->node, &msk->conn_list);
3732 sock_hold(msk->first);
3733 if (mptcp_is_fully_established(newsk))
3734 mptcp_pm_fully_established(msk, msk->first, GFP_KERNEL);
3735
3736 mptcp_rcv_space_init(msk, msk->first);
3737 mptcp_propagate_sndbuf(newsk, msk->first);
3738
3739 /* set ssk->sk_socket of accept()ed flows to mptcp socket.
3740 * This is needed so NOSPACE flag can be set from tcp stack.
3741 */
3742 mptcp_for_each_subflow(msk, subflow) {
3743 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3744
3745 if (!ssk->sk_socket)
3746 mptcp_sock_graft(ssk, newsock);
3747 }
3748 release_sock(newsk);
3749 }
3750
3751 return err;
3752 }
3753
mptcp_check_writeable(struct mptcp_sock * msk)3754 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3755 {
3756 struct sock *sk = (struct sock *)msk;
3757
3758 if (unlikely(sk->sk_shutdown & SEND_SHUTDOWN))
3759 return EPOLLOUT | EPOLLWRNORM;
3760
3761 if (sk_stream_is_writeable(sk))
3762 return EPOLLOUT | EPOLLWRNORM;
3763
3764 mptcp_set_nospace(sk);
3765 smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
3766 if (sk_stream_is_writeable(sk))
3767 return EPOLLOUT | EPOLLWRNORM;
3768
3769 return 0;
3770 }
3771
mptcp_poll(struct file * file,struct socket * sock,struct poll_table_struct * wait)3772 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3773 struct poll_table_struct *wait)
3774 {
3775 struct sock *sk = sock->sk;
3776 struct mptcp_sock *msk;
3777 __poll_t mask = 0;
3778 int state;
3779
3780 msk = mptcp_sk(sk);
3781 sock_poll_wait(file, sock, wait);
3782
3783 state = inet_sk_state_load(sk);
3784 pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags);
3785 if (state == TCP_LISTEN) {
3786 if (WARN_ON_ONCE(!msk->subflow || !msk->subflow->sk))
3787 return 0;
3788
3789 return inet_csk_listen_poll(msk->subflow->sk);
3790 }
3791
3792 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
3793 mask |= mptcp_check_readable(msk);
3794 mask |= mptcp_check_writeable(msk);
3795 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
3796 /* cf tcp_poll() note about TFO */
3797 mask |= EPOLLOUT | EPOLLWRNORM;
3798 }
3799 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
3800 mask |= EPOLLHUP;
3801 if (sk->sk_shutdown & RCV_SHUTDOWN)
3802 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
3803
3804 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
3805 smp_rmb();
3806 if (sk->sk_err)
3807 mask |= EPOLLERR;
3808
3809 return mask;
3810 }
3811
3812 static const struct proto_ops mptcp_stream_ops = {
3813 .family = PF_INET,
3814 .owner = THIS_MODULE,
3815 .release = inet_release,
3816 .bind = mptcp_bind,
3817 .connect = mptcp_stream_connect,
3818 .socketpair = sock_no_socketpair,
3819 .accept = mptcp_stream_accept,
3820 .getname = inet_getname,
3821 .poll = mptcp_poll,
3822 .ioctl = inet_ioctl,
3823 .gettstamp = sock_gettstamp,
3824 .listen = mptcp_listen,
3825 .shutdown = inet_shutdown,
3826 .setsockopt = sock_common_setsockopt,
3827 .getsockopt = sock_common_getsockopt,
3828 .sendmsg = inet_sendmsg,
3829 .recvmsg = inet_recvmsg,
3830 .mmap = sock_no_mmap,
3831 .sendpage = inet_sendpage,
3832 };
3833
3834 static struct inet_protosw mptcp_protosw = {
3835 .type = SOCK_STREAM,
3836 .protocol = IPPROTO_MPTCP,
3837 .prot = &mptcp_prot,
3838 .ops = &mptcp_stream_ops,
3839 .flags = INET_PROTOSW_ICSK,
3840 };
3841
mptcp_napi_poll(struct napi_struct * napi,int budget)3842 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
3843 {
3844 struct mptcp_delegated_action *delegated;
3845 struct mptcp_subflow_context *subflow;
3846 int work_done = 0;
3847
3848 delegated = container_of(napi, struct mptcp_delegated_action, napi);
3849 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
3850 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3851
3852 bh_lock_sock_nested(ssk);
3853 if (!sock_owned_by_user(ssk) &&
3854 mptcp_subflow_has_delegated_action(subflow))
3855 mptcp_subflow_process_delegated(ssk);
3856 /* ... elsewhere tcp_release_cb_override already processed
3857 * the action or will do at next release_sock().
3858 * In both case must dequeue the subflow here - on the same
3859 * CPU that scheduled it.
3860 */
3861 bh_unlock_sock(ssk);
3862 sock_put(ssk);
3863
3864 if (++work_done == budget)
3865 return budget;
3866 }
3867
3868 /* always provide a 0 'work_done' argument, so that napi_complete_done
3869 * will not try accessing the NULL napi->dev ptr
3870 */
3871 napi_complete_done(napi, 0);
3872 return work_done;
3873 }
3874
mptcp_proto_init(void)3875 void __init mptcp_proto_init(void)
3876 {
3877 struct mptcp_delegated_action *delegated;
3878 int cpu;
3879
3880 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
3881
3882 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
3883 panic("Failed to allocate MPTCP pcpu counter\n");
3884
3885 init_dummy_netdev(&mptcp_napi_dev);
3886 for_each_possible_cpu(cpu) {
3887 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
3888 INIT_LIST_HEAD(&delegated->head);
3889 netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi,
3890 mptcp_napi_poll);
3891 napi_enable(&delegated->napi);
3892 }
3893
3894 mptcp_subflow_init();
3895 mptcp_pm_init();
3896 mptcp_token_init();
3897
3898 if (proto_register(&mptcp_prot, 1) != 0)
3899 panic("Failed to register MPTCP proto.\n");
3900
3901 inet_register_protosw(&mptcp_protosw);
3902
3903 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
3904 }
3905
3906 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3907 static const struct proto_ops mptcp_v6_stream_ops = {
3908 .family = PF_INET6,
3909 .owner = THIS_MODULE,
3910 .release = inet6_release,
3911 .bind = mptcp_bind,
3912 .connect = mptcp_stream_connect,
3913 .socketpair = sock_no_socketpair,
3914 .accept = mptcp_stream_accept,
3915 .getname = inet6_getname,
3916 .poll = mptcp_poll,
3917 .ioctl = inet6_ioctl,
3918 .gettstamp = sock_gettstamp,
3919 .listen = mptcp_listen,
3920 .shutdown = inet_shutdown,
3921 .setsockopt = sock_common_setsockopt,
3922 .getsockopt = sock_common_getsockopt,
3923 .sendmsg = inet6_sendmsg,
3924 .recvmsg = inet6_recvmsg,
3925 .mmap = sock_no_mmap,
3926 .sendpage = inet_sendpage,
3927 #ifdef CONFIG_COMPAT
3928 .compat_ioctl = inet6_compat_ioctl,
3929 #endif
3930 };
3931
3932 static struct proto mptcp_v6_prot;
3933
mptcp_v6_destroy(struct sock * sk)3934 static void mptcp_v6_destroy(struct sock *sk)
3935 {
3936 mptcp_destroy(sk);
3937 inet6_destroy_sock(sk);
3938 }
3939
3940 static struct inet_protosw mptcp_v6_protosw = {
3941 .type = SOCK_STREAM,
3942 .protocol = IPPROTO_MPTCP,
3943 .prot = &mptcp_v6_prot,
3944 .ops = &mptcp_v6_stream_ops,
3945 .flags = INET_PROTOSW_ICSK,
3946 };
3947
mptcp_proto_v6_init(void)3948 int __init mptcp_proto_v6_init(void)
3949 {
3950 int err;
3951
3952 mptcp_v6_prot = mptcp_prot;
3953 strcpy(mptcp_v6_prot.name, "MPTCPv6");
3954 mptcp_v6_prot.slab = NULL;
3955 mptcp_v6_prot.destroy = mptcp_v6_destroy;
3956 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
3957
3958 err = proto_register(&mptcp_v6_prot, 1);
3959 if (err)
3960 return err;
3961
3962 err = inet6_register_protosw(&mptcp_v6_protosw);
3963 if (err)
3964 proto_unregister(&mptcp_v6_prot);
3965
3966 return err;
3967 }
3968 #endif
3969