1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Procedures for maintaining information about logical memory blocks.
4 *
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/bitops.h>
13 #include <linux/poison.h>
14 #include <linux/pfn.h>
15 #include <linux/debugfs.h>
16 #include <linux/kmemleak.h>
17 #include <linux/seq_file.h>
18 #include <linux/memblock.h>
19
20 #include <asm/sections.h>
21 #include <linux/io.h>
22
23 #include "internal.h"
24
25 #define INIT_MEMBLOCK_REGIONS 128
26 #define INIT_PHYSMEM_REGIONS 4
27
28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29 # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
30 #endif
31
32 #ifndef INIT_MEMBLOCK_MEMORY_REGIONS
33 #define INIT_MEMBLOCK_MEMORY_REGIONS INIT_MEMBLOCK_REGIONS
34 #endif
35
36 /**
37 * DOC: memblock overview
38 *
39 * Memblock is a method of managing memory regions during the early
40 * boot period when the usual kernel memory allocators are not up and
41 * running.
42 *
43 * Memblock views the system memory as collections of contiguous
44 * regions. There are several types of these collections:
45 *
46 * * ``memory`` - describes the physical memory available to the
47 * kernel; this may differ from the actual physical memory installed
48 * in the system, for instance when the memory is restricted with
49 * ``mem=`` command line parameter
50 * * ``reserved`` - describes the regions that were allocated
51 * * ``physmem`` - describes the actual physical memory available during
52 * boot regardless of the possible restrictions and memory hot(un)plug;
53 * the ``physmem`` type is only available on some architectures.
54 *
55 * Each region is represented by struct memblock_region that
56 * defines the region extents, its attributes and NUMA node id on NUMA
57 * systems. Every memory type is described by the struct memblock_type
58 * which contains an array of memory regions along with
59 * the allocator metadata. The "memory" and "reserved" types are nicely
60 * wrapped with struct memblock. This structure is statically
61 * initialized at build time. The region arrays are initially sized to
62 * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
63 * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
64 * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
65 * The memblock_allow_resize() enables automatic resizing of the region
66 * arrays during addition of new regions. This feature should be used
67 * with care so that memory allocated for the region array will not
68 * overlap with areas that should be reserved, for example initrd.
69 *
70 * The early architecture setup should tell memblock what the physical
71 * memory layout is by using memblock_add() or memblock_add_node()
72 * functions. The first function does not assign the region to a NUMA
73 * node and it is appropriate for UMA systems. Yet, it is possible to
74 * use it on NUMA systems as well and assign the region to a NUMA node
75 * later in the setup process using memblock_set_node(). The
76 * memblock_add_node() performs such an assignment directly.
77 *
78 * Once memblock is setup the memory can be allocated using one of the
79 * API variants:
80 *
81 * * memblock_phys_alloc*() - these functions return the **physical**
82 * address of the allocated memory
83 * * memblock_alloc*() - these functions return the **virtual** address
84 * of the allocated memory.
85 *
86 * Note, that both API variants use implicit assumptions about allowed
87 * memory ranges and the fallback methods. Consult the documentation
88 * of memblock_alloc_internal() and memblock_alloc_range_nid()
89 * functions for more elaborate description.
90 *
91 * As the system boot progresses, the architecture specific mem_init()
92 * function frees all the memory to the buddy page allocator.
93 *
94 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
95 * memblock data structures (except "physmem") will be discarded after the
96 * system initialization completes.
97 */
98
99 #ifndef CONFIG_NUMA
100 struct pglist_data __refdata contig_page_data;
101 EXPORT_SYMBOL(contig_page_data);
102 #endif
103
104 unsigned long max_low_pfn;
105 unsigned long min_low_pfn;
106 unsigned long max_pfn;
107 unsigned long long max_possible_pfn;
108
109 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
110 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
111 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
112 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
113 #endif
114
115 struct memblock memblock __initdata_memblock = {
116 .memory.regions = memblock_memory_init_regions,
117 .memory.cnt = 1, /* empty dummy entry */
118 .memory.max = INIT_MEMBLOCK_MEMORY_REGIONS,
119 .memory.name = "memory",
120
121 .reserved.regions = memblock_reserved_init_regions,
122 .reserved.cnt = 1, /* empty dummy entry */
123 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
124 .reserved.name = "reserved",
125
126 .bottom_up = false,
127 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
128 };
129
130 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
131 struct memblock_type physmem = {
132 .regions = memblock_physmem_init_regions,
133 .cnt = 1, /* empty dummy entry */
134 .max = INIT_PHYSMEM_REGIONS,
135 .name = "physmem",
136 };
137 #endif
138
139 /*
140 * keep a pointer to &memblock.memory in the text section to use it in
141 * __next_mem_range() and its helpers.
142 * For architectures that do not keep memblock data after init, this
143 * pointer will be reset to NULL at memblock_discard()
144 */
145 static __refdata struct memblock_type *memblock_memory = &memblock.memory;
146
147 #define for_each_memblock_type(i, memblock_type, rgn) \
148 for (i = 0, rgn = &memblock_type->regions[0]; \
149 i < memblock_type->cnt; \
150 i++, rgn = &memblock_type->regions[i])
151
152 #define memblock_dbg(fmt, ...) \
153 do { \
154 if (memblock_debug) \
155 pr_info(fmt, ##__VA_ARGS__); \
156 } while (0)
157
158 static int memblock_debug __initdata_memblock;
159 static bool system_has_some_mirror __initdata_memblock = false;
160 static int memblock_can_resize __initdata_memblock;
161 static int memblock_memory_in_slab __initdata_memblock = 0;
162 static int memblock_reserved_in_slab __initdata_memblock = 0;
163
choose_memblock_flags(void)164 static enum memblock_flags __init_memblock choose_memblock_flags(void)
165 {
166 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
167 }
168
169 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
memblock_cap_size(phys_addr_t base,phys_addr_t * size)170 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
171 {
172 return *size = min(*size, PHYS_ADDR_MAX - base);
173 }
174
175 /*
176 * Address comparison utilities
177 */
memblock_addrs_overlap(phys_addr_t base1,phys_addr_t size1,phys_addr_t base2,phys_addr_t size2)178 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
179 phys_addr_t base2, phys_addr_t size2)
180 {
181 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
182 }
183
memblock_overlaps_region(struct memblock_type * type,phys_addr_t base,phys_addr_t size)184 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
185 phys_addr_t base, phys_addr_t size)
186 {
187 unsigned long i;
188
189 memblock_cap_size(base, &size);
190
191 for (i = 0; i < type->cnt; i++)
192 if (memblock_addrs_overlap(base, size, type->regions[i].base,
193 type->regions[i].size))
194 break;
195 return i < type->cnt;
196 }
197
198 /**
199 * __memblock_find_range_bottom_up - find free area utility in bottom-up
200 * @start: start of candidate range
201 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
202 * %MEMBLOCK_ALLOC_ACCESSIBLE
203 * @size: size of free area to find
204 * @align: alignment of free area to find
205 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
206 * @flags: pick from blocks based on memory attributes
207 *
208 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
209 *
210 * Return:
211 * Found address on success, 0 on failure.
212 */
213 static phys_addr_t __init_memblock
__memblock_find_range_bottom_up(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)214 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
215 phys_addr_t size, phys_addr_t align, int nid,
216 enum memblock_flags flags)
217 {
218 phys_addr_t this_start, this_end, cand;
219 u64 i;
220
221 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
222 this_start = clamp(this_start, start, end);
223 this_end = clamp(this_end, start, end);
224
225 cand = round_up(this_start, align);
226 if (cand < this_end && this_end - cand >= size)
227 return cand;
228 }
229
230 return 0;
231 }
232
233 /**
234 * __memblock_find_range_top_down - find free area utility, in top-down
235 * @start: start of candidate range
236 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
237 * %MEMBLOCK_ALLOC_ACCESSIBLE
238 * @size: size of free area to find
239 * @align: alignment of free area to find
240 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
241 * @flags: pick from blocks based on memory attributes
242 *
243 * Utility called from memblock_find_in_range_node(), find free area top-down.
244 *
245 * Return:
246 * Found address on success, 0 on failure.
247 */
248 static phys_addr_t __init_memblock
__memblock_find_range_top_down(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)249 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
250 phys_addr_t size, phys_addr_t align, int nid,
251 enum memblock_flags flags)
252 {
253 phys_addr_t this_start, this_end, cand;
254 u64 i;
255
256 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
257 NULL) {
258 this_start = clamp(this_start, start, end);
259 this_end = clamp(this_end, start, end);
260
261 if (this_end < size)
262 continue;
263
264 cand = round_down(this_end - size, align);
265 if (cand >= this_start)
266 return cand;
267 }
268
269 return 0;
270 }
271
272 /**
273 * memblock_find_in_range_node - find free area in given range and node
274 * @size: size of free area to find
275 * @align: alignment of free area to find
276 * @start: start of candidate range
277 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
278 * %MEMBLOCK_ALLOC_ACCESSIBLE
279 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
280 * @flags: pick from blocks based on memory attributes
281 *
282 * Find @size free area aligned to @align in the specified range and node.
283 *
284 * Return:
285 * Found address on success, 0 on failure.
286 */
memblock_find_in_range_node(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,enum memblock_flags flags)287 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
288 phys_addr_t align, phys_addr_t start,
289 phys_addr_t end, int nid,
290 enum memblock_flags flags)
291 {
292 /* pump up @end */
293 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
294 end == MEMBLOCK_ALLOC_NOLEAKTRACE)
295 end = memblock.current_limit;
296
297 /* avoid allocating the first page */
298 start = max_t(phys_addr_t, start, PAGE_SIZE);
299 end = max(start, end);
300
301 if (memblock_bottom_up())
302 return __memblock_find_range_bottom_up(start, end, size, align,
303 nid, flags);
304 else
305 return __memblock_find_range_top_down(start, end, size, align,
306 nid, flags);
307 }
308
309 /**
310 * memblock_find_in_range - find free area in given range
311 * @start: start of candidate range
312 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
313 * %MEMBLOCK_ALLOC_ACCESSIBLE
314 * @size: size of free area to find
315 * @align: alignment of free area to find
316 *
317 * Find @size free area aligned to @align in the specified range.
318 *
319 * Return:
320 * Found address on success, 0 on failure.
321 */
memblock_find_in_range(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align)322 static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
323 phys_addr_t end, phys_addr_t size,
324 phys_addr_t align)
325 {
326 phys_addr_t ret;
327 enum memblock_flags flags = choose_memblock_flags();
328
329 again:
330 ret = memblock_find_in_range_node(size, align, start, end,
331 NUMA_NO_NODE, flags);
332
333 if (!ret && (flags & MEMBLOCK_MIRROR)) {
334 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
335 &size);
336 flags &= ~MEMBLOCK_MIRROR;
337 goto again;
338 }
339
340 return ret;
341 }
342
memblock_remove_region(struct memblock_type * type,unsigned long r)343 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
344 {
345 type->total_size -= type->regions[r].size;
346 memmove(&type->regions[r], &type->regions[r + 1],
347 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
348 type->cnt--;
349
350 /* Special case for empty arrays */
351 if (type->cnt == 0) {
352 WARN_ON(type->total_size != 0);
353 type->cnt = 1;
354 type->regions[0].base = 0;
355 type->regions[0].size = 0;
356 type->regions[0].flags = 0;
357 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
358 }
359 }
360
361 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
362 /**
363 * memblock_discard - discard memory and reserved arrays if they were allocated
364 */
memblock_discard(void)365 void __init memblock_discard(void)
366 {
367 phys_addr_t addr, size;
368
369 if (memblock.reserved.regions != memblock_reserved_init_regions) {
370 addr = __pa(memblock.reserved.regions);
371 size = PAGE_ALIGN(sizeof(struct memblock_region) *
372 memblock.reserved.max);
373 if (memblock_reserved_in_slab)
374 kfree(memblock.reserved.regions);
375 else
376 memblock_free_late(addr, size);
377 }
378
379 if (memblock.memory.regions != memblock_memory_init_regions) {
380 addr = __pa(memblock.memory.regions);
381 size = PAGE_ALIGN(sizeof(struct memblock_region) *
382 memblock.memory.max);
383 if (memblock_memory_in_slab)
384 kfree(memblock.memory.regions);
385 else
386 memblock_free_late(addr, size);
387 }
388
389 memblock_memory = NULL;
390 }
391 #endif
392
393 /**
394 * memblock_double_array - double the size of the memblock regions array
395 * @type: memblock type of the regions array being doubled
396 * @new_area_start: starting address of memory range to avoid overlap with
397 * @new_area_size: size of memory range to avoid overlap with
398 *
399 * Double the size of the @type regions array. If memblock is being used to
400 * allocate memory for a new reserved regions array and there is a previously
401 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
402 * waiting to be reserved, ensure the memory used by the new array does
403 * not overlap.
404 *
405 * Return:
406 * 0 on success, -1 on failure.
407 */
memblock_double_array(struct memblock_type * type,phys_addr_t new_area_start,phys_addr_t new_area_size)408 static int __init_memblock memblock_double_array(struct memblock_type *type,
409 phys_addr_t new_area_start,
410 phys_addr_t new_area_size)
411 {
412 struct memblock_region *new_array, *old_array;
413 phys_addr_t old_alloc_size, new_alloc_size;
414 phys_addr_t old_size, new_size, addr, new_end;
415 int use_slab = slab_is_available();
416 int *in_slab;
417
418 /* We don't allow resizing until we know about the reserved regions
419 * of memory that aren't suitable for allocation
420 */
421 if (!memblock_can_resize)
422 return -1;
423
424 /* Calculate new doubled size */
425 old_size = type->max * sizeof(struct memblock_region);
426 new_size = old_size << 1;
427 /*
428 * We need to allocated new one align to PAGE_SIZE,
429 * so we can free them completely later.
430 */
431 old_alloc_size = PAGE_ALIGN(old_size);
432 new_alloc_size = PAGE_ALIGN(new_size);
433
434 /* Retrieve the slab flag */
435 if (type == &memblock.memory)
436 in_slab = &memblock_memory_in_slab;
437 else
438 in_slab = &memblock_reserved_in_slab;
439
440 /* Try to find some space for it */
441 if (use_slab) {
442 new_array = kmalloc(new_size, GFP_KERNEL);
443 addr = new_array ? __pa(new_array) : 0;
444 } else {
445 /* only exclude range when trying to double reserved.regions */
446 if (type != &memblock.reserved)
447 new_area_start = new_area_size = 0;
448
449 addr = memblock_find_in_range(new_area_start + new_area_size,
450 memblock.current_limit,
451 new_alloc_size, PAGE_SIZE);
452 if (!addr && new_area_size)
453 addr = memblock_find_in_range(0,
454 min(new_area_start, memblock.current_limit),
455 new_alloc_size, PAGE_SIZE);
456
457 new_array = addr ? __va(addr) : NULL;
458 }
459 if (!addr) {
460 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
461 type->name, type->max, type->max * 2);
462 return -1;
463 }
464
465 new_end = addr + new_size - 1;
466 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
467 type->name, type->max * 2, &addr, &new_end);
468
469 /*
470 * Found space, we now need to move the array over before we add the
471 * reserved region since it may be our reserved array itself that is
472 * full.
473 */
474 memcpy(new_array, type->regions, old_size);
475 memset(new_array + type->max, 0, old_size);
476 old_array = type->regions;
477 type->regions = new_array;
478 type->max <<= 1;
479
480 /* Free old array. We needn't free it if the array is the static one */
481 if (*in_slab)
482 kfree(old_array);
483 else if (old_array != memblock_memory_init_regions &&
484 old_array != memblock_reserved_init_regions)
485 memblock_free(old_array, old_alloc_size);
486
487 /*
488 * Reserve the new array if that comes from the memblock. Otherwise, we
489 * needn't do it
490 */
491 if (!use_slab)
492 BUG_ON(memblock_reserve(addr, new_alloc_size));
493
494 /* Update slab flag */
495 *in_slab = use_slab;
496
497 return 0;
498 }
499
500 /**
501 * memblock_merge_regions - merge neighboring compatible regions
502 * @type: memblock type to scan
503 *
504 * Scan @type and merge neighboring compatible regions.
505 */
memblock_merge_regions(struct memblock_type * type)506 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
507 {
508 int i = 0;
509
510 /* cnt never goes below 1 */
511 while (i < type->cnt - 1) {
512 struct memblock_region *this = &type->regions[i];
513 struct memblock_region *next = &type->regions[i + 1];
514
515 if (this->base + this->size != next->base ||
516 memblock_get_region_node(this) !=
517 memblock_get_region_node(next) ||
518 this->flags != next->flags) {
519 BUG_ON(this->base + this->size > next->base);
520 i++;
521 continue;
522 }
523
524 this->size += next->size;
525 /* move forward from next + 1, index of which is i + 2 */
526 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
527 type->cnt--;
528 }
529 }
530
531 /**
532 * memblock_insert_region - insert new memblock region
533 * @type: memblock type to insert into
534 * @idx: index for the insertion point
535 * @base: base address of the new region
536 * @size: size of the new region
537 * @nid: node id of the new region
538 * @flags: flags of the new region
539 *
540 * Insert new memblock region [@base, @base + @size) into @type at @idx.
541 * @type must already have extra room to accommodate the new region.
542 */
memblock_insert_region(struct memblock_type * type,int idx,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)543 static void __init_memblock memblock_insert_region(struct memblock_type *type,
544 int idx, phys_addr_t base,
545 phys_addr_t size,
546 int nid,
547 enum memblock_flags flags)
548 {
549 struct memblock_region *rgn = &type->regions[idx];
550
551 BUG_ON(type->cnt >= type->max);
552 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
553 rgn->base = base;
554 rgn->size = size;
555 rgn->flags = flags;
556 memblock_set_region_node(rgn, nid);
557 type->cnt++;
558 type->total_size += size;
559 }
560
561 /**
562 * memblock_add_range - add new memblock region
563 * @type: memblock type to add new region into
564 * @base: base address of the new region
565 * @size: size of the new region
566 * @nid: nid of the new region
567 * @flags: flags of the new region
568 *
569 * Add new memblock region [@base, @base + @size) into @type. The new region
570 * is allowed to overlap with existing ones - overlaps don't affect already
571 * existing regions. @type is guaranteed to be minimal (all neighbouring
572 * compatible regions are merged) after the addition.
573 *
574 * Return:
575 * 0 on success, -errno on failure.
576 */
memblock_add_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)577 static int __init_memblock memblock_add_range(struct memblock_type *type,
578 phys_addr_t base, phys_addr_t size,
579 int nid, enum memblock_flags flags)
580 {
581 bool insert = false;
582 phys_addr_t obase = base;
583 phys_addr_t end = base + memblock_cap_size(base, &size);
584 int idx, nr_new;
585 struct memblock_region *rgn;
586
587 if (!size)
588 return 0;
589
590 /* special case for empty array */
591 if (type->regions[0].size == 0) {
592 WARN_ON(type->cnt != 1 || type->total_size);
593 type->regions[0].base = base;
594 type->regions[0].size = size;
595 type->regions[0].flags = flags;
596 memblock_set_region_node(&type->regions[0], nid);
597 type->total_size = size;
598 return 0;
599 }
600
601 /*
602 * The worst case is when new range overlaps all existing regions,
603 * then we'll need type->cnt + 1 empty regions in @type. So if
604 * type->cnt * 2 + 1 is less than type->max, we know
605 * that there is enough empty regions in @type, and we can insert
606 * regions directly.
607 */
608 if (type->cnt * 2 + 1 < type->max)
609 insert = true;
610
611 repeat:
612 /*
613 * The following is executed twice. Once with %false @insert and
614 * then with %true. The first counts the number of regions needed
615 * to accommodate the new area. The second actually inserts them.
616 */
617 base = obase;
618 nr_new = 0;
619
620 for_each_memblock_type(idx, type, rgn) {
621 phys_addr_t rbase = rgn->base;
622 phys_addr_t rend = rbase + rgn->size;
623
624 if (rbase >= end)
625 break;
626 if (rend <= base)
627 continue;
628 /*
629 * @rgn overlaps. If it separates the lower part of new
630 * area, insert that portion.
631 */
632 if (rbase > base) {
633 #ifdef CONFIG_NUMA
634 WARN_ON(nid != memblock_get_region_node(rgn));
635 #endif
636 WARN_ON(flags != rgn->flags);
637 nr_new++;
638 if (insert)
639 memblock_insert_region(type, idx++, base,
640 rbase - base, nid,
641 flags);
642 }
643 /* area below @rend is dealt with, forget about it */
644 base = min(rend, end);
645 }
646
647 /* insert the remaining portion */
648 if (base < end) {
649 nr_new++;
650 if (insert)
651 memblock_insert_region(type, idx, base, end - base,
652 nid, flags);
653 }
654
655 if (!nr_new)
656 return 0;
657
658 /*
659 * If this was the first round, resize array and repeat for actual
660 * insertions; otherwise, merge and return.
661 */
662 if (!insert) {
663 while (type->cnt + nr_new > type->max)
664 if (memblock_double_array(type, obase, size) < 0)
665 return -ENOMEM;
666 insert = true;
667 goto repeat;
668 } else {
669 memblock_merge_regions(type);
670 return 0;
671 }
672 }
673
674 /**
675 * memblock_add_node - add new memblock region within a NUMA node
676 * @base: base address of the new region
677 * @size: size of the new region
678 * @nid: nid of the new region
679 * @flags: flags of the new region
680 *
681 * Add new memblock region [@base, @base + @size) to the "memory"
682 * type. See memblock_add_range() description for mode details
683 *
684 * Return:
685 * 0 on success, -errno on failure.
686 */
memblock_add_node(phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)687 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
688 int nid, enum memblock_flags flags)
689 {
690 phys_addr_t end = base + size - 1;
691
692 memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
693 &base, &end, nid, flags, (void *)_RET_IP_);
694
695 return memblock_add_range(&memblock.memory, base, size, nid, flags);
696 }
697
698 /**
699 * memblock_add - add new memblock region
700 * @base: base address of the new region
701 * @size: size of the new region
702 *
703 * Add new memblock region [@base, @base + @size) to the "memory"
704 * type. See memblock_add_range() description for mode details
705 *
706 * Return:
707 * 0 on success, -errno on failure.
708 */
memblock_add(phys_addr_t base,phys_addr_t size)709 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
710 {
711 phys_addr_t end = base + size - 1;
712
713 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
714 &base, &end, (void *)_RET_IP_);
715
716 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
717 }
718
719 /**
720 * memblock_isolate_range - isolate given range into disjoint memblocks
721 * @type: memblock type to isolate range for
722 * @base: base of range to isolate
723 * @size: size of range to isolate
724 * @start_rgn: out parameter for the start of isolated region
725 * @end_rgn: out parameter for the end of isolated region
726 *
727 * Walk @type and ensure that regions don't cross the boundaries defined by
728 * [@base, @base + @size). Crossing regions are split at the boundaries,
729 * which may create at most two more regions. The index of the first
730 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
731 *
732 * Return:
733 * 0 on success, -errno on failure.
734 */
memblock_isolate_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int * start_rgn,int * end_rgn)735 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
736 phys_addr_t base, phys_addr_t size,
737 int *start_rgn, int *end_rgn)
738 {
739 phys_addr_t end = base + memblock_cap_size(base, &size);
740 int idx;
741 struct memblock_region *rgn;
742
743 *start_rgn = *end_rgn = 0;
744
745 if (!size)
746 return 0;
747
748 /* we'll create at most two more regions */
749 while (type->cnt + 2 > type->max)
750 if (memblock_double_array(type, base, size) < 0)
751 return -ENOMEM;
752
753 for_each_memblock_type(idx, type, rgn) {
754 phys_addr_t rbase = rgn->base;
755 phys_addr_t rend = rbase + rgn->size;
756
757 if (rbase >= end)
758 break;
759 if (rend <= base)
760 continue;
761
762 if (rbase < base) {
763 /*
764 * @rgn intersects from below. Split and continue
765 * to process the next region - the new top half.
766 */
767 rgn->base = base;
768 rgn->size -= base - rbase;
769 type->total_size -= base - rbase;
770 memblock_insert_region(type, idx, rbase, base - rbase,
771 memblock_get_region_node(rgn),
772 rgn->flags);
773 } else if (rend > end) {
774 /*
775 * @rgn intersects from above. Split and redo the
776 * current region - the new bottom half.
777 */
778 rgn->base = end;
779 rgn->size -= end - rbase;
780 type->total_size -= end - rbase;
781 memblock_insert_region(type, idx--, rbase, end - rbase,
782 memblock_get_region_node(rgn),
783 rgn->flags);
784 } else {
785 /* @rgn is fully contained, record it */
786 if (!*end_rgn)
787 *start_rgn = idx;
788 *end_rgn = idx + 1;
789 }
790 }
791
792 return 0;
793 }
794
memblock_remove_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size)795 static int __init_memblock memblock_remove_range(struct memblock_type *type,
796 phys_addr_t base, phys_addr_t size)
797 {
798 int start_rgn, end_rgn;
799 int i, ret;
800
801 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
802 if (ret)
803 return ret;
804
805 for (i = end_rgn - 1; i >= start_rgn; i--)
806 memblock_remove_region(type, i);
807 return 0;
808 }
809
memblock_remove(phys_addr_t base,phys_addr_t size)810 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
811 {
812 phys_addr_t end = base + size - 1;
813
814 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
815 &base, &end, (void *)_RET_IP_);
816
817 return memblock_remove_range(&memblock.memory, base, size);
818 }
819
820 /**
821 * memblock_free - free boot memory allocation
822 * @ptr: starting address of the boot memory allocation
823 * @size: size of the boot memory block in bytes
824 *
825 * Free boot memory block previously allocated by memblock_alloc_xx() API.
826 * The freeing memory will not be released to the buddy allocator.
827 */
memblock_free(void * ptr,size_t size)828 void __init_memblock memblock_free(void *ptr, size_t size)
829 {
830 if (ptr)
831 memblock_phys_free(__pa(ptr), size);
832 }
833
834 /**
835 * memblock_phys_free - free boot memory block
836 * @base: phys starting address of the boot memory block
837 * @size: size of the boot memory block in bytes
838 *
839 * Free boot memory block previously allocated by memblock_alloc_xx() API.
840 * The freeing memory will not be released to the buddy allocator.
841 */
memblock_phys_free(phys_addr_t base,phys_addr_t size)842 int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
843 {
844 phys_addr_t end = base + size - 1;
845
846 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
847 &base, &end, (void *)_RET_IP_);
848
849 kmemleak_free_part_phys(base, size);
850 return memblock_remove_range(&memblock.reserved, base, size);
851 }
852
memblock_reserve(phys_addr_t base,phys_addr_t size)853 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
854 {
855 phys_addr_t end = base + size - 1;
856
857 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
858 &base, &end, (void *)_RET_IP_);
859
860 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
861 }
862
863 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
memblock_physmem_add(phys_addr_t base,phys_addr_t size)864 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
865 {
866 phys_addr_t end = base + size - 1;
867
868 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
869 &base, &end, (void *)_RET_IP_);
870
871 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
872 }
873 #endif
874
875 /**
876 * memblock_setclr_flag - set or clear flag for a memory region
877 * @base: base address of the region
878 * @size: size of the region
879 * @set: set or clear the flag
880 * @flag: the flag to update
881 *
882 * This function isolates region [@base, @base + @size), and sets/clears flag
883 *
884 * Return: 0 on success, -errno on failure.
885 */
memblock_setclr_flag(phys_addr_t base,phys_addr_t size,int set,int flag)886 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
887 phys_addr_t size, int set, int flag)
888 {
889 struct memblock_type *type = &memblock.memory;
890 int i, ret, start_rgn, end_rgn;
891
892 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
893 if (ret)
894 return ret;
895
896 for (i = start_rgn; i < end_rgn; i++) {
897 struct memblock_region *r = &type->regions[i];
898
899 if (set)
900 r->flags |= flag;
901 else
902 r->flags &= ~flag;
903 }
904
905 memblock_merge_regions(type);
906 return 0;
907 }
908
909 /**
910 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
911 * @base: the base phys addr of the region
912 * @size: the size of the region
913 *
914 * Return: 0 on success, -errno on failure.
915 */
memblock_mark_hotplug(phys_addr_t base,phys_addr_t size)916 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
917 {
918 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
919 }
920
921 /**
922 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
923 * @base: the base phys addr of the region
924 * @size: the size of the region
925 *
926 * Return: 0 on success, -errno on failure.
927 */
memblock_clear_hotplug(phys_addr_t base,phys_addr_t size)928 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
929 {
930 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
931 }
932
933 /**
934 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
935 * @base: the base phys addr of the region
936 * @size: the size of the region
937 *
938 * Return: 0 on success, -errno on failure.
939 */
memblock_mark_mirror(phys_addr_t base,phys_addr_t size)940 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
941 {
942 if (!mirrored_kernelcore)
943 return 0;
944
945 system_has_some_mirror = true;
946
947 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
948 }
949
950 /**
951 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
952 * @base: the base phys addr of the region
953 * @size: the size of the region
954 *
955 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
956 * direct mapping of the physical memory. These regions will still be
957 * covered by the memory map. The struct page representing NOMAP memory
958 * frames in the memory map will be PageReserved()
959 *
960 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
961 * memblock, the caller must inform kmemleak to ignore that memory
962 *
963 * Return: 0 on success, -errno on failure.
964 */
memblock_mark_nomap(phys_addr_t base,phys_addr_t size)965 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
966 {
967 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
968 }
969
970 /**
971 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
972 * @base: the base phys addr of the region
973 * @size: the size of the region
974 *
975 * Return: 0 on success, -errno on failure.
976 */
memblock_clear_nomap(phys_addr_t base,phys_addr_t size)977 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
978 {
979 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
980 }
981
should_skip_region(struct memblock_type * type,struct memblock_region * m,int nid,int flags)982 static bool should_skip_region(struct memblock_type *type,
983 struct memblock_region *m,
984 int nid, int flags)
985 {
986 int m_nid = memblock_get_region_node(m);
987
988 /* we never skip regions when iterating memblock.reserved or physmem */
989 if (type != memblock_memory)
990 return false;
991
992 /* only memory regions are associated with nodes, check it */
993 if (nid != NUMA_NO_NODE && nid != m_nid)
994 return true;
995
996 /* skip hotpluggable memory regions if needed */
997 if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
998 !(flags & MEMBLOCK_HOTPLUG))
999 return true;
1000
1001 /* if we want mirror memory skip non-mirror memory regions */
1002 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1003 return true;
1004
1005 /* skip nomap memory unless we were asked for it explicitly */
1006 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1007 return true;
1008
1009 /* skip driver-managed memory unless we were asked for it explicitly */
1010 if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
1011 return true;
1012
1013 return false;
1014 }
1015
1016 /**
1017 * __next_mem_range - next function for for_each_free_mem_range() etc.
1018 * @idx: pointer to u64 loop variable
1019 * @nid: node selector, %NUMA_NO_NODE for all nodes
1020 * @flags: pick from blocks based on memory attributes
1021 * @type_a: pointer to memblock_type from where the range is taken
1022 * @type_b: pointer to memblock_type which excludes memory from being taken
1023 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1024 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1025 * @out_nid: ptr to int for nid of the range, can be %NULL
1026 *
1027 * Find the first area from *@idx which matches @nid, fill the out
1028 * parameters, and update *@idx for the next iteration. The lower 32bit of
1029 * *@idx contains index into type_a and the upper 32bit indexes the
1030 * areas before each region in type_b. For example, if type_b regions
1031 * look like the following,
1032 *
1033 * 0:[0-16), 1:[32-48), 2:[128-130)
1034 *
1035 * The upper 32bit indexes the following regions.
1036 *
1037 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1038 *
1039 * As both region arrays are sorted, the function advances the two indices
1040 * in lockstep and returns each intersection.
1041 */
__next_mem_range(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1042 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1043 struct memblock_type *type_a,
1044 struct memblock_type *type_b, phys_addr_t *out_start,
1045 phys_addr_t *out_end, int *out_nid)
1046 {
1047 int idx_a = *idx & 0xffffffff;
1048 int idx_b = *idx >> 32;
1049
1050 if (WARN_ONCE(nid == MAX_NUMNODES,
1051 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1052 nid = NUMA_NO_NODE;
1053
1054 for (; idx_a < type_a->cnt; idx_a++) {
1055 struct memblock_region *m = &type_a->regions[idx_a];
1056
1057 phys_addr_t m_start = m->base;
1058 phys_addr_t m_end = m->base + m->size;
1059 int m_nid = memblock_get_region_node(m);
1060
1061 if (should_skip_region(type_a, m, nid, flags))
1062 continue;
1063
1064 if (!type_b) {
1065 if (out_start)
1066 *out_start = m_start;
1067 if (out_end)
1068 *out_end = m_end;
1069 if (out_nid)
1070 *out_nid = m_nid;
1071 idx_a++;
1072 *idx = (u32)idx_a | (u64)idx_b << 32;
1073 return;
1074 }
1075
1076 /* scan areas before each reservation */
1077 for (; idx_b < type_b->cnt + 1; idx_b++) {
1078 struct memblock_region *r;
1079 phys_addr_t r_start;
1080 phys_addr_t r_end;
1081
1082 r = &type_b->regions[idx_b];
1083 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1084 r_end = idx_b < type_b->cnt ?
1085 r->base : PHYS_ADDR_MAX;
1086
1087 /*
1088 * if idx_b advanced past idx_a,
1089 * break out to advance idx_a
1090 */
1091 if (r_start >= m_end)
1092 break;
1093 /* if the two regions intersect, we're done */
1094 if (m_start < r_end) {
1095 if (out_start)
1096 *out_start =
1097 max(m_start, r_start);
1098 if (out_end)
1099 *out_end = min(m_end, r_end);
1100 if (out_nid)
1101 *out_nid = m_nid;
1102 /*
1103 * The region which ends first is
1104 * advanced for the next iteration.
1105 */
1106 if (m_end <= r_end)
1107 idx_a++;
1108 else
1109 idx_b++;
1110 *idx = (u32)idx_a | (u64)idx_b << 32;
1111 return;
1112 }
1113 }
1114 }
1115
1116 /* signal end of iteration */
1117 *idx = ULLONG_MAX;
1118 }
1119
1120 /**
1121 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1122 *
1123 * @idx: pointer to u64 loop variable
1124 * @nid: node selector, %NUMA_NO_NODE for all nodes
1125 * @flags: pick from blocks based on memory attributes
1126 * @type_a: pointer to memblock_type from where the range is taken
1127 * @type_b: pointer to memblock_type which excludes memory from being taken
1128 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1129 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1130 * @out_nid: ptr to int for nid of the range, can be %NULL
1131 *
1132 * Finds the next range from type_a which is not marked as unsuitable
1133 * in type_b.
1134 *
1135 * Reverse of __next_mem_range().
1136 */
__next_mem_range_rev(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1137 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1138 enum memblock_flags flags,
1139 struct memblock_type *type_a,
1140 struct memblock_type *type_b,
1141 phys_addr_t *out_start,
1142 phys_addr_t *out_end, int *out_nid)
1143 {
1144 int idx_a = *idx & 0xffffffff;
1145 int idx_b = *idx >> 32;
1146
1147 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1148 nid = NUMA_NO_NODE;
1149
1150 if (*idx == (u64)ULLONG_MAX) {
1151 idx_a = type_a->cnt - 1;
1152 if (type_b != NULL)
1153 idx_b = type_b->cnt;
1154 else
1155 idx_b = 0;
1156 }
1157
1158 for (; idx_a >= 0; idx_a--) {
1159 struct memblock_region *m = &type_a->regions[idx_a];
1160
1161 phys_addr_t m_start = m->base;
1162 phys_addr_t m_end = m->base + m->size;
1163 int m_nid = memblock_get_region_node(m);
1164
1165 if (should_skip_region(type_a, m, nid, flags))
1166 continue;
1167
1168 if (!type_b) {
1169 if (out_start)
1170 *out_start = m_start;
1171 if (out_end)
1172 *out_end = m_end;
1173 if (out_nid)
1174 *out_nid = m_nid;
1175 idx_a--;
1176 *idx = (u32)idx_a | (u64)idx_b << 32;
1177 return;
1178 }
1179
1180 /* scan areas before each reservation */
1181 for (; idx_b >= 0; idx_b--) {
1182 struct memblock_region *r;
1183 phys_addr_t r_start;
1184 phys_addr_t r_end;
1185
1186 r = &type_b->regions[idx_b];
1187 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1188 r_end = idx_b < type_b->cnt ?
1189 r->base : PHYS_ADDR_MAX;
1190 /*
1191 * if idx_b advanced past idx_a,
1192 * break out to advance idx_a
1193 */
1194
1195 if (r_end <= m_start)
1196 break;
1197 /* if the two regions intersect, we're done */
1198 if (m_end > r_start) {
1199 if (out_start)
1200 *out_start = max(m_start, r_start);
1201 if (out_end)
1202 *out_end = min(m_end, r_end);
1203 if (out_nid)
1204 *out_nid = m_nid;
1205 if (m_start >= r_start)
1206 idx_a--;
1207 else
1208 idx_b--;
1209 *idx = (u32)idx_a | (u64)idx_b << 32;
1210 return;
1211 }
1212 }
1213 }
1214 /* signal end of iteration */
1215 *idx = ULLONG_MAX;
1216 }
1217
1218 /*
1219 * Common iterator interface used to define for_each_mem_pfn_range().
1220 */
__next_mem_pfn_range(int * idx,int nid,unsigned long * out_start_pfn,unsigned long * out_end_pfn,int * out_nid)1221 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1222 unsigned long *out_start_pfn,
1223 unsigned long *out_end_pfn, int *out_nid)
1224 {
1225 struct memblock_type *type = &memblock.memory;
1226 struct memblock_region *r;
1227 int r_nid;
1228
1229 while (++*idx < type->cnt) {
1230 r = &type->regions[*idx];
1231 r_nid = memblock_get_region_node(r);
1232
1233 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1234 continue;
1235 if (nid == MAX_NUMNODES || nid == r_nid)
1236 break;
1237 }
1238 if (*idx >= type->cnt) {
1239 *idx = -1;
1240 return;
1241 }
1242
1243 if (out_start_pfn)
1244 *out_start_pfn = PFN_UP(r->base);
1245 if (out_end_pfn)
1246 *out_end_pfn = PFN_DOWN(r->base + r->size);
1247 if (out_nid)
1248 *out_nid = r_nid;
1249 }
1250
1251 /**
1252 * memblock_set_node - set node ID on memblock regions
1253 * @base: base of area to set node ID for
1254 * @size: size of area to set node ID for
1255 * @type: memblock type to set node ID for
1256 * @nid: node ID to set
1257 *
1258 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1259 * Regions which cross the area boundaries are split as necessary.
1260 *
1261 * Return:
1262 * 0 on success, -errno on failure.
1263 */
memblock_set_node(phys_addr_t base,phys_addr_t size,struct memblock_type * type,int nid)1264 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1265 struct memblock_type *type, int nid)
1266 {
1267 #ifdef CONFIG_NUMA
1268 int start_rgn, end_rgn;
1269 int i, ret;
1270
1271 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1272 if (ret)
1273 return ret;
1274
1275 for (i = start_rgn; i < end_rgn; i++)
1276 memblock_set_region_node(&type->regions[i], nid);
1277
1278 memblock_merge_regions(type);
1279 #endif
1280 return 0;
1281 }
1282
1283 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1284 /**
1285 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1286 *
1287 * @idx: pointer to u64 loop variable
1288 * @zone: zone in which all of the memory blocks reside
1289 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1290 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1291 *
1292 * This function is meant to be a zone/pfn specific wrapper for the
1293 * for_each_mem_range type iterators. Specifically they are used in the
1294 * deferred memory init routines and as such we were duplicating much of
1295 * this logic throughout the code. So instead of having it in multiple
1296 * locations it seemed like it would make more sense to centralize this to
1297 * one new iterator that does everything they need.
1298 */
1299 void __init_memblock
__next_mem_pfn_range_in_zone(u64 * idx,struct zone * zone,unsigned long * out_spfn,unsigned long * out_epfn)1300 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1301 unsigned long *out_spfn, unsigned long *out_epfn)
1302 {
1303 int zone_nid = zone_to_nid(zone);
1304 phys_addr_t spa, epa;
1305
1306 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1307 &memblock.memory, &memblock.reserved,
1308 &spa, &epa, NULL);
1309
1310 while (*idx != U64_MAX) {
1311 unsigned long epfn = PFN_DOWN(epa);
1312 unsigned long spfn = PFN_UP(spa);
1313
1314 /*
1315 * Verify the end is at least past the start of the zone and
1316 * that we have at least one PFN to initialize.
1317 */
1318 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1319 /* if we went too far just stop searching */
1320 if (zone_end_pfn(zone) <= spfn) {
1321 *idx = U64_MAX;
1322 break;
1323 }
1324
1325 if (out_spfn)
1326 *out_spfn = max(zone->zone_start_pfn, spfn);
1327 if (out_epfn)
1328 *out_epfn = min(zone_end_pfn(zone), epfn);
1329
1330 return;
1331 }
1332
1333 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1334 &memblock.memory, &memblock.reserved,
1335 &spa, &epa, NULL);
1336 }
1337
1338 /* signal end of iteration */
1339 if (out_spfn)
1340 *out_spfn = ULONG_MAX;
1341 if (out_epfn)
1342 *out_epfn = 0;
1343 }
1344
1345 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1346
1347 /**
1348 * memblock_alloc_range_nid - allocate boot memory block
1349 * @size: size of memory block to be allocated in bytes
1350 * @align: alignment of the region and block's size
1351 * @start: the lower bound of the memory region to allocate (phys address)
1352 * @end: the upper bound of the memory region to allocate (phys address)
1353 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1354 * @exact_nid: control the allocation fall back to other nodes
1355 *
1356 * The allocation is performed from memory region limited by
1357 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1358 *
1359 * If the specified node can not hold the requested memory and @exact_nid
1360 * is false, the allocation falls back to any node in the system.
1361 *
1362 * For systems with memory mirroring, the allocation is attempted first
1363 * from the regions with mirroring enabled and then retried from any
1364 * memory region.
1365 *
1366 * In addition, function using kmemleak_alloc_phys for allocated boot
1367 * memory block, it is never reported as leaks.
1368 *
1369 * Return:
1370 * Physical address of allocated memory block on success, %0 on failure.
1371 */
memblock_alloc_range_nid(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,bool exact_nid)1372 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1373 phys_addr_t align, phys_addr_t start,
1374 phys_addr_t end, int nid,
1375 bool exact_nid)
1376 {
1377 enum memblock_flags flags = choose_memblock_flags();
1378 phys_addr_t found;
1379
1380 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1381 nid = NUMA_NO_NODE;
1382
1383 if (!align) {
1384 /* Can't use WARNs this early in boot on powerpc */
1385 dump_stack();
1386 align = SMP_CACHE_BYTES;
1387 }
1388
1389 again:
1390 found = memblock_find_in_range_node(size, align, start, end, nid,
1391 flags);
1392 if (found && !memblock_reserve(found, size))
1393 goto done;
1394
1395 if (nid != NUMA_NO_NODE && !exact_nid) {
1396 found = memblock_find_in_range_node(size, align, start,
1397 end, NUMA_NO_NODE,
1398 flags);
1399 if (found && !memblock_reserve(found, size))
1400 goto done;
1401 }
1402
1403 if (flags & MEMBLOCK_MIRROR) {
1404 flags &= ~MEMBLOCK_MIRROR;
1405 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
1406 &size);
1407 goto again;
1408 }
1409
1410 return 0;
1411
1412 done:
1413 /*
1414 * Skip kmemleak for those places like kasan_init() and
1415 * early_pgtable_alloc() due to high volume.
1416 */
1417 if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
1418 /*
1419 * Memblock allocated blocks are never reported as
1420 * leaks. This is because many of these blocks are
1421 * only referred via the physical address which is
1422 * not looked up by kmemleak.
1423 */
1424 kmemleak_alloc_phys(found, size, 0);
1425
1426 return found;
1427 }
1428
1429 /**
1430 * memblock_phys_alloc_range - allocate a memory block inside specified range
1431 * @size: size of memory block to be allocated in bytes
1432 * @align: alignment of the region and block's size
1433 * @start: the lower bound of the memory region to allocate (physical address)
1434 * @end: the upper bound of the memory region to allocate (physical address)
1435 *
1436 * Allocate @size bytes in the between @start and @end.
1437 *
1438 * Return: physical address of the allocated memory block on success,
1439 * %0 on failure.
1440 */
memblock_phys_alloc_range(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end)1441 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1442 phys_addr_t align,
1443 phys_addr_t start,
1444 phys_addr_t end)
1445 {
1446 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1447 __func__, (u64)size, (u64)align, &start, &end,
1448 (void *)_RET_IP_);
1449 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1450 false);
1451 }
1452
1453 /**
1454 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1455 * @size: size of memory block to be allocated in bytes
1456 * @align: alignment of the region and block's size
1457 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1458 *
1459 * Allocates memory block from the specified NUMA node. If the node
1460 * has no available memory, attempts to allocated from any node in the
1461 * system.
1462 *
1463 * Return: physical address of the allocated memory block on success,
1464 * %0 on failure.
1465 */
memblock_phys_alloc_try_nid(phys_addr_t size,phys_addr_t align,int nid)1466 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1467 {
1468 return memblock_alloc_range_nid(size, align, 0,
1469 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1470 }
1471
1472 /**
1473 * memblock_alloc_internal - allocate boot memory block
1474 * @size: size of memory block to be allocated in bytes
1475 * @align: alignment of the region and block's size
1476 * @min_addr: the lower bound of the memory region to allocate (phys address)
1477 * @max_addr: the upper bound of the memory region to allocate (phys address)
1478 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1479 * @exact_nid: control the allocation fall back to other nodes
1480 *
1481 * Allocates memory block using memblock_alloc_range_nid() and
1482 * converts the returned physical address to virtual.
1483 *
1484 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1485 * will fall back to memory below @min_addr. Other constraints, such
1486 * as node and mirrored memory will be handled again in
1487 * memblock_alloc_range_nid().
1488 *
1489 * Return:
1490 * Virtual address of allocated memory block on success, NULL on failure.
1491 */
memblock_alloc_internal(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid,bool exact_nid)1492 static void * __init memblock_alloc_internal(
1493 phys_addr_t size, phys_addr_t align,
1494 phys_addr_t min_addr, phys_addr_t max_addr,
1495 int nid, bool exact_nid)
1496 {
1497 phys_addr_t alloc;
1498
1499 /*
1500 * Detect any accidental use of these APIs after slab is ready, as at
1501 * this moment memblock may be deinitialized already and its
1502 * internal data may be destroyed (after execution of memblock_free_all)
1503 */
1504 if (WARN_ON_ONCE(slab_is_available()))
1505 return kzalloc_node(size, GFP_NOWAIT, nid);
1506
1507 if (max_addr > memblock.current_limit)
1508 max_addr = memblock.current_limit;
1509
1510 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1511 exact_nid);
1512
1513 /* retry allocation without lower limit */
1514 if (!alloc && min_addr)
1515 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1516 exact_nid);
1517
1518 if (!alloc)
1519 return NULL;
1520
1521 return phys_to_virt(alloc);
1522 }
1523
1524 /**
1525 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1526 * without zeroing memory
1527 * @size: size of memory block to be allocated in bytes
1528 * @align: alignment of the region and block's size
1529 * @min_addr: the lower bound of the memory region from where the allocation
1530 * is preferred (phys address)
1531 * @max_addr: the upper bound of the memory region from where the allocation
1532 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1533 * allocate only from memory limited by memblock.current_limit value
1534 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1535 *
1536 * Public function, provides additional debug information (including caller
1537 * info), if enabled. Does not zero allocated memory.
1538 *
1539 * Return:
1540 * Virtual address of allocated memory block on success, NULL on failure.
1541 */
memblock_alloc_exact_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1542 void * __init memblock_alloc_exact_nid_raw(
1543 phys_addr_t size, phys_addr_t align,
1544 phys_addr_t min_addr, phys_addr_t max_addr,
1545 int nid)
1546 {
1547 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1548 __func__, (u64)size, (u64)align, nid, &min_addr,
1549 &max_addr, (void *)_RET_IP_);
1550
1551 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1552 true);
1553 }
1554
1555 /**
1556 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1557 * memory and without panicking
1558 * @size: size of memory block to be allocated in bytes
1559 * @align: alignment of the region and block's size
1560 * @min_addr: the lower bound of the memory region from where the allocation
1561 * is preferred (phys address)
1562 * @max_addr: the upper bound of the memory region from where the allocation
1563 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1564 * allocate only from memory limited by memblock.current_limit value
1565 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1566 *
1567 * Public function, provides additional debug information (including caller
1568 * info), if enabled. Does not zero allocated memory, does not panic if request
1569 * cannot be satisfied.
1570 *
1571 * Return:
1572 * Virtual address of allocated memory block on success, NULL on failure.
1573 */
memblock_alloc_try_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1574 void * __init memblock_alloc_try_nid_raw(
1575 phys_addr_t size, phys_addr_t align,
1576 phys_addr_t min_addr, phys_addr_t max_addr,
1577 int nid)
1578 {
1579 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1580 __func__, (u64)size, (u64)align, nid, &min_addr,
1581 &max_addr, (void *)_RET_IP_);
1582
1583 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1584 false);
1585 }
1586
1587 /**
1588 * memblock_alloc_try_nid - allocate boot memory block
1589 * @size: size of memory block to be allocated in bytes
1590 * @align: alignment of the region and block's size
1591 * @min_addr: the lower bound of the memory region from where the allocation
1592 * is preferred (phys address)
1593 * @max_addr: the upper bound of the memory region from where the allocation
1594 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1595 * allocate only from memory limited by memblock.current_limit value
1596 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1597 *
1598 * Public function, provides additional debug information (including caller
1599 * info), if enabled. This function zeroes the allocated memory.
1600 *
1601 * Return:
1602 * Virtual address of allocated memory block on success, NULL on failure.
1603 */
memblock_alloc_try_nid(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1604 void * __init memblock_alloc_try_nid(
1605 phys_addr_t size, phys_addr_t align,
1606 phys_addr_t min_addr, phys_addr_t max_addr,
1607 int nid)
1608 {
1609 void *ptr;
1610
1611 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1612 __func__, (u64)size, (u64)align, nid, &min_addr,
1613 &max_addr, (void *)_RET_IP_);
1614 ptr = memblock_alloc_internal(size, align,
1615 min_addr, max_addr, nid, false);
1616 if (ptr)
1617 memset(ptr, 0, size);
1618
1619 return ptr;
1620 }
1621
1622 /**
1623 * memblock_free_late - free pages directly to buddy allocator
1624 * @base: phys starting address of the boot memory block
1625 * @size: size of the boot memory block in bytes
1626 *
1627 * This is only useful when the memblock allocator has already been torn
1628 * down, but we are still initializing the system. Pages are released directly
1629 * to the buddy allocator.
1630 */
memblock_free_late(phys_addr_t base,phys_addr_t size)1631 void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
1632 {
1633 phys_addr_t cursor, end;
1634
1635 end = base + size - 1;
1636 memblock_dbg("%s: [%pa-%pa] %pS\n",
1637 __func__, &base, &end, (void *)_RET_IP_);
1638 kmemleak_free_part_phys(base, size);
1639 cursor = PFN_UP(base);
1640 end = PFN_DOWN(base + size);
1641
1642 for (; cursor < end; cursor++) {
1643 /*
1644 * Reserved pages are always initialized by the end of
1645 * memblock_free_all() (by memmap_init() and, if deferred
1646 * initialization is enabled, memmap_init_reserved_pages()), so
1647 * these pages can be released directly to the buddy allocator.
1648 */
1649 __free_pages_core(pfn_to_page(cursor), 0);
1650 totalram_pages_inc();
1651 }
1652 }
1653
1654 /*
1655 * Remaining API functions
1656 */
1657
memblock_phys_mem_size(void)1658 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1659 {
1660 return memblock.memory.total_size;
1661 }
1662
memblock_reserved_size(void)1663 phys_addr_t __init_memblock memblock_reserved_size(void)
1664 {
1665 return memblock.reserved.total_size;
1666 }
1667
1668 /* lowest address */
memblock_start_of_DRAM(void)1669 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1670 {
1671 return memblock.memory.regions[0].base;
1672 }
1673
memblock_end_of_DRAM(void)1674 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1675 {
1676 int idx = memblock.memory.cnt - 1;
1677
1678 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1679 }
1680
__find_max_addr(phys_addr_t limit)1681 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1682 {
1683 phys_addr_t max_addr = PHYS_ADDR_MAX;
1684 struct memblock_region *r;
1685
1686 /*
1687 * translate the memory @limit size into the max address within one of
1688 * the memory memblock regions, if the @limit exceeds the total size
1689 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1690 */
1691 for_each_mem_region(r) {
1692 if (limit <= r->size) {
1693 max_addr = r->base + limit;
1694 break;
1695 }
1696 limit -= r->size;
1697 }
1698
1699 return max_addr;
1700 }
1701
memblock_enforce_memory_limit(phys_addr_t limit)1702 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1703 {
1704 phys_addr_t max_addr;
1705
1706 if (!limit)
1707 return;
1708
1709 max_addr = __find_max_addr(limit);
1710
1711 /* @limit exceeds the total size of the memory, do nothing */
1712 if (max_addr == PHYS_ADDR_MAX)
1713 return;
1714
1715 /* truncate both memory and reserved regions */
1716 memblock_remove_range(&memblock.memory, max_addr,
1717 PHYS_ADDR_MAX);
1718 memblock_remove_range(&memblock.reserved, max_addr,
1719 PHYS_ADDR_MAX);
1720 }
1721
memblock_cap_memory_range(phys_addr_t base,phys_addr_t size)1722 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1723 {
1724 int start_rgn, end_rgn;
1725 int i, ret;
1726
1727 if (!size)
1728 return;
1729
1730 if (!memblock_memory->total_size) {
1731 pr_warn("%s: No memory registered yet\n", __func__);
1732 return;
1733 }
1734
1735 ret = memblock_isolate_range(&memblock.memory, base, size,
1736 &start_rgn, &end_rgn);
1737 if (ret)
1738 return;
1739
1740 /* remove all the MAP regions */
1741 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1742 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1743 memblock_remove_region(&memblock.memory, i);
1744
1745 for (i = start_rgn - 1; i >= 0; i--)
1746 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1747 memblock_remove_region(&memblock.memory, i);
1748
1749 /* truncate the reserved regions */
1750 memblock_remove_range(&memblock.reserved, 0, base);
1751 memblock_remove_range(&memblock.reserved,
1752 base + size, PHYS_ADDR_MAX);
1753 }
1754
memblock_mem_limit_remove_map(phys_addr_t limit)1755 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1756 {
1757 phys_addr_t max_addr;
1758
1759 if (!limit)
1760 return;
1761
1762 max_addr = __find_max_addr(limit);
1763
1764 /* @limit exceeds the total size of the memory, do nothing */
1765 if (max_addr == PHYS_ADDR_MAX)
1766 return;
1767
1768 memblock_cap_memory_range(0, max_addr);
1769 }
1770
memblock_search(struct memblock_type * type,phys_addr_t addr)1771 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1772 {
1773 unsigned int left = 0, right = type->cnt;
1774
1775 do {
1776 unsigned int mid = (right + left) / 2;
1777
1778 if (addr < type->regions[mid].base)
1779 right = mid;
1780 else if (addr >= (type->regions[mid].base +
1781 type->regions[mid].size))
1782 left = mid + 1;
1783 else
1784 return mid;
1785 } while (left < right);
1786 return -1;
1787 }
1788
memblock_is_reserved(phys_addr_t addr)1789 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1790 {
1791 return memblock_search(&memblock.reserved, addr) != -1;
1792 }
1793
memblock_is_memory(phys_addr_t addr)1794 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1795 {
1796 return memblock_search(&memblock.memory, addr) != -1;
1797 }
1798
memblock_is_map_memory(phys_addr_t addr)1799 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1800 {
1801 int i = memblock_search(&memblock.memory, addr);
1802
1803 if (i == -1)
1804 return false;
1805 return !memblock_is_nomap(&memblock.memory.regions[i]);
1806 }
1807
memblock_search_pfn_nid(unsigned long pfn,unsigned long * start_pfn,unsigned long * end_pfn)1808 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1809 unsigned long *start_pfn, unsigned long *end_pfn)
1810 {
1811 struct memblock_type *type = &memblock.memory;
1812 int mid = memblock_search(type, PFN_PHYS(pfn));
1813
1814 if (mid == -1)
1815 return -1;
1816
1817 *start_pfn = PFN_DOWN(type->regions[mid].base);
1818 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1819
1820 return memblock_get_region_node(&type->regions[mid]);
1821 }
1822
1823 /**
1824 * memblock_is_region_memory - check if a region is a subset of memory
1825 * @base: base of region to check
1826 * @size: size of region to check
1827 *
1828 * Check if the region [@base, @base + @size) is a subset of a memory block.
1829 *
1830 * Return:
1831 * 0 if false, non-zero if true
1832 */
memblock_is_region_memory(phys_addr_t base,phys_addr_t size)1833 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1834 {
1835 int idx = memblock_search(&memblock.memory, base);
1836 phys_addr_t end = base + memblock_cap_size(base, &size);
1837
1838 if (idx == -1)
1839 return false;
1840 return (memblock.memory.regions[idx].base +
1841 memblock.memory.regions[idx].size) >= end;
1842 }
1843
1844 /**
1845 * memblock_is_region_reserved - check if a region intersects reserved memory
1846 * @base: base of region to check
1847 * @size: size of region to check
1848 *
1849 * Check if the region [@base, @base + @size) intersects a reserved
1850 * memory block.
1851 *
1852 * Return:
1853 * True if they intersect, false if not.
1854 */
memblock_is_region_reserved(phys_addr_t base,phys_addr_t size)1855 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1856 {
1857 return memblock_overlaps_region(&memblock.reserved, base, size);
1858 }
1859
memblock_trim_memory(phys_addr_t align)1860 void __init_memblock memblock_trim_memory(phys_addr_t align)
1861 {
1862 phys_addr_t start, end, orig_start, orig_end;
1863 struct memblock_region *r;
1864
1865 for_each_mem_region(r) {
1866 orig_start = r->base;
1867 orig_end = r->base + r->size;
1868 start = round_up(orig_start, align);
1869 end = round_down(orig_end, align);
1870
1871 if (start == orig_start && end == orig_end)
1872 continue;
1873
1874 if (start < end) {
1875 r->base = start;
1876 r->size = end - start;
1877 } else {
1878 memblock_remove_region(&memblock.memory,
1879 r - memblock.memory.regions);
1880 r--;
1881 }
1882 }
1883 }
1884
memblock_set_current_limit(phys_addr_t limit)1885 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1886 {
1887 memblock.current_limit = limit;
1888 }
1889
memblock_get_current_limit(void)1890 phys_addr_t __init_memblock memblock_get_current_limit(void)
1891 {
1892 return memblock.current_limit;
1893 }
1894
memblock_dump(struct memblock_type * type)1895 static void __init_memblock memblock_dump(struct memblock_type *type)
1896 {
1897 phys_addr_t base, end, size;
1898 enum memblock_flags flags;
1899 int idx;
1900 struct memblock_region *rgn;
1901
1902 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
1903
1904 for_each_memblock_type(idx, type, rgn) {
1905 char nid_buf[32] = "";
1906
1907 base = rgn->base;
1908 size = rgn->size;
1909 end = base + size - 1;
1910 flags = rgn->flags;
1911 #ifdef CONFIG_NUMA
1912 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1913 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1914 memblock_get_region_node(rgn));
1915 #endif
1916 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1917 type->name, idx, &base, &end, &size, nid_buf, flags);
1918 }
1919 }
1920
__memblock_dump_all(void)1921 static void __init_memblock __memblock_dump_all(void)
1922 {
1923 pr_info("MEMBLOCK configuration:\n");
1924 pr_info(" memory size = %pa reserved size = %pa\n",
1925 &memblock.memory.total_size,
1926 &memblock.reserved.total_size);
1927
1928 memblock_dump(&memblock.memory);
1929 memblock_dump(&memblock.reserved);
1930 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1931 memblock_dump(&physmem);
1932 #endif
1933 }
1934
memblock_dump_all(void)1935 void __init_memblock memblock_dump_all(void)
1936 {
1937 if (memblock_debug)
1938 __memblock_dump_all();
1939 }
1940
memblock_allow_resize(void)1941 void __init memblock_allow_resize(void)
1942 {
1943 memblock_can_resize = 1;
1944 }
1945
early_memblock(char * p)1946 static int __init early_memblock(char *p)
1947 {
1948 if (p && strstr(p, "debug"))
1949 memblock_debug = 1;
1950 return 0;
1951 }
1952 early_param("memblock", early_memblock);
1953
free_memmap(unsigned long start_pfn,unsigned long end_pfn)1954 static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
1955 {
1956 struct page *start_pg, *end_pg;
1957 phys_addr_t pg, pgend;
1958
1959 /*
1960 * Convert start_pfn/end_pfn to a struct page pointer.
1961 */
1962 start_pg = pfn_to_page(start_pfn - 1) + 1;
1963 end_pg = pfn_to_page(end_pfn - 1) + 1;
1964
1965 /*
1966 * Convert to physical addresses, and round start upwards and end
1967 * downwards.
1968 */
1969 pg = PAGE_ALIGN(__pa(start_pg));
1970 pgend = __pa(end_pg) & PAGE_MASK;
1971
1972 /*
1973 * If there are free pages between these, free the section of the
1974 * memmap array.
1975 */
1976 if (pg < pgend)
1977 memblock_phys_free(pg, pgend - pg);
1978 }
1979
1980 /*
1981 * The mem_map array can get very big. Free the unused area of the memory map.
1982 */
free_unused_memmap(void)1983 static void __init free_unused_memmap(void)
1984 {
1985 unsigned long start, end, prev_end = 0;
1986 int i;
1987
1988 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
1989 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
1990 return;
1991
1992 /*
1993 * This relies on each bank being in address order.
1994 * The banks are sorted previously in bootmem_init().
1995 */
1996 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
1997 #ifdef CONFIG_SPARSEMEM
1998 /*
1999 * Take care not to free memmap entries that don't exist
2000 * due to SPARSEMEM sections which aren't present.
2001 */
2002 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
2003 #endif
2004 /*
2005 * Align down here since many operations in VM subsystem
2006 * presume that there are no holes in the memory map inside
2007 * a pageblock
2008 */
2009 start = pageblock_start_pfn(start);
2010
2011 /*
2012 * If we had a previous bank, and there is a space
2013 * between the current bank and the previous, free it.
2014 */
2015 if (prev_end && prev_end < start)
2016 free_memmap(prev_end, start);
2017
2018 /*
2019 * Align up here since many operations in VM subsystem
2020 * presume that there are no holes in the memory map inside
2021 * a pageblock
2022 */
2023 prev_end = pageblock_align(end);
2024 }
2025
2026 #ifdef CONFIG_SPARSEMEM
2027 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
2028 prev_end = pageblock_align(end);
2029 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
2030 }
2031 #endif
2032 }
2033
__free_pages_memory(unsigned long start,unsigned long end)2034 static void __init __free_pages_memory(unsigned long start, unsigned long end)
2035 {
2036 int order;
2037
2038 while (start < end) {
2039 order = min(MAX_ORDER - 1UL, __ffs(start));
2040
2041 while (start + (1UL << order) > end)
2042 order--;
2043
2044 memblock_free_pages(pfn_to_page(start), start, order);
2045
2046 start += (1UL << order);
2047 }
2048 }
2049
__free_memory_core(phys_addr_t start,phys_addr_t end)2050 static unsigned long __init __free_memory_core(phys_addr_t start,
2051 phys_addr_t end)
2052 {
2053 unsigned long start_pfn = PFN_UP(start);
2054 unsigned long end_pfn = min_t(unsigned long,
2055 PFN_DOWN(end), max_low_pfn);
2056
2057 if (start_pfn >= end_pfn)
2058 return 0;
2059
2060 __free_pages_memory(start_pfn, end_pfn);
2061
2062 return end_pfn - start_pfn;
2063 }
2064
memmap_init_reserved_pages(void)2065 static void __init memmap_init_reserved_pages(void)
2066 {
2067 struct memblock_region *region;
2068 phys_addr_t start, end;
2069 u64 i;
2070
2071 /* initialize struct pages for the reserved regions */
2072 for_each_reserved_mem_range(i, &start, &end)
2073 reserve_bootmem_region(start, end);
2074
2075 /* and also treat struct pages for the NOMAP regions as PageReserved */
2076 for_each_mem_region(region) {
2077 if (memblock_is_nomap(region)) {
2078 start = region->base;
2079 end = start + region->size;
2080 reserve_bootmem_region(start, end);
2081 }
2082 }
2083 }
2084
free_low_memory_core_early(void)2085 static unsigned long __init free_low_memory_core_early(void)
2086 {
2087 unsigned long count = 0;
2088 phys_addr_t start, end;
2089 u64 i;
2090
2091 memblock_clear_hotplug(0, -1);
2092
2093 memmap_init_reserved_pages();
2094
2095 /*
2096 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2097 * because in some case like Node0 doesn't have RAM installed
2098 * low ram will be on Node1
2099 */
2100 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2101 NULL)
2102 count += __free_memory_core(start, end);
2103
2104 return count;
2105 }
2106
2107 static int reset_managed_pages_done __initdata;
2108
reset_node_managed_pages(pg_data_t * pgdat)2109 void reset_node_managed_pages(pg_data_t *pgdat)
2110 {
2111 struct zone *z;
2112
2113 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2114 atomic_long_set(&z->managed_pages, 0);
2115 }
2116
reset_all_zones_managed_pages(void)2117 void __init reset_all_zones_managed_pages(void)
2118 {
2119 struct pglist_data *pgdat;
2120
2121 if (reset_managed_pages_done)
2122 return;
2123
2124 for_each_online_pgdat(pgdat)
2125 reset_node_managed_pages(pgdat);
2126
2127 reset_managed_pages_done = 1;
2128 }
2129
2130 /**
2131 * memblock_free_all - release free pages to the buddy allocator
2132 */
memblock_free_all(void)2133 void __init memblock_free_all(void)
2134 {
2135 unsigned long pages;
2136
2137 free_unused_memmap();
2138 reset_all_zones_managed_pages();
2139
2140 pages = free_low_memory_core_early();
2141 totalram_pages_add(pages);
2142 }
2143
2144 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2145
memblock_debug_show(struct seq_file * m,void * private)2146 static int memblock_debug_show(struct seq_file *m, void *private)
2147 {
2148 struct memblock_type *type = m->private;
2149 struct memblock_region *reg;
2150 int i;
2151 phys_addr_t end;
2152
2153 for (i = 0; i < type->cnt; i++) {
2154 reg = &type->regions[i];
2155 end = reg->base + reg->size - 1;
2156
2157 seq_printf(m, "%4d: ", i);
2158 seq_printf(m, "%pa..%pa\n", ®->base, &end);
2159 }
2160 return 0;
2161 }
2162 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2163
memblock_init_debugfs(void)2164 static int __init memblock_init_debugfs(void)
2165 {
2166 struct dentry *root = debugfs_create_dir("memblock", NULL);
2167
2168 debugfs_create_file("memory", 0444, root,
2169 &memblock.memory, &memblock_debug_fops);
2170 debugfs_create_file("reserved", 0444, root,
2171 &memblock.reserved, &memblock_debug_fops);
2172 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2173 debugfs_create_file("physmem", 0444, root, &physmem,
2174 &memblock_debug_fops);
2175 #endif
2176
2177 return 0;
2178 }
2179 __initcall(memblock_init_debugfs);
2180
2181 #endif /* CONFIG_DEBUG_FS */
2182