1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_USB_H
3 #define __LINUX_USB_H
4
5 #include <linux/mod_devicetable.h>
6 #include <linux/usb/ch9.h>
7
8 #define USB_MAJOR 180
9 #define USB_DEVICE_MAJOR 189
10
11
12 #ifdef __KERNEL__
13
14 #include <linux/errno.h> /* for -ENODEV */
15 #include <linux/delay.h> /* for mdelay() */
16 #include <linux/interrupt.h> /* for in_interrupt() */
17 #include <linux/list.h> /* for struct list_head */
18 #include <linux/kref.h> /* for struct kref */
19 #include <linux/device.h> /* for struct device */
20 #include <linux/fs.h> /* for struct file_operations */
21 #include <linux/completion.h> /* for struct completion */
22 #include <linux/sched.h> /* for current && schedule_timeout */
23 #include <linux/mutex.h> /* for struct mutex */
24 #include <linux/pm_runtime.h> /* for runtime PM */
25
26 struct usb_device;
27 struct usb_driver;
28 struct wusb_dev;
29
30 /*-------------------------------------------------------------------------*/
31
32 /*
33 * Host-side wrappers for standard USB descriptors ... these are parsed
34 * from the data provided by devices. Parsing turns them from a flat
35 * sequence of descriptors into a hierarchy:
36 *
37 * - devices have one (usually) or more configs;
38 * - configs have one (often) or more interfaces;
39 * - interfaces have one (usually) or more settings;
40 * - each interface setting has zero or (usually) more endpoints.
41 * - a SuperSpeed endpoint has a companion descriptor
42 *
43 * And there might be other descriptors mixed in with those.
44 *
45 * Devices may also have class-specific or vendor-specific descriptors.
46 */
47
48 struct ep_device;
49
50 /**
51 * struct usb_host_endpoint - host-side endpoint descriptor and queue
52 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
53 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
54 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
55 * @urb_list: urbs queued to this endpoint; maintained by usbcore
56 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
57 * with one or more transfer descriptors (TDs) per urb
58 * @ep_dev: ep_device for sysfs info
59 * @extra: descriptors following this endpoint in the configuration
60 * @extralen: how many bytes of "extra" are valid
61 * @enabled: URBs may be submitted to this endpoint
62 * @streams: number of USB-3 streams allocated on the endpoint
63 *
64 * USB requests are always queued to a given endpoint, identified by a
65 * descriptor within an active interface in a given USB configuration.
66 */
67 struct usb_host_endpoint {
68 struct usb_endpoint_descriptor desc;
69 struct usb_ss_ep_comp_descriptor ss_ep_comp;
70 struct usb_ssp_isoc_ep_comp_descriptor ssp_isoc_ep_comp;
71 struct list_head urb_list;
72 void *hcpriv;
73 struct ep_device *ep_dev; /* For sysfs info */
74
75 unsigned char *extra; /* Extra descriptors */
76 int extralen;
77 int enabled;
78 int streams;
79 };
80
81 /* host-side wrapper for one interface setting's parsed descriptors */
82 struct usb_host_interface {
83 struct usb_interface_descriptor desc;
84
85 int extralen;
86 unsigned char *extra; /* Extra descriptors */
87
88 /* array of desc.bNumEndpoints endpoints associated with this
89 * interface setting. these will be in no particular order.
90 */
91 struct usb_host_endpoint *endpoint;
92
93 char *string; /* iInterface string, if present */
94 };
95
96 enum usb_interface_condition {
97 USB_INTERFACE_UNBOUND = 0,
98 USB_INTERFACE_BINDING,
99 USB_INTERFACE_BOUND,
100 USB_INTERFACE_UNBINDING,
101 };
102
103 int __must_check
104 usb_find_common_endpoints(struct usb_host_interface *alt,
105 struct usb_endpoint_descriptor **bulk_in,
106 struct usb_endpoint_descriptor **bulk_out,
107 struct usb_endpoint_descriptor **int_in,
108 struct usb_endpoint_descriptor **int_out);
109
110 int __must_check
111 usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
112 struct usb_endpoint_descriptor **bulk_in,
113 struct usb_endpoint_descriptor **bulk_out,
114 struct usb_endpoint_descriptor **int_in,
115 struct usb_endpoint_descriptor **int_out);
116
117 static inline int __must_check
usb_find_bulk_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in)118 usb_find_bulk_in_endpoint(struct usb_host_interface *alt,
119 struct usb_endpoint_descriptor **bulk_in)
120 {
121 return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL);
122 }
123
124 static inline int __must_check
usb_find_bulk_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_out)125 usb_find_bulk_out_endpoint(struct usb_host_interface *alt,
126 struct usb_endpoint_descriptor **bulk_out)
127 {
128 return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL);
129 }
130
131 static inline int __must_check
usb_find_int_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_in)132 usb_find_int_in_endpoint(struct usb_host_interface *alt,
133 struct usb_endpoint_descriptor **int_in)
134 {
135 return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL);
136 }
137
138 static inline int __must_check
usb_find_int_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_out)139 usb_find_int_out_endpoint(struct usb_host_interface *alt,
140 struct usb_endpoint_descriptor **int_out)
141 {
142 return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out);
143 }
144
145 static inline int __must_check
usb_find_last_bulk_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in)146 usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt,
147 struct usb_endpoint_descriptor **bulk_in)
148 {
149 return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL);
150 }
151
152 static inline int __must_check
usb_find_last_bulk_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_out)153 usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt,
154 struct usb_endpoint_descriptor **bulk_out)
155 {
156 return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL);
157 }
158
159 static inline int __must_check
usb_find_last_int_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_in)160 usb_find_last_int_in_endpoint(struct usb_host_interface *alt,
161 struct usb_endpoint_descriptor **int_in)
162 {
163 return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL);
164 }
165
166 static inline int __must_check
usb_find_last_int_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_out)167 usb_find_last_int_out_endpoint(struct usb_host_interface *alt,
168 struct usb_endpoint_descriptor **int_out)
169 {
170 return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out);
171 }
172
173 /**
174 * struct usb_interface - what usb device drivers talk to
175 * @altsetting: array of interface structures, one for each alternate
176 * setting that may be selected. Each one includes a set of
177 * endpoint configurations. They will be in no particular order.
178 * @cur_altsetting: the current altsetting.
179 * @num_altsetting: number of altsettings defined.
180 * @intf_assoc: interface association descriptor
181 * @minor: the minor number assigned to this interface, if this
182 * interface is bound to a driver that uses the USB major number.
183 * If this interface does not use the USB major, this field should
184 * be unused. The driver should set this value in the probe()
185 * function of the driver, after it has been assigned a minor
186 * number from the USB core by calling usb_register_dev().
187 * @condition: binding state of the interface: not bound, binding
188 * (in probe()), bound to a driver, or unbinding (in disconnect())
189 * @sysfs_files_created: sysfs attributes exist
190 * @ep_devs_created: endpoint child pseudo-devices exist
191 * @unregistering: flag set when the interface is being unregistered
192 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
193 * capability during autosuspend.
194 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
195 * has been deferred.
196 * @needs_binding: flag set when the driver should be re-probed or unbound
197 * following a reset or suspend operation it doesn't support.
198 * @authorized: This allows to (de)authorize individual interfaces instead
199 * a whole device in contrast to the device authorization.
200 * @dev: driver model's view of this device
201 * @usb_dev: if an interface is bound to the USB major, this will point
202 * to the sysfs representation for that device.
203 * @reset_ws: Used for scheduling resets from atomic context.
204 * @resetting_device: USB core reset the device, so use alt setting 0 as
205 * current; needs bandwidth alloc after reset.
206 *
207 * USB device drivers attach to interfaces on a physical device. Each
208 * interface encapsulates a single high level function, such as feeding
209 * an audio stream to a speaker or reporting a change in a volume control.
210 * Many USB devices only have one interface. The protocol used to talk to
211 * an interface's endpoints can be defined in a usb "class" specification,
212 * or by a product's vendor. The (default) control endpoint is part of
213 * every interface, but is never listed among the interface's descriptors.
214 *
215 * The driver that is bound to the interface can use standard driver model
216 * calls such as dev_get_drvdata() on the dev member of this structure.
217 *
218 * Each interface may have alternate settings. The initial configuration
219 * of a device sets altsetting 0, but the device driver can change
220 * that setting using usb_set_interface(). Alternate settings are often
221 * used to control the use of periodic endpoints, such as by having
222 * different endpoints use different amounts of reserved USB bandwidth.
223 * All standards-conformant USB devices that use isochronous endpoints
224 * will use them in non-default settings.
225 *
226 * The USB specification says that alternate setting numbers must run from
227 * 0 to one less than the total number of alternate settings. But some
228 * devices manage to mess this up, and the structures aren't necessarily
229 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
230 * look up an alternate setting in the altsetting array based on its number.
231 */
232 struct usb_interface {
233 /* array of alternate settings for this interface,
234 * stored in no particular order */
235 struct usb_host_interface *altsetting;
236
237 struct usb_host_interface *cur_altsetting; /* the currently
238 * active alternate setting */
239 unsigned num_altsetting; /* number of alternate settings */
240
241 /* If there is an interface association descriptor then it will list
242 * the associated interfaces */
243 struct usb_interface_assoc_descriptor *intf_assoc;
244
245 int minor; /* minor number this interface is
246 * bound to */
247 enum usb_interface_condition condition; /* state of binding */
248 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
249 unsigned ep_devs_created:1; /* endpoint "devices" exist */
250 unsigned unregistering:1; /* unregistration is in progress */
251 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
252 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */
253 unsigned needs_binding:1; /* needs delayed unbind/rebind */
254 unsigned resetting_device:1; /* true: bandwidth alloc after reset */
255 unsigned authorized:1; /* used for interface authorization */
256
257 struct device dev; /* interface specific device info */
258 struct device *usb_dev;
259 struct work_struct reset_ws; /* for resets in atomic context */
260 };
261 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
262
usb_get_intfdata(struct usb_interface * intf)263 static inline void *usb_get_intfdata(struct usb_interface *intf)
264 {
265 return dev_get_drvdata(&intf->dev);
266 }
267
usb_set_intfdata(struct usb_interface * intf,void * data)268 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
269 {
270 dev_set_drvdata(&intf->dev, data);
271 }
272
273 struct usb_interface *usb_get_intf(struct usb_interface *intf);
274 void usb_put_intf(struct usb_interface *intf);
275
276 /* Hard limit */
277 #define USB_MAXENDPOINTS 30
278 /* this maximum is arbitrary */
279 #define USB_MAXINTERFACES 32
280 #define USB_MAXIADS (USB_MAXINTERFACES/2)
281
282 /*
283 * USB Resume Timer: Every Host controller driver should drive the resume
284 * signalling on the bus for the amount of time defined by this macro.
285 *
286 * That way we will have a 'stable' behavior among all HCDs supported by Linux.
287 *
288 * Note that the USB Specification states we should drive resume for *at least*
289 * 20 ms, but it doesn't give an upper bound. This creates two possible
290 * situations which we want to avoid:
291 *
292 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
293 * us to fail USB Electrical Tests, thus failing Certification
294 *
295 * (b) Some (many) devices actually need more than 20 ms of resume signalling,
296 * and while we can argue that's against the USB Specification, we don't have
297 * control over which devices a certification laboratory will be using for
298 * certification. If CertLab uses a device which was tested against Windows and
299 * that happens to have relaxed resume signalling rules, we might fall into
300 * situations where we fail interoperability and electrical tests.
301 *
302 * In order to avoid both conditions, we're using a 40 ms resume timeout, which
303 * should cope with both LPJ calibration errors and devices not following every
304 * detail of the USB Specification.
305 */
306 #define USB_RESUME_TIMEOUT 40 /* ms */
307
308 /**
309 * struct usb_interface_cache - long-term representation of a device interface
310 * @num_altsetting: number of altsettings defined.
311 * @ref: reference counter.
312 * @altsetting: variable-length array of interface structures, one for
313 * each alternate setting that may be selected. Each one includes a
314 * set of endpoint configurations. They will be in no particular order.
315 *
316 * These structures persist for the lifetime of a usb_device, unlike
317 * struct usb_interface (which persists only as long as its configuration
318 * is installed). The altsetting arrays can be accessed through these
319 * structures at any time, permitting comparison of configurations and
320 * providing support for the /sys/kernel/debug/usb/devices pseudo-file.
321 */
322 struct usb_interface_cache {
323 unsigned num_altsetting; /* number of alternate settings */
324 struct kref ref; /* reference counter */
325
326 /* variable-length array of alternate settings for this interface,
327 * stored in no particular order */
328 struct usb_host_interface altsetting[];
329 };
330 #define ref_to_usb_interface_cache(r) \
331 container_of(r, struct usb_interface_cache, ref)
332 #define altsetting_to_usb_interface_cache(a) \
333 container_of(a, struct usb_interface_cache, altsetting[0])
334
335 /**
336 * struct usb_host_config - representation of a device's configuration
337 * @desc: the device's configuration descriptor.
338 * @string: pointer to the cached version of the iConfiguration string, if
339 * present for this configuration.
340 * @intf_assoc: list of any interface association descriptors in this config
341 * @interface: array of pointers to usb_interface structures, one for each
342 * interface in the configuration. The number of interfaces is stored
343 * in desc.bNumInterfaces. These pointers are valid only while the
344 * configuration is active.
345 * @intf_cache: array of pointers to usb_interface_cache structures, one
346 * for each interface in the configuration. These structures exist
347 * for the entire life of the device.
348 * @extra: pointer to buffer containing all extra descriptors associated
349 * with this configuration (those preceding the first interface
350 * descriptor).
351 * @extralen: length of the extra descriptors buffer.
352 *
353 * USB devices may have multiple configurations, but only one can be active
354 * at any time. Each encapsulates a different operational environment;
355 * for example, a dual-speed device would have separate configurations for
356 * full-speed and high-speed operation. The number of configurations
357 * available is stored in the device descriptor as bNumConfigurations.
358 *
359 * A configuration can contain multiple interfaces. Each corresponds to
360 * a different function of the USB device, and all are available whenever
361 * the configuration is active. The USB standard says that interfaces
362 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
363 * of devices get this wrong. In addition, the interface array is not
364 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
365 * look up an interface entry based on its number.
366 *
367 * Device drivers should not attempt to activate configurations. The choice
368 * of which configuration to install is a policy decision based on such
369 * considerations as available power, functionality provided, and the user's
370 * desires (expressed through userspace tools). However, drivers can call
371 * usb_reset_configuration() to reinitialize the current configuration and
372 * all its interfaces.
373 */
374 struct usb_host_config {
375 struct usb_config_descriptor desc;
376
377 char *string; /* iConfiguration string, if present */
378
379 /* List of any Interface Association Descriptors in this
380 * configuration. */
381 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
382
383 /* the interfaces associated with this configuration,
384 * stored in no particular order */
385 struct usb_interface *interface[USB_MAXINTERFACES];
386
387 /* Interface information available even when this is not the
388 * active configuration */
389 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
390
391 unsigned char *extra; /* Extra descriptors */
392 int extralen;
393 };
394
395 /* USB2.0 and USB3.0 device BOS descriptor set */
396 struct usb_host_bos {
397 struct usb_bos_descriptor *desc;
398
399 /* wireless cap descriptor is handled by wusb */
400 struct usb_ext_cap_descriptor *ext_cap;
401 struct usb_ss_cap_descriptor *ss_cap;
402 struct usb_ssp_cap_descriptor *ssp_cap;
403 struct usb_ss_container_id_descriptor *ss_id;
404 struct usb_ptm_cap_descriptor *ptm_cap;
405 };
406
407 int __usb_get_extra_descriptor(char *buffer, unsigned size,
408 unsigned char type, void **ptr, size_t min);
409 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
410 __usb_get_extra_descriptor((ifpoint)->extra, \
411 (ifpoint)->extralen, \
412 type, (void **)ptr, sizeof(**(ptr)))
413
414 /* ----------------------------------------------------------------------- */
415
416 /* USB device number allocation bitmap */
417 struct usb_devmap {
418 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
419 };
420
421 /*
422 * Allocated per bus (tree of devices) we have:
423 */
424 struct usb_bus {
425 struct device *controller; /* host side hardware */
426 struct device *sysdev; /* as seen from firmware or bus */
427 int busnum; /* Bus number (in order of reg) */
428 const char *bus_name; /* stable id (PCI slot_name etc) */
429 u8 uses_pio_for_control; /*
430 * Does the host controller use PIO
431 * for control transfers?
432 */
433 u8 otg_port; /* 0, or number of OTG/HNP port */
434 unsigned is_b_host:1; /* true during some HNP roleswitches */
435 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
436 unsigned no_stop_on_short:1; /*
437 * Quirk: some controllers don't stop
438 * the ep queue on a short transfer
439 * with the URB_SHORT_NOT_OK flag set.
440 */
441 unsigned no_sg_constraint:1; /* no sg constraint */
442 unsigned sg_tablesize; /* 0 or largest number of sg list entries */
443
444 int devnum_next; /* Next open device number in
445 * round-robin allocation */
446 struct mutex devnum_next_mutex; /* devnum_next mutex */
447
448 struct usb_devmap devmap; /* device address allocation map */
449 struct usb_device *root_hub; /* Root hub */
450 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */
451
452 int bandwidth_allocated; /* on this bus: how much of the time
453 * reserved for periodic (intr/iso)
454 * requests is used, on average?
455 * Units: microseconds/frame.
456 * Limits: Full/low speed reserve 90%,
457 * while high speed reserves 80%.
458 */
459 int bandwidth_int_reqs; /* number of Interrupt requests */
460 int bandwidth_isoc_reqs; /* number of Isoc. requests */
461
462 unsigned resuming_ports; /* bit array: resuming root-hub ports */
463
464 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
465 struct mon_bus *mon_bus; /* non-null when associated */
466 int monitored; /* non-zero when monitored */
467 #endif
468 };
469
470 struct usb_dev_state;
471
472 /* ----------------------------------------------------------------------- */
473
474 struct usb_tt;
475
476 enum usb_port_connect_type {
477 USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
478 USB_PORT_CONNECT_TYPE_HOT_PLUG,
479 USB_PORT_CONNECT_TYPE_HARD_WIRED,
480 USB_PORT_NOT_USED,
481 };
482
483 /*
484 * USB port quirks.
485 */
486
487 /* For the given port, prefer the old (faster) enumeration scheme. */
488 #define USB_PORT_QUIRK_OLD_SCHEME BIT(0)
489
490 /* Decrease TRSTRCY to 10ms during device enumeration. */
491 #define USB_PORT_QUIRK_FAST_ENUM BIT(1)
492
493 /*
494 * USB 2.0 Link Power Management (LPM) parameters.
495 */
496 struct usb2_lpm_parameters {
497 /* Best effort service latency indicate how long the host will drive
498 * resume on an exit from L1.
499 */
500 unsigned int besl;
501
502 /* Timeout value in microseconds for the L1 inactivity (LPM) timer.
503 * When the timer counts to zero, the parent hub will initiate a LPM
504 * transition to L1.
505 */
506 int timeout;
507 };
508
509 /*
510 * USB 3.0 Link Power Management (LPM) parameters.
511 *
512 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
513 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
514 * All three are stored in nanoseconds.
515 */
516 struct usb3_lpm_parameters {
517 /*
518 * Maximum exit latency (MEL) for the host to send a packet to the
519 * device (either a Ping for isoc endpoints, or a data packet for
520 * interrupt endpoints), the hubs to decode the packet, and for all hubs
521 * in the path to transition the links to U0.
522 */
523 unsigned int mel;
524 /*
525 * Maximum exit latency for a device-initiated LPM transition to bring
526 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB
527 * 3.0 spec, with no explanation of what "P" stands for. "Path"?
528 */
529 unsigned int pel;
530
531 /*
532 * The System Exit Latency (SEL) includes PEL, and three other
533 * latencies. After a device initiates a U0 transition, it will take
534 * some time from when the device sends the ERDY to when it will finally
535 * receive the data packet. Basically, SEL should be the worse-case
536 * latency from when a device starts initiating a U0 transition to when
537 * it will get data.
538 */
539 unsigned int sel;
540 /*
541 * The idle timeout value that is currently programmed into the parent
542 * hub for this device. When the timer counts to zero, the parent hub
543 * will initiate an LPM transition to either U1 or U2.
544 */
545 int timeout;
546 };
547
548 /**
549 * struct usb_device - kernel's representation of a USB device
550 * @devnum: device number; address on a USB bus
551 * @devpath: device ID string for use in messages (e.g., /port/...)
552 * @route: tree topology hex string for use with xHCI
553 * @state: device state: configured, not attached, etc.
554 * @speed: device speed: high/full/low (or error)
555 * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support
556 * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support
557 * @ssp_rate: SuperSpeed Plus phy signaling rate and lane count
558 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
559 * @ttport: device port on that tt hub
560 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
561 * @parent: our hub, unless we're the root
562 * @bus: bus we're part of
563 * @ep0: endpoint 0 data (default control pipe)
564 * @dev: generic device interface
565 * @descriptor: USB device descriptor
566 * @bos: USB device BOS descriptor set
567 * @config: all of the device's configs
568 * @actconfig: the active configuration
569 * @ep_in: array of IN endpoints
570 * @ep_out: array of OUT endpoints
571 * @rawdescriptors: raw descriptors for each config
572 * @bus_mA: Current available from the bus
573 * @portnum: parent port number (origin 1)
574 * @level: number of USB hub ancestors
575 * @devaddr: device address, XHCI: assigned by HW, others: same as devnum
576 * @can_submit: URBs may be submitted
577 * @persist_enabled: USB_PERSIST enabled for this device
578 * @reset_in_progress: the device is being reset
579 * @have_langid: whether string_langid is valid
580 * @authorized: policy has said we can use it;
581 * (user space) policy determines if we authorize this device to be
582 * used or not. By default, wired USB devices are authorized.
583 * WUSB devices are not, until we authorize them from user space.
584 * FIXME -- complete doc
585 * @authenticated: Crypto authentication passed
586 * @wusb: device is Wireless USB
587 * @lpm_capable: device supports LPM
588 * @lpm_devinit_allow: Allow USB3 device initiated LPM, exit latency is in range
589 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
590 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
591 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
592 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
593 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
594 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
595 * @string_langid: language ID for strings
596 * @product: iProduct string, if present (static)
597 * @manufacturer: iManufacturer string, if present (static)
598 * @serial: iSerialNumber string, if present (static)
599 * @filelist: usbfs files that are open to this device
600 * @maxchild: number of ports if hub
601 * @quirks: quirks of the whole device
602 * @urbnum: number of URBs submitted for the whole device
603 * @active_duration: total time device is not suspended
604 * @connect_time: time device was first connected
605 * @do_remote_wakeup: remote wakeup should be enabled
606 * @reset_resume: needs reset instead of resume
607 * @port_is_suspended: the upstream port is suspended (L2 or U3)
608 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
609 * specific data for the device.
610 * @slot_id: Slot ID assigned by xHCI
611 * @removable: Device can be physically removed from this port
612 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
613 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
614 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
615 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
616 * to keep track of the number of functions that require USB 3.0 Link Power
617 * Management to be disabled for this usb_device. This count should only
618 * be manipulated by those functions, with the bandwidth_mutex is held.
619 * @hub_delay: cached value consisting of:
620 * parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns)
621 * Will be used as wValue for SetIsochDelay requests.
622 * @use_generic_driver: ask driver core to reprobe using the generic driver.
623 *
624 * Notes:
625 * Usbcore drivers should not set usbdev->state directly. Instead use
626 * usb_set_device_state().
627 */
628 struct usb_device {
629 int devnum;
630 char devpath[16];
631 u32 route;
632 enum usb_device_state state;
633 enum usb_device_speed speed;
634 unsigned int rx_lanes;
635 unsigned int tx_lanes;
636 enum usb_ssp_rate ssp_rate;
637
638 struct usb_tt *tt;
639 int ttport;
640
641 unsigned int toggle[2];
642
643 struct usb_device *parent;
644 struct usb_bus *bus;
645 struct usb_host_endpoint ep0;
646
647 struct device dev;
648
649 struct usb_device_descriptor descriptor;
650 struct usb_host_bos *bos;
651 struct usb_host_config *config;
652
653 struct usb_host_config *actconfig;
654 struct usb_host_endpoint *ep_in[16];
655 struct usb_host_endpoint *ep_out[16];
656
657 char **rawdescriptors;
658
659 unsigned short bus_mA;
660 u8 portnum;
661 u8 level;
662 u8 devaddr;
663
664 unsigned can_submit:1;
665 unsigned persist_enabled:1;
666 unsigned reset_in_progress:1;
667 unsigned have_langid:1;
668 unsigned authorized:1;
669 unsigned authenticated:1;
670 unsigned wusb:1;
671 unsigned lpm_capable:1;
672 unsigned lpm_devinit_allow:1;
673 unsigned usb2_hw_lpm_capable:1;
674 unsigned usb2_hw_lpm_besl_capable:1;
675 unsigned usb2_hw_lpm_enabled:1;
676 unsigned usb2_hw_lpm_allowed:1;
677 unsigned usb3_lpm_u1_enabled:1;
678 unsigned usb3_lpm_u2_enabled:1;
679 int string_langid;
680
681 /* static strings from the device */
682 char *product;
683 char *manufacturer;
684 char *serial;
685
686 struct list_head filelist;
687
688 int maxchild;
689
690 u32 quirks;
691 atomic_t urbnum;
692
693 unsigned long active_duration;
694
695 #ifdef CONFIG_PM
696 unsigned long connect_time;
697
698 unsigned do_remote_wakeup:1;
699 unsigned reset_resume:1;
700 unsigned port_is_suspended:1;
701 #endif
702 struct wusb_dev *wusb_dev;
703 int slot_id;
704 struct usb2_lpm_parameters l1_params;
705 struct usb3_lpm_parameters u1_params;
706 struct usb3_lpm_parameters u2_params;
707 unsigned lpm_disable_count;
708
709 u16 hub_delay;
710 unsigned use_generic_driver:1;
711 };
712 #define to_usb_device(d) container_of(d, struct usb_device, dev)
713
interface_to_usbdev(struct usb_interface * intf)714 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
715 {
716 return to_usb_device(intf->dev.parent);
717 }
718
719 extern struct usb_device *usb_get_dev(struct usb_device *dev);
720 extern void usb_put_dev(struct usb_device *dev);
721 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
722 int port1);
723
724 /**
725 * usb_hub_for_each_child - iterate over all child devices on the hub
726 * @hdev: USB device belonging to the usb hub
727 * @port1: portnum associated with child device
728 * @child: child device pointer
729 */
730 #define usb_hub_for_each_child(hdev, port1, child) \
731 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \
732 port1 <= hdev->maxchild; \
733 child = usb_hub_find_child(hdev, ++port1)) \
734 if (!child) continue; else
735
736 /* USB device locking */
737 #define usb_lock_device(udev) device_lock(&(udev)->dev)
738 #define usb_unlock_device(udev) device_unlock(&(udev)->dev)
739 #define usb_lock_device_interruptible(udev) device_lock_interruptible(&(udev)->dev)
740 #define usb_trylock_device(udev) device_trylock(&(udev)->dev)
741 extern int usb_lock_device_for_reset(struct usb_device *udev,
742 const struct usb_interface *iface);
743
744 /* USB port reset for device reinitialization */
745 extern int usb_reset_device(struct usb_device *dev);
746 extern void usb_queue_reset_device(struct usb_interface *dev);
747
748 extern struct device *usb_intf_get_dma_device(struct usb_interface *intf);
749
750 #ifdef CONFIG_ACPI
751 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
752 bool enable);
753 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
754 extern int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index);
755 #else
usb_acpi_set_power_state(struct usb_device * hdev,int index,bool enable)756 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
757 bool enable) { return 0; }
usb_acpi_power_manageable(struct usb_device * hdev,int index)758 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
759 { return true; }
usb_acpi_port_lpm_incapable(struct usb_device * hdev,int index)760 static inline int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index)
761 { return 0; }
762 #endif
763
764 /* USB autosuspend and autoresume */
765 #ifdef CONFIG_PM
766 extern void usb_enable_autosuspend(struct usb_device *udev);
767 extern void usb_disable_autosuspend(struct usb_device *udev);
768
769 extern int usb_autopm_get_interface(struct usb_interface *intf);
770 extern void usb_autopm_put_interface(struct usb_interface *intf);
771 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
772 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
773 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
774 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
775
usb_mark_last_busy(struct usb_device * udev)776 static inline void usb_mark_last_busy(struct usb_device *udev)
777 {
778 pm_runtime_mark_last_busy(&udev->dev);
779 }
780
781 #else
782
usb_enable_autosuspend(struct usb_device * udev)783 static inline int usb_enable_autosuspend(struct usb_device *udev)
784 { return 0; }
usb_disable_autosuspend(struct usb_device * udev)785 static inline int usb_disable_autosuspend(struct usb_device *udev)
786 { return 0; }
787
usb_autopm_get_interface(struct usb_interface * intf)788 static inline int usb_autopm_get_interface(struct usb_interface *intf)
789 { return 0; }
usb_autopm_get_interface_async(struct usb_interface * intf)790 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
791 { return 0; }
792
usb_autopm_put_interface(struct usb_interface * intf)793 static inline void usb_autopm_put_interface(struct usb_interface *intf)
794 { }
usb_autopm_put_interface_async(struct usb_interface * intf)795 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
796 { }
usb_autopm_get_interface_no_resume(struct usb_interface * intf)797 static inline void usb_autopm_get_interface_no_resume(
798 struct usb_interface *intf)
799 { }
usb_autopm_put_interface_no_suspend(struct usb_interface * intf)800 static inline void usb_autopm_put_interface_no_suspend(
801 struct usb_interface *intf)
802 { }
usb_mark_last_busy(struct usb_device * udev)803 static inline void usb_mark_last_busy(struct usb_device *udev)
804 { }
805 #endif
806
807 extern int usb_disable_lpm(struct usb_device *udev);
808 extern void usb_enable_lpm(struct usb_device *udev);
809 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
810 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
811 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
812
813 extern int usb_disable_ltm(struct usb_device *udev);
814 extern void usb_enable_ltm(struct usb_device *udev);
815
usb_device_supports_ltm(struct usb_device * udev)816 static inline bool usb_device_supports_ltm(struct usb_device *udev)
817 {
818 if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
819 return false;
820 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
821 }
822
usb_device_no_sg_constraint(struct usb_device * udev)823 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
824 {
825 return udev && udev->bus && udev->bus->no_sg_constraint;
826 }
827
828
829 /*-------------------------------------------------------------------------*/
830
831 /* for drivers using iso endpoints */
832 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
833
834 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
835 extern int usb_alloc_streams(struct usb_interface *interface,
836 struct usb_host_endpoint **eps, unsigned int num_eps,
837 unsigned int num_streams, gfp_t mem_flags);
838
839 /* Reverts a group of bulk endpoints back to not using stream IDs. */
840 extern int usb_free_streams(struct usb_interface *interface,
841 struct usb_host_endpoint **eps, unsigned int num_eps,
842 gfp_t mem_flags);
843
844 /* used these for multi-interface device registration */
845 extern int usb_driver_claim_interface(struct usb_driver *driver,
846 struct usb_interface *iface, void *data);
847
848 /**
849 * usb_interface_claimed - returns true iff an interface is claimed
850 * @iface: the interface being checked
851 *
852 * Return: %true (nonzero) iff the interface is claimed, else %false
853 * (zero).
854 *
855 * Note:
856 * Callers must own the driver model's usb bus readlock. So driver
857 * probe() entries don't need extra locking, but other call contexts
858 * may need to explicitly claim that lock.
859 *
860 */
usb_interface_claimed(struct usb_interface * iface)861 static inline int usb_interface_claimed(struct usb_interface *iface)
862 {
863 return (iface->dev.driver != NULL);
864 }
865
866 extern void usb_driver_release_interface(struct usb_driver *driver,
867 struct usb_interface *iface);
868 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
869 const struct usb_device_id *id);
870 extern int usb_match_one_id(struct usb_interface *interface,
871 const struct usb_device_id *id);
872
873 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
874 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
875 int minor);
876 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
877 unsigned ifnum);
878 extern struct usb_host_interface *usb_altnum_to_altsetting(
879 const struct usb_interface *intf, unsigned int altnum);
880 extern struct usb_host_interface *usb_find_alt_setting(
881 struct usb_host_config *config,
882 unsigned int iface_num,
883 unsigned int alt_num);
884
885 /* port claiming functions */
886 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
887 struct usb_dev_state *owner);
888 int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
889 struct usb_dev_state *owner);
890
891 /**
892 * usb_make_path - returns stable device path in the usb tree
893 * @dev: the device whose path is being constructed
894 * @buf: where to put the string
895 * @size: how big is "buf"?
896 *
897 * Return: Length of the string (> 0) or negative if size was too small.
898 *
899 * Note:
900 * This identifier is intended to be "stable", reflecting physical paths in
901 * hardware such as physical bus addresses for host controllers or ports on
902 * USB hubs. That makes it stay the same until systems are physically
903 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
904 * controllers. Adding and removing devices, including virtual root hubs
905 * in host controller driver modules, does not change these path identifiers;
906 * neither does rebooting or re-enumerating. These are more useful identifiers
907 * than changeable ("unstable") ones like bus numbers or device addresses.
908 *
909 * With a partial exception for devices connected to USB 2.0 root hubs, these
910 * identifiers are also predictable. So long as the device tree isn't changed,
911 * plugging any USB device into a given hub port always gives it the same path.
912 * Because of the use of "companion" controllers, devices connected to ports on
913 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
914 * high speed, and a different one if they are full or low speed.
915 */
usb_make_path(struct usb_device * dev,char * buf,size_t size)916 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
917 {
918 int actual;
919 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
920 dev->devpath);
921 return (actual >= (int)size) ? -1 : actual;
922 }
923
924 /*-------------------------------------------------------------------------*/
925
926 #define USB_DEVICE_ID_MATCH_DEVICE \
927 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
928 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
929 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
930 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
931 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
932 #define USB_DEVICE_ID_MATCH_DEV_INFO \
933 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
934 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
935 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
936 #define USB_DEVICE_ID_MATCH_INT_INFO \
937 (USB_DEVICE_ID_MATCH_INT_CLASS | \
938 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
939 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
940
941 /**
942 * USB_DEVICE - macro used to describe a specific usb device
943 * @vend: the 16 bit USB Vendor ID
944 * @prod: the 16 bit USB Product ID
945 *
946 * This macro is used to create a struct usb_device_id that matches a
947 * specific device.
948 */
949 #define USB_DEVICE(vend, prod) \
950 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
951 .idVendor = (vend), \
952 .idProduct = (prod)
953 /**
954 * USB_DEVICE_VER - describe a specific usb device with a version range
955 * @vend: the 16 bit USB Vendor ID
956 * @prod: the 16 bit USB Product ID
957 * @lo: the bcdDevice_lo value
958 * @hi: the bcdDevice_hi value
959 *
960 * This macro is used to create a struct usb_device_id that matches a
961 * specific device, with a version range.
962 */
963 #define USB_DEVICE_VER(vend, prod, lo, hi) \
964 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
965 .idVendor = (vend), \
966 .idProduct = (prod), \
967 .bcdDevice_lo = (lo), \
968 .bcdDevice_hi = (hi)
969
970 /**
971 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
972 * @vend: the 16 bit USB Vendor ID
973 * @prod: the 16 bit USB Product ID
974 * @cl: bInterfaceClass value
975 *
976 * This macro is used to create a struct usb_device_id that matches a
977 * specific interface class of devices.
978 */
979 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
980 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
981 USB_DEVICE_ID_MATCH_INT_CLASS, \
982 .idVendor = (vend), \
983 .idProduct = (prod), \
984 .bInterfaceClass = (cl)
985
986 /**
987 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
988 * @vend: the 16 bit USB Vendor ID
989 * @prod: the 16 bit USB Product ID
990 * @pr: bInterfaceProtocol value
991 *
992 * This macro is used to create a struct usb_device_id that matches a
993 * specific interface protocol of devices.
994 */
995 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
996 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
997 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
998 .idVendor = (vend), \
999 .idProduct = (prod), \
1000 .bInterfaceProtocol = (pr)
1001
1002 /**
1003 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
1004 * @vend: the 16 bit USB Vendor ID
1005 * @prod: the 16 bit USB Product ID
1006 * @num: bInterfaceNumber value
1007 *
1008 * This macro is used to create a struct usb_device_id that matches a
1009 * specific interface number of devices.
1010 */
1011 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
1012 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1013 USB_DEVICE_ID_MATCH_INT_NUMBER, \
1014 .idVendor = (vend), \
1015 .idProduct = (prod), \
1016 .bInterfaceNumber = (num)
1017
1018 /**
1019 * USB_DEVICE_INFO - macro used to describe a class of usb devices
1020 * @cl: bDeviceClass value
1021 * @sc: bDeviceSubClass value
1022 * @pr: bDeviceProtocol value
1023 *
1024 * This macro is used to create a struct usb_device_id that matches a
1025 * specific class of devices.
1026 */
1027 #define USB_DEVICE_INFO(cl, sc, pr) \
1028 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
1029 .bDeviceClass = (cl), \
1030 .bDeviceSubClass = (sc), \
1031 .bDeviceProtocol = (pr)
1032
1033 /**
1034 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
1035 * @cl: bInterfaceClass value
1036 * @sc: bInterfaceSubClass value
1037 * @pr: bInterfaceProtocol value
1038 *
1039 * This macro is used to create a struct usb_device_id that matches a
1040 * specific class of interfaces.
1041 */
1042 #define USB_INTERFACE_INFO(cl, sc, pr) \
1043 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
1044 .bInterfaceClass = (cl), \
1045 .bInterfaceSubClass = (sc), \
1046 .bInterfaceProtocol = (pr)
1047
1048 /**
1049 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
1050 * @vend: the 16 bit USB Vendor ID
1051 * @prod: the 16 bit USB Product ID
1052 * @cl: bInterfaceClass value
1053 * @sc: bInterfaceSubClass value
1054 * @pr: bInterfaceProtocol value
1055 *
1056 * This macro is used to create a struct usb_device_id that matches a
1057 * specific device with a specific class of interfaces.
1058 *
1059 * This is especially useful when explicitly matching devices that have
1060 * vendor specific bDeviceClass values, but standards-compliant interfaces.
1061 */
1062 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
1063 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1064 | USB_DEVICE_ID_MATCH_DEVICE, \
1065 .idVendor = (vend), \
1066 .idProduct = (prod), \
1067 .bInterfaceClass = (cl), \
1068 .bInterfaceSubClass = (sc), \
1069 .bInterfaceProtocol = (pr)
1070
1071 /**
1072 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
1073 * @vend: the 16 bit USB Vendor ID
1074 * @cl: bInterfaceClass value
1075 * @sc: bInterfaceSubClass value
1076 * @pr: bInterfaceProtocol value
1077 *
1078 * This macro is used to create a struct usb_device_id that matches a
1079 * specific vendor with a specific class of interfaces.
1080 *
1081 * This is especially useful when explicitly matching devices that have
1082 * vendor specific bDeviceClass values, but standards-compliant interfaces.
1083 */
1084 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
1085 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1086 | USB_DEVICE_ID_MATCH_VENDOR, \
1087 .idVendor = (vend), \
1088 .bInterfaceClass = (cl), \
1089 .bInterfaceSubClass = (sc), \
1090 .bInterfaceProtocol = (pr)
1091
1092 /* ----------------------------------------------------------------------- */
1093
1094 /* Stuff for dynamic usb ids */
1095 struct usb_dynids {
1096 spinlock_t lock;
1097 struct list_head list;
1098 };
1099
1100 struct usb_dynid {
1101 struct list_head node;
1102 struct usb_device_id id;
1103 };
1104
1105 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1106 const struct usb_device_id *id_table,
1107 struct device_driver *driver,
1108 const char *buf, size_t count);
1109
1110 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1111
1112 /**
1113 * struct usbdrv_wrap - wrapper for driver-model structure
1114 * @driver: The driver-model core driver structure.
1115 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
1116 */
1117 struct usbdrv_wrap {
1118 struct device_driver driver;
1119 int for_devices;
1120 };
1121
1122 /**
1123 * struct usb_driver - identifies USB interface driver to usbcore
1124 * @name: The driver name should be unique among USB drivers,
1125 * and should normally be the same as the module name.
1126 * @probe: Called to see if the driver is willing to manage a particular
1127 * interface on a device. If it is, probe returns zero and uses
1128 * usb_set_intfdata() to associate driver-specific data with the
1129 * interface. It may also use usb_set_interface() to specify the
1130 * appropriate altsetting. If unwilling to manage the interface,
1131 * return -ENODEV, if genuine IO errors occurred, an appropriate
1132 * negative errno value.
1133 * @disconnect: Called when the interface is no longer accessible, usually
1134 * because its device has been (or is being) disconnected or the
1135 * driver module is being unloaded.
1136 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1137 * the "usbfs" filesystem. This lets devices provide ways to
1138 * expose information to user space regardless of where they
1139 * do (or don't) show up otherwise in the filesystem.
1140 * @suspend: Called when the device is going to be suspended by the
1141 * system either from system sleep or runtime suspend context. The
1142 * return value will be ignored in system sleep context, so do NOT
1143 * try to continue using the device if suspend fails in this case.
1144 * Instead, let the resume or reset-resume routine recover from
1145 * the failure.
1146 * @resume: Called when the device is being resumed by the system.
1147 * @reset_resume: Called when the suspended device has been reset instead
1148 * of being resumed.
1149 * @pre_reset: Called by usb_reset_device() when the device is about to be
1150 * reset. This routine must not return until the driver has no active
1151 * URBs for the device, and no more URBs may be submitted until the
1152 * post_reset method is called.
1153 * @post_reset: Called by usb_reset_device() after the device
1154 * has been reset
1155 * @id_table: USB drivers use ID table to support hotplugging.
1156 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
1157 * or your driver's probe function will never get called.
1158 * @dev_groups: Attributes attached to the device that will be created once it
1159 * is bound to the driver.
1160 * @dynids: used internally to hold the list of dynamically added device
1161 * ids for this driver.
1162 * @drvwrap: Driver-model core structure wrapper.
1163 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1164 * added to this driver by preventing the sysfs file from being created.
1165 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1166 * for interfaces bound to this driver.
1167 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1168 * endpoints before calling the driver's disconnect method.
1169 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1170 * to initiate lower power link state transitions when an idle timeout
1171 * occurs. Device-initiated USB 3.0 link PM will still be allowed.
1172 *
1173 * USB interface drivers must provide a name, probe() and disconnect()
1174 * methods, and an id_table. Other driver fields are optional.
1175 *
1176 * The id_table is used in hotplugging. It holds a set of descriptors,
1177 * and specialized data may be associated with each entry. That table
1178 * is used by both user and kernel mode hotplugging support.
1179 *
1180 * The probe() and disconnect() methods are called in a context where
1181 * they can sleep, but they should avoid abusing the privilege. Most
1182 * work to connect to a device should be done when the device is opened,
1183 * and undone at the last close. The disconnect code needs to address
1184 * concurrency issues with respect to open() and close() methods, as
1185 * well as forcing all pending I/O requests to complete (by unlinking
1186 * them as necessary, and blocking until the unlinks complete).
1187 */
1188 struct usb_driver {
1189 const char *name;
1190
1191 int (*probe) (struct usb_interface *intf,
1192 const struct usb_device_id *id);
1193
1194 void (*disconnect) (struct usb_interface *intf);
1195
1196 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1197 void *buf);
1198
1199 int (*suspend) (struct usb_interface *intf, pm_message_t message);
1200 int (*resume) (struct usb_interface *intf);
1201 int (*reset_resume)(struct usb_interface *intf);
1202
1203 int (*pre_reset)(struct usb_interface *intf);
1204 int (*post_reset)(struct usb_interface *intf);
1205
1206 const struct usb_device_id *id_table;
1207 const struct attribute_group **dev_groups;
1208
1209 struct usb_dynids dynids;
1210 struct usbdrv_wrap drvwrap;
1211 unsigned int no_dynamic_id:1;
1212 unsigned int supports_autosuspend:1;
1213 unsigned int disable_hub_initiated_lpm:1;
1214 unsigned int soft_unbind:1;
1215 };
1216 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1217
1218 /**
1219 * struct usb_device_driver - identifies USB device driver to usbcore
1220 * @name: The driver name should be unique among USB drivers,
1221 * and should normally be the same as the module name.
1222 * @match: If set, used for better device/driver matching.
1223 * @probe: Called to see if the driver is willing to manage a particular
1224 * device. If it is, probe returns zero and uses dev_set_drvdata()
1225 * to associate driver-specific data with the device. If unwilling
1226 * to manage the device, return a negative errno value.
1227 * @disconnect: Called when the device is no longer accessible, usually
1228 * because it has been (or is being) disconnected or the driver's
1229 * module is being unloaded.
1230 * @suspend: Called when the device is going to be suspended by the system.
1231 * @resume: Called when the device is being resumed by the system.
1232 * @dev_groups: Attributes attached to the device that will be created once it
1233 * is bound to the driver.
1234 * @drvwrap: Driver-model core structure wrapper.
1235 * @id_table: used with @match() to select better matching driver at
1236 * probe() time.
1237 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1238 * for devices bound to this driver.
1239 * @generic_subclass: if set to 1, the generic USB driver's probe, disconnect,
1240 * resume and suspend functions will be called in addition to the driver's
1241 * own, so this part of the setup does not need to be replicated.
1242 *
1243 * USB drivers must provide all the fields listed above except drvwrap,
1244 * match, and id_table.
1245 */
1246 struct usb_device_driver {
1247 const char *name;
1248
1249 bool (*match) (struct usb_device *udev);
1250 int (*probe) (struct usb_device *udev);
1251 void (*disconnect) (struct usb_device *udev);
1252
1253 int (*suspend) (struct usb_device *udev, pm_message_t message);
1254 int (*resume) (struct usb_device *udev, pm_message_t message);
1255 const struct attribute_group **dev_groups;
1256 struct usbdrv_wrap drvwrap;
1257 const struct usb_device_id *id_table;
1258 unsigned int supports_autosuspend:1;
1259 unsigned int generic_subclass:1;
1260 };
1261 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1262 drvwrap.driver)
1263
1264 /**
1265 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1266 * @name: the usb class device name for this driver. Will show up in sysfs.
1267 * @devnode: Callback to provide a naming hint for a possible
1268 * device node to create.
1269 * @fops: pointer to the struct file_operations of this driver.
1270 * @minor_base: the start of the minor range for this driver.
1271 *
1272 * This structure is used for the usb_register_dev() and
1273 * usb_deregister_dev() functions, to consolidate a number of the
1274 * parameters used for them.
1275 */
1276 struct usb_class_driver {
1277 char *name;
1278 char *(*devnode)(struct device *dev, umode_t *mode);
1279 const struct file_operations *fops;
1280 int minor_base;
1281 };
1282
1283 /*
1284 * use these in module_init()/module_exit()
1285 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1286 */
1287 extern int usb_register_driver(struct usb_driver *, struct module *,
1288 const char *);
1289
1290 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1291 #define usb_register(driver) \
1292 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1293
1294 extern void usb_deregister(struct usb_driver *);
1295
1296 /**
1297 * module_usb_driver() - Helper macro for registering a USB driver
1298 * @__usb_driver: usb_driver struct
1299 *
1300 * Helper macro for USB drivers which do not do anything special in module
1301 * init/exit. This eliminates a lot of boilerplate. Each module may only
1302 * use this macro once, and calling it replaces module_init() and module_exit()
1303 */
1304 #define module_usb_driver(__usb_driver) \
1305 module_driver(__usb_driver, usb_register, \
1306 usb_deregister)
1307
1308 extern int usb_register_device_driver(struct usb_device_driver *,
1309 struct module *);
1310 extern void usb_deregister_device_driver(struct usb_device_driver *);
1311
1312 extern int usb_register_dev(struct usb_interface *intf,
1313 struct usb_class_driver *class_driver);
1314 extern void usb_deregister_dev(struct usb_interface *intf,
1315 struct usb_class_driver *class_driver);
1316
1317 extern int usb_disabled(void);
1318
1319 /* ----------------------------------------------------------------------- */
1320
1321 /*
1322 * URB support, for asynchronous request completions
1323 */
1324
1325 /*
1326 * urb->transfer_flags:
1327 *
1328 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1329 */
1330 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
1331 #define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired
1332 * slot in the schedule */
1333 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
1334 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
1335 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
1336 * needed */
1337 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
1338
1339 /* The following flags are used internally by usbcore and HCDs */
1340 #define URB_DIR_IN 0x0200 /* Transfer from device to host */
1341 #define URB_DIR_OUT 0
1342 #define URB_DIR_MASK URB_DIR_IN
1343
1344 #define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */
1345 #define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */
1346 #define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */
1347 #define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */
1348 #define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */
1349 #define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */
1350 #define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */
1351 #define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */
1352
1353 struct usb_iso_packet_descriptor {
1354 unsigned int offset;
1355 unsigned int length; /* expected length */
1356 unsigned int actual_length;
1357 int status;
1358 };
1359
1360 struct urb;
1361
1362 struct usb_anchor {
1363 struct list_head urb_list;
1364 wait_queue_head_t wait;
1365 spinlock_t lock;
1366 atomic_t suspend_wakeups;
1367 unsigned int poisoned:1;
1368 };
1369
init_usb_anchor(struct usb_anchor * anchor)1370 static inline void init_usb_anchor(struct usb_anchor *anchor)
1371 {
1372 memset(anchor, 0, sizeof(*anchor));
1373 INIT_LIST_HEAD(&anchor->urb_list);
1374 init_waitqueue_head(&anchor->wait);
1375 spin_lock_init(&anchor->lock);
1376 }
1377
1378 typedef void (*usb_complete_t)(struct urb *);
1379
1380 /**
1381 * struct urb - USB Request Block
1382 * @urb_list: For use by current owner of the URB.
1383 * @anchor_list: membership in the list of an anchor
1384 * @anchor: to anchor URBs to a common mooring
1385 * @ep: Points to the endpoint's data structure. Will eventually
1386 * replace @pipe.
1387 * @pipe: Holds endpoint number, direction, type, and more.
1388 * Create these values with the eight macros available;
1389 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1390 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1391 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1392 * numbers range from zero to fifteen. Note that "in" endpoint two
1393 * is a different endpoint (and pipe) from "out" endpoint two.
1394 * The current configuration controls the existence, type, and
1395 * maximum packet size of any given endpoint.
1396 * @stream_id: the endpoint's stream ID for bulk streams
1397 * @dev: Identifies the USB device to perform the request.
1398 * @status: This is read in non-iso completion functions to get the
1399 * status of the particular request. ISO requests only use it
1400 * to tell whether the URB was unlinked; detailed status for
1401 * each frame is in the fields of the iso_frame-desc.
1402 * @transfer_flags: A variety of flags may be used to affect how URB
1403 * submission, unlinking, or operation are handled. Different
1404 * kinds of URB can use different flags.
1405 * @transfer_buffer: This identifies the buffer to (or from) which the I/O
1406 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1407 * (however, do not leave garbage in transfer_buffer even then).
1408 * This buffer must be suitable for DMA; allocate it with
1409 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1410 * of this buffer will be modified. This buffer is used for the data
1411 * stage of control transfers.
1412 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1413 * the device driver is saying that it provided this DMA address,
1414 * which the host controller driver should use in preference to the
1415 * transfer_buffer.
1416 * @sg: scatter gather buffer list, the buffer size of each element in
1417 * the list (except the last) must be divisible by the endpoint's
1418 * max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1419 * @num_mapped_sgs: (internal) number of mapped sg entries
1420 * @num_sgs: number of entries in the sg list
1421 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1422 * be broken up into chunks according to the current maximum packet
1423 * size for the endpoint, which is a function of the configuration
1424 * and is encoded in the pipe. When the length is zero, neither
1425 * transfer_buffer nor transfer_dma is used.
1426 * @actual_length: This is read in non-iso completion functions, and
1427 * it tells how many bytes (out of transfer_buffer_length) were
1428 * transferred. It will normally be the same as requested, unless
1429 * either an error was reported or a short read was performed.
1430 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1431 * short reads be reported as errors.
1432 * @setup_packet: Only used for control transfers, this points to eight bytes
1433 * of setup data. Control transfers always start by sending this data
1434 * to the device. Then transfer_buffer is read or written, if needed.
1435 * @setup_dma: DMA pointer for the setup packet. The caller must not use
1436 * this field; setup_packet must point to a valid buffer.
1437 * @start_frame: Returns the initial frame for isochronous transfers.
1438 * @number_of_packets: Lists the number of ISO transfer buffers.
1439 * @interval: Specifies the polling interval for interrupt or isochronous
1440 * transfers. The units are frames (milliseconds) for full and low
1441 * speed devices, and microframes (1/8 millisecond) for highspeed
1442 * and SuperSpeed devices.
1443 * @error_count: Returns the number of ISO transfers that reported errors.
1444 * @context: For use in completion functions. This normally points to
1445 * request-specific driver context.
1446 * @complete: Completion handler. This URB is passed as the parameter to the
1447 * completion function. The completion function may then do what
1448 * it likes with the URB, including resubmitting or freeing it.
1449 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1450 * collect the transfer status for each buffer.
1451 *
1452 * This structure identifies USB transfer requests. URBs must be allocated by
1453 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1454 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1455 * are submitted using usb_submit_urb(), and pending requests may be canceled
1456 * using usb_unlink_urb() or usb_kill_urb().
1457 *
1458 * Data Transfer Buffers:
1459 *
1460 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1461 * taken from the general page pool. That is provided by transfer_buffer
1462 * (control requests also use setup_packet), and host controller drivers
1463 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1464 * mapping operations can be expensive on some platforms (perhaps using a dma
1465 * bounce buffer or talking to an IOMMU),
1466 * although they're cheap on commodity x86 and ppc hardware.
1467 *
1468 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1469 * which tells the host controller driver that no such mapping is needed for
1470 * the transfer_buffer since
1471 * the device driver is DMA-aware. For example, a device driver might
1472 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1473 * When this transfer flag is provided, host controller drivers will
1474 * attempt to use the dma address found in the transfer_dma
1475 * field rather than determining a dma address themselves.
1476 *
1477 * Note that transfer_buffer must still be set if the controller
1478 * does not support DMA (as indicated by hcd_uses_dma()) and when talking
1479 * to root hub. If you have to transfer between highmem zone and the device
1480 * on such controller, create a bounce buffer or bail out with an error.
1481 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1482 * capable, assign NULL to it, so that usbmon knows not to use the value.
1483 * The setup_packet must always be set, so it cannot be located in highmem.
1484 *
1485 * Initialization:
1486 *
1487 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1488 * zero), and complete fields. All URBs must also initialize
1489 * transfer_buffer and transfer_buffer_length. They may provide the
1490 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1491 * to be treated as errors; that flag is invalid for write requests.
1492 *
1493 * Bulk URBs may
1494 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1495 * should always terminate with a short packet, even if it means adding an
1496 * extra zero length packet.
1497 *
1498 * Control URBs must provide a valid pointer in the setup_packet field.
1499 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1500 * beforehand.
1501 *
1502 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1503 * or, for highspeed devices, 125 microsecond units)
1504 * to poll for transfers. After the URB has been submitted, the interval
1505 * field reflects how the transfer was actually scheduled.
1506 * The polling interval may be more frequent than requested.
1507 * For example, some controllers have a maximum interval of 32 milliseconds,
1508 * while others support intervals of up to 1024 milliseconds.
1509 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1510 * endpoints, as well as high speed interrupt endpoints, the encoding of
1511 * the transfer interval in the endpoint descriptor is logarithmic.
1512 * Device drivers must convert that value to linear units themselves.)
1513 *
1514 * If an isochronous endpoint queue isn't already running, the host
1515 * controller will schedule a new URB to start as soon as bandwidth
1516 * utilization allows. If the queue is running then a new URB will be
1517 * scheduled to start in the first transfer slot following the end of the
1518 * preceding URB, if that slot has not already expired. If the slot has
1519 * expired (which can happen when IRQ delivery is delayed for a long time),
1520 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag
1521 * is clear then the URB will be scheduled to start in the expired slot,
1522 * implying that some of its packets will not be transferred; if the flag
1523 * is set then the URB will be scheduled in the first unexpired slot,
1524 * breaking the queue's synchronization. Upon URB completion, the
1525 * start_frame field will be set to the (micro)frame number in which the
1526 * transfer was scheduled. Ranges for frame counter values are HC-specific
1527 * and can go from as low as 256 to as high as 65536 frames.
1528 *
1529 * Isochronous URBs have a different data transfer model, in part because
1530 * the quality of service is only "best effort". Callers provide specially
1531 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1532 * at the end. Each such packet is an individual ISO transfer. Isochronous
1533 * URBs are normally queued, submitted by drivers to arrange that
1534 * transfers are at least double buffered, and then explicitly resubmitted
1535 * in completion handlers, so
1536 * that data (such as audio or video) streams at as constant a rate as the
1537 * host controller scheduler can support.
1538 *
1539 * Completion Callbacks:
1540 *
1541 * The completion callback is made in_interrupt(), and one of the first
1542 * things that a completion handler should do is check the status field.
1543 * The status field is provided for all URBs. It is used to report
1544 * unlinked URBs, and status for all non-ISO transfers. It should not
1545 * be examined before the URB is returned to the completion handler.
1546 *
1547 * The context field is normally used to link URBs back to the relevant
1548 * driver or request state.
1549 *
1550 * When the completion callback is invoked for non-isochronous URBs, the
1551 * actual_length field tells how many bytes were transferred. This field
1552 * is updated even when the URB terminated with an error or was unlinked.
1553 *
1554 * ISO transfer status is reported in the status and actual_length fields
1555 * of the iso_frame_desc array, and the number of errors is reported in
1556 * error_count. Completion callbacks for ISO transfers will normally
1557 * (re)submit URBs to ensure a constant transfer rate.
1558 *
1559 * Note that even fields marked "public" should not be touched by the driver
1560 * when the urb is owned by the hcd, that is, since the call to
1561 * usb_submit_urb() till the entry into the completion routine.
1562 */
1563 struct urb {
1564 /* private: usb core and host controller only fields in the urb */
1565 struct kref kref; /* reference count of the URB */
1566 int unlinked; /* unlink error code */
1567 void *hcpriv; /* private data for host controller */
1568 atomic_t use_count; /* concurrent submissions counter */
1569 atomic_t reject; /* submissions will fail */
1570
1571 /* public: documented fields in the urb that can be used by drivers */
1572 struct list_head urb_list; /* list head for use by the urb's
1573 * current owner */
1574 struct list_head anchor_list; /* the URB may be anchored */
1575 struct usb_anchor *anchor;
1576 struct usb_device *dev; /* (in) pointer to associated device */
1577 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */
1578 unsigned int pipe; /* (in) pipe information */
1579 unsigned int stream_id; /* (in) stream ID */
1580 int status; /* (return) non-ISO status */
1581 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1582 void *transfer_buffer; /* (in) associated data buffer */
1583 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1584 struct scatterlist *sg; /* (in) scatter gather buffer list */
1585 int num_mapped_sgs; /* (internal) mapped sg entries */
1586 int num_sgs; /* (in) number of entries in the sg list */
1587 u32 transfer_buffer_length; /* (in) data buffer length */
1588 u32 actual_length; /* (return) actual transfer length */
1589 unsigned char *setup_packet; /* (in) setup packet (control only) */
1590 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1591 int start_frame; /* (modify) start frame (ISO) */
1592 int number_of_packets; /* (in) number of ISO packets */
1593 int interval; /* (modify) transfer interval
1594 * (INT/ISO) */
1595 int error_count; /* (return) number of ISO errors */
1596 void *context; /* (in) context for completion */
1597 usb_complete_t complete; /* (in) completion routine */
1598 struct usb_iso_packet_descriptor iso_frame_desc[];
1599 /* (in) ISO ONLY */
1600 };
1601
1602 /* ----------------------------------------------------------------------- */
1603
1604 /**
1605 * usb_fill_control_urb - initializes a control urb
1606 * @urb: pointer to the urb to initialize.
1607 * @dev: pointer to the struct usb_device for this urb.
1608 * @pipe: the endpoint pipe
1609 * @setup_packet: pointer to the setup_packet buffer
1610 * @transfer_buffer: pointer to the transfer buffer
1611 * @buffer_length: length of the transfer buffer
1612 * @complete_fn: pointer to the usb_complete_t function
1613 * @context: what to set the urb context to.
1614 *
1615 * Initializes a control urb with the proper information needed to submit
1616 * it to a device.
1617 */
usb_fill_control_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,unsigned char * setup_packet,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1618 static inline void usb_fill_control_urb(struct urb *urb,
1619 struct usb_device *dev,
1620 unsigned int pipe,
1621 unsigned char *setup_packet,
1622 void *transfer_buffer,
1623 int buffer_length,
1624 usb_complete_t complete_fn,
1625 void *context)
1626 {
1627 urb->dev = dev;
1628 urb->pipe = pipe;
1629 urb->setup_packet = setup_packet;
1630 urb->transfer_buffer = transfer_buffer;
1631 urb->transfer_buffer_length = buffer_length;
1632 urb->complete = complete_fn;
1633 urb->context = context;
1634 }
1635
1636 /**
1637 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1638 * @urb: pointer to the urb to initialize.
1639 * @dev: pointer to the struct usb_device for this urb.
1640 * @pipe: the endpoint pipe
1641 * @transfer_buffer: pointer to the transfer buffer
1642 * @buffer_length: length of the transfer buffer
1643 * @complete_fn: pointer to the usb_complete_t function
1644 * @context: what to set the urb context to.
1645 *
1646 * Initializes a bulk urb with the proper information needed to submit it
1647 * to a device.
1648 */
usb_fill_bulk_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1649 static inline void usb_fill_bulk_urb(struct urb *urb,
1650 struct usb_device *dev,
1651 unsigned int pipe,
1652 void *transfer_buffer,
1653 int buffer_length,
1654 usb_complete_t complete_fn,
1655 void *context)
1656 {
1657 urb->dev = dev;
1658 urb->pipe = pipe;
1659 urb->transfer_buffer = transfer_buffer;
1660 urb->transfer_buffer_length = buffer_length;
1661 urb->complete = complete_fn;
1662 urb->context = context;
1663 }
1664
1665 /**
1666 * usb_fill_int_urb - macro to help initialize a interrupt urb
1667 * @urb: pointer to the urb to initialize.
1668 * @dev: pointer to the struct usb_device for this urb.
1669 * @pipe: the endpoint pipe
1670 * @transfer_buffer: pointer to the transfer buffer
1671 * @buffer_length: length of the transfer buffer
1672 * @complete_fn: pointer to the usb_complete_t function
1673 * @context: what to set the urb context to.
1674 * @interval: what to set the urb interval to, encoded like
1675 * the endpoint descriptor's bInterval value.
1676 *
1677 * Initializes a interrupt urb with the proper information needed to submit
1678 * it to a device.
1679 *
1680 * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic
1681 * encoding of the endpoint interval, and express polling intervals in
1682 * microframes (eight per millisecond) rather than in frames (one per
1683 * millisecond).
1684 *
1685 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1686 * 128us instead of 125us. For Wireless USB devices, the interval is passed
1687 * through to the host controller, rather than being translated into microframe
1688 * units.
1689 */
usb_fill_int_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context,int interval)1690 static inline void usb_fill_int_urb(struct urb *urb,
1691 struct usb_device *dev,
1692 unsigned int pipe,
1693 void *transfer_buffer,
1694 int buffer_length,
1695 usb_complete_t complete_fn,
1696 void *context,
1697 int interval)
1698 {
1699 urb->dev = dev;
1700 urb->pipe = pipe;
1701 urb->transfer_buffer = transfer_buffer;
1702 urb->transfer_buffer_length = buffer_length;
1703 urb->complete = complete_fn;
1704 urb->context = context;
1705
1706 if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) {
1707 /* make sure interval is within allowed range */
1708 interval = clamp(interval, 1, 16);
1709
1710 urb->interval = 1 << (interval - 1);
1711 } else {
1712 urb->interval = interval;
1713 }
1714
1715 urb->start_frame = -1;
1716 }
1717
1718 extern void usb_init_urb(struct urb *urb);
1719 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1720 extern void usb_free_urb(struct urb *urb);
1721 #define usb_put_urb usb_free_urb
1722 extern struct urb *usb_get_urb(struct urb *urb);
1723 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1724 extern int usb_unlink_urb(struct urb *urb);
1725 extern void usb_kill_urb(struct urb *urb);
1726 extern void usb_poison_urb(struct urb *urb);
1727 extern void usb_unpoison_urb(struct urb *urb);
1728 extern void usb_block_urb(struct urb *urb);
1729 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1730 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1731 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1732 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1733 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1734 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1735 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1736 extern void usb_unanchor_urb(struct urb *urb);
1737 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1738 unsigned int timeout);
1739 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1740 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1741 extern int usb_anchor_empty(struct usb_anchor *anchor);
1742
1743 #define usb_unblock_urb usb_unpoison_urb
1744
1745 /**
1746 * usb_urb_dir_in - check if an URB describes an IN transfer
1747 * @urb: URB to be checked
1748 *
1749 * Return: 1 if @urb describes an IN transfer (device-to-host),
1750 * otherwise 0.
1751 */
usb_urb_dir_in(struct urb * urb)1752 static inline int usb_urb_dir_in(struct urb *urb)
1753 {
1754 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1755 }
1756
1757 /**
1758 * usb_urb_dir_out - check if an URB describes an OUT transfer
1759 * @urb: URB to be checked
1760 *
1761 * Return: 1 if @urb describes an OUT transfer (host-to-device),
1762 * otherwise 0.
1763 */
usb_urb_dir_out(struct urb * urb)1764 static inline int usb_urb_dir_out(struct urb *urb)
1765 {
1766 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1767 }
1768
1769 int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe);
1770 int usb_urb_ep_type_check(const struct urb *urb);
1771
1772 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1773 gfp_t mem_flags, dma_addr_t *dma);
1774 void usb_free_coherent(struct usb_device *dev, size_t size,
1775 void *addr, dma_addr_t dma);
1776
1777 #if 0
1778 struct urb *usb_buffer_map(struct urb *urb);
1779 void usb_buffer_dmasync(struct urb *urb);
1780 void usb_buffer_unmap(struct urb *urb);
1781 #endif
1782
1783 struct scatterlist;
1784 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1785 struct scatterlist *sg, int nents);
1786 #if 0
1787 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1788 struct scatterlist *sg, int n_hw_ents);
1789 #endif
1790 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1791 struct scatterlist *sg, int n_hw_ents);
1792
1793 /*-------------------------------------------------------------------*
1794 * SYNCHRONOUS CALL SUPPORT *
1795 *-------------------------------------------------------------------*/
1796
1797 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1798 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1799 void *data, __u16 size, int timeout);
1800 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1801 void *data, int len, int *actual_length, int timeout);
1802 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1803 void *data, int len, int *actual_length,
1804 int timeout);
1805
1806 /* wrappers around usb_control_msg() for the most common standard requests */
1807 int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request,
1808 __u8 requesttype, __u16 value, __u16 index,
1809 const void *data, __u16 size, int timeout,
1810 gfp_t memflags);
1811 int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request,
1812 __u8 requesttype, __u16 value, __u16 index,
1813 void *data, __u16 size, int timeout,
1814 gfp_t memflags);
1815 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1816 unsigned char descindex, void *buf, int size);
1817 extern int usb_get_status(struct usb_device *dev,
1818 int recip, int type, int target, void *data);
1819
usb_get_std_status(struct usb_device * dev,int recip,int target,void * data)1820 static inline int usb_get_std_status(struct usb_device *dev,
1821 int recip, int target, void *data)
1822 {
1823 return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target,
1824 data);
1825 }
1826
usb_get_ptm_status(struct usb_device * dev,void * data)1827 static inline int usb_get_ptm_status(struct usb_device *dev, void *data)
1828 {
1829 return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM,
1830 0, data);
1831 }
1832
1833 extern int usb_string(struct usb_device *dev, int index,
1834 char *buf, size_t size);
1835
1836 /* wrappers that also update important state inside usbcore */
1837 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1838 extern int usb_reset_configuration(struct usb_device *dev);
1839 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1840 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1841
1842 /* this request isn't really synchronous, but it belongs with the others */
1843 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1844
1845 /* choose and set configuration for device */
1846 extern int usb_choose_configuration(struct usb_device *udev);
1847 extern int usb_set_configuration(struct usb_device *dev, int configuration);
1848
1849 /*
1850 * timeouts, in milliseconds, used for sending/receiving control messages
1851 * they typically complete within a few frames (msec) after they're issued
1852 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1853 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1854 */
1855 #define USB_CTRL_GET_TIMEOUT 5000
1856 #define USB_CTRL_SET_TIMEOUT 5000
1857
1858
1859 /**
1860 * struct usb_sg_request - support for scatter/gather I/O
1861 * @status: zero indicates success, else negative errno
1862 * @bytes: counts bytes transferred.
1863 *
1864 * These requests are initialized using usb_sg_init(), and then are used
1865 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1866 * members of the request object aren't for driver access.
1867 *
1868 * The status and bytecount values are valid only after usb_sg_wait()
1869 * returns. If the status is zero, then the bytecount matches the total
1870 * from the request.
1871 *
1872 * After an error completion, drivers may need to clear a halt condition
1873 * on the endpoint.
1874 */
1875 struct usb_sg_request {
1876 int status;
1877 size_t bytes;
1878
1879 /* private:
1880 * members below are private to usbcore,
1881 * and are not provided for driver access!
1882 */
1883 spinlock_t lock;
1884
1885 struct usb_device *dev;
1886 int pipe;
1887
1888 int entries;
1889 struct urb **urbs;
1890
1891 int count;
1892 struct completion complete;
1893 };
1894
1895 int usb_sg_init(
1896 struct usb_sg_request *io,
1897 struct usb_device *dev,
1898 unsigned pipe,
1899 unsigned period,
1900 struct scatterlist *sg,
1901 int nents,
1902 size_t length,
1903 gfp_t mem_flags
1904 );
1905 void usb_sg_cancel(struct usb_sg_request *io);
1906 void usb_sg_wait(struct usb_sg_request *io);
1907
1908
1909 /* ----------------------------------------------------------------------- */
1910
1911 /*
1912 * For various legacy reasons, Linux has a small cookie that's paired with
1913 * a struct usb_device to identify an endpoint queue. Queue characteristics
1914 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1915 * an unsigned int encoded as:
1916 *
1917 * - direction: bit 7 (0 = Host-to-Device [Out],
1918 * 1 = Device-to-Host [In] ...
1919 * like endpoint bEndpointAddress)
1920 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1921 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1922 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1923 * 10 = control, 11 = bulk)
1924 *
1925 * Given the device address and endpoint descriptor, pipes are redundant.
1926 */
1927
1928 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1929 /* (yet ... they're the values used by usbfs) */
1930 #define PIPE_ISOCHRONOUS 0
1931 #define PIPE_INTERRUPT 1
1932 #define PIPE_CONTROL 2
1933 #define PIPE_BULK 3
1934
1935 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1936 #define usb_pipeout(pipe) (!usb_pipein(pipe))
1937
1938 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1939 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1940
1941 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1942 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1943 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1944 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1945 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1946
__create_pipe(struct usb_device * dev,unsigned int endpoint)1947 static inline unsigned int __create_pipe(struct usb_device *dev,
1948 unsigned int endpoint)
1949 {
1950 return (dev->devnum << 8) | (endpoint << 15);
1951 }
1952
1953 /* Create various pipes... */
1954 #define usb_sndctrlpipe(dev, endpoint) \
1955 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1956 #define usb_rcvctrlpipe(dev, endpoint) \
1957 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1958 #define usb_sndisocpipe(dev, endpoint) \
1959 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1960 #define usb_rcvisocpipe(dev, endpoint) \
1961 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1962 #define usb_sndbulkpipe(dev, endpoint) \
1963 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1964 #define usb_rcvbulkpipe(dev, endpoint) \
1965 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1966 #define usb_sndintpipe(dev, endpoint) \
1967 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1968 #define usb_rcvintpipe(dev, endpoint) \
1969 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1970
1971 static inline struct usb_host_endpoint *
usb_pipe_endpoint(struct usb_device * dev,unsigned int pipe)1972 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1973 {
1974 struct usb_host_endpoint **eps;
1975 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1976 return eps[usb_pipeendpoint(pipe)];
1977 }
1978
usb_maxpacket(struct usb_device * udev,int pipe)1979 static inline u16 usb_maxpacket(struct usb_device *udev, int pipe)
1980 {
1981 struct usb_host_endpoint *ep = usb_pipe_endpoint(udev, pipe);
1982
1983 if (!ep)
1984 return 0;
1985
1986 /* NOTE: only 0x07ff bits are for packet size... */
1987 return usb_endpoint_maxp(&ep->desc);
1988 }
1989
1990 /* translate USB error codes to codes user space understands */
usb_translate_errors(int error_code)1991 static inline int usb_translate_errors(int error_code)
1992 {
1993 switch (error_code) {
1994 case 0:
1995 case -ENOMEM:
1996 case -ENODEV:
1997 case -EOPNOTSUPP:
1998 return error_code;
1999 default:
2000 return -EIO;
2001 }
2002 }
2003
2004 /* Events from the usb core */
2005 #define USB_DEVICE_ADD 0x0001
2006 #define USB_DEVICE_REMOVE 0x0002
2007 #define USB_BUS_ADD 0x0003
2008 #define USB_BUS_REMOVE 0x0004
2009 extern void usb_register_notify(struct notifier_block *nb);
2010 extern void usb_unregister_notify(struct notifier_block *nb);
2011
2012 /* debugfs stuff */
2013 extern struct dentry *usb_debug_root;
2014
2015 /* LED triggers */
2016 enum usb_led_event {
2017 USB_LED_EVENT_HOST = 0,
2018 USB_LED_EVENT_GADGET = 1,
2019 };
2020
2021 #ifdef CONFIG_USB_LED_TRIG
2022 extern void usb_led_activity(enum usb_led_event ev);
2023 #else
usb_led_activity(enum usb_led_event ev)2024 static inline void usb_led_activity(enum usb_led_event ev) {}
2025 #endif
2026
2027 #endif /* __KERNEL__ */
2028
2029 #endif
2030