1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Copyright (C) 2018 Exceet Electronics GmbH
4 * Copyright (C) 2018 Bootlin
5 *
6 * Author:
7 * Peter Pan <peterpandong@micron.com>
8 * Boris Brezillon <boris.brezillon@bootlin.com>
9 */
10
11 #ifndef __LINUX_SPI_MEM_H
12 #define __LINUX_SPI_MEM_H
13
14 #include <linux/spi/spi.h>
15
16 #define SPI_MEM_OP_CMD(__opcode, __buswidth) \
17 { \
18 .buswidth = __buswidth, \
19 .opcode = __opcode, \
20 .nbytes = 1, \
21 }
22
23 #define SPI_MEM_OP_ADDR(__nbytes, __val, __buswidth) \
24 { \
25 .nbytes = __nbytes, \
26 .val = __val, \
27 .buswidth = __buswidth, \
28 }
29
30 #define SPI_MEM_OP_NO_ADDR { }
31
32 #define SPI_MEM_OP_DUMMY(__nbytes, __buswidth) \
33 { \
34 .nbytes = __nbytes, \
35 .buswidth = __buswidth, \
36 }
37
38 #define SPI_MEM_OP_NO_DUMMY { }
39
40 #define SPI_MEM_OP_DATA_IN(__nbytes, __buf, __buswidth) \
41 { \
42 .dir = SPI_MEM_DATA_IN, \
43 .nbytes = __nbytes, \
44 .buf.in = __buf, \
45 .buswidth = __buswidth, \
46 }
47
48 #define SPI_MEM_OP_DATA_OUT(__nbytes, __buf, __buswidth) \
49 { \
50 .dir = SPI_MEM_DATA_OUT, \
51 .nbytes = __nbytes, \
52 .buf.out = __buf, \
53 .buswidth = __buswidth, \
54 }
55
56 #define SPI_MEM_OP_NO_DATA { }
57
58 /**
59 * enum spi_mem_data_dir - describes the direction of a SPI memory data
60 * transfer from the controller perspective
61 * @SPI_MEM_NO_DATA: no data transferred
62 * @SPI_MEM_DATA_IN: data coming from the SPI memory
63 * @SPI_MEM_DATA_OUT: data sent to the SPI memory
64 */
65 enum spi_mem_data_dir {
66 SPI_MEM_NO_DATA,
67 SPI_MEM_DATA_IN,
68 SPI_MEM_DATA_OUT,
69 };
70
71 /**
72 * struct spi_mem_op - describes a SPI memory operation
73 * @cmd.nbytes: number of opcode bytes (only 1 or 2 are valid). The opcode is
74 * sent MSB-first.
75 * @cmd.buswidth: number of IO lines used to transmit the command
76 * @cmd.opcode: operation opcode
77 * @cmd.dtr: whether the command opcode should be sent in DTR mode or not
78 * @addr.nbytes: number of address bytes to send. Can be zero if the operation
79 * does not need to send an address
80 * @addr.buswidth: number of IO lines used to transmit the address cycles
81 * @addr.dtr: whether the address should be sent in DTR mode or not
82 * @addr.val: address value. This value is always sent MSB first on the bus.
83 * Note that only @addr.nbytes are taken into account in this
84 * address value, so users should make sure the value fits in the
85 * assigned number of bytes.
86 * @dummy.nbytes: number of dummy bytes to send after an opcode or address. Can
87 * be zero if the operation does not require dummy bytes
88 * @dummy.buswidth: number of IO lanes used to transmit the dummy bytes
89 * @dummy.dtr: whether the dummy bytes should be sent in DTR mode or not
90 * @data.buswidth: number of IO lanes used to send/receive the data
91 * @data.dtr: whether the data should be sent in DTR mode or not
92 * @data.ecc: whether error correction is required or not
93 * @data.dir: direction of the transfer
94 * @data.nbytes: number of data bytes to send/receive. Can be zero if the
95 * operation does not involve transferring data
96 * @data.buf.in: input buffer (must be DMA-able)
97 * @data.buf.out: output buffer (must be DMA-able)
98 */
99 struct spi_mem_op {
100 struct {
101 u8 nbytes;
102 u8 buswidth;
103 u8 dtr : 1;
104 u16 opcode;
105 } cmd;
106
107 struct {
108 u8 nbytes;
109 u8 buswidth;
110 u8 dtr : 1;
111 u64 val;
112 } addr;
113
114 struct {
115 u8 nbytes;
116 u8 buswidth;
117 u8 dtr : 1;
118 } dummy;
119
120 struct {
121 u8 buswidth;
122 u8 dtr : 1;
123 u8 ecc : 1;
124 enum spi_mem_data_dir dir;
125 unsigned int nbytes;
126 union {
127 void *in;
128 const void *out;
129 } buf;
130 } data;
131 };
132
133 #define SPI_MEM_OP(__cmd, __addr, __dummy, __data) \
134 { \
135 .cmd = __cmd, \
136 .addr = __addr, \
137 .dummy = __dummy, \
138 .data = __data, \
139 }
140
141 /**
142 * struct spi_mem_dirmap_info - Direct mapping information
143 * @op_tmpl: operation template that should be used by the direct mapping when
144 * the memory device is accessed
145 * @offset: absolute offset this direct mapping is pointing to
146 * @length: length in byte of this direct mapping
147 *
148 * These information are used by the controller specific implementation to know
149 * the portion of memory that is directly mapped and the spi_mem_op that should
150 * be used to access the device.
151 * A direct mapping is only valid for one direction (read or write) and this
152 * direction is directly encoded in the ->op_tmpl.data.dir field.
153 */
154 struct spi_mem_dirmap_info {
155 struct spi_mem_op op_tmpl;
156 u64 offset;
157 u64 length;
158 };
159
160 /**
161 * struct spi_mem_dirmap_desc - Direct mapping descriptor
162 * @mem: the SPI memory device this direct mapping is attached to
163 * @info: information passed at direct mapping creation time
164 * @nodirmap: set to 1 if the SPI controller does not implement
165 * ->mem_ops->dirmap_create() or when this function returned an
166 * error. If @nodirmap is true, all spi_mem_dirmap_{read,write}()
167 * calls will use spi_mem_exec_op() to access the memory. This is a
168 * degraded mode that allows spi_mem drivers to use the same code
169 * no matter whether the controller supports direct mapping or not
170 * @priv: field pointing to controller specific data
171 *
172 * Common part of a direct mapping descriptor. This object is created by
173 * spi_mem_dirmap_create() and controller implementation of ->create_dirmap()
174 * can create/attach direct mapping resources to the descriptor in the ->priv
175 * field.
176 */
177 struct spi_mem_dirmap_desc {
178 struct spi_mem *mem;
179 struct spi_mem_dirmap_info info;
180 unsigned int nodirmap;
181 void *priv;
182 };
183
184 /**
185 * struct spi_mem - describes a SPI memory device
186 * @spi: the underlying SPI device
187 * @drvpriv: spi_mem_driver private data
188 * @name: name of the SPI memory device
189 *
190 * Extra information that describe the SPI memory device and may be needed by
191 * the controller to properly handle this device should be placed here.
192 *
193 * One example would be the device size since some controller expose their SPI
194 * mem devices through a io-mapped region.
195 */
196 struct spi_mem {
197 struct spi_device *spi;
198 void *drvpriv;
199 const char *name;
200 };
201
202 /**
203 * struct spi_mem_set_drvdata() - attach driver private data to a SPI mem
204 * device
205 * @mem: memory device
206 * @data: data to attach to the memory device
207 */
spi_mem_set_drvdata(struct spi_mem * mem,void * data)208 static inline void spi_mem_set_drvdata(struct spi_mem *mem, void *data)
209 {
210 mem->drvpriv = data;
211 }
212
213 /**
214 * struct spi_mem_get_drvdata() - get driver private data attached to a SPI mem
215 * device
216 * @mem: memory device
217 *
218 * Return: the data attached to the mem device.
219 */
spi_mem_get_drvdata(struct spi_mem * mem)220 static inline void *spi_mem_get_drvdata(struct spi_mem *mem)
221 {
222 return mem->drvpriv;
223 }
224
225 /**
226 * struct spi_controller_mem_ops - SPI memory operations
227 * @adjust_op_size: shrink the data xfer of an operation to match controller's
228 * limitations (can be alignment or max RX/TX size
229 * limitations)
230 * @supports_op: check if an operation is supported by the controller
231 * @exec_op: execute a SPI memory operation
232 * @get_name: get a custom name for the SPI mem device from the controller.
233 * This might be needed if the controller driver has been ported
234 * to use the SPI mem layer and a custom name is used to keep
235 * mtdparts compatible.
236 * Note that if the implementation of this function allocates memory
237 * dynamically, then it should do so with devm_xxx(), as we don't
238 * have a ->free_name() function.
239 * @dirmap_create: create a direct mapping descriptor that can later be used to
240 * access the memory device. This method is optional
241 * @dirmap_destroy: destroy a memory descriptor previous created by
242 * ->dirmap_create()
243 * @dirmap_read: read data from the memory device using the direct mapping
244 * created by ->dirmap_create(). The function can return less
245 * data than requested (for example when the request is crossing
246 * the currently mapped area), and the caller of
247 * spi_mem_dirmap_read() is responsible for calling it again in
248 * this case.
249 * @dirmap_write: write data to the memory device using the direct mapping
250 * created by ->dirmap_create(). The function can return less
251 * data than requested (for example when the request is crossing
252 * the currently mapped area), and the caller of
253 * spi_mem_dirmap_write() is responsible for calling it again in
254 * this case.
255 * @poll_status: poll memory device status until (status & mask) == match or
256 * when the timeout has expired. It fills the data buffer with
257 * the last status value.
258 *
259 * This interface should be implemented by SPI controllers providing an
260 * high-level interface to execute SPI memory operation, which is usually the
261 * case for QSPI controllers.
262 *
263 * Note on ->dirmap_{read,write}(): drivers should avoid accessing the direct
264 * mapping from the CPU because doing that can stall the CPU waiting for the
265 * SPI mem transaction to finish, and this will make real-time maintainers
266 * unhappy and might make your system less reactive. Instead, drivers should
267 * use DMA to access this direct mapping.
268 */
269 struct spi_controller_mem_ops {
270 int (*adjust_op_size)(struct spi_mem *mem, struct spi_mem_op *op);
271 bool (*supports_op)(struct spi_mem *mem,
272 const struct spi_mem_op *op);
273 int (*exec_op)(struct spi_mem *mem,
274 const struct spi_mem_op *op);
275 const char *(*get_name)(struct spi_mem *mem);
276 int (*dirmap_create)(struct spi_mem_dirmap_desc *desc);
277 void (*dirmap_destroy)(struct spi_mem_dirmap_desc *desc);
278 ssize_t (*dirmap_read)(struct spi_mem_dirmap_desc *desc,
279 u64 offs, size_t len, void *buf);
280 ssize_t (*dirmap_write)(struct spi_mem_dirmap_desc *desc,
281 u64 offs, size_t len, const void *buf);
282 int (*poll_status)(struct spi_mem *mem,
283 const struct spi_mem_op *op,
284 u16 mask, u16 match,
285 unsigned long initial_delay_us,
286 unsigned long polling_rate_us,
287 unsigned long timeout_ms);
288 };
289
290 /**
291 * struct spi_controller_mem_caps - SPI memory controller capabilities
292 * @dtr: Supports DTR operations
293 * @ecc: Supports operations with error correction
294 */
295 struct spi_controller_mem_caps {
296 bool dtr;
297 bool ecc;
298 };
299
300 #define spi_mem_controller_is_capable(ctlr, cap) \
301 ((ctlr)->mem_caps && (ctlr)->mem_caps->cap)
302
303 /**
304 * struct spi_mem_driver - SPI memory driver
305 * @spidrv: inherit from a SPI driver
306 * @probe: probe a SPI memory. Usually where detection/initialization takes
307 * place
308 * @remove: remove a SPI memory
309 * @shutdown: take appropriate action when the system is shutdown
310 *
311 * This is just a thin wrapper around a spi_driver. The core takes care of
312 * allocating the spi_mem object and forwarding the probe/remove/shutdown
313 * request to the spi_mem_driver. The reason we use this wrapper is because
314 * we might have to stuff more information into the spi_mem struct to let
315 * SPI controllers know more about the SPI memory they interact with, and
316 * having this intermediate layer allows us to do that without adding more
317 * useless fields to the spi_device object.
318 */
319 struct spi_mem_driver {
320 struct spi_driver spidrv;
321 int (*probe)(struct spi_mem *mem);
322 int (*remove)(struct spi_mem *mem);
323 void (*shutdown)(struct spi_mem *mem);
324 };
325
326 #if IS_ENABLED(CONFIG_SPI_MEM)
327 int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
328 const struct spi_mem_op *op,
329 struct sg_table *sg);
330
331 void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
332 const struct spi_mem_op *op,
333 struct sg_table *sg);
334
335 bool spi_mem_default_supports_op(struct spi_mem *mem,
336 const struct spi_mem_op *op);
337 #else
338 static inline int
spi_controller_dma_map_mem_op_data(struct spi_controller * ctlr,const struct spi_mem_op * op,struct sg_table * sg)339 spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
340 const struct spi_mem_op *op,
341 struct sg_table *sg)
342 {
343 return -ENOTSUPP;
344 }
345
346 static inline void
spi_controller_dma_unmap_mem_op_data(struct spi_controller * ctlr,const struct spi_mem_op * op,struct sg_table * sg)347 spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
348 const struct spi_mem_op *op,
349 struct sg_table *sg)
350 {
351 }
352
353 static inline
spi_mem_default_supports_op(struct spi_mem * mem,const struct spi_mem_op * op)354 bool spi_mem_default_supports_op(struct spi_mem *mem,
355 const struct spi_mem_op *op)
356 {
357 return false;
358 }
359 #endif /* CONFIG_SPI_MEM */
360
361 int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op);
362
363 bool spi_mem_supports_op(struct spi_mem *mem,
364 const struct spi_mem_op *op);
365
366 int spi_mem_exec_op(struct spi_mem *mem,
367 const struct spi_mem_op *op);
368
369 const char *spi_mem_get_name(struct spi_mem *mem);
370
371 struct spi_mem_dirmap_desc *
372 spi_mem_dirmap_create(struct spi_mem *mem,
373 const struct spi_mem_dirmap_info *info);
374 void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc);
375 ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
376 u64 offs, size_t len, void *buf);
377 ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
378 u64 offs, size_t len, const void *buf);
379 struct spi_mem_dirmap_desc *
380 devm_spi_mem_dirmap_create(struct device *dev, struct spi_mem *mem,
381 const struct spi_mem_dirmap_info *info);
382 void devm_spi_mem_dirmap_destroy(struct device *dev,
383 struct spi_mem_dirmap_desc *desc);
384
385 int spi_mem_poll_status(struct spi_mem *mem,
386 const struct spi_mem_op *op,
387 u16 mask, u16 match,
388 unsigned long initial_delay_us,
389 unsigned long polling_delay_us,
390 u16 timeout_ms);
391
392 int spi_mem_driver_register_with_owner(struct spi_mem_driver *drv,
393 struct module *owner);
394
395 void spi_mem_driver_unregister(struct spi_mem_driver *drv);
396
397 #define spi_mem_driver_register(__drv) \
398 spi_mem_driver_register_with_owner(__drv, THIS_MODULE)
399
400 #define module_spi_mem_driver(__drv) \
401 module_driver(__drv, spi_mem_driver_register, \
402 spi_mem_driver_unregister)
403
404 #endif /* __LINUX_SPI_MEM_H */
405