1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include <linux/fsverity.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "btrfs_inode.h"
24 #include "print-tree.h"
25 #include "tree-log.h"
26 #include "locking.h"
27 #include "volumes.h"
28 #include "qgroup.h"
29 #include "compression.h"
30 #include "delalloc-space.h"
31 #include "reflink.h"
32 #include "subpage.h"
33
34 static struct kmem_cache *btrfs_inode_defrag_cachep;
35 /*
36 * when auto defrag is enabled we
37 * queue up these defrag structs to remember which
38 * inodes need defragging passes
39 */
40 struct inode_defrag {
41 struct rb_node rb_node;
42 /* objectid */
43 u64 ino;
44 /*
45 * transid where the defrag was added, we search for
46 * extents newer than this
47 */
48 u64 transid;
49
50 /* root objectid */
51 u64 root;
52
53 /*
54 * The extent size threshold for autodefrag.
55 *
56 * This value is different for compressed/non-compressed extents,
57 * thus needs to be passed from higher layer.
58 * (aka, inode_should_defrag())
59 */
60 u32 extent_thresh;
61 };
62
__compare_inode_defrag(struct inode_defrag * defrag1,struct inode_defrag * defrag2)63 static int __compare_inode_defrag(struct inode_defrag *defrag1,
64 struct inode_defrag *defrag2)
65 {
66 if (defrag1->root > defrag2->root)
67 return 1;
68 else if (defrag1->root < defrag2->root)
69 return -1;
70 else if (defrag1->ino > defrag2->ino)
71 return 1;
72 else if (defrag1->ino < defrag2->ino)
73 return -1;
74 else
75 return 0;
76 }
77
78 /* pop a record for an inode into the defrag tree. The lock
79 * must be held already
80 *
81 * If you're inserting a record for an older transid than an
82 * existing record, the transid already in the tree is lowered
83 *
84 * If an existing record is found the defrag item you
85 * pass in is freed
86 */
__btrfs_add_inode_defrag(struct btrfs_inode * inode,struct inode_defrag * defrag)87 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
88 struct inode_defrag *defrag)
89 {
90 struct btrfs_fs_info *fs_info = inode->root->fs_info;
91 struct inode_defrag *entry;
92 struct rb_node **p;
93 struct rb_node *parent = NULL;
94 int ret;
95
96 p = &fs_info->defrag_inodes.rb_node;
97 while (*p) {
98 parent = *p;
99 entry = rb_entry(parent, struct inode_defrag, rb_node);
100
101 ret = __compare_inode_defrag(defrag, entry);
102 if (ret < 0)
103 p = &parent->rb_left;
104 else if (ret > 0)
105 p = &parent->rb_right;
106 else {
107 /* if we're reinserting an entry for
108 * an old defrag run, make sure to
109 * lower the transid of our existing record
110 */
111 if (defrag->transid < entry->transid)
112 entry->transid = defrag->transid;
113 entry->extent_thresh = min(defrag->extent_thresh,
114 entry->extent_thresh);
115 return -EEXIST;
116 }
117 }
118 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
119 rb_link_node(&defrag->rb_node, parent, p);
120 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
121 return 0;
122 }
123
__need_auto_defrag(struct btrfs_fs_info * fs_info)124 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
125 {
126 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
127 return 0;
128
129 if (btrfs_fs_closing(fs_info))
130 return 0;
131
132 return 1;
133 }
134
135 /*
136 * insert a defrag record for this inode if auto defrag is
137 * enabled
138 */
btrfs_add_inode_defrag(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,u32 extent_thresh)139 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
140 struct btrfs_inode *inode, u32 extent_thresh)
141 {
142 struct btrfs_root *root = inode->root;
143 struct btrfs_fs_info *fs_info = root->fs_info;
144 struct inode_defrag *defrag;
145 u64 transid;
146 int ret;
147
148 if (!__need_auto_defrag(fs_info))
149 return 0;
150
151 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
152 return 0;
153
154 if (trans)
155 transid = trans->transid;
156 else
157 transid = inode->root->last_trans;
158
159 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
160 if (!defrag)
161 return -ENOMEM;
162
163 defrag->ino = btrfs_ino(inode);
164 defrag->transid = transid;
165 defrag->root = root->root_key.objectid;
166 defrag->extent_thresh = extent_thresh;
167
168 spin_lock(&fs_info->defrag_inodes_lock);
169 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
170 /*
171 * If we set IN_DEFRAG flag and evict the inode from memory,
172 * and then re-read this inode, this new inode doesn't have
173 * IN_DEFRAG flag. At the case, we may find the existed defrag.
174 */
175 ret = __btrfs_add_inode_defrag(inode, defrag);
176 if (ret)
177 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
178 } else {
179 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
180 }
181 spin_unlock(&fs_info->defrag_inodes_lock);
182 return 0;
183 }
184
185 /*
186 * pick the defragable inode that we want, if it doesn't exist, we will get
187 * the next one.
188 */
189 static struct inode_defrag *
btrfs_pick_defrag_inode(struct btrfs_fs_info * fs_info,u64 root,u64 ino)190 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
191 {
192 struct inode_defrag *entry = NULL;
193 struct inode_defrag tmp;
194 struct rb_node *p;
195 struct rb_node *parent = NULL;
196 int ret;
197
198 tmp.ino = ino;
199 tmp.root = root;
200
201 spin_lock(&fs_info->defrag_inodes_lock);
202 p = fs_info->defrag_inodes.rb_node;
203 while (p) {
204 parent = p;
205 entry = rb_entry(parent, struct inode_defrag, rb_node);
206
207 ret = __compare_inode_defrag(&tmp, entry);
208 if (ret < 0)
209 p = parent->rb_left;
210 else if (ret > 0)
211 p = parent->rb_right;
212 else
213 goto out;
214 }
215
216 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
217 parent = rb_next(parent);
218 if (parent)
219 entry = rb_entry(parent, struct inode_defrag, rb_node);
220 else
221 entry = NULL;
222 }
223 out:
224 if (entry)
225 rb_erase(parent, &fs_info->defrag_inodes);
226 spin_unlock(&fs_info->defrag_inodes_lock);
227 return entry;
228 }
229
btrfs_cleanup_defrag_inodes(struct btrfs_fs_info * fs_info)230 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
231 {
232 struct inode_defrag *defrag;
233 struct rb_node *node;
234
235 spin_lock(&fs_info->defrag_inodes_lock);
236 node = rb_first(&fs_info->defrag_inodes);
237 while (node) {
238 rb_erase(node, &fs_info->defrag_inodes);
239 defrag = rb_entry(node, struct inode_defrag, rb_node);
240 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
241
242 cond_resched_lock(&fs_info->defrag_inodes_lock);
243
244 node = rb_first(&fs_info->defrag_inodes);
245 }
246 spin_unlock(&fs_info->defrag_inodes_lock);
247 }
248
249 #define BTRFS_DEFRAG_BATCH 1024
250
__btrfs_run_defrag_inode(struct btrfs_fs_info * fs_info,struct inode_defrag * defrag)251 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
252 struct inode_defrag *defrag)
253 {
254 struct btrfs_root *inode_root;
255 struct inode *inode;
256 struct btrfs_ioctl_defrag_range_args range;
257 int ret = 0;
258 u64 cur = 0;
259
260 again:
261 if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
262 goto cleanup;
263 if (!__need_auto_defrag(fs_info))
264 goto cleanup;
265
266 /* get the inode */
267 inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
268 if (IS_ERR(inode_root)) {
269 ret = PTR_ERR(inode_root);
270 goto cleanup;
271 }
272
273 inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
274 btrfs_put_root(inode_root);
275 if (IS_ERR(inode)) {
276 ret = PTR_ERR(inode);
277 goto cleanup;
278 }
279
280 if (cur >= i_size_read(inode)) {
281 iput(inode);
282 goto cleanup;
283 }
284
285 /* do a chunk of defrag */
286 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
287 memset(&range, 0, sizeof(range));
288 range.len = (u64)-1;
289 range.start = cur;
290 range.extent_thresh = defrag->extent_thresh;
291
292 sb_start_write(fs_info->sb);
293 ret = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
294 BTRFS_DEFRAG_BATCH);
295 sb_end_write(fs_info->sb);
296 iput(inode);
297
298 if (ret < 0)
299 goto cleanup;
300
301 cur = max(cur + fs_info->sectorsize, range.start);
302 goto again;
303
304 cleanup:
305 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
306 return ret;
307 }
308
309 /*
310 * run through the list of inodes in the FS that need
311 * defragging
312 */
btrfs_run_defrag_inodes(struct btrfs_fs_info * fs_info)313 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
314 {
315 struct inode_defrag *defrag;
316 u64 first_ino = 0;
317 u64 root_objectid = 0;
318
319 atomic_inc(&fs_info->defrag_running);
320 while (1) {
321 /* Pause the auto defragger. */
322 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
323 &fs_info->fs_state))
324 break;
325
326 if (!__need_auto_defrag(fs_info))
327 break;
328
329 /* find an inode to defrag */
330 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
331 first_ino);
332 if (!defrag) {
333 if (root_objectid || first_ino) {
334 root_objectid = 0;
335 first_ino = 0;
336 continue;
337 } else {
338 break;
339 }
340 }
341
342 first_ino = defrag->ino + 1;
343 root_objectid = defrag->root;
344
345 __btrfs_run_defrag_inode(fs_info, defrag);
346 }
347 atomic_dec(&fs_info->defrag_running);
348
349 /*
350 * during unmount, we use the transaction_wait queue to
351 * wait for the defragger to stop
352 */
353 wake_up(&fs_info->transaction_wait);
354 return 0;
355 }
356
357 /* simple helper to fault in pages and copy. This should go away
358 * and be replaced with calls into generic code.
359 */
btrfs_copy_from_user(loff_t pos,size_t write_bytes,struct page ** prepared_pages,struct iov_iter * i)360 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
361 struct page **prepared_pages,
362 struct iov_iter *i)
363 {
364 size_t copied = 0;
365 size_t total_copied = 0;
366 int pg = 0;
367 int offset = offset_in_page(pos);
368
369 while (write_bytes > 0) {
370 size_t count = min_t(size_t,
371 PAGE_SIZE - offset, write_bytes);
372 struct page *page = prepared_pages[pg];
373 /*
374 * Copy data from userspace to the current page
375 */
376 copied = copy_page_from_iter_atomic(page, offset, count, i);
377
378 /* Flush processor's dcache for this page */
379 flush_dcache_page(page);
380
381 /*
382 * if we get a partial write, we can end up with
383 * partially up to date pages. These add
384 * a lot of complexity, so make sure they don't
385 * happen by forcing this copy to be retried.
386 *
387 * The rest of the btrfs_file_write code will fall
388 * back to page at a time copies after we return 0.
389 */
390 if (unlikely(copied < count)) {
391 if (!PageUptodate(page)) {
392 iov_iter_revert(i, copied);
393 copied = 0;
394 }
395 if (!copied)
396 break;
397 }
398
399 write_bytes -= copied;
400 total_copied += copied;
401 offset += copied;
402 if (offset == PAGE_SIZE) {
403 pg++;
404 offset = 0;
405 }
406 }
407 return total_copied;
408 }
409
410 /*
411 * unlocks pages after btrfs_file_write is done with them
412 */
btrfs_drop_pages(struct btrfs_fs_info * fs_info,struct page ** pages,size_t num_pages,u64 pos,u64 copied)413 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info,
414 struct page **pages, size_t num_pages,
415 u64 pos, u64 copied)
416 {
417 size_t i;
418 u64 block_start = round_down(pos, fs_info->sectorsize);
419 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
420
421 ASSERT(block_len <= U32_MAX);
422 for (i = 0; i < num_pages; i++) {
423 /* page checked is some magic around finding pages that
424 * have been modified without going through btrfs_set_page_dirty
425 * clear it here. There should be no need to mark the pages
426 * accessed as prepare_pages should have marked them accessed
427 * in prepare_pages via find_or_create_page()
428 */
429 btrfs_page_clamp_clear_checked(fs_info, pages[i], block_start,
430 block_len);
431 unlock_page(pages[i]);
432 put_page(pages[i]);
433 }
434 }
435
436 /*
437 * After btrfs_copy_from_user(), update the following things for delalloc:
438 * - Mark newly dirtied pages as DELALLOC in the io tree.
439 * Used to advise which range is to be written back.
440 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
441 * - Update inode size for past EOF write
442 */
btrfs_dirty_pages(struct btrfs_inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,struct extent_state ** cached,bool noreserve)443 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
444 size_t num_pages, loff_t pos, size_t write_bytes,
445 struct extent_state **cached, bool noreserve)
446 {
447 struct btrfs_fs_info *fs_info = inode->root->fs_info;
448 int err = 0;
449 int i;
450 u64 num_bytes;
451 u64 start_pos;
452 u64 end_of_last_block;
453 u64 end_pos = pos + write_bytes;
454 loff_t isize = i_size_read(&inode->vfs_inode);
455 unsigned int extra_bits = 0;
456
457 if (write_bytes == 0)
458 return 0;
459
460 if (noreserve)
461 extra_bits |= EXTENT_NORESERVE;
462
463 start_pos = round_down(pos, fs_info->sectorsize);
464 num_bytes = round_up(write_bytes + pos - start_pos,
465 fs_info->sectorsize);
466 ASSERT(num_bytes <= U32_MAX);
467
468 end_of_last_block = start_pos + num_bytes - 1;
469
470 /*
471 * The pages may have already been dirty, clear out old accounting so
472 * we can set things up properly
473 */
474 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
475 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
476 cached);
477
478 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
479 extra_bits, cached);
480 if (err)
481 return err;
482
483 for (i = 0; i < num_pages; i++) {
484 struct page *p = pages[i];
485
486 btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes);
487 btrfs_page_clamp_clear_checked(fs_info, p, start_pos, num_bytes);
488 btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes);
489 }
490
491 /*
492 * we've only changed i_size in ram, and we haven't updated
493 * the disk i_size. There is no need to log the inode
494 * at this time.
495 */
496 if (end_pos > isize)
497 i_size_write(&inode->vfs_inode, end_pos);
498 return 0;
499 }
500
501 /*
502 * this is very complex, but the basic idea is to drop all extents
503 * in the range start - end. hint_block is filled in with a block number
504 * that would be a good hint to the block allocator for this file.
505 *
506 * If an extent intersects the range but is not entirely inside the range
507 * it is either truncated or split. Anything entirely inside the range
508 * is deleted from the tree.
509 *
510 * Note: the VFS' inode number of bytes is not updated, it's up to the caller
511 * to deal with that. We set the field 'bytes_found' of the arguments structure
512 * with the number of allocated bytes found in the target range, so that the
513 * caller can update the inode's number of bytes in an atomic way when
514 * replacing extents in a range to avoid races with stat(2).
515 */
btrfs_drop_extents(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_drop_extents_args * args)516 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
517 struct btrfs_root *root, struct btrfs_inode *inode,
518 struct btrfs_drop_extents_args *args)
519 {
520 struct btrfs_fs_info *fs_info = root->fs_info;
521 struct extent_buffer *leaf;
522 struct btrfs_file_extent_item *fi;
523 struct btrfs_ref ref = { 0 };
524 struct btrfs_key key;
525 struct btrfs_key new_key;
526 u64 ino = btrfs_ino(inode);
527 u64 search_start = args->start;
528 u64 disk_bytenr = 0;
529 u64 num_bytes = 0;
530 u64 extent_offset = 0;
531 u64 extent_end = 0;
532 u64 last_end = args->start;
533 int del_nr = 0;
534 int del_slot = 0;
535 int extent_type;
536 int recow;
537 int ret;
538 int modify_tree = -1;
539 int update_refs;
540 int found = 0;
541 struct btrfs_path *path = args->path;
542
543 args->bytes_found = 0;
544 args->extent_inserted = false;
545
546 /* Must always have a path if ->replace_extent is true */
547 ASSERT(!(args->replace_extent && !args->path));
548
549 if (!path) {
550 path = btrfs_alloc_path();
551 if (!path) {
552 ret = -ENOMEM;
553 goto out;
554 }
555 }
556
557 if (args->drop_cache)
558 btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false);
559
560 if (args->start >= inode->disk_i_size && !args->replace_extent)
561 modify_tree = 0;
562
563 update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
564 while (1) {
565 recow = 0;
566 ret = btrfs_lookup_file_extent(trans, root, path, ino,
567 search_start, modify_tree);
568 if (ret < 0)
569 break;
570 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
571 leaf = path->nodes[0];
572 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
573 if (key.objectid == ino &&
574 key.type == BTRFS_EXTENT_DATA_KEY)
575 path->slots[0]--;
576 }
577 ret = 0;
578 next_slot:
579 leaf = path->nodes[0];
580 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
581 BUG_ON(del_nr > 0);
582 ret = btrfs_next_leaf(root, path);
583 if (ret < 0)
584 break;
585 if (ret > 0) {
586 ret = 0;
587 break;
588 }
589 leaf = path->nodes[0];
590 recow = 1;
591 }
592
593 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
594
595 if (key.objectid > ino)
596 break;
597 if (WARN_ON_ONCE(key.objectid < ino) ||
598 key.type < BTRFS_EXTENT_DATA_KEY) {
599 ASSERT(del_nr == 0);
600 path->slots[0]++;
601 goto next_slot;
602 }
603 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
604 break;
605
606 fi = btrfs_item_ptr(leaf, path->slots[0],
607 struct btrfs_file_extent_item);
608 extent_type = btrfs_file_extent_type(leaf, fi);
609
610 if (extent_type == BTRFS_FILE_EXTENT_REG ||
611 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
612 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
613 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
614 extent_offset = btrfs_file_extent_offset(leaf, fi);
615 extent_end = key.offset +
616 btrfs_file_extent_num_bytes(leaf, fi);
617 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
618 extent_end = key.offset +
619 btrfs_file_extent_ram_bytes(leaf, fi);
620 } else {
621 /* can't happen */
622 BUG();
623 }
624
625 /*
626 * Don't skip extent items representing 0 byte lengths. They
627 * used to be created (bug) if while punching holes we hit
628 * -ENOSPC condition. So if we find one here, just ensure we
629 * delete it, otherwise we would insert a new file extent item
630 * with the same key (offset) as that 0 bytes length file
631 * extent item in the call to setup_items_for_insert() later
632 * in this function.
633 */
634 if (extent_end == key.offset && extent_end >= search_start) {
635 last_end = extent_end;
636 goto delete_extent_item;
637 }
638
639 if (extent_end <= search_start) {
640 path->slots[0]++;
641 goto next_slot;
642 }
643
644 found = 1;
645 search_start = max(key.offset, args->start);
646 if (recow || !modify_tree) {
647 modify_tree = -1;
648 btrfs_release_path(path);
649 continue;
650 }
651
652 /*
653 * | - range to drop - |
654 * | -------- extent -------- |
655 */
656 if (args->start > key.offset && args->end < extent_end) {
657 BUG_ON(del_nr > 0);
658 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
659 ret = -EOPNOTSUPP;
660 break;
661 }
662
663 memcpy(&new_key, &key, sizeof(new_key));
664 new_key.offset = args->start;
665 ret = btrfs_duplicate_item(trans, root, path,
666 &new_key);
667 if (ret == -EAGAIN) {
668 btrfs_release_path(path);
669 continue;
670 }
671 if (ret < 0)
672 break;
673
674 leaf = path->nodes[0];
675 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
676 struct btrfs_file_extent_item);
677 btrfs_set_file_extent_num_bytes(leaf, fi,
678 args->start - key.offset);
679
680 fi = btrfs_item_ptr(leaf, path->slots[0],
681 struct btrfs_file_extent_item);
682
683 extent_offset += args->start - key.offset;
684 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
685 btrfs_set_file_extent_num_bytes(leaf, fi,
686 extent_end - args->start);
687 btrfs_mark_buffer_dirty(leaf);
688
689 if (update_refs && disk_bytenr > 0) {
690 btrfs_init_generic_ref(&ref,
691 BTRFS_ADD_DELAYED_REF,
692 disk_bytenr, num_bytes, 0);
693 btrfs_init_data_ref(&ref,
694 root->root_key.objectid,
695 new_key.objectid,
696 args->start - extent_offset,
697 0, false);
698 ret = btrfs_inc_extent_ref(trans, &ref);
699 if (ret) {
700 btrfs_abort_transaction(trans, ret);
701 break;
702 }
703 }
704 key.offset = args->start;
705 }
706 /*
707 * From here on out we will have actually dropped something, so
708 * last_end can be updated.
709 */
710 last_end = extent_end;
711
712 /*
713 * | ---- range to drop ----- |
714 * | -------- extent -------- |
715 */
716 if (args->start <= key.offset && args->end < extent_end) {
717 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
718 ret = -EOPNOTSUPP;
719 break;
720 }
721
722 memcpy(&new_key, &key, sizeof(new_key));
723 new_key.offset = args->end;
724 btrfs_set_item_key_safe(fs_info, path, &new_key);
725
726 extent_offset += args->end - key.offset;
727 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
728 btrfs_set_file_extent_num_bytes(leaf, fi,
729 extent_end - args->end);
730 btrfs_mark_buffer_dirty(leaf);
731 if (update_refs && disk_bytenr > 0)
732 args->bytes_found += args->end - key.offset;
733 break;
734 }
735
736 search_start = extent_end;
737 /*
738 * | ---- range to drop ----- |
739 * | -------- extent -------- |
740 */
741 if (args->start > key.offset && args->end >= extent_end) {
742 BUG_ON(del_nr > 0);
743 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
744 ret = -EOPNOTSUPP;
745 break;
746 }
747
748 btrfs_set_file_extent_num_bytes(leaf, fi,
749 args->start - key.offset);
750 btrfs_mark_buffer_dirty(leaf);
751 if (update_refs && disk_bytenr > 0)
752 args->bytes_found += extent_end - args->start;
753 if (args->end == extent_end)
754 break;
755
756 path->slots[0]++;
757 goto next_slot;
758 }
759
760 /*
761 * | ---- range to drop ----- |
762 * | ------ extent ------ |
763 */
764 if (args->start <= key.offset && args->end >= extent_end) {
765 delete_extent_item:
766 if (del_nr == 0) {
767 del_slot = path->slots[0];
768 del_nr = 1;
769 } else {
770 BUG_ON(del_slot + del_nr != path->slots[0]);
771 del_nr++;
772 }
773
774 if (update_refs &&
775 extent_type == BTRFS_FILE_EXTENT_INLINE) {
776 args->bytes_found += extent_end - key.offset;
777 extent_end = ALIGN(extent_end,
778 fs_info->sectorsize);
779 } else if (update_refs && disk_bytenr > 0) {
780 btrfs_init_generic_ref(&ref,
781 BTRFS_DROP_DELAYED_REF,
782 disk_bytenr, num_bytes, 0);
783 btrfs_init_data_ref(&ref,
784 root->root_key.objectid,
785 key.objectid,
786 key.offset - extent_offset, 0,
787 false);
788 ret = btrfs_free_extent(trans, &ref);
789 if (ret) {
790 btrfs_abort_transaction(trans, ret);
791 break;
792 }
793 args->bytes_found += extent_end - key.offset;
794 }
795
796 if (args->end == extent_end)
797 break;
798
799 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
800 path->slots[0]++;
801 goto next_slot;
802 }
803
804 ret = btrfs_del_items(trans, root, path, del_slot,
805 del_nr);
806 if (ret) {
807 btrfs_abort_transaction(trans, ret);
808 break;
809 }
810
811 del_nr = 0;
812 del_slot = 0;
813
814 btrfs_release_path(path);
815 continue;
816 }
817
818 BUG();
819 }
820
821 if (!ret && del_nr > 0) {
822 /*
823 * Set path->slots[0] to first slot, so that after the delete
824 * if items are move off from our leaf to its immediate left or
825 * right neighbor leafs, we end up with a correct and adjusted
826 * path->slots[0] for our insertion (if args->replace_extent).
827 */
828 path->slots[0] = del_slot;
829 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
830 if (ret)
831 btrfs_abort_transaction(trans, ret);
832 }
833
834 leaf = path->nodes[0];
835 /*
836 * If btrfs_del_items() was called, it might have deleted a leaf, in
837 * which case it unlocked our path, so check path->locks[0] matches a
838 * write lock.
839 */
840 if (!ret && args->replace_extent &&
841 path->locks[0] == BTRFS_WRITE_LOCK &&
842 btrfs_leaf_free_space(leaf) >=
843 sizeof(struct btrfs_item) + args->extent_item_size) {
844
845 key.objectid = ino;
846 key.type = BTRFS_EXTENT_DATA_KEY;
847 key.offset = args->start;
848 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
849 struct btrfs_key slot_key;
850
851 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
852 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
853 path->slots[0]++;
854 }
855 btrfs_setup_item_for_insert(root, path, &key, args->extent_item_size);
856 args->extent_inserted = true;
857 }
858
859 if (!args->path)
860 btrfs_free_path(path);
861 else if (!args->extent_inserted)
862 btrfs_release_path(path);
863 out:
864 args->drop_end = found ? min(args->end, last_end) : args->end;
865
866 return ret;
867 }
868
extent_mergeable(struct extent_buffer * leaf,int slot,u64 objectid,u64 bytenr,u64 orig_offset,u64 * start,u64 * end)869 static int extent_mergeable(struct extent_buffer *leaf, int slot,
870 u64 objectid, u64 bytenr, u64 orig_offset,
871 u64 *start, u64 *end)
872 {
873 struct btrfs_file_extent_item *fi;
874 struct btrfs_key key;
875 u64 extent_end;
876
877 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
878 return 0;
879
880 btrfs_item_key_to_cpu(leaf, &key, slot);
881 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
882 return 0;
883
884 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
885 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
886 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
887 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
888 btrfs_file_extent_compression(leaf, fi) ||
889 btrfs_file_extent_encryption(leaf, fi) ||
890 btrfs_file_extent_other_encoding(leaf, fi))
891 return 0;
892
893 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
894 if ((*start && *start != key.offset) || (*end && *end != extent_end))
895 return 0;
896
897 *start = key.offset;
898 *end = extent_end;
899 return 1;
900 }
901
902 /*
903 * Mark extent in the range start - end as written.
904 *
905 * This changes extent type from 'pre-allocated' to 'regular'. If only
906 * part of extent is marked as written, the extent will be split into
907 * two or three.
908 */
btrfs_mark_extent_written(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,u64 start,u64 end)909 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
910 struct btrfs_inode *inode, u64 start, u64 end)
911 {
912 struct btrfs_fs_info *fs_info = trans->fs_info;
913 struct btrfs_root *root = inode->root;
914 struct extent_buffer *leaf;
915 struct btrfs_path *path;
916 struct btrfs_file_extent_item *fi;
917 struct btrfs_ref ref = { 0 };
918 struct btrfs_key key;
919 struct btrfs_key new_key;
920 u64 bytenr;
921 u64 num_bytes;
922 u64 extent_end;
923 u64 orig_offset;
924 u64 other_start;
925 u64 other_end;
926 u64 split;
927 int del_nr = 0;
928 int del_slot = 0;
929 int recow;
930 int ret = 0;
931 u64 ino = btrfs_ino(inode);
932
933 path = btrfs_alloc_path();
934 if (!path)
935 return -ENOMEM;
936 again:
937 recow = 0;
938 split = start;
939 key.objectid = ino;
940 key.type = BTRFS_EXTENT_DATA_KEY;
941 key.offset = split;
942
943 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
944 if (ret < 0)
945 goto out;
946 if (ret > 0 && path->slots[0] > 0)
947 path->slots[0]--;
948
949 leaf = path->nodes[0];
950 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
951 if (key.objectid != ino ||
952 key.type != BTRFS_EXTENT_DATA_KEY) {
953 ret = -EINVAL;
954 btrfs_abort_transaction(trans, ret);
955 goto out;
956 }
957 fi = btrfs_item_ptr(leaf, path->slots[0],
958 struct btrfs_file_extent_item);
959 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
960 ret = -EINVAL;
961 btrfs_abort_transaction(trans, ret);
962 goto out;
963 }
964 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
965 if (key.offset > start || extent_end < end) {
966 ret = -EINVAL;
967 btrfs_abort_transaction(trans, ret);
968 goto out;
969 }
970
971 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
972 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
973 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
974 memcpy(&new_key, &key, sizeof(new_key));
975
976 if (start == key.offset && end < extent_end) {
977 other_start = 0;
978 other_end = start;
979 if (extent_mergeable(leaf, path->slots[0] - 1,
980 ino, bytenr, orig_offset,
981 &other_start, &other_end)) {
982 new_key.offset = end;
983 btrfs_set_item_key_safe(fs_info, path, &new_key);
984 fi = btrfs_item_ptr(leaf, path->slots[0],
985 struct btrfs_file_extent_item);
986 btrfs_set_file_extent_generation(leaf, fi,
987 trans->transid);
988 btrfs_set_file_extent_num_bytes(leaf, fi,
989 extent_end - end);
990 btrfs_set_file_extent_offset(leaf, fi,
991 end - orig_offset);
992 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
993 struct btrfs_file_extent_item);
994 btrfs_set_file_extent_generation(leaf, fi,
995 trans->transid);
996 btrfs_set_file_extent_num_bytes(leaf, fi,
997 end - other_start);
998 btrfs_mark_buffer_dirty(leaf);
999 goto out;
1000 }
1001 }
1002
1003 if (start > key.offset && end == extent_end) {
1004 other_start = end;
1005 other_end = 0;
1006 if (extent_mergeable(leaf, path->slots[0] + 1,
1007 ino, bytenr, orig_offset,
1008 &other_start, &other_end)) {
1009 fi = btrfs_item_ptr(leaf, path->slots[0],
1010 struct btrfs_file_extent_item);
1011 btrfs_set_file_extent_num_bytes(leaf, fi,
1012 start - key.offset);
1013 btrfs_set_file_extent_generation(leaf, fi,
1014 trans->transid);
1015 path->slots[0]++;
1016 new_key.offset = start;
1017 btrfs_set_item_key_safe(fs_info, path, &new_key);
1018
1019 fi = btrfs_item_ptr(leaf, path->slots[0],
1020 struct btrfs_file_extent_item);
1021 btrfs_set_file_extent_generation(leaf, fi,
1022 trans->transid);
1023 btrfs_set_file_extent_num_bytes(leaf, fi,
1024 other_end - start);
1025 btrfs_set_file_extent_offset(leaf, fi,
1026 start - orig_offset);
1027 btrfs_mark_buffer_dirty(leaf);
1028 goto out;
1029 }
1030 }
1031
1032 while (start > key.offset || end < extent_end) {
1033 if (key.offset == start)
1034 split = end;
1035
1036 new_key.offset = split;
1037 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1038 if (ret == -EAGAIN) {
1039 btrfs_release_path(path);
1040 goto again;
1041 }
1042 if (ret < 0) {
1043 btrfs_abort_transaction(trans, ret);
1044 goto out;
1045 }
1046
1047 leaf = path->nodes[0];
1048 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1049 struct btrfs_file_extent_item);
1050 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1051 btrfs_set_file_extent_num_bytes(leaf, fi,
1052 split - key.offset);
1053
1054 fi = btrfs_item_ptr(leaf, path->slots[0],
1055 struct btrfs_file_extent_item);
1056
1057 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1058 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1059 btrfs_set_file_extent_num_bytes(leaf, fi,
1060 extent_end - split);
1061 btrfs_mark_buffer_dirty(leaf);
1062
1063 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1064 num_bytes, 0);
1065 btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1066 orig_offset, 0, false);
1067 ret = btrfs_inc_extent_ref(trans, &ref);
1068 if (ret) {
1069 btrfs_abort_transaction(trans, ret);
1070 goto out;
1071 }
1072
1073 if (split == start) {
1074 key.offset = start;
1075 } else {
1076 if (start != key.offset) {
1077 ret = -EINVAL;
1078 btrfs_abort_transaction(trans, ret);
1079 goto out;
1080 }
1081 path->slots[0]--;
1082 extent_end = end;
1083 }
1084 recow = 1;
1085 }
1086
1087 other_start = end;
1088 other_end = 0;
1089 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1090 num_bytes, 0);
1091 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset,
1092 0, false);
1093 if (extent_mergeable(leaf, path->slots[0] + 1,
1094 ino, bytenr, orig_offset,
1095 &other_start, &other_end)) {
1096 if (recow) {
1097 btrfs_release_path(path);
1098 goto again;
1099 }
1100 extent_end = other_end;
1101 del_slot = path->slots[0] + 1;
1102 del_nr++;
1103 ret = btrfs_free_extent(trans, &ref);
1104 if (ret) {
1105 btrfs_abort_transaction(trans, ret);
1106 goto out;
1107 }
1108 }
1109 other_start = 0;
1110 other_end = start;
1111 if (extent_mergeable(leaf, path->slots[0] - 1,
1112 ino, bytenr, orig_offset,
1113 &other_start, &other_end)) {
1114 if (recow) {
1115 btrfs_release_path(path);
1116 goto again;
1117 }
1118 key.offset = other_start;
1119 del_slot = path->slots[0];
1120 del_nr++;
1121 ret = btrfs_free_extent(trans, &ref);
1122 if (ret) {
1123 btrfs_abort_transaction(trans, ret);
1124 goto out;
1125 }
1126 }
1127 if (del_nr == 0) {
1128 fi = btrfs_item_ptr(leaf, path->slots[0],
1129 struct btrfs_file_extent_item);
1130 btrfs_set_file_extent_type(leaf, fi,
1131 BTRFS_FILE_EXTENT_REG);
1132 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1133 btrfs_mark_buffer_dirty(leaf);
1134 } else {
1135 fi = btrfs_item_ptr(leaf, del_slot - 1,
1136 struct btrfs_file_extent_item);
1137 btrfs_set_file_extent_type(leaf, fi,
1138 BTRFS_FILE_EXTENT_REG);
1139 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1140 btrfs_set_file_extent_num_bytes(leaf, fi,
1141 extent_end - key.offset);
1142 btrfs_mark_buffer_dirty(leaf);
1143
1144 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1145 if (ret < 0) {
1146 btrfs_abort_transaction(trans, ret);
1147 goto out;
1148 }
1149 }
1150 out:
1151 btrfs_free_path(path);
1152 return ret;
1153 }
1154
1155 /*
1156 * on error we return an unlocked page and the error value
1157 * on success we return a locked page and 0
1158 */
prepare_uptodate_page(struct inode * inode,struct page * page,u64 pos,bool force_uptodate)1159 static int prepare_uptodate_page(struct inode *inode,
1160 struct page *page, u64 pos,
1161 bool force_uptodate)
1162 {
1163 struct folio *folio = page_folio(page);
1164 int ret = 0;
1165
1166 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1167 !PageUptodate(page)) {
1168 ret = btrfs_read_folio(NULL, folio);
1169 if (ret)
1170 return ret;
1171 lock_page(page);
1172 if (!PageUptodate(page)) {
1173 unlock_page(page);
1174 return -EIO;
1175 }
1176
1177 /*
1178 * Since btrfs_read_folio() will unlock the folio before it
1179 * returns, there is a window where btrfs_release_folio() can be
1180 * called to release the page. Here we check both inode
1181 * mapping and PagePrivate() to make sure the page was not
1182 * released.
1183 *
1184 * The private flag check is essential for subpage as we need
1185 * to store extra bitmap using page->private.
1186 */
1187 if (page->mapping != inode->i_mapping || !PagePrivate(page)) {
1188 unlock_page(page);
1189 return -EAGAIN;
1190 }
1191 }
1192 return 0;
1193 }
1194
get_prepare_fgp_flags(bool nowait)1195 static unsigned int get_prepare_fgp_flags(bool nowait)
1196 {
1197 unsigned int fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT;
1198
1199 if (nowait)
1200 fgp_flags |= FGP_NOWAIT;
1201
1202 return fgp_flags;
1203 }
1204
get_prepare_gfp_flags(struct inode * inode,bool nowait)1205 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait)
1206 {
1207 gfp_t gfp;
1208
1209 gfp = btrfs_alloc_write_mask(inode->i_mapping);
1210 if (nowait) {
1211 gfp &= ~__GFP_DIRECT_RECLAIM;
1212 gfp |= GFP_NOWAIT;
1213 }
1214
1215 return gfp;
1216 }
1217
1218 /*
1219 * this just gets pages into the page cache and locks them down.
1220 */
prepare_pages(struct inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,bool force_uptodate,bool nowait)1221 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1222 size_t num_pages, loff_t pos,
1223 size_t write_bytes, bool force_uptodate,
1224 bool nowait)
1225 {
1226 int i;
1227 unsigned long index = pos >> PAGE_SHIFT;
1228 gfp_t mask = get_prepare_gfp_flags(inode, nowait);
1229 unsigned int fgp_flags = get_prepare_fgp_flags(nowait);
1230 int err = 0;
1231 int faili;
1232
1233 for (i = 0; i < num_pages; i++) {
1234 again:
1235 pages[i] = pagecache_get_page(inode->i_mapping, index + i,
1236 fgp_flags, mask | __GFP_WRITE);
1237 if (!pages[i]) {
1238 faili = i - 1;
1239 if (nowait)
1240 err = -EAGAIN;
1241 else
1242 err = -ENOMEM;
1243 goto fail;
1244 }
1245
1246 err = set_page_extent_mapped(pages[i]);
1247 if (err < 0) {
1248 faili = i;
1249 goto fail;
1250 }
1251
1252 if (i == 0)
1253 err = prepare_uptodate_page(inode, pages[i], pos,
1254 force_uptodate);
1255 if (!err && i == num_pages - 1)
1256 err = prepare_uptodate_page(inode, pages[i],
1257 pos + write_bytes, false);
1258 if (err) {
1259 put_page(pages[i]);
1260 if (!nowait && err == -EAGAIN) {
1261 err = 0;
1262 goto again;
1263 }
1264 faili = i - 1;
1265 goto fail;
1266 }
1267 wait_on_page_writeback(pages[i]);
1268 }
1269
1270 return 0;
1271 fail:
1272 while (faili >= 0) {
1273 unlock_page(pages[faili]);
1274 put_page(pages[faili]);
1275 faili--;
1276 }
1277 return err;
1278
1279 }
1280
1281 /*
1282 * This function locks the extent and properly waits for data=ordered extents
1283 * to finish before allowing the pages to be modified if need.
1284 *
1285 * The return value:
1286 * 1 - the extent is locked
1287 * 0 - the extent is not locked, and everything is OK
1288 * -EAGAIN - need re-prepare the pages
1289 * the other < 0 number - Something wrong happens
1290 */
1291 static noinline int
lock_and_cleanup_extent_if_need(struct btrfs_inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,u64 * lockstart,u64 * lockend,bool nowait,struct extent_state ** cached_state)1292 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1293 size_t num_pages, loff_t pos,
1294 size_t write_bytes,
1295 u64 *lockstart, u64 *lockend, bool nowait,
1296 struct extent_state **cached_state)
1297 {
1298 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1299 u64 start_pos;
1300 u64 last_pos;
1301 int i;
1302 int ret = 0;
1303
1304 start_pos = round_down(pos, fs_info->sectorsize);
1305 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
1306
1307 if (start_pos < inode->vfs_inode.i_size) {
1308 struct btrfs_ordered_extent *ordered;
1309
1310 if (nowait) {
1311 if (!try_lock_extent(&inode->io_tree, start_pos, last_pos)) {
1312 for (i = 0; i < num_pages; i++) {
1313 unlock_page(pages[i]);
1314 put_page(pages[i]);
1315 pages[i] = NULL;
1316 }
1317
1318 return -EAGAIN;
1319 }
1320 } else {
1321 lock_extent(&inode->io_tree, start_pos, last_pos, cached_state);
1322 }
1323
1324 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1325 last_pos - start_pos + 1);
1326 if (ordered &&
1327 ordered->file_offset + ordered->num_bytes > start_pos &&
1328 ordered->file_offset <= last_pos) {
1329 unlock_extent(&inode->io_tree, start_pos, last_pos,
1330 cached_state);
1331 for (i = 0; i < num_pages; i++) {
1332 unlock_page(pages[i]);
1333 put_page(pages[i]);
1334 }
1335 btrfs_start_ordered_extent(ordered, 1);
1336 btrfs_put_ordered_extent(ordered);
1337 return -EAGAIN;
1338 }
1339 if (ordered)
1340 btrfs_put_ordered_extent(ordered);
1341
1342 *lockstart = start_pos;
1343 *lockend = last_pos;
1344 ret = 1;
1345 }
1346
1347 /*
1348 * We should be called after prepare_pages() which should have locked
1349 * all pages in the range.
1350 */
1351 for (i = 0; i < num_pages; i++)
1352 WARN_ON(!PageLocked(pages[i]));
1353
1354 return ret;
1355 }
1356
1357 /*
1358 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1359 *
1360 * @pos: File offset.
1361 * @write_bytes: The length to write, will be updated to the nocow writeable
1362 * range.
1363 *
1364 * This function will flush ordered extents in the range to ensure proper
1365 * nocow checks.
1366 *
1367 * Return:
1368 * > 0 If we can nocow, and updates @write_bytes.
1369 * 0 If we can't do a nocow write.
1370 * -EAGAIN If we can't do a nocow write because snapshoting of the inode's
1371 * root is in progress.
1372 * < 0 If an error happened.
1373 *
1374 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
1375 */
btrfs_check_nocow_lock(struct btrfs_inode * inode,loff_t pos,size_t * write_bytes,bool nowait)1376 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1377 size_t *write_bytes, bool nowait)
1378 {
1379 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1380 struct btrfs_root *root = inode->root;
1381 u64 lockstart, lockend;
1382 u64 num_bytes;
1383 int ret;
1384
1385 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1386 return 0;
1387
1388 if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
1389 return -EAGAIN;
1390
1391 lockstart = round_down(pos, fs_info->sectorsize);
1392 lockend = round_up(pos + *write_bytes,
1393 fs_info->sectorsize) - 1;
1394 num_bytes = lockend - lockstart + 1;
1395
1396 if (nowait) {
1397 if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend)) {
1398 btrfs_drew_write_unlock(&root->snapshot_lock);
1399 return -EAGAIN;
1400 }
1401 } else {
1402 btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend, NULL);
1403 }
1404 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1405 NULL, NULL, NULL, nowait, false);
1406 if (ret <= 0)
1407 btrfs_drew_write_unlock(&root->snapshot_lock);
1408 else
1409 *write_bytes = min_t(size_t, *write_bytes ,
1410 num_bytes - pos + lockstart);
1411 unlock_extent(&inode->io_tree, lockstart, lockend, NULL);
1412
1413 return ret;
1414 }
1415
btrfs_check_nocow_unlock(struct btrfs_inode * inode)1416 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1417 {
1418 btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1419 }
1420
update_time_for_write(struct inode * inode)1421 static void update_time_for_write(struct inode *inode)
1422 {
1423 struct timespec64 now;
1424
1425 if (IS_NOCMTIME(inode))
1426 return;
1427
1428 now = current_time(inode);
1429 if (!timespec64_equal(&inode->i_mtime, &now))
1430 inode->i_mtime = now;
1431
1432 if (!timespec64_equal(&inode->i_ctime, &now))
1433 inode->i_ctime = now;
1434
1435 if (IS_I_VERSION(inode))
1436 inode_inc_iversion(inode);
1437 }
1438
btrfs_write_check(struct kiocb * iocb,struct iov_iter * from,size_t count)1439 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1440 size_t count)
1441 {
1442 struct file *file = iocb->ki_filp;
1443 struct inode *inode = file_inode(file);
1444 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1445 loff_t pos = iocb->ki_pos;
1446 int ret;
1447 loff_t oldsize;
1448 loff_t start_pos;
1449
1450 /*
1451 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
1452 * prealloc flags, as without those flags we always have to COW. We will
1453 * later check if we can really COW into the target range (using
1454 * can_nocow_extent() at btrfs_get_blocks_direct_write()).
1455 */
1456 if ((iocb->ki_flags & IOCB_NOWAIT) &&
1457 !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1458 return -EAGAIN;
1459
1460 current->backing_dev_info = inode_to_bdi(inode);
1461 ret = file_remove_privs(file);
1462 if (ret)
1463 return ret;
1464
1465 /*
1466 * We reserve space for updating the inode when we reserve space for the
1467 * extent we are going to write, so we will enospc out there. We don't
1468 * need to start yet another transaction to update the inode as we will
1469 * update the inode when we finish writing whatever data we write.
1470 */
1471 update_time_for_write(inode);
1472
1473 start_pos = round_down(pos, fs_info->sectorsize);
1474 oldsize = i_size_read(inode);
1475 if (start_pos > oldsize) {
1476 /* Expand hole size to cover write data, preventing empty gap */
1477 loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1478
1479 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1480 if (ret) {
1481 current->backing_dev_info = NULL;
1482 return ret;
1483 }
1484 }
1485
1486 return 0;
1487 }
1488
btrfs_buffered_write(struct kiocb * iocb,struct iov_iter * i)1489 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1490 struct iov_iter *i)
1491 {
1492 struct file *file = iocb->ki_filp;
1493 loff_t pos;
1494 struct inode *inode = file_inode(file);
1495 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1496 struct page **pages = NULL;
1497 struct extent_changeset *data_reserved = NULL;
1498 u64 release_bytes = 0;
1499 u64 lockstart;
1500 u64 lockend;
1501 size_t num_written = 0;
1502 int nrptrs;
1503 ssize_t ret;
1504 bool only_release_metadata = false;
1505 bool force_page_uptodate = false;
1506 loff_t old_isize = i_size_read(inode);
1507 unsigned int ilock_flags = 0;
1508 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
1509 unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0);
1510
1511 if (nowait)
1512 ilock_flags |= BTRFS_ILOCK_TRY;
1513
1514 ret = btrfs_inode_lock(inode, ilock_flags);
1515 if (ret < 0)
1516 return ret;
1517
1518 ret = generic_write_checks(iocb, i);
1519 if (ret <= 0)
1520 goto out;
1521
1522 ret = btrfs_write_check(iocb, i, ret);
1523 if (ret < 0)
1524 goto out;
1525
1526 pos = iocb->ki_pos;
1527 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1528 PAGE_SIZE / (sizeof(struct page *)));
1529 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1530 nrptrs = max(nrptrs, 8);
1531 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1532 if (!pages) {
1533 ret = -ENOMEM;
1534 goto out;
1535 }
1536
1537 while (iov_iter_count(i) > 0) {
1538 struct extent_state *cached_state = NULL;
1539 size_t offset = offset_in_page(pos);
1540 size_t sector_offset;
1541 size_t write_bytes = min(iov_iter_count(i),
1542 nrptrs * (size_t)PAGE_SIZE -
1543 offset);
1544 size_t num_pages;
1545 size_t reserve_bytes;
1546 size_t dirty_pages;
1547 size_t copied;
1548 size_t dirty_sectors;
1549 size_t num_sectors;
1550 int extents_locked;
1551
1552 /*
1553 * Fault pages before locking them in prepare_pages
1554 * to avoid recursive lock
1555 */
1556 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
1557 ret = -EFAULT;
1558 break;
1559 }
1560
1561 only_release_metadata = false;
1562 sector_offset = pos & (fs_info->sectorsize - 1);
1563
1564 extent_changeset_release(data_reserved);
1565 ret = btrfs_check_data_free_space(BTRFS_I(inode),
1566 &data_reserved, pos,
1567 write_bytes, nowait);
1568 if (ret < 0) {
1569 int can_nocow;
1570
1571 if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) {
1572 ret = -EAGAIN;
1573 break;
1574 }
1575
1576 /*
1577 * If we don't have to COW at the offset, reserve
1578 * metadata only. write_bytes may get smaller than
1579 * requested here.
1580 */
1581 can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1582 &write_bytes, nowait);
1583 if (can_nocow < 0)
1584 ret = can_nocow;
1585 if (can_nocow > 0)
1586 ret = 0;
1587 if (ret)
1588 break;
1589 only_release_metadata = true;
1590 }
1591
1592 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1593 WARN_ON(num_pages > nrptrs);
1594 reserve_bytes = round_up(write_bytes + sector_offset,
1595 fs_info->sectorsize);
1596 WARN_ON(reserve_bytes == 0);
1597 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1598 reserve_bytes,
1599 reserve_bytes, nowait);
1600 if (ret) {
1601 if (!only_release_metadata)
1602 btrfs_free_reserved_data_space(BTRFS_I(inode),
1603 data_reserved, pos,
1604 write_bytes);
1605 else
1606 btrfs_check_nocow_unlock(BTRFS_I(inode));
1607
1608 if (nowait && ret == -ENOSPC)
1609 ret = -EAGAIN;
1610 break;
1611 }
1612
1613 release_bytes = reserve_bytes;
1614 again:
1615 ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags);
1616 if (ret) {
1617 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1618 break;
1619 }
1620
1621 /*
1622 * This is going to setup the pages array with the number of
1623 * pages we want, so we don't really need to worry about the
1624 * contents of pages from loop to loop
1625 */
1626 ret = prepare_pages(inode, pages, num_pages,
1627 pos, write_bytes, force_page_uptodate, false);
1628 if (ret) {
1629 btrfs_delalloc_release_extents(BTRFS_I(inode),
1630 reserve_bytes);
1631 break;
1632 }
1633
1634 extents_locked = lock_and_cleanup_extent_if_need(
1635 BTRFS_I(inode), pages,
1636 num_pages, pos, write_bytes, &lockstart,
1637 &lockend, nowait, &cached_state);
1638 if (extents_locked < 0) {
1639 if (!nowait && extents_locked == -EAGAIN)
1640 goto again;
1641
1642 btrfs_delalloc_release_extents(BTRFS_I(inode),
1643 reserve_bytes);
1644 ret = extents_locked;
1645 break;
1646 }
1647
1648 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1649
1650 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1651 dirty_sectors = round_up(copied + sector_offset,
1652 fs_info->sectorsize);
1653 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1654
1655 /*
1656 * if we have trouble faulting in the pages, fall
1657 * back to one page at a time
1658 */
1659 if (copied < write_bytes)
1660 nrptrs = 1;
1661
1662 if (copied == 0) {
1663 force_page_uptodate = true;
1664 dirty_sectors = 0;
1665 dirty_pages = 0;
1666 } else {
1667 force_page_uptodate = false;
1668 dirty_pages = DIV_ROUND_UP(copied + offset,
1669 PAGE_SIZE);
1670 }
1671
1672 if (num_sectors > dirty_sectors) {
1673 /* release everything except the sectors we dirtied */
1674 release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1675 if (only_release_metadata) {
1676 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1677 release_bytes, true);
1678 } else {
1679 u64 __pos;
1680
1681 __pos = round_down(pos,
1682 fs_info->sectorsize) +
1683 (dirty_pages << PAGE_SHIFT);
1684 btrfs_delalloc_release_space(BTRFS_I(inode),
1685 data_reserved, __pos,
1686 release_bytes, true);
1687 }
1688 }
1689
1690 release_bytes = round_up(copied + sector_offset,
1691 fs_info->sectorsize);
1692
1693 ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1694 dirty_pages, pos, copied,
1695 &cached_state, only_release_metadata);
1696
1697 /*
1698 * If we have not locked the extent range, because the range's
1699 * start offset is >= i_size, we might still have a non-NULL
1700 * cached extent state, acquired while marking the extent range
1701 * as delalloc through btrfs_dirty_pages(). Therefore free any
1702 * possible cached extent state to avoid a memory leak.
1703 */
1704 if (extents_locked)
1705 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
1706 lockend, &cached_state);
1707 else
1708 free_extent_state(cached_state);
1709
1710 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1711 if (ret) {
1712 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1713 break;
1714 }
1715
1716 release_bytes = 0;
1717 if (only_release_metadata)
1718 btrfs_check_nocow_unlock(BTRFS_I(inode));
1719
1720 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1721
1722 cond_resched();
1723
1724 pos += copied;
1725 num_written += copied;
1726 }
1727
1728 kfree(pages);
1729
1730 if (release_bytes) {
1731 if (only_release_metadata) {
1732 btrfs_check_nocow_unlock(BTRFS_I(inode));
1733 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1734 release_bytes, true);
1735 } else {
1736 btrfs_delalloc_release_space(BTRFS_I(inode),
1737 data_reserved,
1738 round_down(pos, fs_info->sectorsize),
1739 release_bytes, true);
1740 }
1741 }
1742
1743 extent_changeset_free(data_reserved);
1744 if (num_written > 0) {
1745 pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1746 iocb->ki_pos += num_written;
1747 }
1748 out:
1749 btrfs_inode_unlock(inode, ilock_flags);
1750 return num_written ? num_written : ret;
1751 }
1752
check_direct_IO(struct btrfs_fs_info * fs_info,const struct iov_iter * iter,loff_t offset)1753 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1754 const struct iov_iter *iter, loff_t offset)
1755 {
1756 const u32 blocksize_mask = fs_info->sectorsize - 1;
1757
1758 if (offset & blocksize_mask)
1759 return -EINVAL;
1760
1761 if (iov_iter_alignment(iter) & blocksize_mask)
1762 return -EINVAL;
1763
1764 return 0;
1765 }
1766
btrfs_direct_write(struct kiocb * iocb,struct iov_iter * from)1767 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1768 {
1769 struct file *file = iocb->ki_filp;
1770 struct inode *inode = file_inode(file);
1771 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1772 loff_t pos;
1773 ssize_t written = 0;
1774 ssize_t written_buffered;
1775 size_t prev_left = 0;
1776 loff_t endbyte;
1777 ssize_t err;
1778 unsigned int ilock_flags = 0;
1779 struct iomap_dio *dio;
1780
1781 if (iocb->ki_flags & IOCB_NOWAIT)
1782 ilock_flags |= BTRFS_ILOCK_TRY;
1783
1784 /* If the write DIO is within EOF, use a shared lock */
1785 if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode))
1786 ilock_flags |= BTRFS_ILOCK_SHARED;
1787
1788 relock:
1789 err = btrfs_inode_lock(inode, ilock_flags);
1790 if (err < 0)
1791 return err;
1792
1793 err = generic_write_checks(iocb, from);
1794 if (err <= 0) {
1795 btrfs_inode_unlock(inode, ilock_flags);
1796 return err;
1797 }
1798
1799 err = btrfs_write_check(iocb, from, err);
1800 if (err < 0) {
1801 btrfs_inode_unlock(inode, ilock_flags);
1802 goto out;
1803 }
1804
1805 pos = iocb->ki_pos;
1806 /*
1807 * Re-check since file size may have changed just before taking the
1808 * lock or pos may have changed because of O_APPEND in generic_write_check()
1809 */
1810 if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1811 pos + iov_iter_count(from) > i_size_read(inode)) {
1812 btrfs_inode_unlock(inode, ilock_flags);
1813 ilock_flags &= ~BTRFS_ILOCK_SHARED;
1814 goto relock;
1815 }
1816
1817 if (check_direct_IO(fs_info, from, pos)) {
1818 btrfs_inode_unlock(inode, ilock_flags);
1819 goto buffered;
1820 }
1821
1822 /*
1823 * The iov_iter can be mapped to the same file range we are writing to.
1824 * If that's the case, then we will deadlock in the iomap code, because
1825 * it first calls our callback btrfs_dio_iomap_begin(), which will create
1826 * an ordered extent, and after that it will fault in the pages that the
1827 * iov_iter refers to. During the fault in we end up in the readahead
1828 * pages code (starting at btrfs_readahead()), which will lock the range,
1829 * find that ordered extent and then wait for it to complete (at
1830 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since
1831 * obviously the ordered extent can never complete as we didn't submit
1832 * yet the respective bio(s). This always happens when the buffer is
1833 * memory mapped to the same file range, since the iomap DIO code always
1834 * invalidates pages in the target file range (after starting and waiting
1835 * for any writeback).
1836 *
1837 * So here we disable page faults in the iov_iter and then retry if we
1838 * got -EFAULT, faulting in the pages before the retry.
1839 */
1840 from->nofault = true;
1841 dio = btrfs_dio_write(iocb, from, written);
1842 from->nofault = false;
1843
1844 /*
1845 * iomap_dio_complete() will call btrfs_sync_file() if we have a dsync
1846 * iocb, and that needs to lock the inode. So unlock it before calling
1847 * iomap_dio_complete() to avoid a deadlock.
1848 */
1849 btrfs_inode_unlock(inode, ilock_flags);
1850
1851 if (IS_ERR_OR_NULL(dio))
1852 err = PTR_ERR_OR_ZERO(dio);
1853 else
1854 err = iomap_dio_complete(dio);
1855
1856 /* No increment (+=) because iomap returns a cumulative value. */
1857 if (err > 0)
1858 written = err;
1859
1860 if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) {
1861 const size_t left = iov_iter_count(from);
1862 /*
1863 * We have more data left to write. Try to fault in as many as
1864 * possible of the remainder pages and retry. We do this without
1865 * releasing and locking again the inode, to prevent races with
1866 * truncate.
1867 *
1868 * Also, in case the iov refers to pages in the file range of the
1869 * file we want to write to (due to a mmap), we could enter an
1870 * infinite loop if we retry after faulting the pages in, since
1871 * iomap will invalidate any pages in the range early on, before
1872 * it tries to fault in the pages of the iov. So we keep track of
1873 * how much was left of iov in the previous EFAULT and fallback
1874 * to buffered IO in case we haven't made any progress.
1875 */
1876 if (left == prev_left) {
1877 err = -ENOTBLK;
1878 } else {
1879 fault_in_iov_iter_readable(from, left);
1880 prev_left = left;
1881 goto relock;
1882 }
1883 }
1884
1885 /*
1886 * If 'err' is -ENOTBLK or we have not written all data, then it means
1887 * we must fallback to buffered IO.
1888 */
1889 if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from))
1890 goto out;
1891
1892 buffered:
1893 /*
1894 * If we are in a NOWAIT context, then return -EAGAIN to signal the caller
1895 * it must retry the operation in a context where blocking is acceptable,
1896 * since we currently don't have NOWAIT semantics support for buffered IO
1897 * and may block there for many reasons (reserving space for example).
1898 */
1899 if (iocb->ki_flags & IOCB_NOWAIT) {
1900 err = -EAGAIN;
1901 goto out;
1902 }
1903
1904 pos = iocb->ki_pos;
1905 written_buffered = btrfs_buffered_write(iocb, from);
1906 if (written_buffered < 0) {
1907 err = written_buffered;
1908 goto out;
1909 }
1910 /*
1911 * Ensure all data is persisted. We want the next direct IO read to be
1912 * able to read what was just written.
1913 */
1914 endbyte = pos + written_buffered - 1;
1915 err = btrfs_fdatawrite_range(inode, pos, endbyte);
1916 if (err)
1917 goto out;
1918 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1919 if (err)
1920 goto out;
1921 written += written_buffered;
1922 iocb->ki_pos = pos + written_buffered;
1923 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1924 endbyte >> PAGE_SHIFT);
1925 out:
1926 return err < 0 ? err : written;
1927 }
1928
btrfs_encoded_write(struct kiocb * iocb,struct iov_iter * from,const struct btrfs_ioctl_encoded_io_args * encoded)1929 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
1930 const struct btrfs_ioctl_encoded_io_args *encoded)
1931 {
1932 struct file *file = iocb->ki_filp;
1933 struct inode *inode = file_inode(file);
1934 loff_t count;
1935 ssize_t ret;
1936
1937 btrfs_inode_lock(inode, 0);
1938 count = encoded->len;
1939 ret = generic_write_checks_count(iocb, &count);
1940 if (ret == 0 && count != encoded->len) {
1941 /*
1942 * The write got truncated by generic_write_checks_count(). We
1943 * can't do a partial encoded write.
1944 */
1945 ret = -EFBIG;
1946 }
1947 if (ret || encoded->len == 0)
1948 goto out;
1949
1950 ret = btrfs_write_check(iocb, from, encoded->len);
1951 if (ret < 0)
1952 goto out;
1953
1954 ret = btrfs_do_encoded_write(iocb, from, encoded);
1955 out:
1956 btrfs_inode_unlock(inode, 0);
1957 return ret;
1958 }
1959
btrfs_do_write_iter(struct kiocb * iocb,struct iov_iter * from,const struct btrfs_ioctl_encoded_io_args * encoded)1960 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
1961 const struct btrfs_ioctl_encoded_io_args *encoded)
1962 {
1963 struct file *file = iocb->ki_filp;
1964 struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1965 ssize_t num_written, num_sync;
1966 const bool sync = iocb_is_dsync(iocb);
1967
1968 /*
1969 * If the fs flips readonly due to some impossible error, although we
1970 * have opened a file as writable, we have to stop this write operation
1971 * to ensure consistency.
1972 */
1973 if (BTRFS_FS_ERROR(inode->root->fs_info))
1974 return -EROFS;
1975
1976 if (encoded && (iocb->ki_flags & IOCB_NOWAIT))
1977 return -EOPNOTSUPP;
1978
1979 if (sync)
1980 atomic_inc(&inode->sync_writers);
1981
1982 if (encoded) {
1983 num_written = btrfs_encoded_write(iocb, from, encoded);
1984 num_sync = encoded->len;
1985 } else if (iocb->ki_flags & IOCB_DIRECT) {
1986 num_written = btrfs_direct_write(iocb, from);
1987 num_sync = num_written;
1988 } else {
1989 num_written = btrfs_buffered_write(iocb, from);
1990 num_sync = num_written;
1991 }
1992
1993 btrfs_set_inode_last_sub_trans(inode);
1994
1995 if (num_sync > 0) {
1996 num_sync = generic_write_sync(iocb, num_sync);
1997 if (num_sync < 0)
1998 num_written = num_sync;
1999 }
2000
2001 if (sync)
2002 atomic_dec(&inode->sync_writers);
2003
2004 current->backing_dev_info = NULL;
2005 return num_written;
2006 }
2007
btrfs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)2008 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2009 {
2010 return btrfs_do_write_iter(iocb, from, NULL);
2011 }
2012
btrfs_release_file(struct inode * inode,struct file * filp)2013 int btrfs_release_file(struct inode *inode, struct file *filp)
2014 {
2015 struct btrfs_file_private *private = filp->private_data;
2016
2017 if (private && private->filldir_buf)
2018 kfree(private->filldir_buf);
2019 kfree(private);
2020 filp->private_data = NULL;
2021
2022 /*
2023 * Set by setattr when we are about to truncate a file from a non-zero
2024 * size to a zero size. This tries to flush down new bytes that may
2025 * have been written if the application were using truncate to replace
2026 * a file in place.
2027 */
2028 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
2029 &BTRFS_I(inode)->runtime_flags))
2030 filemap_flush(inode->i_mapping);
2031 return 0;
2032 }
2033
start_ordered_ops(struct inode * inode,loff_t start,loff_t end)2034 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2035 {
2036 int ret;
2037 struct blk_plug plug;
2038
2039 /*
2040 * This is only called in fsync, which would do synchronous writes, so
2041 * a plug can merge adjacent IOs as much as possible. Esp. in case of
2042 * multiple disks using raid profile, a large IO can be split to
2043 * several segments of stripe length (currently 64K).
2044 */
2045 blk_start_plug(&plug);
2046 atomic_inc(&BTRFS_I(inode)->sync_writers);
2047 ret = btrfs_fdatawrite_range(inode, start, end);
2048 atomic_dec(&BTRFS_I(inode)->sync_writers);
2049 blk_finish_plug(&plug);
2050
2051 return ret;
2052 }
2053
skip_inode_logging(const struct btrfs_log_ctx * ctx)2054 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
2055 {
2056 struct btrfs_inode *inode = BTRFS_I(ctx->inode);
2057 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2058
2059 if (btrfs_inode_in_log(inode, fs_info->generation) &&
2060 list_empty(&ctx->ordered_extents))
2061 return true;
2062
2063 /*
2064 * If we are doing a fast fsync we can not bail out if the inode's
2065 * last_trans is <= then the last committed transaction, because we only
2066 * update the last_trans of the inode during ordered extent completion,
2067 * and for a fast fsync we don't wait for that, we only wait for the
2068 * writeback to complete.
2069 */
2070 if (inode->last_trans <= fs_info->last_trans_committed &&
2071 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
2072 list_empty(&ctx->ordered_extents)))
2073 return true;
2074
2075 return false;
2076 }
2077
2078 /*
2079 * fsync call for both files and directories. This logs the inode into
2080 * the tree log instead of forcing full commits whenever possible.
2081 *
2082 * It needs to call filemap_fdatawait so that all ordered extent updates are
2083 * in the metadata btree are up to date for copying to the log.
2084 *
2085 * It drops the inode mutex before doing the tree log commit. This is an
2086 * important optimization for directories because holding the mutex prevents
2087 * new operations on the dir while we write to disk.
2088 */
btrfs_sync_file(struct file * file,loff_t start,loff_t end,int datasync)2089 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2090 {
2091 struct dentry *dentry = file_dentry(file);
2092 struct inode *inode = d_inode(dentry);
2093 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2094 struct btrfs_root *root = BTRFS_I(inode)->root;
2095 struct btrfs_trans_handle *trans;
2096 struct btrfs_log_ctx ctx;
2097 int ret = 0, err;
2098 u64 len;
2099 bool full_sync;
2100
2101 trace_btrfs_sync_file(file, datasync);
2102
2103 btrfs_init_log_ctx(&ctx, inode);
2104
2105 /*
2106 * Always set the range to a full range, otherwise we can get into
2107 * several problems, from missing file extent items to represent holes
2108 * when not using the NO_HOLES feature, to log tree corruption due to
2109 * races between hole detection during logging and completion of ordered
2110 * extents outside the range, to missing checksums due to ordered extents
2111 * for which we flushed only a subset of their pages.
2112 */
2113 start = 0;
2114 end = LLONG_MAX;
2115 len = (u64)LLONG_MAX + 1;
2116
2117 /*
2118 * We write the dirty pages in the range and wait until they complete
2119 * out of the ->i_mutex. If so, we can flush the dirty pages by
2120 * multi-task, and make the performance up. See
2121 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2122 */
2123 ret = start_ordered_ops(inode, start, end);
2124 if (ret)
2125 goto out;
2126
2127 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
2128
2129 atomic_inc(&root->log_batch);
2130
2131 /*
2132 * Before we acquired the inode's lock and the mmap lock, someone may
2133 * have dirtied more pages in the target range. We need to make sure
2134 * that writeback for any such pages does not start while we are logging
2135 * the inode, because if it does, any of the following might happen when
2136 * we are not doing a full inode sync:
2137 *
2138 * 1) We log an extent after its writeback finishes but before its
2139 * checksums are added to the csum tree, leading to -EIO errors
2140 * when attempting to read the extent after a log replay.
2141 *
2142 * 2) We can end up logging an extent before its writeback finishes.
2143 * Therefore after the log replay we will have a file extent item
2144 * pointing to an unwritten extent (and no data checksums as well).
2145 *
2146 * So trigger writeback for any eventual new dirty pages and then we
2147 * wait for all ordered extents to complete below.
2148 */
2149 ret = start_ordered_ops(inode, start, end);
2150 if (ret) {
2151 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2152 goto out;
2153 }
2154
2155 /*
2156 * Always check for the full sync flag while holding the inode's lock,
2157 * to avoid races with other tasks. The flag must be either set all the
2158 * time during logging or always off all the time while logging.
2159 * We check the flag here after starting delalloc above, because when
2160 * running delalloc the full sync flag may be set if we need to drop
2161 * extra extent map ranges due to temporary memory allocation failures.
2162 */
2163 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2164 &BTRFS_I(inode)->runtime_flags);
2165
2166 /*
2167 * We have to do this here to avoid the priority inversion of waiting on
2168 * IO of a lower priority task while holding a transaction open.
2169 *
2170 * For a full fsync we wait for the ordered extents to complete while
2171 * for a fast fsync we wait just for writeback to complete, and then
2172 * attach the ordered extents to the transaction so that a transaction
2173 * commit waits for their completion, to avoid data loss if we fsync,
2174 * the current transaction commits before the ordered extents complete
2175 * and a power failure happens right after that.
2176 *
2177 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
2178 * logical address recorded in the ordered extent may change. We need
2179 * to wait for the IO to stabilize the logical address.
2180 */
2181 if (full_sync || btrfs_is_zoned(fs_info)) {
2182 ret = btrfs_wait_ordered_range(inode, start, len);
2183 } else {
2184 /*
2185 * Get our ordered extents as soon as possible to avoid doing
2186 * checksum lookups in the csum tree, and use instead the
2187 * checksums attached to the ordered extents.
2188 */
2189 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
2190 &ctx.ordered_extents);
2191 ret = filemap_fdatawait_range(inode->i_mapping, start, end);
2192 }
2193
2194 if (ret)
2195 goto out_release_extents;
2196
2197 atomic_inc(&root->log_batch);
2198
2199 smp_mb();
2200 if (skip_inode_logging(&ctx)) {
2201 /*
2202 * We've had everything committed since the last time we were
2203 * modified so clear this flag in case it was set for whatever
2204 * reason, it's no longer relevant.
2205 */
2206 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2207 &BTRFS_I(inode)->runtime_flags);
2208 /*
2209 * An ordered extent might have started before and completed
2210 * already with io errors, in which case the inode was not
2211 * updated and we end up here. So check the inode's mapping
2212 * for any errors that might have happened since we last
2213 * checked called fsync.
2214 */
2215 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2216 goto out_release_extents;
2217 }
2218
2219 /*
2220 * We use start here because we will need to wait on the IO to complete
2221 * in btrfs_sync_log, which could require joining a transaction (for
2222 * example checking cross references in the nocow path). If we use join
2223 * here we could get into a situation where we're waiting on IO to
2224 * happen that is blocked on a transaction trying to commit. With start
2225 * we inc the extwriter counter, so we wait for all extwriters to exit
2226 * before we start blocking joiners. This comment is to keep somebody
2227 * from thinking they are super smart and changing this to
2228 * btrfs_join_transaction *cough*Josef*cough*.
2229 */
2230 trans = btrfs_start_transaction(root, 0);
2231 if (IS_ERR(trans)) {
2232 ret = PTR_ERR(trans);
2233 goto out_release_extents;
2234 }
2235 trans->in_fsync = true;
2236
2237 ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
2238 btrfs_release_log_ctx_extents(&ctx);
2239 if (ret < 0) {
2240 /* Fallthrough and commit/free transaction. */
2241 ret = BTRFS_LOG_FORCE_COMMIT;
2242 }
2243
2244 /* we've logged all the items and now have a consistent
2245 * version of the file in the log. It is possible that
2246 * someone will come in and modify the file, but that's
2247 * fine because the log is consistent on disk, and we
2248 * have references to all of the file's extents
2249 *
2250 * It is possible that someone will come in and log the
2251 * file again, but that will end up using the synchronization
2252 * inside btrfs_sync_log to keep things safe.
2253 */
2254 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2255
2256 if (ret == BTRFS_NO_LOG_SYNC) {
2257 ret = btrfs_end_transaction(trans);
2258 goto out;
2259 }
2260
2261 /* We successfully logged the inode, attempt to sync the log. */
2262 if (!ret) {
2263 ret = btrfs_sync_log(trans, root, &ctx);
2264 if (!ret) {
2265 ret = btrfs_end_transaction(trans);
2266 goto out;
2267 }
2268 }
2269
2270 /*
2271 * At this point we need to commit the transaction because we had
2272 * btrfs_need_log_full_commit() or some other error.
2273 *
2274 * If we didn't do a full sync we have to stop the trans handle, wait on
2275 * the ordered extents, start it again and commit the transaction. If
2276 * we attempt to wait on the ordered extents here we could deadlock with
2277 * something like fallocate() that is holding the extent lock trying to
2278 * start a transaction while some other thread is trying to commit the
2279 * transaction while we (fsync) are currently holding the transaction
2280 * open.
2281 */
2282 if (!full_sync) {
2283 ret = btrfs_end_transaction(trans);
2284 if (ret)
2285 goto out;
2286 ret = btrfs_wait_ordered_range(inode, start, len);
2287 if (ret)
2288 goto out;
2289
2290 /*
2291 * This is safe to use here because we're only interested in
2292 * making sure the transaction that had the ordered extents is
2293 * committed. We aren't waiting on anything past this point,
2294 * we're purely getting the transaction and committing it.
2295 */
2296 trans = btrfs_attach_transaction_barrier(root);
2297 if (IS_ERR(trans)) {
2298 ret = PTR_ERR(trans);
2299
2300 /*
2301 * We committed the transaction and there's no currently
2302 * running transaction, this means everything we care
2303 * about made it to disk and we are done.
2304 */
2305 if (ret == -ENOENT)
2306 ret = 0;
2307 goto out;
2308 }
2309 }
2310
2311 ret = btrfs_commit_transaction(trans);
2312 out:
2313 ASSERT(list_empty(&ctx.list));
2314 ASSERT(list_empty(&ctx.conflict_inodes));
2315 err = file_check_and_advance_wb_err(file);
2316 if (!ret)
2317 ret = err;
2318 return ret > 0 ? -EIO : ret;
2319
2320 out_release_extents:
2321 btrfs_release_log_ctx_extents(&ctx);
2322 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2323 goto out;
2324 }
2325
2326 static const struct vm_operations_struct btrfs_file_vm_ops = {
2327 .fault = filemap_fault,
2328 .map_pages = filemap_map_pages,
2329 .page_mkwrite = btrfs_page_mkwrite,
2330 };
2331
btrfs_file_mmap(struct file * filp,struct vm_area_struct * vma)2332 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2333 {
2334 struct address_space *mapping = filp->f_mapping;
2335
2336 if (!mapping->a_ops->read_folio)
2337 return -ENOEXEC;
2338
2339 file_accessed(filp);
2340 vma->vm_ops = &btrfs_file_vm_ops;
2341
2342 return 0;
2343 }
2344
hole_mergeable(struct btrfs_inode * inode,struct extent_buffer * leaf,int slot,u64 start,u64 end)2345 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2346 int slot, u64 start, u64 end)
2347 {
2348 struct btrfs_file_extent_item *fi;
2349 struct btrfs_key key;
2350
2351 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2352 return 0;
2353
2354 btrfs_item_key_to_cpu(leaf, &key, slot);
2355 if (key.objectid != btrfs_ino(inode) ||
2356 key.type != BTRFS_EXTENT_DATA_KEY)
2357 return 0;
2358
2359 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2360
2361 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2362 return 0;
2363
2364 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2365 return 0;
2366
2367 if (key.offset == end)
2368 return 1;
2369 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2370 return 1;
2371 return 0;
2372 }
2373
fill_holes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,u64 offset,u64 end)2374 static int fill_holes(struct btrfs_trans_handle *trans,
2375 struct btrfs_inode *inode,
2376 struct btrfs_path *path, u64 offset, u64 end)
2377 {
2378 struct btrfs_fs_info *fs_info = trans->fs_info;
2379 struct btrfs_root *root = inode->root;
2380 struct extent_buffer *leaf;
2381 struct btrfs_file_extent_item *fi;
2382 struct extent_map *hole_em;
2383 struct btrfs_key key;
2384 int ret;
2385
2386 if (btrfs_fs_incompat(fs_info, NO_HOLES))
2387 goto out;
2388
2389 key.objectid = btrfs_ino(inode);
2390 key.type = BTRFS_EXTENT_DATA_KEY;
2391 key.offset = offset;
2392
2393 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2394 if (ret <= 0) {
2395 /*
2396 * We should have dropped this offset, so if we find it then
2397 * something has gone horribly wrong.
2398 */
2399 if (ret == 0)
2400 ret = -EINVAL;
2401 return ret;
2402 }
2403
2404 leaf = path->nodes[0];
2405 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2406 u64 num_bytes;
2407
2408 path->slots[0]--;
2409 fi = btrfs_item_ptr(leaf, path->slots[0],
2410 struct btrfs_file_extent_item);
2411 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2412 end - offset;
2413 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2414 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2415 btrfs_set_file_extent_offset(leaf, fi, 0);
2416 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2417 btrfs_mark_buffer_dirty(leaf);
2418 goto out;
2419 }
2420
2421 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2422 u64 num_bytes;
2423
2424 key.offset = offset;
2425 btrfs_set_item_key_safe(fs_info, path, &key);
2426 fi = btrfs_item_ptr(leaf, path->slots[0],
2427 struct btrfs_file_extent_item);
2428 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2429 offset;
2430 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2431 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2432 btrfs_set_file_extent_offset(leaf, fi, 0);
2433 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2434 btrfs_mark_buffer_dirty(leaf);
2435 goto out;
2436 }
2437 btrfs_release_path(path);
2438
2439 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset,
2440 end - offset);
2441 if (ret)
2442 return ret;
2443
2444 out:
2445 btrfs_release_path(path);
2446
2447 hole_em = alloc_extent_map();
2448 if (!hole_em) {
2449 btrfs_drop_extent_map_range(inode, offset, end - 1, false);
2450 btrfs_set_inode_full_sync(inode);
2451 } else {
2452 hole_em->start = offset;
2453 hole_em->len = end - offset;
2454 hole_em->ram_bytes = hole_em->len;
2455 hole_em->orig_start = offset;
2456
2457 hole_em->block_start = EXTENT_MAP_HOLE;
2458 hole_em->block_len = 0;
2459 hole_em->orig_block_len = 0;
2460 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2461 hole_em->generation = trans->transid;
2462
2463 ret = btrfs_replace_extent_map_range(inode, hole_em, true);
2464 free_extent_map(hole_em);
2465 if (ret)
2466 btrfs_set_inode_full_sync(inode);
2467 }
2468
2469 return 0;
2470 }
2471
2472 /*
2473 * Find a hole extent on given inode and change start/len to the end of hole
2474 * extent.(hole/vacuum extent whose em->start <= start &&
2475 * em->start + em->len > start)
2476 * When a hole extent is found, return 1 and modify start/len.
2477 */
find_first_non_hole(struct btrfs_inode * inode,u64 * start,u64 * len)2478 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2479 {
2480 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2481 struct extent_map *em;
2482 int ret = 0;
2483
2484 em = btrfs_get_extent(inode, NULL, 0,
2485 round_down(*start, fs_info->sectorsize),
2486 round_up(*len, fs_info->sectorsize));
2487 if (IS_ERR(em))
2488 return PTR_ERR(em);
2489
2490 /* Hole or vacuum extent(only exists in no-hole mode) */
2491 if (em->block_start == EXTENT_MAP_HOLE) {
2492 ret = 1;
2493 *len = em->start + em->len > *start + *len ?
2494 0 : *start + *len - em->start - em->len;
2495 *start = em->start + em->len;
2496 }
2497 free_extent_map(em);
2498 return ret;
2499 }
2500
btrfs_punch_hole_lock_range(struct inode * inode,const u64 lockstart,const u64 lockend,struct extent_state ** cached_state)2501 static void btrfs_punch_hole_lock_range(struct inode *inode,
2502 const u64 lockstart,
2503 const u64 lockend,
2504 struct extent_state **cached_state)
2505 {
2506 /*
2507 * For subpage case, if the range is not at page boundary, we could
2508 * have pages at the leading/tailing part of the range.
2509 * This could lead to dead loop since filemap_range_has_page()
2510 * will always return true.
2511 * So here we need to do extra page alignment for
2512 * filemap_range_has_page().
2513 */
2514 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2515 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2516
2517 while (1) {
2518 truncate_pagecache_range(inode, lockstart, lockend);
2519
2520 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2521 cached_state);
2522 /*
2523 * We can't have ordered extents in the range, nor dirty/writeback
2524 * pages, because we have locked the inode's VFS lock in exclusive
2525 * mode, we have locked the inode's i_mmap_lock in exclusive mode,
2526 * we have flushed all delalloc in the range and we have waited
2527 * for any ordered extents in the range to complete.
2528 * We can race with anyone reading pages from this range, so after
2529 * locking the range check if we have pages in the range, and if
2530 * we do, unlock the range and retry.
2531 */
2532 if (!filemap_range_has_page(inode->i_mapping, page_lockstart,
2533 page_lockend))
2534 break;
2535
2536 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2537 cached_state);
2538 }
2539
2540 btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
2541 }
2542
btrfs_insert_replace_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_replace_extent_info * extent_info,const u64 replace_len,const u64 bytes_to_drop)2543 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2544 struct btrfs_inode *inode,
2545 struct btrfs_path *path,
2546 struct btrfs_replace_extent_info *extent_info,
2547 const u64 replace_len,
2548 const u64 bytes_to_drop)
2549 {
2550 struct btrfs_fs_info *fs_info = trans->fs_info;
2551 struct btrfs_root *root = inode->root;
2552 struct btrfs_file_extent_item *extent;
2553 struct extent_buffer *leaf;
2554 struct btrfs_key key;
2555 int slot;
2556 struct btrfs_ref ref = { 0 };
2557 int ret;
2558
2559 if (replace_len == 0)
2560 return 0;
2561
2562 if (extent_info->disk_offset == 0 &&
2563 btrfs_fs_incompat(fs_info, NO_HOLES)) {
2564 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2565 return 0;
2566 }
2567
2568 key.objectid = btrfs_ino(inode);
2569 key.type = BTRFS_EXTENT_DATA_KEY;
2570 key.offset = extent_info->file_offset;
2571 ret = btrfs_insert_empty_item(trans, root, path, &key,
2572 sizeof(struct btrfs_file_extent_item));
2573 if (ret)
2574 return ret;
2575 leaf = path->nodes[0];
2576 slot = path->slots[0];
2577 write_extent_buffer(leaf, extent_info->extent_buf,
2578 btrfs_item_ptr_offset(leaf, slot),
2579 sizeof(struct btrfs_file_extent_item));
2580 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2581 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2582 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2583 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2584 if (extent_info->is_new_extent)
2585 btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2586 btrfs_mark_buffer_dirty(leaf);
2587 btrfs_release_path(path);
2588
2589 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2590 replace_len);
2591 if (ret)
2592 return ret;
2593
2594 /* If it's a hole, nothing more needs to be done. */
2595 if (extent_info->disk_offset == 0) {
2596 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2597 return 0;
2598 }
2599
2600 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2601
2602 if (extent_info->is_new_extent && extent_info->insertions == 0) {
2603 key.objectid = extent_info->disk_offset;
2604 key.type = BTRFS_EXTENT_ITEM_KEY;
2605 key.offset = extent_info->disk_len;
2606 ret = btrfs_alloc_reserved_file_extent(trans, root,
2607 btrfs_ino(inode),
2608 extent_info->file_offset,
2609 extent_info->qgroup_reserved,
2610 &key);
2611 } else {
2612 u64 ref_offset;
2613
2614 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2615 extent_info->disk_offset,
2616 extent_info->disk_len, 0);
2617 ref_offset = extent_info->file_offset - extent_info->data_offset;
2618 btrfs_init_data_ref(&ref, root->root_key.objectid,
2619 btrfs_ino(inode), ref_offset, 0, false);
2620 ret = btrfs_inc_extent_ref(trans, &ref);
2621 }
2622
2623 extent_info->insertions++;
2624
2625 return ret;
2626 }
2627
2628 /*
2629 * The respective range must have been previously locked, as well as the inode.
2630 * The end offset is inclusive (last byte of the range).
2631 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2632 * the file range with an extent.
2633 * When not punching a hole, we don't want to end up in a state where we dropped
2634 * extents without inserting a new one, so we must abort the transaction to avoid
2635 * a corruption.
2636 */
btrfs_replace_file_extents(struct btrfs_inode * inode,struct btrfs_path * path,const u64 start,const u64 end,struct btrfs_replace_extent_info * extent_info,struct btrfs_trans_handle ** trans_out)2637 int btrfs_replace_file_extents(struct btrfs_inode *inode,
2638 struct btrfs_path *path, const u64 start,
2639 const u64 end,
2640 struct btrfs_replace_extent_info *extent_info,
2641 struct btrfs_trans_handle **trans_out)
2642 {
2643 struct btrfs_drop_extents_args drop_args = { 0 };
2644 struct btrfs_root *root = inode->root;
2645 struct btrfs_fs_info *fs_info = root->fs_info;
2646 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2647 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2648 struct btrfs_trans_handle *trans = NULL;
2649 struct btrfs_block_rsv *rsv;
2650 unsigned int rsv_count;
2651 u64 cur_offset;
2652 u64 len = end - start;
2653 int ret = 0;
2654
2655 if (end <= start)
2656 return -EINVAL;
2657
2658 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2659 if (!rsv) {
2660 ret = -ENOMEM;
2661 goto out;
2662 }
2663 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2664 rsv->failfast = true;
2665
2666 /*
2667 * 1 - update the inode
2668 * 1 - removing the extents in the range
2669 * 1 - adding the hole extent if no_holes isn't set or if we are
2670 * replacing the range with a new extent
2671 */
2672 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2673 rsv_count = 3;
2674 else
2675 rsv_count = 2;
2676
2677 trans = btrfs_start_transaction(root, rsv_count);
2678 if (IS_ERR(trans)) {
2679 ret = PTR_ERR(trans);
2680 trans = NULL;
2681 goto out_free;
2682 }
2683
2684 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2685 min_size, false);
2686 if (WARN_ON(ret))
2687 goto out_trans;
2688 trans->block_rsv = rsv;
2689
2690 cur_offset = start;
2691 drop_args.path = path;
2692 drop_args.end = end + 1;
2693 drop_args.drop_cache = true;
2694 while (cur_offset < end) {
2695 drop_args.start = cur_offset;
2696 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2697 /* If we are punching a hole decrement the inode's byte count */
2698 if (!extent_info)
2699 btrfs_update_inode_bytes(inode, 0,
2700 drop_args.bytes_found);
2701 if (ret != -ENOSPC) {
2702 /*
2703 * The only time we don't want to abort is if we are
2704 * attempting to clone a partial inline extent, in which
2705 * case we'll get EOPNOTSUPP. However if we aren't
2706 * clone we need to abort no matter what, because if we
2707 * got EOPNOTSUPP via prealloc then we messed up and
2708 * need to abort.
2709 */
2710 if (ret &&
2711 (ret != -EOPNOTSUPP ||
2712 (extent_info && extent_info->is_new_extent)))
2713 btrfs_abort_transaction(trans, ret);
2714 break;
2715 }
2716
2717 trans->block_rsv = &fs_info->trans_block_rsv;
2718
2719 if (!extent_info && cur_offset < drop_args.drop_end &&
2720 cur_offset < ino_size) {
2721 ret = fill_holes(trans, inode, path, cur_offset,
2722 drop_args.drop_end);
2723 if (ret) {
2724 /*
2725 * If we failed then we didn't insert our hole
2726 * entries for the area we dropped, so now the
2727 * fs is corrupted, so we must abort the
2728 * transaction.
2729 */
2730 btrfs_abort_transaction(trans, ret);
2731 break;
2732 }
2733 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2734 /*
2735 * We are past the i_size here, but since we didn't
2736 * insert holes we need to clear the mapped area so we
2737 * know to not set disk_i_size in this area until a new
2738 * file extent is inserted here.
2739 */
2740 ret = btrfs_inode_clear_file_extent_range(inode,
2741 cur_offset,
2742 drop_args.drop_end - cur_offset);
2743 if (ret) {
2744 /*
2745 * We couldn't clear our area, so we could
2746 * presumably adjust up and corrupt the fs, so
2747 * we need to abort.
2748 */
2749 btrfs_abort_transaction(trans, ret);
2750 break;
2751 }
2752 }
2753
2754 if (extent_info &&
2755 drop_args.drop_end > extent_info->file_offset) {
2756 u64 replace_len = drop_args.drop_end -
2757 extent_info->file_offset;
2758
2759 ret = btrfs_insert_replace_extent(trans, inode, path,
2760 extent_info, replace_len,
2761 drop_args.bytes_found);
2762 if (ret) {
2763 btrfs_abort_transaction(trans, ret);
2764 break;
2765 }
2766 extent_info->data_len -= replace_len;
2767 extent_info->data_offset += replace_len;
2768 extent_info->file_offset += replace_len;
2769 }
2770
2771 /*
2772 * We are releasing our handle on the transaction, balance the
2773 * dirty pages of the btree inode and flush delayed items, and
2774 * then get a new transaction handle, which may now point to a
2775 * new transaction in case someone else may have committed the
2776 * transaction we used to replace/drop file extent items. So
2777 * bump the inode's iversion and update mtime and ctime except
2778 * if we are called from a dedupe context. This is because a
2779 * power failure/crash may happen after the transaction is
2780 * committed and before we finish replacing/dropping all the
2781 * file extent items we need.
2782 */
2783 inode_inc_iversion(&inode->vfs_inode);
2784
2785 if (!extent_info || extent_info->update_times) {
2786 inode->vfs_inode.i_mtime = current_time(&inode->vfs_inode);
2787 inode->vfs_inode.i_ctime = inode->vfs_inode.i_mtime;
2788 }
2789
2790 ret = btrfs_update_inode(trans, root, inode);
2791 if (ret)
2792 break;
2793
2794 btrfs_end_transaction(trans);
2795 btrfs_btree_balance_dirty(fs_info);
2796
2797 trans = btrfs_start_transaction(root, rsv_count);
2798 if (IS_ERR(trans)) {
2799 ret = PTR_ERR(trans);
2800 trans = NULL;
2801 break;
2802 }
2803
2804 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2805 rsv, min_size, false);
2806 if (WARN_ON(ret))
2807 break;
2808 trans->block_rsv = rsv;
2809
2810 cur_offset = drop_args.drop_end;
2811 len = end - cur_offset;
2812 if (!extent_info && len) {
2813 ret = find_first_non_hole(inode, &cur_offset, &len);
2814 if (unlikely(ret < 0))
2815 break;
2816 if (ret && !len) {
2817 ret = 0;
2818 break;
2819 }
2820 }
2821 }
2822
2823 /*
2824 * If we were cloning, force the next fsync to be a full one since we
2825 * we replaced (or just dropped in the case of cloning holes when
2826 * NO_HOLES is enabled) file extent items and did not setup new extent
2827 * maps for the replacement extents (or holes).
2828 */
2829 if (extent_info && !extent_info->is_new_extent)
2830 btrfs_set_inode_full_sync(inode);
2831
2832 if (ret)
2833 goto out_trans;
2834
2835 trans->block_rsv = &fs_info->trans_block_rsv;
2836 /*
2837 * If we are using the NO_HOLES feature we might have had already an
2838 * hole that overlaps a part of the region [lockstart, lockend] and
2839 * ends at (or beyond) lockend. Since we have no file extent items to
2840 * represent holes, drop_end can be less than lockend and so we must
2841 * make sure we have an extent map representing the existing hole (the
2842 * call to __btrfs_drop_extents() might have dropped the existing extent
2843 * map representing the existing hole), otherwise the fast fsync path
2844 * will not record the existence of the hole region
2845 * [existing_hole_start, lockend].
2846 */
2847 if (drop_args.drop_end <= end)
2848 drop_args.drop_end = end + 1;
2849 /*
2850 * Don't insert file hole extent item if it's for a range beyond eof
2851 * (because it's useless) or if it represents a 0 bytes range (when
2852 * cur_offset == drop_end).
2853 */
2854 if (!extent_info && cur_offset < ino_size &&
2855 cur_offset < drop_args.drop_end) {
2856 ret = fill_holes(trans, inode, path, cur_offset,
2857 drop_args.drop_end);
2858 if (ret) {
2859 /* Same comment as above. */
2860 btrfs_abort_transaction(trans, ret);
2861 goto out_trans;
2862 }
2863 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2864 /* See the comment in the loop above for the reasoning here. */
2865 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2866 drop_args.drop_end - cur_offset);
2867 if (ret) {
2868 btrfs_abort_transaction(trans, ret);
2869 goto out_trans;
2870 }
2871
2872 }
2873 if (extent_info) {
2874 ret = btrfs_insert_replace_extent(trans, inode, path,
2875 extent_info, extent_info->data_len,
2876 drop_args.bytes_found);
2877 if (ret) {
2878 btrfs_abort_transaction(trans, ret);
2879 goto out_trans;
2880 }
2881 }
2882
2883 out_trans:
2884 if (!trans)
2885 goto out_free;
2886
2887 trans->block_rsv = &fs_info->trans_block_rsv;
2888 if (ret)
2889 btrfs_end_transaction(trans);
2890 else
2891 *trans_out = trans;
2892 out_free:
2893 btrfs_free_block_rsv(fs_info, rsv);
2894 out:
2895 return ret;
2896 }
2897
btrfs_punch_hole(struct file * file,loff_t offset,loff_t len)2898 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2899 {
2900 struct inode *inode = file_inode(file);
2901 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2902 struct btrfs_root *root = BTRFS_I(inode)->root;
2903 struct extent_state *cached_state = NULL;
2904 struct btrfs_path *path;
2905 struct btrfs_trans_handle *trans = NULL;
2906 u64 lockstart;
2907 u64 lockend;
2908 u64 tail_start;
2909 u64 tail_len;
2910 u64 orig_start = offset;
2911 int ret = 0;
2912 bool same_block;
2913 u64 ino_size;
2914 bool truncated_block = false;
2915 bool updated_inode = false;
2916
2917 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
2918
2919 ret = btrfs_wait_ordered_range(inode, offset, len);
2920 if (ret)
2921 goto out_only_mutex;
2922
2923 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2924 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2925 if (ret < 0)
2926 goto out_only_mutex;
2927 if (ret && !len) {
2928 /* Already in a large hole */
2929 ret = 0;
2930 goto out_only_mutex;
2931 }
2932
2933 ret = file_modified(file);
2934 if (ret)
2935 goto out_only_mutex;
2936
2937 lockstart = round_up(offset, fs_info->sectorsize);
2938 lockend = round_down(offset + len, fs_info->sectorsize) - 1;
2939 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2940 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2941 /*
2942 * We needn't truncate any block which is beyond the end of the file
2943 * because we are sure there is no data there.
2944 */
2945 /*
2946 * Only do this if we are in the same block and we aren't doing the
2947 * entire block.
2948 */
2949 if (same_block && len < fs_info->sectorsize) {
2950 if (offset < ino_size) {
2951 truncated_block = true;
2952 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2953 0);
2954 } else {
2955 ret = 0;
2956 }
2957 goto out_only_mutex;
2958 }
2959
2960 /* zero back part of the first block */
2961 if (offset < ino_size) {
2962 truncated_block = true;
2963 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2964 if (ret) {
2965 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2966 return ret;
2967 }
2968 }
2969
2970 /* Check the aligned pages after the first unaligned page,
2971 * if offset != orig_start, which means the first unaligned page
2972 * including several following pages are already in holes,
2973 * the extra check can be skipped */
2974 if (offset == orig_start) {
2975 /* after truncate page, check hole again */
2976 len = offset + len - lockstart;
2977 offset = lockstart;
2978 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2979 if (ret < 0)
2980 goto out_only_mutex;
2981 if (ret && !len) {
2982 ret = 0;
2983 goto out_only_mutex;
2984 }
2985 lockstart = offset;
2986 }
2987
2988 /* Check the tail unaligned part is in a hole */
2989 tail_start = lockend + 1;
2990 tail_len = offset + len - tail_start;
2991 if (tail_len) {
2992 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2993 if (unlikely(ret < 0))
2994 goto out_only_mutex;
2995 if (!ret) {
2996 /* zero the front end of the last page */
2997 if (tail_start + tail_len < ino_size) {
2998 truncated_block = true;
2999 ret = btrfs_truncate_block(BTRFS_I(inode),
3000 tail_start + tail_len,
3001 0, 1);
3002 if (ret)
3003 goto out_only_mutex;
3004 }
3005 }
3006 }
3007
3008 if (lockend < lockstart) {
3009 ret = 0;
3010 goto out_only_mutex;
3011 }
3012
3013 btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
3014
3015 path = btrfs_alloc_path();
3016 if (!path) {
3017 ret = -ENOMEM;
3018 goto out;
3019 }
3020
3021 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
3022 lockend, NULL, &trans);
3023 btrfs_free_path(path);
3024 if (ret)
3025 goto out;
3026
3027 ASSERT(trans != NULL);
3028 inode_inc_iversion(inode);
3029 inode->i_mtime = current_time(inode);
3030 inode->i_ctime = inode->i_mtime;
3031 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3032 updated_inode = true;
3033 btrfs_end_transaction(trans);
3034 btrfs_btree_balance_dirty(fs_info);
3035 out:
3036 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3037 &cached_state);
3038 out_only_mutex:
3039 if (!updated_inode && truncated_block && !ret) {
3040 /*
3041 * If we only end up zeroing part of a page, we still need to
3042 * update the inode item, so that all the time fields are
3043 * updated as well as the necessary btrfs inode in memory fields
3044 * for detecting, at fsync time, if the inode isn't yet in the
3045 * log tree or it's there but not up to date.
3046 */
3047 struct timespec64 now = current_time(inode);
3048
3049 inode_inc_iversion(inode);
3050 inode->i_mtime = now;
3051 inode->i_ctime = now;
3052 trans = btrfs_start_transaction(root, 1);
3053 if (IS_ERR(trans)) {
3054 ret = PTR_ERR(trans);
3055 } else {
3056 int ret2;
3057
3058 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3059 ret2 = btrfs_end_transaction(trans);
3060 if (!ret)
3061 ret = ret2;
3062 }
3063 }
3064 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3065 return ret;
3066 }
3067
3068 /* Helper structure to record which range is already reserved */
3069 struct falloc_range {
3070 struct list_head list;
3071 u64 start;
3072 u64 len;
3073 };
3074
3075 /*
3076 * Helper function to add falloc range
3077 *
3078 * Caller should have locked the larger range of extent containing
3079 * [start, len)
3080 */
add_falloc_range(struct list_head * head,u64 start,u64 len)3081 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
3082 {
3083 struct falloc_range *range = NULL;
3084
3085 if (!list_empty(head)) {
3086 /*
3087 * As fallocate iterates by bytenr order, we only need to check
3088 * the last range.
3089 */
3090 range = list_last_entry(head, struct falloc_range, list);
3091 if (range->start + range->len == start) {
3092 range->len += len;
3093 return 0;
3094 }
3095 }
3096
3097 range = kmalloc(sizeof(*range), GFP_KERNEL);
3098 if (!range)
3099 return -ENOMEM;
3100 range->start = start;
3101 range->len = len;
3102 list_add_tail(&range->list, head);
3103 return 0;
3104 }
3105
btrfs_fallocate_update_isize(struct inode * inode,const u64 end,const int mode)3106 static int btrfs_fallocate_update_isize(struct inode *inode,
3107 const u64 end,
3108 const int mode)
3109 {
3110 struct btrfs_trans_handle *trans;
3111 struct btrfs_root *root = BTRFS_I(inode)->root;
3112 int ret;
3113 int ret2;
3114
3115 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
3116 return 0;
3117
3118 trans = btrfs_start_transaction(root, 1);
3119 if (IS_ERR(trans))
3120 return PTR_ERR(trans);
3121
3122 inode->i_ctime = current_time(inode);
3123 i_size_write(inode, end);
3124 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
3125 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3126 ret2 = btrfs_end_transaction(trans);
3127
3128 return ret ? ret : ret2;
3129 }
3130
3131 enum {
3132 RANGE_BOUNDARY_WRITTEN_EXTENT,
3133 RANGE_BOUNDARY_PREALLOC_EXTENT,
3134 RANGE_BOUNDARY_HOLE,
3135 };
3136
btrfs_zero_range_check_range_boundary(struct btrfs_inode * inode,u64 offset)3137 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
3138 u64 offset)
3139 {
3140 const u64 sectorsize = inode->root->fs_info->sectorsize;
3141 struct extent_map *em;
3142 int ret;
3143
3144 offset = round_down(offset, sectorsize);
3145 em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
3146 if (IS_ERR(em))
3147 return PTR_ERR(em);
3148
3149 if (em->block_start == EXTENT_MAP_HOLE)
3150 ret = RANGE_BOUNDARY_HOLE;
3151 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3152 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3153 else
3154 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
3155
3156 free_extent_map(em);
3157 return ret;
3158 }
3159
btrfs_zero_range(struct inode * inode,loff_t offset,loff_t len,const int mode)3160 static int btrfs_zero_range(struct inode *inode,
3161 loff_t offset,
3162 loff_t len,
3163 const int mode)
3164 {
3165 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3166 struct extent_map *em;
3167 struct extent_changeset *data_reserved = NULL;
3168 int ret;
3169 u64 alloc_hint = 0;
3170 const u64 sectorsize = fs_info->sectorsize;
3171 u64 alloc_start = round_down(offset, sectorsize);
3172 u64 alloc_end = round_up(offset + len, sectorsize);
3173 u64 bytes_to_reserve = 0;
3174 bool space_reserved = false;
3175
3176 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3177 alloc_end - alloc_start);
3178 if (IS_ERR(em)) {
3179 ret = PTR_ERR(em);
3180 goto out;
3181 }
3182
3183 /*
3184 * Avoid hole punching and extent allocation for some cases. More cases
3185 * could be considered, but these are unlikely common and we keep things
3186 * as simple as possible for now. Also, intentionally, if the target
3187 * range contains one or more prealloc extents together with regular
3188 * extents and holes, we drop all the existing extents and allocate a
3189 * new prealloc extent, so that we get a larger contiguous disk extent.
3190 */
3191 if (em->start <= alloc_start &&
3192 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3193 const u64 em_end = em->start + em->len;
3194
3195 if (em_end >= offset + len) {
3196 /*
3197 * The whole range is already a prealloc extent,
3198 * do nothing except updating the inode's i_size if
3199 * needed.
3200 */
3201 free_extent_map(em);
3202 ret = btrfs_fallocate_update_isize(inode, offset + len,
3203 mode);
3204 goto out;
3205 }
3206 /*
3207 * Part of the range is already a prealloc extent, so operate
3208 * only on the remaining part of the range.
3209 */
3210 alloc_start = em_end;
3211 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3212 len = offset + len - alloc_start;
3213 offset = alloc_start;
3214 alloc_hint = em->block_start + em->len;
3215 }
3216 free_extent_map(em);
3217
3218 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3219 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3220 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3221 sectorsize);
3222 if (IS_ERR(em)) {
3223 ret = PTR_ERR(em);
3224 goto out;
3225 }
3226
3227 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3228 free_extent_map(em);
3229 ret = btrfs_fallocate_update_isize(inode, offset + len,
3230 mode);
3231 goto out;
3232 }
3233 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3234 free_extent_map(em);
3235 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
3236 0);
3237 if (!ret)
3238 ret = btrfs_fallocate_update_isize(inode,
3239 offset + len,
3240 mode);
3241 return ret;
3242 }
3243 free_extent_map(em);
3244 alloc_start = round_down(offset, sectorsize);
3245 alloc_end = alloc_start + sectorsize;
3246 goto reserve_space;
3247 }
3248
3249 alloc_start = round_up(offset, sectorsize);
3250 alloc_end = round_down(offset + len, sectorsize);
3251
3252 /*
3253 * For unaligned ranges, check the pages at the boundaries, they might
3254 * map to an extent, in which case we need to partially zero them, or
3255 * they might map to a hole, in which case we need our allocation range
3256 * to cover them.
3257 */
3258 if (!IS_ALIGNED(offset, sectorsize)) {
3259 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3260 offset);
3261 if (ret < 0)
3262 goto out;
3263 if (ret == RANGE_BOUNDARY_HOLE) {
3264 alloc_start = round_down(offset, sectorsize);
3265 ret = 0;
3266 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3267 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
3268 if (ret)
3269 goto out;
3270 } else {
3271 ret = 0;
3272 }
3273 }
3274
3275 if (!IS_ALIGNED(offset + len, sectorsize)) {
3276 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3277 offset + len);
3278 if (ret < 0)
3279 goto out;
3280 if (ret == RANGE_BOUNDARY_HOLE) {
3281 alloc_end = round_up(offset + len, sectorsize);
3282 ret = 0;
3283 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3284 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
3285 0, 1);
3286 if (ret)
3287 goto out;
3288 } else {
3289 ret = 0;
3290 }
3291 }
3292
3293 reserve_space:
3294 if (alloc_start < alloc_end) {
3295 struct extent_state *cached_state = NULL;
3296 const u64 lockstart = alloc_start;
3297 const u64 lockend = alloc_end - 1;
3298
3299 bytes_to_reserve = alloc_end - alloc_start;
3300 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3301 bytes_to_reserve);
3302 if (ret < 0)
3303 goto out;
3304 space_reserved = true;
3305 btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3306 &cached_state);
3307 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3308 alloc_start, bytes_to_reserve);
3309 if (ret) {
3310 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
3311 lockend, &cached_state);
3312 goto out;
3313 }
3314 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3315 alloc_end - alloc_start,
3316 i_blocksize(inode),
3317 offset + len, &alloc_hint);
3318 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3319 &cached_state);
3320 /* btrfs_prealloc_file_range releases reserved space on error */
3321 if (ret) {
3322 space_reserved = false;
3323 goto out;
3324 }
3325 }
3326 ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3327 out:
3328 if (ret && space_reserved)
3329 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3330 alloc_start, bytes_to_reserve);
3331 extent_changeset_free(data_reserved);
3332
3333 return ret;
3334 }
3335
btrfs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)3336 static long btrfs_fallocate(struct file *file, int mode,
3337 loff_t offset, loff_t len)
3338 {
3339 struct inode *inode = file_inode(file);
3340 struct extent_state *cached_state = NULL;
3341 struct extent_changeset *data_reserved = NULL;
3342 struct falloc_range *range;
3343 struct falloc_range *tmp;
3344 struct list_head reserve_list;
3345 u64 cur_offset;
3346 u64 last_byte;
3347 u64 alloc_start;
3348 u64 alloc_end;
3349 u64 alloc_hint = 0;
3350 u64 locked_end;
3351 u64 actual_end = 0;
3352 u64 data_space_needed = 0;
3353 u64 data_space_reserved = 0;
3354 u64 qgroup_reserved = 0;
3355 struct extent_map *em;
3356 int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize;
3357 int ret;
3358
3359 /* Do not allow fallocate in ZONED mode */
3360 if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3361 return -EOPNOTSUPP;
3362
3363 alloc_start = round_down(offset, blocksize);
3364 alloc_end = round_up(offset + len, blocksize);
3365 cur_offset = alloc_start;
3366
3367 /* Make sure we aren't being give some crap mode */
3368 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3369 FALLOC_FL_ZERO_RANGE))
3370 return -EOPNOTSUPP;
3371
3372 if (mode & FALLOC_FL_PUNCH_HOLE)
3373 return btrfs_punch_hole(file, offset, len);
3374
3375 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
3376
3377 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3378 ret = inode_newsize_ok(inode, offset + len);
3379 if (ret)
3380 goto out;
3381 }
3382
3383 ret = file_modified(file);
3384 if (ret)
3385 goto out;
3386
3387 /*
3388 * TODO: Move these two operations after we have checked
3389 * accurate reserved space, or fallocate can still fail but
3390 * with page truncated or size expanded.
3391 *
3392 * But that's a minor problem and won't do much harm BTW.
3393 */
3394 if (alloc_start > inode->i_size) {
3395 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3396 alloc_start);
3397 if (ret)
3398 goto out;
3399 } else if (offset + len > inode->i_size) {
3400 /*
3401 * If we are fallocating from the end of the file onward we
3402 * need to zero out the end of the block if i_size lands in the
3403 * middle of a block.
3404 */
3405 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3406 if (ret)
3407 goto out;
3408 }
3409
3410 /*
3411 * We have locked the inode at the VFS level (in exclusive mode) and we
3412 * have locked the i_mmap_lock lock (in exclusive mode). Now before
3413 * locking the file range, flush all dealloc in the range and wait for
3414 * all ordered extents in the range to complete. After this we can lock
3415 * the file range and, due to the previous locking we did, we know there
3416 * can't be more delalloc or ordered extents in the range.
3417 */
3418 ret = btrfs_wait_ordered_range(inode, alloc_start,
3419 alloc_end - alloc_start);
3420 if (ret)
3421 goto out;
3422
3423 if (mode & FALLOC_FL_ZERO_RANGE) {
3424 ret = btrfs_zero_range(inode, offset, len, mode);
3425 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3426 return ret;
3427 }
3428
3429 locked_end = alloc_end - 1;
3430 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3431 &cached_state);
3432
3433 btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
3434
3435 /* First, check if we exceed the qgroup limit */
3436 INIT_LIST_HEAD(&reserve_list);
3437 while (cur_offset < alloc_end) {
3438 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3439 alloc_end - cur_offset);
3440 if (IS_ERR(em)) {
3441 ret = PTR_ERR(em);
3442 break;
3443 }
3444 last_byte = min(extent_map_end(em), alloc_end);
3445 actual_end = min_t(u64, extent_map_end(em), offset + len);
3446 last_byte = ALIGN(last_byte, blocksize);
3447 if (em->block_start == EXTENT_MAP_HOLE ||
3448 (cur_offset >= inode->i_size &&
3449 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3450 const u64 range_len = last_byte - cur_offset;
3451
3452 ret = add_falloc_range(&reserve_list, cur_offset, range_len);
3453 if (ret < 0) {
3454 free_extent_map(em);
3455 break;
3456 }
3457 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3458 &data_reserved, cur_offset, range_len);
3459 if (ret < 0) {
3460 free_extent_map(em);
3461 break;
3462 }
3463 qgroup_reserved += range_len;
3464 data_space_needed += range_len;
3465 }
3466 free_extent_map(em);
3467 cur_offset = last_byte;
3468 }
3469
3470 if (!ret && data_space_needed > 0) {
3471 /*
3472 * We are safe to reserve space here as we can't have delalloc
3473 * in the range, see above.
3474 */
3475 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3476 data_space_needed);
3477 if (!ret)
3478 data_space_reserved = data_space_needed;
3479 }
3480
3481 /*
3482 * If ret is still 0, means we're OK to fallocate.
3483 * Or just cleanup the list and exit.
3484 */
3485 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3486 if (!ret) {
3487 ret = btrfs_prealloc_file_range(inode, mode,
3488 range->start,
3489 range->len, i_blocksize(inode),
3490 offset + len, &alloc_hint);
3491 /*
3492 * btrfs_prealloc_file_range() releases space even
3493 * if it returns an error.
3494 */
3495 data_space_reserved -= range->len;
3496 qgroup_reserved -= range->len;
3497 } else if (data_space_reserved > 0) {
3498 btrfs_free_reserved_data_space(BTRFS_I(inode),
3499 data_reserved, range->start,
3500 range->len);
3501 data_space_reserved -= range->len;
3502 qgroup_reserved -= range->len;
3503 } else if (qgroup_reserved > 0) {
3504 btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
3505 range->start, range->len);
3506 qgroup_reserved -= range->len;
3507 }
3508 list_del(&range->list);
3509 kfree(range);
3510 }
3511 if (ret < 0)
3512 goto out_unlock;
3513
3514 /*
3515 * We didn't need to allocate any more space, but we still extended the
3516 * size of the file so we need to update i_size and the inode item.
3517 */
3518 ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3519 out_unlock:
3520 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3521 &cached_state);
3522 out:
3523 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3524 extent_changeset_free(data_reserved);
3525 return ret;
3526 }
3527
3528 /*
3529 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range
3530 * that has unflushed and/or flushing delalloc. There might be other adjacent
3531 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps
3532 * looping while it gets adjacent subranges, and merging them together.
3533 */
find_delalloc_subrange(struct btrfs_inode * inode,u64 start,u64 end,u64 * delalloc_start_ret,u64 * delalloc_end_ret)3534 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end,
3535 u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3536 {
3537 const u64 len = end + 1 - start;
3538 struct extent_map_tree *em_tree = &inode->extent_tree;
3539 struct extent_map *em;
3540 u64 em_end;
3541 u64 delalloc_len;
3542
3543 /*
3544 * Search the io tree first for EXTENT_DELALLOC. If we find any, it
3545 * means we have delalloc (dirty pages) for which writeback has not
3546 * started yet.
3547 */
3548 *delalloc_start_ret = start;
3549 delalloc_len = count_range_bits(&inode->io_tree, delalloc_start_ret, end,
3550 len, EXTENT_DELALLOC, 1);
3551 /*
3552 * If delalloc was found then *delalloc_start_ret has a sector size
3553 * aligned value (rounded down).
3554 */
3555 if (delalloc_len > 0)
3556 *delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1;
3557
3558 /*
3559 * Now also check if there's any extent map in the range that does not
3560 * map to a hole or prealloc extent. We do this because:
3561 *
3562 * 1) When delalloc is flushed, the file range is locked, we clear the
3563 * EXTENT_DELALLOC bit from the io tree and create an extent map for
3564 * an allocated extent. So we might just have been called after
3565 * delalloc is flushed and before the ordered extent completes and
3566 * inserts the new file extent item in the subvolume's btree;
3567 *
3568 * 2) We may have an extent map created by flushing delalloc for a
3569 * subrange that starts before the subrange we found marked with
3570 * EXTENT_DELALLOC in the io tree.
3571 */
3572 read_lock(&em_tree->lock);
3573 em = lookup_extent_mapping(em_tree, start, len);
3574 read_unlock(&em_tree->lock);
3575
3576 /* extent_map_end() returns a non-inclusive end offset. */
3577 em_end = em ? extent_map_end(em) : 0;
3578
3579 /*
3580 * If we have a hole/prealloc extent map, check the next one if this one
3581 * ends before our range's end.
3582 */
3583 if (em && (em->block_start == EXTENT_MAP_HOLE ||
3584 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) && em_end < end) {
3585 struct extent_map *next_em;
3586
3587 read_lock(&em_tree->lock);
3588 next_em = lookup_extent_mapping(em_tree, em_end, len - em_end);
3589 read_unlock(&em_tree->lock);
3590
3591 free_extent_map(em);
3592 em_end = next_em ? extent_map_end(next_em) : 0;
3593 em = next_em;
3594 }
3595
3596 if (em && (em->block_start == EXTENT_MAP_HOLE ||
3597 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3598 free_extent_map(em);
3599 em = NULL;
3600 }
3601
3602 /*
3603 * No extent map or one for a hole or prealloc extent. Use the delalloc
3604 * range we found in the io tree if we have one.
3605 */
3606 if (!em)
3607 return (delalloc_len > 0);
3608
3609 /*
3610 * We don't have any range as EXTENT_DELALLOC in the io tree, so the
3611 * extent map is the only subrange representing delalloc.
3612 */
3613 if (delalloc_len == 0) {
3614 *delalloc_start_ret = em->start;
3615 *delalloc_end_ret = min(end, em_end - 1);
3616 free_extent_map(em);
3617 return true;
3618 }
3619
3620 /*
3621 * The extent map represents a delalloc range that starts before the
3622 * delalloc range we found in the io tree.
3623 */
3624 if (em->start < *delalloc_start_ret) {
3625 *delalloc_start_ret = em->start;
3626 /*
3627 * If the ranges are adjacent, return a combined range.
3628 * Otherwise return the extent map's range.
3629 */
3630 if (em_end < *delalloc_start_ret)
3631 *delalloc_end_ret = min(end, em_end - 1);
3632
3633 free_extent_map(em);
3634 return true;
3635 }
3636
3637 /*
3638 * The extent map starts after the delalloc range we found in the io
3639 * tree. If it's adjacent, return a combined range, otherwise return
3640 * the range found in the io tree.
3641 */
3642 if (*delalloc_end_ret + 1 == em->start)
3643 *delalloc_end_ret = min(end, em_end - 1);
3644
3645 free_extent_map(em);
3646 return true;
3647 }
3648
3649 /*
3650 * Check if there's delalloc in a given range.
3651 *
3652 * @inode: The inode.
3653 * @start: The start offset of the range. It does not need to be
3654 * sector size aligned.
3655 * @end: The end offset (inclusive value) of the search range.
3656 * It does not need to be sector size aligned.
3657 * @delalloc_start_ret: Output argument, set to the start offset of the
3658 * subrange found with delalloc (may not be sector size
3659 * aligned).
3660 * @delalloc_end_ret: Output argument, set to he end offset (inclusive value)
3661 * of the subrange found with delalloc.
3662 *
3663 * Returns true if a subrange with delalloc is found within the given range, and
3664 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and
3665 * end offsets of the subrange.
3666 */
btrfs_find_delalloc_in_range(struct btrfs_inode * inode,u64 start,u64 end,u64 * delalloc_start_ret,u64 * delalloc_end_ret)3667 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
3668 u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3669 {
3670 u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize);
3671 u64 prev_delalloc_end = 0;
3672 bool ret = false;
3673
3674 while (cur_offset <= end) {
3675 u64 delalloc_start;
3676 u64 delalloc_end;
3677 bool delalloc;
3678
3679 delalloc = find_delalloc_subrange(inode, cur_offset, end,
3680 &delalloc_start,
3681 &delalloc_end);
3682 if (!delalloc)
3683 break;
3684
3685 if (prev_delalloc_end == 0) {
3686 /* First subrange found. */
3687 *delalloc_start_ret = max(delalloc_start, start);
3688 *delalloc_end_ret = delalloc_end;
3689 ret = true;
3690 } else if (delalloc_start == prev_delalloc_end + 1) {
3691 /* Subrange adjacent to the previous one, merge them. */
3692 *delalloc_end_ret = delalloc_end;
3693 } else {
3694 /* Subrange not adjacent to the previous one, exit. */
3695 break;
3696 }
3697
3698 prev_delalloc_end = delalloc_end;
3699 cur_offset = delalloc_end + 1;
3700 cond_resched();
3701 }
3702
3703 return ret;
3704 }
3705
3706 /*
3707 * Check if there's a hole or delalloc range in a range representing a hole (or
3708 * prealloc extent) found in the inode's subvolume btree.
3709 *
3710 * @inode: The inode.
3711 * @whence: Seek mode (SEEK_DATA or SEEK_HOLE).
3712 * @start: Start offset of the hole region. It does not need to be sector
3713 * size aligned.
3714 * @end: End offset (inclusive value) of the hole region. It does not
3715 * need to be sector size aligned.
3716 * @start_ret: Return parameter, used to set the start of the subrange in the
3717 * hole that matches the search criteria (seek mode), if such
3718 * subrange is found (return value of the function is true).
3719 * The value returned here may not be sector size aligned.
3720 *
3721 * Returns true if a subrange matching the given seek mode is found, and if one
3722 * is found, it updates @start_ret with the start of the subrange.
3723 */
find_desired_extent_in_hole(struct btrfs_inode * inode,int whence,u64 start,u64 end,u64 * start_ret)3724 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence,
3725 u64 start, u64 end, u64 *start_ret)
3726 {
3727 u64 delalloc_start;
3728 u64 delalloc_end;
3729 bool delalloc;
3730
3731 delalloc = btrfs_find_delalloc_in_range(inode, start, end,
3732 &delalloc_start, &delalloc_end);
3733 if (delalloc && whence == SEEK_DATA) {
3734 *start_ret = delalloc_start;
3735 return true;
3736 }
3737
3738 if (delalloc && whence == SEEK_HOLE) {
3739 /*
3740 * We found delalloc but it starts after out start offset. So we
3741 * have a hole between our start offset and the delalloc start.
3742 */
3743 if (start < delalloc_start) {
3744 *start_ret = start;
3745 return true;
3746 }
3747 /*
3748 * Delalloc range starts at our start offset.
3749 * If the delalloc range's length is smaller than our range,
3750 * then it means we have a hole that starts where the delalloc
3751 * subrange ends.
3752 */
3753 if (delalloc_end < end) {
3754 *start_ret = delalloc_end + 1;
3755 return true;
3756 }
3757
3758 /* There's delalloc for the whole range. */
3759 return false;
3760 }
3761
3762 if (!delalloc && whence == SEEK_HOLE) {
3763 *start_ret = start;
3764 return true;
3765 }
3766
3767 /*
3768 * No delalloc in the range and we are seeking for data. The caller has
3769 * to iterate to the next extent item in the subvolume btree.
3770 */
3771 return false;
3772 }
3773
find_desired_extent(struct btrfs_inode * inode,loff_t offset,int whence)3774 static loff_t find_desired_extent(struct btrfs_inode *inode, loff_t offset,
3775 int whence)
3776 {
3777 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3778 struct extent_state *cached_state = NULL;
3779 const loff_t i_size = i_size_read(&inode->vfs_inode);
3780 const u64 ino = btrfs_ino(inode);
3781 struct btrfs_root *root = inode->root;
3782 struct btrfs_path *path;
3783 struct btrfs_key key;
3784 u64 last_extent_end;
3785 u64 lockstart;
3786 u64 lockend;
3787 u64 start;
3788 int ret;
3789 bool found = false;
3790
3791 if (i_size == 0 || offset >= i_size)
3792 return -ENXIO;
3793
3794 /*
3795 * Quick path. If the inode has no prealloc extents and its number of
3796 * bytes used matches its i_size, then it can not have holes.
3797 */
3798 if (whence == SEEK_HOLE &&
3799 !(inode->flags & BTRFS_INODE_PREALLOC) &&
3800 inode_get_bytes(&inode->vfs_inode) == i_size)
3801 return i_size;
3802
3803 /*
3804 * offset can be negative, in this case we start finding DATA/HOLE from
3805 * the very start of the file.
3806 */
3807 start = max_t(loff_t, 0, offset);
3808
3809 lockstart = round_down(start, fs_info->sectorsize);
3810 lockend = round_up(i_size, fs_info->sectorsize);
3811 if (lockend <= lockstart)
3812 lockend = lockstart + fs_info->sectorsize;
3813 lockend--;
3814
3815 path = btrfs_alloc_path();
3816 if (!path)
3817 return -ENOMEM;
3818 path->reada = READA_FORWARD;
3819
3820 key.objectid = ino;
3821 key.type = BTRFS_EXTENT_DATA_KEY;
3822 key.offset = start;
3823
3824 last_extent_end = lockstart;
3825
3826 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3827
3828 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3829 if (ret < 0) {
3830 goto out;
3831 } else if (ret > 0 && path->slots[0] > 0) {
3832 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3833 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3834 path->slots[0]--;
3835 }
3836
3837 while (start < i_size) {
3838 struct extent_buffer *leaf = path->nodes[0];
3839 struct btrfs_file_extent_item *extent;
3840 u64 extent_end;
3841 u8 type;
3842
3843 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3844 ret = btrfs_next_leaf(root, path);
3845 if (ret < 0)
3846 goto out;
3847 else if (ret > 0)
3848 break;
3849
3850 leaf = path->nodes[0];
3851 }
3852
3853 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3854 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3855 break;
3856
3857 extent_end = btrfs_file_extent_end(path);
3858
3859 /*
3860 * In the first iteration we may have a slot that points to an
3861 * extent that ends before our start offset, so skip it.
3862 */
3863 if (extent_end <= start) {
3864 path->slots[0]++;
3865 continue;
3866 }
3867
3868 /* We have an implicit hole, NO_HOLES feature is likely set. */
3869 if (last_extent_end < key.offset) {
3870 u64 search_start = last_extent_end;
3871 u64 found_start;
3872
3873 /*
3874 * First iteration, @start matches @offset and it's
3875 * within the hole.
3876 */
3877 if (start == offset)
3878 search_start = offset;
3879
3880 found = find_desired_extent_in_hole(inode, whence,
3881 search_start,
3882 key.offset - 1,
3883 &found_start);
3884 if (found) {
3885 start = found_start;
3886 break;
3887 }
3888 /*
3889 * Didn't find data or a hole (due to delalloc) in the
3890 * implicit hole range, so need to analyze the extent.
3891 */
3892 }
3893
3894 extent = btrfs_item_ptr(leaf, path->slots[0],
3895 struct btrfs_file_extent_item);
3896 type = btrfs_file_extent_type(leaf, extent);
3897
3898 /*
3899 * Can't access the extent's disk_bytenr field if this is an
3900 * inline extent, since at that offset, it's where the extent
3901 * data starts.
3902 */
3903 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
3904 (type == BTRFS_FILE_EXTENT_REG &&
3905 btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) {
3906 /*
3907 * Explicit hole or prealloc extent, search for delalloc.
3908 * A prealloc extent is treated like a hole.
3909 */
3910 u64 search_start = key.offset;
3911 u64 found_start;
3912
3913 /*
3914 * First iteration, @start matches @offset and it's
3915 * within the hole.
3916 */
3917 if (start == offset)
3918 search_start = offset;
3919
3920 found = find_desired_extent_in_hole(inode, whence,
3921 search_start,
3922 extent_end - 1,
3923 &found_start);
3924 if (found) {
3925 start = found_start;
3926 break;
3927 }
3928 /*
3929 * Didn't find data or a hole (due to delalloc) in the
3930 * implicit hole range, so need to analyze the next
3931 * extent item.
3932 */
3933 } else {
3934 /*
3935 * Found a regular or inline extent.
3936 * If we are seeking for data, adjust the start offset
3937 * and stop, we're done.
3938 */
3939 if (whence == SEEK_DATA) {
3940 start = max_t(u64, key.offset, offset);
3941 found = true;
3942 break;
3943 }
3944 /*
3945 * Else, we are seeking for a hole, check the next file
3946 * extent item.
3947 */
3948 }
3949
3950 start = extent_end;
3951 last_extent_end = extent_end;
3952 path->slots[0]++;
3953 if (fatal_signal_pending(current)) {
3954 ret = -EINTR;
3955 goto out;
3956 }
3957 cond_resched();
3958 }
3959
3960 /* We have an implicit hole from the last extent found up to i_size. */
3961 if (!found && start < i_size) {
3962 found = find_desired_extent_in_hole(inode, whence, start,
3963 i_size - 1, &start);
3964 if (!found)
3965 start = i_size;
3966 }
3967
3968 out:
3969 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3970 btrfs_free_path(path);
3971
3972 if (ret < 0)
3973 return ret;
3974
3975 if (whence == SEEK_DATA && start >= i_size)
3976 return -ENXIO;
3977
3978 return min_t(loff_t, start, i_size);
3979 }
3980
btrfs_file_llseek(struct file * file,loff_t offset,int whence)3981 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3982 {
3983 struct inode *inode = file->f_mapping->host;
3984
3985 switch (whence) {
3986 default:
3987 return generic_file_llseek(file, offset, whence);
3988 case SEEK_DATA:
3989 case SEEK_HOLE:
3990 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3991 offset = find_desired_extent(BTRFS_I(inode), offset, whence);
3992 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3993 break;
3994 }
3995
3996 if (offset < 0)
3997 return offset;
3998
3999 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
4000 }
4001
btrfs_file_open(struct inode * inode,struct file * filp)4002 static int btrfs_file_open(struct inode *inode, struct file *filp)
4003 {
4004 int ret;
4005
4006 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC;
4007
4008 ret = fsverity_file_open(inode, filp);
4009 if (ret)
4010 return ret;
4011 return generic_file_open(inode, filp);
4012 }
4013
check_direct_read(struct btrfs_fs_info * fs_info,const struct iov_iter * iter,loff_t offset)4014 static int check_direct_read(struct btrfs_fs_info *fs_info,
4015 const struct iov_iter *iter, loff_t offset)
4016 {
4017 int ret;
4018 int i, seg;
4019
4020 ret = check_direct_IO(fs_info, iter, offset);
4021 if (ret < 0)
4022 return ret;
4023
4024 if (!iter_is_iovec(iter))
4025 return 0;
4026
4027 for (seg = 0; seg < iter->nr_segs; seg++)
4028 for (i = seg + 1; i < iter->nr_segs; i++)
4029 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
4030 return -EINVAL;
4031 return 0;
4032 }
4033
btrfs_direct_read(struct kiocb * iocb,struct iov_iter * to)4034 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
4035 {
4036 struct inode *inode = file_inode(iocb->ki_filp);
4037 size_t prev_left = 0;
4038 ssize_t read = 0;
4039 ssize_t ret;
4040
4041 if (fsverity_active(inode))
4042 return 0;
4043
4044 if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
4045 return 0;
4046
4047 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
4048 again:
4049 /*
4050 * This is similar to what we do for direct IO writes, see the comment
4051 * at btrfs_direct_write(), but we also disable page faults in addition
4052 * to disabling them only at the iov_iter level. This is because when
4053 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(),
4054 * which can still trigger page fault ins despite having set ->nofault
4055 * to true of our 'to' iov_iter.
4056 *
4057 * The difference to direct IO writes is that we deadlock when trying
4058 * to lock the extent range in the inode's tree during he page reads
4059 * triggered by the fault in (while for writes it is due to waiting for
4060 * our own ordered extent). This is because for direct IO reads,
4061 * btrfs_dio_iomap_begin() returns with the extent range locked, which
4062 * is only unlocked in the endio callback (end_bio_extent_readpage()).
4063 */
4064 pagefault_disable();
4065 to->nofault = true;
4066 ret = btrfs_dio_read(iocb, to, read);
4067 to->nofault = false;
4068 pagefault_enable();
4069
4070 /* No increment (+=) because iomap returns a cumulative value. */
4071 if (ret > 0)
4072 read = ret;
4073
4074 if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) {
4075 const size_t left = iov_iter_count(to);
4076
4077 if (left == prev_left) {
4078 /*
4079 * We didn't make any progress since the last attempt,
4080 * fallback to a buffered read for the remainder of the
4081 * range. This is just to avoid any possibility of looping
4082 * for too long.
4083 */
4084 ret = read;
4085 } else {
4086 /*
4087 * We made some progress since the last retry or this is
4088 * the first time we are retrying. Fault in as many pages
4089 * as possible and retry.
4090 */
4091 fault_in_iov_iter_writeable(to, left);
4092 prev_left = left;
4093 goto again;
4094 }
4095 }
4096 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4097 return ret < 0 ? ret : read;
4098 }
4099
btrfs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)4100 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4101 {
4102 ssize_t ret = 0;
4103
4104 if (iocb->ki_flags & IOCB_DIRECT) {
4105 ret = btrfs_direct_read(iocb, to);
4106 if (ret < 0 || !iov_iter_count(to) ||
4107 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
4108 return ret;
4109 }
4110
4111 return filemap_read(iocb, to, ret);
4112 }
4113
4114 const struct file_operations btrfs_file_operations = {
4115 .llseek = btrfs_file_llseek,
4116 .read_iter = btrfs_file_read_iter,
4117 .splice_read = generic_file_splice_read,
4118 .write_iter = btrfs_file_write_iter,
4119 .splice_write = iter_file_splice_write,
4120 .mmap = btrfs_file_mmap,
4121 .open = btrfs_file_open,
4122 .release = btrfs_release_file,
4123 .get_unmapped_area = thp_get_unmapped_area,
4124 .fsync = btrfs_sync_file,
4125 .fallocate = btrfs_fallocate,
4126 .unlocked_ioctl = btrfs_ioctl,
4127 #ifdef CONFIG_COMPAT
4128 .compat_ioctl = btrfs_compat_ioctl,
4129 #endif
4130 .remap_file_range = btrfs_remap_file_range,
4131 };
4132
btrfs_auto_defrag_exit(void)4133 void __cold btrfs_auto_defrag_exit(void)
4134 {
4135 kmem_cache_destroy(btrfs_inode_defrag_cachep);
4136 }
4137
btrfs_auto_defrag_init(void)4138 int __init btrfs_auto_defrag_init(void)
4139 {
4140 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
4141 sizeof(struct inode_defrag), 0,
4142 SLAB_MEM_SPREAD,
4143 NULL);
4144 if (!btrfs_inode_defrag_cachep)
4145 return -ENOMEM;
4146
4147 return 0;
4148 }
4149
btrfs_fdatawrite_range(struct inode * inode,loff_t start,loff_t end)4150 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
4151 {
4152 int ret;
4153
4154 /*
4155 * So with compression we will find and lock a dirty page and clear the
4156 * first one as dirty, setup an async extent, and immediately return
4157 * with the entire range locked but with nobody actually marked with
4158 * writeback. So we can't just filemap_write_and_wait_range() and
4159 * expect it to work since it will just kick off a thread to do the
4160 * actual work. So we need to call filemap_fdatawrite_range _again_
4161 * since it will wait on the page lock, which won't be unlocked until
4162 * after the pages have been marked as writeback and so we're good to go
4163 * from there. We have to do this otherwise we'll miss the ordered
4164 * extents and that results in badness. Please Josef, do not think you
4165 * know better and pull this out at some point in the future, it is
4166 * right and you are wrong.
4167 */
4168 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
4169 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
4170 &BTRFS_I(inode)->runtime_flags))
4171 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
4172
4173 return ret;
4174 }
4175