1 // SPDX-License-Identifier: GPL-2.0-only
2 /* $Id: aty128fb.c,v 1.1.1.1.36.1 1999/12/11 09:03:05 Exp $
3 * linux/drivers/video/aty128fb.c -- Frame buffer device for ATI Rage128
4 *
5 * Copyright (C) 1999-2003, Brad Douglas <brad@neruo.com>
6 * Copyright (C) 1999, Anthony Tong <atong@uiuc.edu>
7 *
8 * Ani Joshi / Jeff Garzik
9 * - Code cleanup
10 *
11 * Michel Danzer <michdaen@iiic.ethz.ch>
12 * - 15/16 bit cleanup
13 * - fix panning
14 *
15 * Benjamin Herrenschmidt
16 * - pmac-specific PM stuff
17 * - various fixes & cleanups
18 *
19 * Andreas Hundt <andi@convergence.de>
20 * - FB_ACTIVATE fixes
21 *
22 * Paul Mackerras <paulus@samba.org>
23 * - Convert to new framebuffer API,
24 * fix colormap setting at 16 bits/pixel (565)
25 *
26 * Paul Mundt
27 * - PCI hotplug
28 *
29 * Jon Smirl <jonsmirl@yahoo.com>
30 * - PCI ID update
31 * - replace ROM BIOS search
32 *
33 * Based off of Geert's atyfb.c and vfb.c.
34 *
35 * TODO:
36 * - monitor sensing (DDC)
37 * - virtual display
38 * - other platform support (only ppc/x86 supported)
39 * - hardware cursor support
40 *
41 * Please cc: your patches to brad@neruo.com.
42 */
43
44 /*
45 * A special note of gratitude to ATI's devrel for providing documentation,
46 * example code and hardware. Thanks Nitya. -atong and brad
47 */
48
49
50 #include <linux/aperture.h>
51 #include <linux/module.h>
52 #include <linux/moduleparam.h>
53 #include <linux/kernel.h>
54 #include <linux/errno.h>
55 #include <linux/string.h>
56 #include <linux/mm.h>
57 #include <linux/vmalloc.h>
58 #include <linux/delay.h>
59 #include <linux/interrupt.h>
60 #include <linux/uaccess.h>
61 #include <linux/fb.h>
62 #include <linux/init.h>
63 #include <linux/pci.h>
64 #include <linux/ioport.h>
65 #include <linux/console.h>
66 #include <linux/backlight.h>
67 #include <asm/io.h>
68
69 #ifdef CONFIG_PPC_PMAC
70 #include <asm/machdep.h>
71 #include <asm/pmac_feature.h>
72 #include "../macmodes.h"
73 #endif
74
75 #ifdef CONFIG_PMAC_BACKLIGHT
76 #include <asm/backlight.h>
77 #endif
78
79 #ifdef CONFIG_BOOTX_TEXT
80 #include <asm/btext.h>
81 #endif /* CONFIG_BOOTX_TEXT */
82
83 #include <video/aty128.h>
84
85 /* Debug flag */
86 #undef DEBUG
87
88 #ifdef DEBUG
89 #define DBG(fmt, args...) \
90 printk(KERN_DEBUG "aty128fb: %s " fmt, __func__, ##args);
91 #else
92 #define DBG(fmt, args...)
93 #endif
94
95 #ifndef CONFIG_PPC_PMAC
96 /* default mode */
97 static const struct fb_var_screeninfo default_var = {
98 /* 640x480, 60 Hz, Non-Interlaced (25.175 MHz dotclock) */
99 640, 480, 640, 480, 0, 0, 8, 0,
100 {0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
101 0, 0, -1, -1, 0, 39722, 48, 16, 33, 10, 96, 2,
102 0, FB_VMODE_NONINTERLACED
103 };
104
105 #else /* CONFIG_PPC_PMAC */
106 /* default to 1024x768 at 75Hz on PPC - this will work
107 * on the iMac, the usual 640x480 @ 60Hz doesn't. */
108 static const struct fb_var_screeninfo default_var = {
109 /* 1024x768, 75 Hz, Non-Interlaced (78.75 MHz dotclock) */
110 1024, 768, 1024, 768, 0, 0, 8, 0,
111 {0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
112 0, 0, -1, -1, 0, 12699, 160, 32, 28, 1, 96, 3,
113 FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
114 FB_VMODE_NONINTERLACED
115 };
116 #endif /* CONFIG_PPC_PMAC */
117
118 /* default modedb mode */
119 /* 640x480, 60 Hz, Non-Interlaced (25.172 MHz dotclock) */
120 static const struct fb_videomode defaultmode = {
121 .refresh = 60,
122 .xres = 640,
123 .yres = 480,
124 .pixclock = 39722,
125 .left_margin = 48,
126 .right_margin = 16,
127 .upper_margin = 33,
128 .lower_margin = 10,
129 .hsync_len = 96,
130 .vsync_len = 2,
131 .sync = 0,
132 .vmode = FB_VMODE_NONINTERLACED
133 };
134
135 /* Chip generations */
136 enum {
137 rage_128,
138 rage_128_pci,
139 rage_128_pro,
140 rage_128_pro_pci,
141 rage_M3,
142 rage_M3_pci,
143 rage_M4,
144 rage_128_ultra,
145 };
146
147 /* Must match above enum */
148 static char * const r128_family[] = {
149 "AGP",
150 "PCI",
151 "PRO AGP",
152 "PRO PCI",
153 "M3 AGP",
154 "M3 PCI",
155 "M4 AGP",
156 "Ultra AGP",
157 };
158
159 /*
160 * PCI driver prototypes
161 */
162 static int aty128_probe(struct pci_dev *pdev,
163 const struct pci_device_id *ent);
164 static void aty128_remove(struct pci_dev *pdev);
165 static int aty128_pci_suspend_late(struct device *dev, pm_message_t state);
166 static int __maybe_unused aty128_pci_suspend(struct device *dev);
167 static int __maybe_unused aty128_pci_hibernate(struct device *dev);
168 static int __maybe_unused aty128_pci_freeze(struct device *dev);
169 static int __maybe_unused aty128_pci_resume(struct device *dev);
170 static int aty128_do_resume(struct pci_dev *pdev);
171
172 static const struct dev_pm_ops aty128_pci_pm_ops = {
173 .suspend = aty128_pci_suspend,
174 .resume = aty128_pci_resume,
175 .freeze = aty128_pci_freeze,
176 .thaw = aty128_pci_resume,
177 .poweroff = aty128_pci_hibernate,
178 .restore = aty128_pci_resume,
179 };
180
181 /* supported Rage128 chipsets */
182 static const struct pci_device_id aty128_pci_tbl[] = {
183 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LE,
184 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3_pci },
185 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LF,
186 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3 },
187 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_MF,
188 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
189 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_ML,
190 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
191 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PA,
192 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
193 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PB,
194 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
195 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PC,
196 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
197 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PD,
198 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
199 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PE,
200 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
201 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PF,
202 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
203 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PG,
204 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
205 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PH,
206 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
207 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PI,
208 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
209 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PJ,
210 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
211 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PK,
212 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
213 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PL,
214 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
215 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PM,
216 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
217 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PN,
218 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
219 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PO,
220 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
221 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PP,
222 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
223 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PQ,
224 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
225 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PR,
226 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
227 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PS,
228 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
229 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PT,
230 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
231 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PU,
232 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
233 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PV,
234 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
235 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PW,
236 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
237 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PX,
238 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
239 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RE,
240 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
241 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RF,
242 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
243 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RG,
244 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
245 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RK,
246 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
247 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RL,
248 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
249 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SE,
250 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
251 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SF,
252 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
253 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SG,
254 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
255 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SH,
256 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
257 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SK,
258 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
259 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SL,
260 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
261 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SM,
262 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
263 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SN,
264 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
265 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TF,
266 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
267 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TL,
268 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
269 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TR,
270 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
271 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TS,
272 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
273 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TT,
274 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
275 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TU,
276 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
277 { 0, }
278 };
279
280 MODULE_DEVICE_TABLE(pci, aty128_pci_tbl);
281
282 static struct pci_driver aty128fb_driver = {
283 .name = "aty128fb",
284 .id_table = aty128_pci_tbl,
285 .probe = aty128_probe,
286 .remove = aty128_remove,
287 .driver.pm = &aty128_pci_pm_ops,
288 };
289
290 /* packed BIOS settings */
291 #ifndef CONFIG_PPC
292 typedef struct {
293 u8 clock_chip_type;
294 u8 struct_size;
295 u8 accelerator_entry;
296 u8 VGA_entry;
297 u16 VGA_table_offset;
298 u16 POST_table_offset;
299 u16 XCLK;
300 u16 MCLK;
301 u8 num_PLL_blocks;
302 u8 size_PLL_blocks;
303 u16 PCLK_ref_freq;
304 u16 PCLK_ref_divider;
305 u32 PCLK_min_freq;
306 u32 PCLK_max_freq;
307 u16 MCLK_ref_freq;
308 u16 MCLK_ref_divider;
309 u32 MCLK_min_freq;
310 u32 MCLK_max_freq;
311 u16 XCLK_ref_freq;
312 u16 XCLK_ref_divider;
313 u32 XCLK_min_freq;
314 u32 XCLK_max_freq;
315 } __attribute__ ((packed)) PLL_BLOCK;
316 #endif /* !CONFIG_PPC */
317
318 /* onboard memory information */
319 struct aty128_meminfo {
320 u8 ML;
321 u8 MB;
322 u8 Trcd;
323 u8 Trp;
324 u8 Twr;
325 u8 CL;
326 u8 Tr2w;
327 u8 LoopLatency;
328 u8 DspOn;
329 u8 Rloop;
330 const char *name;
331 };
332
333 /* various memory configurations */
334 static const struct aty128_meminfo sdr_128 = {
335 .ML = 4,
336 .MB = 4,
337 .Trcd = 3,
338 .Trp = 3,
339 .Twr = 1,
340 .CL = 3,
341 .Tr2w = 1,
342 .LoopLatency = 16,
343 .DspOn = 30,
344 .Rloop = 16,
345 .name = "128-bit SDR SGRAM (1:1)",
346 };
347
348 static const struct aty128_meminfo sdr_sgram = {
349 .ML = 4,
350 .MB = 4,
351 .Trcd = 1,
352 .Trp = 2,
353 .Twr = 1,
354 .CL = 2,
355 .Tr2w = 1,
356 .LoopLatency = 16,
357 .DspOn = 24,
358 .Rloop = 16,
359 .name = "64-bit SDR SGRAM (2:1)",
360 };
361
362 static const struct aty128_meminfo ddr_sgram = {
363 .ML = 4,
364 .MB = 4,
365 .Trcd = 3,
366 .Trp = 3,
367 .Twr = 2,
368 .CL = 3,
369 .Tr2w = 1,
370 .LoopLatency = 16,
371 .DspOn = 31,
372 .Rloop = 16,
373 .name = "64-bit DDR SGRAM",
374 };
375
376 static const struct fb_fix_screeninfo aty128fb_fix = {
377 .id = "ATY Rage128",
378 .type = FB_TYPE_PACKED_PIXELS,
379 .visual = FB_VISUAL_PSEUDOCOLOR,
380 .xpanstep = 8,
381 .ypanstep = 1,
382 .mmio_len = 0x2000,
383 .accel = FB_ACCEL_ATI_RAGE128,
384 };
385
386 static char *mode_option = NULL;
387
388 #ifdef CONFIG_PPC_PMAC
389 static int default_vmode = VMODE_1024_768_60;
390 static int default_cmode = CMODE_8;
391 #endif
392
393 static int default_crt_on = 0;
394 static int default_lcd_on = 1;
395 static bool mtrr = true;
396
397 #ifdef CONFIG_FB_ATY128_BACKLIGHT
398 static int backlight = IS_BUILTIN(CONFIG_PMAC_BACKLIGHT);
399 #endif
400
401 /* PLL constants */
402 struct aty128_constants {
403 u32 ref_clk;
404 u32 ppll_min;
405 u32 ppll_max;
406 u32 ref_divider;
407 u32 xclk;
408 u32 fifo_width;
409 u32 fifo_depth;
410 };
411
412 struct aty128_crtc {
413 u32 gen_cntl;
414 u32 h_total, h_sync_strt_wid;
415 u32 v_total, v_sync_strt_wid;
416 u32 pitch;
417 u32 offset, offset_cntl;
418 u32 xoffset, yoffset;
419 u32 vxres, vyres;
420 u32 depth, bpp;
421 };
422
423 struct aty128_pll {
424 u32 post_divider;
425 u32 feedback_divider;
426 u32 vclk;
427 };
428
429 struct aty128_ddafifo {
430 u32 dda_config;
431 u32 dda_on_off;
432 };
433
434 /* register values for a specific mode */
435 struct aty128fb_par {
436 struct aty128_crtc crtc;
437 struct aty128_pll pll;
438 struct aty128_ddafifo fifo_reg;
439 u32 accel_flags;
440 struct aty128_constants constants; /* PLL and others */
441 void __iomem *regbase; /* remapped mmio */
442 u32 vram_size; /* onboard video ram */
443 int chip_gen;
444 const struct aty128_meminfo *mem; /* onboard mem info */
445 int wc_cookie;
446 int blitter_may_be_busy;
447 int fifo_slots; /* free slots in FIFO (64 max) */
448
449 int crt_on, lcd_on;
450 struct pci_dev *pdev;
451 struct fb_info *next;
452 int asleep;
453 int lock_blank;
454
455 u8 red[32]; /* see aty128fb_setcolreg */
456 u8 green[64];
457 u8 blue[32];
458 u32 pseudo_palette[16]; /* used for TRUECOLOR */
459 };
460
461
462 #define round_div(n, d) ((n+(d/2))/d)
463
464 static int aty128fb_check_var(struct fb_var_screeninfo *var,
465 struct fb_info *info);
466 static int aty128fb_set_par(struct fb_info *info);
467 static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
468 u_int transp, struct fb_info *info);
469 static int aty128fb_pan_display(struct fb_var_screeninfo *var,
470 struct fb_info *fb);
471 static int aty128fb_blank(int blank, struct fb_info *fb);
472 static int aty128fb_ioctl(struct fb_info *info, u_int cmd, unsigned long arg);
473 static int aty128fb_sync(struct fb_info *info);
474
475 /*
476 * Internal routines
477 */
478
479 static int aty128_encode_var(struct fb_var_screeninfo *var,
480 const struct aty128fb_par *par);
481 static int aty128_decode_var(struct fb_var_screeninfo *var,
482 struct aty128fb_par *par);
483 static void aty128_timings(struct aty128fb_par *par);
484 static void aty128_init_engine(struct aty128fb_par *par);
485 static void aty128_reset_engine(const struct aty128fb_par *par);
486 static void aty128_flush_pixel_cache(const struct aty128fb_par *par);
487 static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par);
488 static void wait_for_fifo(u16 entries, struct aty128fb_par *par);
489 static void wait_for_idle(struct aty128fb_par *par);
490 static u32 depth_to_dst(u32 depth);
491
492 #ifdef CONFIG_FB_ATY128_BACKLIGHT
493 static void aty128_bl_set_power(struct fb_info *info, int power);
494 #endif
495
496 #define BIOS_IN8(v) (readb(bios + (v)))
497 #define BIOS_IN16(v) (readb(bios + (v)) | \
498 (readb(bios + (v) + 1) << 8))
499 #define BIOS_IN32(v) (readb(bios + (v)) | \
500 (readb(bios + (v) + 1) << 8) | \
501 (readb(bios + (v) + 2) << 16) | \
502 (readb(bios + (v) + 3) << 24))
503
504
505 static const struct fb_ops aty128fb_ops = {
506 .owner = THIS_MODULE,
507 .fb_check_var = aty128fb_check_var,
508 .fb_set_par = aty128fb_set_par,
509 .fb_setcolreg = aty128fb_setcolreg,
510 .fb_pan_display = aty128fb_pan_display,
511 .fb_blank = aty128fb_blank,
512 .fb_ioctl = aty128fb_ioctl,
513 .fb_sync = aty128fb_sync,
514 .fb_fillrect = cfb_fillrect,
515 .fb_copyarea = cfb_copyarea,
516 .fb_imageblit = cfb_imageblit,
517 };
518
519 /*
520 * Functions to read from/write to the mmio registers
521 * - endian conversions may possibly be avoided by
522 * using the other register aperture. TODO.
523 */
_aty_ld_le32(volatile unsigned int regindex,const struct aty128fb_par * par)524 static inline u32 _aty_ld_le32(volatile unsigned int regindex,
525 const struct aty128fb_par *par)
526 {
527 return readl (par->regbase + regindex);
528 }
529
_aty_st_le32(volatile unsigned int regindex,u32 val,const struct aty128fb_par * par)530 static inline void _aty_st_le32(volatile unsigned int regindex, u32 val,
531 const struct aty128fb_par *par)
532 {
533 writel (val, par->regbase + regindex);
534 }
535
_aty_ld_8(unsigned int regindex,const struct aty128fb_par * par)536 static inline u8 _aty_ld_8(unsigned int regindex,
537 const struct aty128fb_par *par)
538 {
539 return readb (par->regbase + regindex);
540 }
541
_aty_st_8(unsigned int regindex,u8 val,const struct aty128fb_par * par)542 static inline void _aty_st_8(unsigned int regindex, u8 val,
543 const struct aty128fb_par *par)
544 {
545 writeb (val, par->regbase + regindex);
546 }
547
548 #define aty_ld_le32(regindex) _aty_ld_le32(regindex, par)
549 #define aty_st_le32(regindex, val) _aty_st_le32(regindex, val, par)
550 #define aty_ld_8(regindex) _aty_ld_8(regindex, par)
551 #define aty_st_8(regindex, val) _aty_st_8(regindex, val, par)
552
553 /*
554 * Functions to read from/write to the pll registers
555 */
556
557 #define aty_ld_pll(pll_index) _aty_ld_pll(pll_index, par)
558 #define aty_st_pll(pll_index, val) _aty_st_pll(pll_index, val, par)
559
560
_aty_ld_pll(unsigned int pll_index,const struct aty128fb_par * par)561 static u32 _aty_ld_pll(unsigned int pll_index,
562 const struct aty128fb_par *par)
563 {
564 aty_st_8(CLOCK_CNTL_INDEX, pll_index & 0x3F);
565 return aty_ld_le32(CLOCK_CNTL_DATA);
566 }
567
568
_aty_st_pll(unsigned int pll_index,u32 val,const struct aty128fb_par * par)569 static void _aty_st_pll(unsigned int pll_index, u32 val,
570 const struct aty128fb_par *par)
571 {
572 aty_st_8(CLOCK_CNTL_INDEX, (pll_index & 0x3F) | PLL_WR_EN);
573 aty_st_le32(CLOCK_CNTL_DATA, val);
574 }
575
576
577 /* return true when the PLL has completed an atomic update */
aty_pll_readupdate(const struct aty128fb_par * par)578 static int aty_pll_readupdate(const struct aty128fb_par *par)
579 {
580 return !(aty_ld_pll(PPLL_REF_DIV) & PPLL_ATOMIC_UPDATE_R);
581 }
582
583
aty_pll_wait_readupdate(const struct aty128fb_par * par)584 static void aty_pll_wait_readupdate(const struct aty128fb_par *par)
585 {
586 unsigned long timeout = jiffies + HZ/100; // should be more than enough
587 int reset = 1;
588
589 while (time_before(jiffies, timeout))
590 if (aty_pll_readupdate(par)) {
591 reset = 0;
592 break;
593 }
594
595 if (reset) /* reset engine?? */
596 printk(KERN_DEBUG "aty128fb: PLL write timeout!\n");
597 }
598
599
600 /* tell PLL to update */
aty_pll_writeupdate(const struct aty128fb_par * par)601 static void aty_pll_writeupdate(const struct aty128fb_par *par)
602 {
603 aty_pll_wait_readupdate(par);
604
605 aty_st_pll(PPLL_REF_DIV,
606 aty_ld_pll(PPLL_REF_DIV) | PPLL_ATOMIC_UPDATE_W);
607 }
608
609
610 /* write to the scratch register to test r/w functionality */
register_test(const struct aty128fb_par * par)611 static int register_test(const struct aty128fb_par *par)
612 {
613 u32 val;
614 int flag = 0;
615
616 val = aty_ld_le32(BIOS_0_SCRATCH);
617
618 aty_st_le32(BIOS_0_SCRATCH, 0x55555555);
619 if (aty_ld_le32(BIOS_0_SCRATCH) == 0x55555555) {
620 aty_st_le32(BIOS_0_SCRATCH, 0xAAAAAAAA);
621
622 if (aty_ld_le32(BIOS_0_SCRATCH) == 0xAAAAAAAA)
623 flag = 1;
624 }
625
626 aty_st_le32(BIOS_0_SCRATCH, val); // restore value
627 return flag;
628 }
629
630
631 /*
632 * Accelerator engine functions
633 */
do_wait_for_fifo(u16 entries,struct aty128fb_par * par)634 static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par)
635 {
636 int i;
637
638 for (;;) {
639 for (i = 0; i < 2000000; i++) {
640 par->fifo_slots = aty_ld_le32(GUI_STAT) & 0x0fff;
641 if (par->fifo_slots >= entries)
642 return;
643 }
644 aty128_reset_engine(par);
645 }
646 }
647
648
wait_for_idle(struct aty128fb_par * par)649 static void wait_for_idle(struct aty128fb_par *par)
650 {
651 int i;
652
653 do_wait_for_fifo(64, par);
654
655 for (;;) {
656 for (i = 0; i < 2000000; i++) {
657 if (!(aty_ld_le32(GUI_STAT) & (1 << 31))) {
658 aty128_flush_pixel_cache(par);
659 par->blitter_may_be_busy = 0;
660 return;
661 }
662 }
663 aty128_reset_engine(par);
664 }
665 }
666
667
wait_for_fifo(u16 entries,struct aty128fb_par * par)668 static void wait_for_fifo(u16 entries, struct aty128fb_par *par)
669 {
670 if (par->fifo_slots < entries)
671 do_wait_for_fifo(64, par);
672 par->fifo_slots -= entries;
673 }
674
675
aty128_flush_pixel_cache(const struct aty128fb_par * par)676 static void aty128_flush_pixel_cache(const struct aty128fb_par *par)
677 {
678 int i;
679 u32 tmp;
680
681 tmp = aty_ld_le32(PC_NGUI_CTLSTAT);
682 tmp &= ~(0x00ff);
683 tmp |= 0x00ff;
684 aty_st_le32(PC_NGUI_CTLSTAT, tmp);
685
686 for (i = 0; i < 2000000; i++)
687 if (!(aty_ld_le32(PC_NGUI_CTLSTAT) & PC_BUSY))
688 break;
689 }
690
691
aty128_reset_engine(const struct aty128fb_par * par)692 static void aty128_reset_engine(const struct aty128fb_par *par)
693 {
694 u32 gen_reset_cntl, clock_cntl_index, mclk_cntl;
695
696 aty128_flush_pixel_cache(par);
697
698 clock_cntl_index = aty_ld_le32(CLOCK_CNTL_INDEX);
699 mclk_cntl = aty_ld_pll(MCLK_CNTL);
700
701 aty_st_pll(MCLK_CNTL, mclk_cntl | 0x00030000);
702
703 gen_reset_cntl = aty_ld_le32(GEN_RESET_CNTL);
704 aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl | SOFT_RESET_GUI);
705 aty_ld_le32(GEN_RESET_CNTL);
706 aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl & ~(SOFT_RESET_GUI));
707 aty_ld_le32(GEN_RESET_CNTL);
708
709 aty_st_pll(MCLK_CNTL, mclk_cntl);
710 aty_st_le32(CLOCK_CNTL_INDEX, clock_cntl_index);
711 aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl);
712
713 /* use old pio mode */
714 aty_st_le32(PM4_BUFFER_CNTL, PM4_BUFFER_CNTL_NONPM4);
715
716 DBG("engine reset");
717 }
718
719
aty128_init_engine(struct aty128fb_par * par)720 static void aty128_init_engine(struct aty128fb_par *par)
721 {
722 u32 pitch_value;
723
724 wait_for_idle(par);
725
726 /* 3D scaler not spoken here */
727 wait_for_fifo(1, par);
728 aty_st_le32(SCALE_3D_CNTL, 0x00000000);
729
730 aty128_reset_engine(par);
731
732 pitch_value = par->crtc.pitch;
733 if (par->crtc.bpp == 24) {
734 pitch_value = pitch_value * 3;
735 }
736
737 wait_for_fifo(4, par);
738 /* setup engine offset registers */
739 aty_st_le32(DEFAULT_OFFSET, 0x00000000);
740
741 /* setup engine pitch registers */
742 aty_st_le32(DEFAULT_PITCH, pitch_value);
743
744 /* set the default scissor register to max dimensions */
745 aty_st_le32(DEFAULT_SC_BOTTOM_RIGHT, (0x1FFF << 16) | 0x1FFF);
746
747 /* set the drawing controls registers */
748 aty_st_le32(DP_GUI_MASTER_CNTL,
749 GMC_SRC_PITCH_OFFSET_DEFAULT |
750 GMC_DST_PITCH_OFFSET_DEFAULT |
751 GMC_SRC_CLIP_DEFAULT |
752 GMC_DST_CLIP_DEFAULT |
753 GMC_BRUSH_SOLIDCOLOR |
754 (depth_to_dst(par->crtc.depth) << 8) |
755 GMC_SRC_DSTCOLOR |
756 GMC_BYTE_ORDER_MSB_TO_LSB |
757 GMC_DP_CONVERSION_TEMP_6500 |
758 ROP3_PATCOPY |
759 GMC_DP_SRC_RECT |
760 GMC_3D_FCN_EN_CLR |
761 GMC_DST_CLR_CMP_FCN_CLEAR |
762 GMC_AUX_CLIP_CLEAR |
763 GMC_WRITE_MASK_SET);
764
765 wait_for_fifo(8, par);
766 /* clear the line drawing registers */
767 aty_st_le32(DST_BRES_ERR, 0);
768 aty_st_le32(DST_BRES_INC, 0);
769 aty_st_le32(DST_BRES_DEC, 0);
770
771 /* set brush color registers */
772 aty_st_le32(DP_BRUSH_FRGD_CLR, 0xFFFFFFFF); /* white */
773 aty_st_le32(DP_BRUSH_BKGD_CLR, 0x00000000); /* black */
774
775 /* set source color registers */
776 aty_st_le32(DP_SRC_FRGD_CLR, 0xFFFFFFFF); /* white */
777 aty_st_le32(DP_SRC_BKGD_CLR, 0x00000000); /* black */
778
779 /* default write mask */
780 aty_st_le32(DP_WRITE_MASK, 0xFFFFFFFF);
781
782 /* Wait for all the writes to be completed before returning */
783 wait_for_idle(par);
784 }
785
786
787 /* convert depth values to their register representation */
depth_to_dst(u32 depth)788 static u32 depth_to_dst(u32 depth)
789 {
790 if (depth <= 8)
791 return DST_8BPP;
792 else if (depth <= 15)
793 return DST_15BPP;
794 else if (depth == 16)
795 return DST_16BPP;
796 else if (depth <= 24)
797 return DST_24BPP;
798 else if (depth <= 32)
799 return DST_32BPP;
800
801 return -EINVAL;
802 }
803
804 /*
805 * PLL informations retreival
806 */
807
808
809 #ifndef __sparc__
aty128_map_ROM(const struct aty128fb_par * par,struct pci_dev * dev)810 static void __iomem *aty128_map_ROM(const struct aty128fb_par *par,
811 struct pci_dev *dev)
812 {
813 u16 dptr;
814 u8 rom_type;
815 void __iomem *bios;
816 size_t rom_size;
817
818 /* Fix from ATI for problem with Rage128 hardware not leaving ROM enabled */
819 unsigned int temp;
820 temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG);
821 temp &= 0x00ffffffu;
822 temp |= 0x04 << 24;
823 aty_st_le32(RAGE128_MPP_TB_CONFIG, temp);
824 temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG);
825
826 bios = pci_map_rom(dev, &rom_size);
827
828 if (!bios) {
829 printk(KERN_ERR "aty128fb: ROM failed to map\n");
830 return NULL;
831 }
832
833 /* Very simple test to make sure it appeared */
834 if (BIOS_IN16(0) != 0xaa55) {
835 printk(KERN_DEBUG "aty128fb: Invalid ROM signature %x should "
836 " be 0xaa55\n", BIOS_IN16(0));
837 goto failed;
838 }
839
840 /* Look for the PCI data to check the ROM type */
841 dptr = BIOS_IN16(0x18);
842
843 /* Check the PCI data signature. If it's wrong, we still assume a normal
844 * x86 ROM for now, until I've verified this works everywhere.
845 * The goal here is more to phase out Open Firmware images.
846 *
847 * Currently, we only look at the first PCI data, we could iteratre and
848 * deal with them all, and we should use fb_bios_start relative to start
849 * of image and not relative start of ROM, but so far, I never found a
850 * dual-image ATI card.
851 *
852 * typedef struct {
853 * u32 signature; + 0x00
854 * u16 vendor; + 0x04
855 * u16 device; + 0x06
856 * u16 reserved_1; + 0x08
857 * u16 dlen; + 0x0a
858 * u8 drevision; + 0x0c
859 * u8 class_hi; + 0x0d
860 * u16 class_lo; + 0x0e
861 * u16 ilen; + 0x10
862 * u16 irevision; + 0x12
863 * u8 type; + 0x14
864 * u8 indicator; + 0x15
865 * u16 reserved_2; + 0x16
866 * } pci_data_t;
867 */
868 if (BIOS_IN32(dptr) != (('R' << 24) | ('I' << 16) | ('C' << 8) | 'P')) {
869 printk(KERN_WARNING "aty128fb: PCI DATA signature in ROM incorrect: %08x\n",
870 BIOS_IN32(dptr));
871 goto anyway;
872 }
873 rom_type = BIOS_IN8(dptr + 0x14);
874 switch(rom_type) {
875 case 0:
876 printk(KERN_INFO "aty128fb: Found Intel x86 BIOS ROM Image\n");
877 break;
878 case 1:
879 printk(KERN_INFO "aty128fb: Found Open Firmware ROM Image\n");
880 goto failed;
881 case 2:
882 printk(KERN_INFO "aty128fb: Found HP PA-RISC ROM Image\n");
883 goto failed;
884 default:
885 printk(KERN_INFO "aty128fb: Found unknown type %d ROM Image\n",
886 rom_type);
887 goto failed;
888 }
889 anyway:
890 return bios;
891
892 failed:
893 pci_unmap_rom(dev, bios);
894 return NULL;
895 }
896
aty128_get_pllinfo(struct aty128fb_par * par,unsigned char __iomem * bios)897 static void aty128_get_pllinfo(struct aty128fb_par *par,
898 unsigned char __iomem *bios)
899 {
900 unsigned int bios_hdr;
901 unsigned int bios_pll;
902
903 bios_hdr = BIOS_IN16(0x48);
904 bios_pll = BIOS_IN16(bios_hdr + 0x30);
905
906 par->constants.ppll_max = BIOS_IN32(bios_pll + 0x16);
907 par->constants.ppll_min = BIOS_IN32(bios_pll + 0x12);
908 par->constants.xclk = BIOS_IN16(bios_pll + 0x08);
909 par->constants.ref_divider = BIOS_IN16(bios_pll + 0x10);
910 par->constants.ref_clk = BIOS_IN16(bios_pll + 0x0e);
911
912 DBG("ppll_max %d ppll_min %d xclk %d ref_divider %d ref clock %d\n",
913 par->constants.ppll_max, par->constants.ppll_min,
914 par->constants.xclk, par->constants.ref_divider,
915 par->constants.ref_clk);
916
917 }
918
919 #ifdef CONFIG_X86
aty128_find_mem_vbios(struct aty128fb_par * par)920 static void __iomem *aty128_find_mem_vbios(struct aty128fb_par *par)
921 {
922 /* I simplified this code as we used to miss the signatures in
923 * a lot of case. It's now closer to XFree, we just don't check
924 * for signatures at all... Something better will have to be done
925 * if we end up having conflicts
926 */
927 u32 segstart;
928 unsigned char __iomem *rom_base = NULL;
929
930 for (segstart=0x000c0000; segstart<0x000f0000; segstart+=0x00001000) {
931 rom_base = ioremap(segstart, 0x10000);
932 if (rom_base == NULL)
933 return NULL;
934 if (readb(rom_base) == 0x55 && readb(rom_base + 1) == 0xaa)
935 break;
936 iounmap(rom_base);
937 rom_base = NULL;
938 }
939 return rom_base;
940 }
941 #endif
942 #endif /* ndef(__sparc__) */
943
944 /* fill in known card constants if pll_block is not available */
aty128_timings(struct aty128fb_par * par)945 static void aty128_timings(struct aty128fb_par *par)
946 {
947 #ifdef CONFIG_PPC
948 /* instead of a table lookup, assume OF has properly
949 * setup the PLL registers and use their values
950 * to set the XCLK values and reference divider values */
951
952 u32 x_mpll_ref_fb_div;
953 u32 xclk_cntl;
954 u32 Nx, M;
955 static const unsigned int PostDivSet[] = { 0, 1, 2, 4, 8, 3, 6, 12 };
956 #endif
957
958 if (!par->constants.ref_clk)
959 par->constants.ref_clk = 2950;
960
961 #ifdef CONFIG_PPC
962 x_mpll_ref_fb_div = aty_ld_pll(X_MPLL_REF_FB_DIV);
963 xclk_cntl = aty_ld_pll(XCLK_CNTL) & 0x7;
964 Nx = (x_mpll_ref_fb_div & 0x00ff00) >> 8;
965 M = x_mpll_ref_fb_div & 0x0000ff;
966
967 par->constants.xclk = round_div((2 * Nx * par->constants.ref_clk),
968 (M * PostDivSet[xclk_cntl]));
969
970 par->constants.ref_divider =
971 aty_ld_pll(PPLL_REF_DIV) & PPLL_REF_DIV_MASK;
972 #endif
973
974 if (!par->constants.ref_divider) {
975 par->constants.ref_divider = 0x3b;
976
977 aty_st_pll(X_MPLL_REF_FB_DIV, 0x004c4c1e);
978 aty_pll_writeupdate(par);
979 }
980 aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider);
981 aty_pll_writeupdate(par);
982
983 /* from documentation */
984 if (!par->constants.ppll_min)
985 par->constants.ppll_min = 12500;
986 if (!par->constants.ppll_max)
987 par->constants.ppll_max = 25000; /* 23000 on some cards? */
988 if (!par->constants.xclk)
989 par->constants.xclk = 0x1d4d; /* same as mclk */
990
991 par->constants.fifo_width = 128;
992 par->constants.fifo_depth = 32;
993
994 switch (aty_ld_le32(MEM_CNTL) & 0x3) {
995 case 0:
996 par->mem = &sdr_128;
997 break;
998 case 1:
999 par->mem = &sdr_sgram;
1000 break;
1001 case 2:
1002 par->mem = &ddr_sgram;
1003 break;
1004 default:
1005 par->mem = &sdr_sgram;
1006 }
1007 }
1008
1009
1010
1011 /*
1012 * CRTC programming
1013 */
1014
1015 /* Program the CRTC registers */
aty128_set_crtc(const struct aty128_crtc * crtc,const struct aty128fb_par * par)1016 static void aty128_set_crtc(const struct aty128_crtc *crtc,
1017 const struct aty128fb_par *par)
1018 {
1019 aty_st_le32(CRTC_GEN_CNTL, crtc->gen_cntl);
1020 aty_st_le32(CRTC_H_TOTAL_DISP, crtc->h_total);
1021 aty_st_le32(CRTC_H_SYNC_STRT_WID, crtc->h_sync_strt_wid);
1022 aty_st_le32(CRTC_V_TOTAL_DISP, crtc->v_total);
1023 aty_st_le32(CRTC_V_SYNC_STRT_WID, crtc->v_sync_strt_wid);
1024 aty_st_le32(CRTC_PITCH, crtc->pitch);
1025 aty_st_le32(CRTC_OFFSET, crtc->offset);
1026 aty_st_le32(CRTC_OFFSET_CNTL, crtc->offset_cntl);
1027 /* Disable ATOMIC updating. Is this the right place? */
1028 aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~(0x00030000));
1029 }
1030
1031
aty128_var_to_crtc(const struct fb_var_screeninfo * var,struct aty128_crtc * crtc,const struct aty128fb_par * par)1032 static int aty128_var_to_crtc(const struct fb_var_screeninfo *var,
1033 struct aty128_crtc *crtc,
1034 const struct aty128fb_par *par)
1035 {
1036 u32 xres, yres, vxres, vyres, xoffset, yoffset, bpp, dst;
1037 u32 left, right, upper, lower, hslen, vslen, sync, vmode;
1038 u32 h_total, h_disp, h_sync_strt, h_sync_wid, h_sync_pol;
1039 u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
1040 u32 depth, bytpp;
1041 u8 mode_bytpp[7] = { 0, 0, 1, 2, 2, 3, 4 };
1042
1043 /* input */
1044 xres = var->xres;
1045 yres = var->yres;
1046 vxres = var->xres_virtual;
1047 vyres = var->yres_virtual;
1048 xoffset = var->xoffset;
1049 yoffset = var->yoffset;
1050 bpp = var->bits_per_pixel;
1051 left = var->left_margin;
1052 right = var->right_margin;
1053 upper = var->upper_margin;
1054 lower = var->lower_margin;
1055 hslen = var->hsync_len;
1056 vslen = var->vsync_len;
1057 sync = var->sync;
1058 vmode = var->vmode;
1059
1060 if (bpp != 16)
1061 depth = bpp;
1062 else
1063 depth = (var->green.length == 6) ? 16 : 15;
1064
1065 /* check for mode eligibility
1066 * accept only non interlaced modes */
1067 if ((vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED)
1068 return -EINVAL;
1069
1070 /* convert (and round up) and validate */
1071 xres = (xres + 7) & ~7;
1072 xoffset = (xoffset + 7) & ~7;
1073
1074 if (vxres < xres + xoffset)
1075 vxres = xres + xoffset;
1076
1077 if (vyres < yres + yoffset)
1078 vyres = yres + yoffset;
1079
1080 /* convert depth into ATI register depth */
1081 dst = depth_to_dst(depth);
1082
1083 if (dst == -EINVAL) {
1084 printk(KERN_ERR "aty128fb: Invalid depth or RGBA\n");
1085 return -EINVAL;
1086 }
1087
1088 /* convert register depth to bytes per pixel */
1089 bytpp = mode_bytpp[dst];
1090
1091 /* make sure there is enough video ram for the mode */
1092 if ((u32)(vxres * vyres * bytpp) > par->vram_size) {
1093 printk(KERN_ERR "aty128fb: Not enough memory for mode\n");
1094 return -EINVAL;
1095 }
1096
1097 h_disp = (xres >> 3) - 1;
1098 h_total = (((xres + right + hslen + left) >> 3) - 1) & 0xFFFFL;
1099
1100 v_disp = yres - 1;
1101 v_total = (yres + upper + vslen + lower - 1) & 0xFFFFL;
1102
1103 /* check to make sure h_total and v_total are in range */
1104 if (((h_total >> 3) - 1) > 0x1ff || (v_total - 1) > 0x7FF) {
1105 printk(KERN_ERR "aty128fb: invalid width ranges\n");
1106 return -EINVAL;
1107 }
1108
1109 h_sync_wid = (hslen + 7) >> 3;
1110 if (h_sync_wid == 0)
1111 h_sync_wid = 1;
1112 else if (h_sync_wid > 0x3f) /* 0x3f = max hwidth */
1113 h_sync_wid = 0x3f;
1114
1115 h_sync_strt = (h_disp << 3) + right;
1116
1117 v_sync_wid = vslen;
1118 if (v_sync_wid == 0)
1119 v_sync_wid = 1;
1120 else if (v_sync_wid > 0x1f) /* 0x1f = max vwidth */
1121 v_sync_wid = 0x1f;
1122
1123 v_sync_strt = v_disp + lower;
1124
1125 h_sync_pol = sync & FB_SYNC_HOR_HIGH_ACT ? 0 : 1;
1126 v_sync_pol = sync & FB_SYNC_VERT_HIGH_ACT ? 0 : 1;
1127
1128 c_sync = sync & FB_SYNC_COMP_HIGH_ACT ? (1 << 4) : 0;
1129
1130 crtc->gen_cntl = 0x3000000L | c_sync | (dst << 8);
1131
1132 crtc->h_total = h_total | (h_disp << 16);
1133 crtc->v_total = v_total | (v_disp << 16);
1134
1135 crtc->h_sync_strt_wid = h_sync_strt | (h_sync_wid << 16) |
1136 (h_sync_pol << 23);
1137 crtc->v_sync_strt_wid = v_sync_strt | (v_sync_wid << 16) |
1138 (v_sync_pol << 23);
1139
1140 crtc->pitch = vxres >> 3;
1141
1142 crtc->offset = 0;
1143
1144 if ((var->activate & FB_ACTIVATE_MASK) == FB_ACTIVATE_NOW)
1145 crtc->offset_cntl = 0x00010000;
1146 else
1147 crtc->offset_cntl = 0;
1148
1149 crtc->vxres = vxres;
1150 crtc->vyres = vyres;
1151 crtc->xoffset = xoffset;
1152 crtc->yoffset = yoffset;
1153 crtc->depth = depth;
1154 crtc->bpp = bpp;
1155
1156 return 0;
1157 }
1158
1159
aty128_pix_width_to_var(int pix_width,struct fb_var_screeninfo * var)1160 static int aty128_pix_width_to_var(int pix_width, struct fb_var_screeninfo *var)
1161 {
1162
1163 /* fill in pixel info */
1164 var->red.msb_right = 0;
1165 var->green.msb_right = 0;
1166 var->blue.offset = 0;
1167 var->blue.msb_right = 0;
1168 var->transp.offset = 0;
1169 var->transp.length = 0;
1170 var->transp.msb_right = 0;
1171 switch (pix_width) {
1172 case CRTC_PIX_WIDTH_8BPP:
1173 var->bits_per_pixel = 8;
1174 var->red.offset = 0;
1175 var->red.length = 8;
1176 var->green.offset = 0;
1177 var->green.length = 8;
1178 var->blue.length = 8;
1179 break;
1180 case CRTC_PIX_WIDTH_15BPP:
1181 var->bits_per_pixel = 16;
1182 var->red.offset = 10;
1183 var->red.length = 5;
1184 var->green.offset = 5;
1185 var->green.length = 5;
1186 var->blue.length = 5;
1187 break;
1188 case CRTC_PIX_WIDTH_16BPP:
1189 var->bits_per_pixel = 16;
1190 var->red.offset = 11;
1191 var->red.length = 5;
1192 var->green.offset = 5;
1193 var->green.length = 6;
1194 var->blue.length = 5;
1195 break;
1196 case CRTC_PIX_WIDTH_24BPP:
1197 var->bits_per_pixel = 24;
1198 var->red.offset = 16;
1199 var->red.length = 8;
1200 var->green.offset = 8;
1201 var->green.length = 8;
1202 var->blue.length = 8;
1203 break;
1204 case CRTC_PIX_WIDTH_32BPP:
1205 var->bits_per_pixel = 32;
1206 var->red.offset = 16;
1207 var->red.length = 8;
1208 var->green.offset = 8;
1209 var->green.length = 8;
1210 var->blue.length = 8;
1211 var->transp.offset = 24;
1212 var->transp.length = 8;
1213 break;
1214 default:
1215 printk(KERN_ERR "aty128fb: Invalid pixel width\n");
1216 return -EINVAL;
1217 }
1218
1219 return 0;
1220 }
1221
1222
aty128_crtc_to_var(const struct aty128_crtc * crtc,struct fb_var_screeninfo * var)1223 static int aty128_crtc_to_var(const struct aty128_crtc *crtc,
1224 struct fb_var_screeninfo *var)
1225 {
1226 u32 xres, yres, left, right, upper, lower, hslen, vslen, sync;
1227 u32 h_total, h_disp, h_sync_strt, h_sync_dly, h_sync_wid, h_sync_pol;
1228 u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
1229 u32 pix_width;
1230
1231 /* fun with masking */
1232 h_total = crtc->h_total & 0x1ff;
1233 h_disp = (crtc->h_total >> 16) & 0xff;
1234 h_sync_strt = (crtc->h_sync_strt_wid >> 3) & 0x1ff;
1235 h_sync_dly = crtc->h_sync_strt_wid & 0x7;
1236 h_sync_wid = (crtc->h_sync_strt_wid >> 16) & 0x3f;
1237 h_sync_pol = (crtc->h_sync_strt_wid >> 23) & 0x1;
1238 v_total = crtc->v_total & 0x7ff;
1239 v_disp = (crtc->v_total >> 16) & 0x7ff;
1240 v_sync_strt = crtc->v_sync_strt_wid & 0x7ff;
1241 v_sync_wid = (crtc->v_sync_strt_wid >> 16) & 0x1f;
1242 v_sync_pol = (crtc->v_sync_strt_wid >> 23) & 0x1;
1243 c_sync = crtc->gen_cntl & CRTC_CSYNC_EN ? 1 : 0;
1244 pix_width = crtc->gen_cntl & CRTC_PIX_WIDTH_MASK;
1245
1246 /* do conversions */
1247 xres = (h_disp + 1) << 3;
1248 yres = v_disp + 1;
1249 left = ((h_total - h_sync_strt - h_sync_wid) << 3) - h_sync_dly;
1250 right = ((h_sync_strt - h_disp) << 3) + h_sync_dly;
1251 hslen = h_sync_wid << 3;
1252 upper = v_total - v_sync_strt - v_sync_wid;
1253 lower = v_sync_strt - v_disp;
1254 vslen = v_sync_wid;
1255 sync = (h_sync_pol ? 0 : FB_SYNC_HOR_HIGH_ACT) |
1256 (v_sync_pol ? 0 : FB_SYNC_VERT_HIGH_ACT) |
1257 (c_sync ? FB_SYNC_COMP_HIGH_ACT : 0);
1258
1259 aty128_pix_width_to_var(pix_width, var);
1260
1261 var->xres = xres;
1262 var->yres = yres;
1263 var->xres_virtual = crtc->vxres;
1264 var->yres_virtual = crtc->vyres;
1265 var->xoffset = crtc->xoffset;
1266 var->yoffset = crtc->yoffset;
1267 var->left_margin = left;
1268 var->right_margin = right;
1269 var->upper_margin = upper;
1270 var->lower_margin = lower;
1271 var->hsync_len = hslen;
1272 var->vsync_len = vslen;
1273 var->sync = sync;
1274 var->vmode = FB_VMODE_NONINTERLACED;
1275
1276 return 0;
1277 }
1278
aty128_set_crt_enable(struct aty128fb_par * par,int on)1279 static void aty128_set_crt_enable(struct aty128fb_par *par, int on)
1280 {
1281 if (on) {
1282 aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) |
1283 CRT_CRTC_ON);
1284 aty_st_le32(DAC_CNTL, (aty_ld_le32(DAC_CNTL) |
1285 DAC_PALETTE2_SNOOP_EN));
1286 } else
1287 aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) &
1288 ~CRT_CRTC_ON);
1289 }
1290
aty128_set_lcd_enable(struct aty128fb_par * par,int on)1291 static void aty128_set_lcd_enable(struct aty128fb_par *par, int on)
1292 {
1293 u32 reg;
1294 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1295 struct fb_info *info = pci_get_drvdata(par->pdev);
1296 #endif
1297
1298 if (on) {
1299 reg = aty_ld_le32(LVDS_GEN_CNTL);
1300 reg |= LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION;
1301 reg &= ~LVDS_DISPLAY_DIS;
1302 aty_st_le32(LVDS_GEN_CNTL, reg);
1303 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1304 aty128_bl_set_power(info, FB_BLANK_UNBLANK);
1305 #endif
1306 } else {
1307 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1308 aty128_bl_set_power(info, FB_BLANK_POWERDOWN);
1309 #endif
1310 reg = aty_ld_le32(LVDS_GEN_CNTL);
1311 reg |= LVDS_DISPLAY_DIS;
1312 aty_st_le32(LVDS_GEN_CNTL, reg);
1313 mdelay(100);
1314 reg &= ~(LVDS_ON /*| LVDS_EN*/);
1315 aty_st_le32(LVDS_GEN_CNTL, reg);
1316 }
1317 }
1318
aty128_set_pll(struct aty128_pll * pll,const struct aty128fb_par * par)1319 static void aty128_set_pll(struct aty128_pll *pll,
1320 const struct aty128fb_par *par)
1321 {
1322 u32 div3;
1323
1324 /* register values for post dividers */
1325 static const unsigned char post_conv[] = {
1326 2, 0, 1, 4, 2, 2, 6, 2, 3, 2, 2, 2, 7
1327 };
1328
1329 /* select PPLL_DIV_3 */
1330 aty_st_le32(CLOCK_CNTL_INDEX, aty_ld_le32(CLOCK_CNTL_INDEX) | (3 << 8));
1331
1332 /* reset PLL */
1333 aty_st_pll(PPLL_CNTL,
1334 aty_ld_pll(PPLL_CNTL) | PPLL_RESET | PPLL_ATOMIC_UPDATE_EN);
1335
1336 /* write the reference divider */
1337 aty_pll_wait_readupdate(par);
1338 aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider & 0x3ff);
1339 aty_pll_writeupdate(par);
1340
1341 div3 = aty_ld_pll(PPLL_DIV_3);
1342 div3 &= ~PPLL_FB3_DIV_MASK;
1343 div3 |= pll->feedback_divider;
1344 div3 &= ~PPLL_POST3_DIV_MASK;
1345 div3 |= post_conv[pll->post_divider] << 16;
1346
1347 /* write feedback and post dividers */
1348 aty_pll_wait_readupdate(par);
1349 aty_st_pll(PPLL_DIV_3, div3);
1350 aty_pll_writeupdate(par);
1351
1352 aty_pll_wait_readupdate(par);
1353 aty_st_pll(HTOTAL_CNTL, 0); /* no horiz crtc adjustment */
1354 aty_pll_writeupdate(par);
1355
1356 /* clear the reset, just in case */
1357 aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~PPLL_RESET);
1358 }
1359
1360
aty128_var_to_pll(u32 period_in_ps,struct aty128_pll * pll,const struct aty128fb_par * par)1361 static int aty128_var_to_pll(u32 period_in_ps, struct aty128_pll *pll,
1362 const struct aty128fb_par *par)
1363 {
1364 const struct aty128_constants c = par->constants;
1365 static const unsigned char post_dividers[] = { 1, 2, 4, 8, 3, 6, 12 };
1366 u32 output_freq;
1367 u32 vclk; /* in .01 MHz */
1368 int i = 0;
1369 u32 n, d;
1370
1371 vclk = 100000000 / period_in_ps; /* convert units to 10 kHz */
1372
1373 /* adjust pixel clock if necessary */
1374 if (vclk > c.ppll_max)
1375 vclk = c.ppll_max;
1376 if (vclk * 12 < c.ppll_min)
1377 vclk = c.ppll_min/12;
1378
1379 /* now, find an acceptable divider */
1380 for (i = 0; i < ARRAY_SIZE(post_dividers); i++) {
1381 output_freq = post_dividers[i] * vclk;
1382 if (output_freq >= c.ppll_min && output_freq <= c.ppll_max) {
1383 pll->post_divider = post_dividers[i];
1384 break;
1385 }
1386 }
1387
1388 if (i == ARRAY_SIZE(post_dividers))
1389 return -EINVAL;
1390
1391 /* calculate feedback divider */
1392 n = c.ref_divider * output_freq;
1393 d = c.ref_clk;
1394
1395 pll->feedback_divider = round_div(n, d);
1396 pll->vclk = vclk;
1397
1398 DBG("post %d feedback %d vlck %d output %d ref_divider %d "
1399 "vclk_per: %d\n", pll->post_divider,
1400 pll->feedback_divider, vclk, output_freq,
1401 c.ref_divider, period_in_ps);
1402
1403 return 0;
1404 }
1405
1406
aty128_pll_to_var(const struct aty128_pll * pll,struct fb_var_screeninfo * var)1407 static int aty128_pll_to_var(const struct aty128_pll *pll,
1408 struct fb_var_screeninfo *var)
1409 {
1410 var->pixclock = 100000000 / pll->vclk;
1411
1412 return 0;
1413 }
1414
1415
aty128_set_fifo(const struct aty128_ddafifo * dsp,const struct aty128fb_par * par)1416 static void aty128_set_fifo(const struct aty128_ddafifo *dsp,
1417 const struct aty128fb_par *par)
1418 {
1419 aty_st_le32(DDA_CONFIG, dsp->dda_config);
1420 aty_st_le32(DDA_ON_OFF, dsp->dda_on_off);
1421 }
1422
1423
aty128_ddafifo(struct aty128_ddafifo * dsp,const struct aty128_pll * pll,u32 depth,const struct aty128fb_par * par)1424 static int aty128_ddafifo(struct aty128_ddafifo *dsp,
1425 const struct aty128_pll *pll,
1426 u32 depth,
1427 const struct aty128fb_par *par)
1428 {
1429 const struct aty128_meminfo *m = par->mem;
1430 u32 xclk = par->constants.xclk;
1431 u32 fifo_width = par->constants.fifo_width;
1432 u32 fifo_depth = par->constants.fifo_depth;
1433 s32 x, b, p, ron, roff;
1434 u32 n, d, bpp;
1435
1436 /* round up to multiple of 8 */
1437 bpp = (depth+7) & ~7;
1438
1439 n = xclk * fifo_width;
1440 d = pll->vclk * bpp;
1441 x = round_div(n, d);
1442
1443 ron = 4 * m->MB +
1444 3 * ((m->Trcd - 2 > 0) ? m->Trcd - 2 : 0) +
1445 2 * m->Trp +
1446 m->Twr +
1447 m->CL +
1448 m->Tr2w +
1449 x;
1450
1451 DBG("x %x\n", x);
1452
1453 b = 0;
1454 while (x) {
1455 x >>= 1;
1456 b++;
1457 }
1458 p = b + 1;
1459
1460 ron <<= (11 - p);
1461
1462 n <<= (11 - p);
1463 x = round_div(n, d);
1464 roff = x * (fifo_depth - 4);
1465
1466 if ((ron + m->Rloop) >= roff) {
1467 printk(KERN_ERR "aty128fb: Mode out of range!\n");
1468 return -EINVAL;
1469 }
1470
1471 DBG("p: %x rloop: %x x: %x ron: %x roff: %x\n",
1472 p, m->Rloop, x, ron, roff);
1473
1474 dsp->dda_config = p << 16 | m->Rloop << 20 | x;
1475 dsp->dda_on_off = ron << 16 | roff;
1476
1477 return 0;
1478 }
1479
1480
1481 /*
1482 * This actually sets the video mode.
1483 */
aty128fb_set_par(struct fb_info * info)1484 static int aty128fb_set_par(struct fb_info *info)
1485 {
1486 struct aty128fb_par *par = info->par;
1487 u32 config;
1488 int err;
1489
1490 if ((err = aty128_decode_var(&info->var, par)) != 0)
1491 return err;
1492
1493 if (par->blitter_may_be_busy)
1494 wait_for_idle(par);
1495
1496 /* clear all registers that may interfere with mode setting */
1497 aty_st_le32(OVR_CLR, 0);
1498 aty_st_le32(OVR_WID_LEFT_RIGHT, 0);
1499 aty_st_le32(OVR_WID_TOP_BOTTOM, 0);
1500 aty_st_le32(OV0_SCALE_CNTL, 0);
1501 aty_st_le32(MPP_TB_CONFIG, 0);
1502 aty_st_le32(MPP_GP_CONFIG, 0);
1503 aty_st_le32(SUBPIC_CNTL, 0);
1504 aty_st_le32(VIPH_CONTROL, 0);
1505 aty_st_le32(I2C_CNTL_1, 0); /* turn off i2c */
1506 aty_st_le32(GEN_INT_CNTL, 0); /* turn off interrupts */
1507 aty_st_le32(CAP0_TRIG_CNTL, 0);
1508 aty_st_le32(CAP1_TRIG_CNTL, 0);
1509
1510 aty_st_8(CRTC_EXT_CNTL + 1, 4); /* turn video off */
1511
1512 aty128_set_crtc(&par->crtc, par);
1513 aty128_set_pll(&par->pll, par);
1514 aty128_set_fifo(&par->fifo_reg, par);
1515
1516 config = aty_ld_le32(CNFG_CNTL) & ~3;
1517
1518 #if defined(__BIG_ENDIAN)
1519 if (par->crtc.bpp == 32)
1520 config |= 2; /* make aperture do 32 bit swapping */
1521 else if (par->crtc.bpp == 16)
1522 config |= 1; /* make aperture do 16 bit swapping */
1523 #endif
1524
1525 aty_st_le32(CNFG_CNTL, config);
1526 aty_st_8(CRTC_EXT_CNTL + 1, 0); /* turn the video back on */
1527
1528 info->fix.line_length = (par->crtc.vxres * par->crtc.bpp) >> 3;
1529 info->fix.visual = par->crtc.bpp == 8 ? FB_VISUAL_PSEUDOCOLOR
1530 : FB_VISUAL_DIRECTCOLOR;
1531
1532 if (par->chip_gen == rage_M3) {
1533 aty128_set_crt_enable(par, par->crt_on);
1534 aty128_set_lcd_enable(par, par->lcd_on);
1535 }
1536 if (par->accel_flags & FB_ACCELF_TEXT)
1537 aty128_init_engine(par);
1538
1539 #ifdef CONFIG_BOOTX_TEXT
1540 btext_update_display(info->fix.smem_start,
1541 (((par->crtc.h_total>>16) & 0xff)+1)*8,
1542 ((par->crtc.v_total>>16) & 0x7ff)+1,
1543 par->crtc.bpp,
1544 par->crtc.vxres*par->crtc.bpp/8);
1545 #endif /* CONFIG_BOOTX_TEXT */
1546
1547 return 0;
1548 }
1549
1550 /*
1551 * encode/decode the User Defined Part of the Display
1552 */
1553
aty128_decode_var(struct fb_var_screeninfo * var,struct aty128fb_par * par)1554 static int aty128_decode_var(struct fb_var_screeninfo *var,
1555 struct aty128fb_par *par)
1556 {
1557 int err;
1558 struct aty128_crtc crtc;
1559 struct aty128_pll pll;
1560 struct aty128_ddafifo fifo_reg;
1561
1562 if ((err = aty128_var_to_crtc(var, &crtc, par)))
1563 return err;
1564
1565 if ((err = aty128_var_to_pll(var->pixclock, &pll, par)))
1566 return err;
1567
1568 if ((err = aty128_ddafifo(&fifo_reg, &pll, crtc.depth, par)))
1569 return err;
1570
1571 par->crtc = crtc;
1572 par->pll = pll;
1573 par->fifo_reg = fifo_reg;
1574 par->accel_flags = var->accel_flags;
1575
1576 return 0;
1577 }
1578
1579
aty128_encode_var(struct fb_var_screeninfo * var,const struct aty128fb_par * par)1580 static int aty128_encode_var(struct fb_var_screeninfo *var,
1581 const struct aty128fb_par *par)
1582 {
1583 int err;
1584
1585 if ((err = aty128_crtc_to_var(&par->crtc, var)))
1586 return err;
1587
1588 if ((err = aty128_pll_to_var(&par->pll, var)))
1589 return err;
1590
1591 var->nonstd = 0;
1592 var->activate = 0;
1593
1594 var->height = -1;
1595 var->width = -1;
1596 var->accel_flags = par->accel_flags;
1597
1598 return 0;
1599 }
1600
1601
aty128fb_check_var(struct fb_var_screeninfo * var,struct fb_info * info)1602 static int aty128fb_check_var(struct fb_var_screeninfo *var,
1603 struct fb_info *info)
1604 {
1605 struct aty128fb_par par;
1606 int err;
1607
1608 par = *(struct aty128fb_par *)info->par;
1609 if ((err = aty128_decode_var(var, &par)) != 0)
1610 return err;
1611 aty128_encode_var(var, &par);
1612 return 0;
1613 }
1614
1615
1616 /*
1617 * Pan or Wrap the Display
1618 */
aty128fb_pan_display(struct fb_var_screeninfo * var,struct fb_info * fb)1619 static int aty128fb_pan_display(struct fb_var_screeninfo *var,
1620 struct fb_info *fb)
1621 {
1622 struct aty128fb_par *par = fb->par;
1623 u32 xoffset, yoffset;
1624 u32 offset;
1625 u32 xres, yres;
1626
1627 xres = (((par->crtc.h_total >> 16) & 0xff) + 1) << 3;
1628 yres = ((par->crtc.v_total >> 16) & 0x7ff) + 1;
1629
1630 xoffset = (var->xoffset +7) & ~7;
1631 yoffset = var->yoffset;
1632
1633 if (xoffset+xres > par->crtc.vxres || yoffset+yres > par->crtc.vyres)
1634 return -EINVAL;
1635
1636 par->crtc.xoffset = xoffset;
1637 par->crtc.yoffset = yoffset;
1638
1639 offset = ((yoffset * par->crtc.vxres + xoffset) * (par->crtc.bpp >> 3))
1640 & ~7;
1641
1642 if (par->crtc.bpp == 24)
1643 offset += 8 * (offset % 3); /* Must be multiple of 8 and 3 */
1644
1645 aty_st_le32(CRTC_OFFSET, offset);
1646
1647 return 0;
1648 }
1649
1650
1651 /*
1652 * Helper function to store a single palette register
1653 */
aty128_st_pal(u_int regno,u_int red,u_int green,u_int blue,struct aty128fb_par * par)1654 static void aty128_st_pal(u_int regno, u_int red, u_int green, u_int blue,
1655 struct aty128fb_par *par)
1656 {
1657 if (par->chip_gen == rage_M3) {
1658 aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) &
1659 ~DAC_PALETTE_ACCESS_CNTL);
1660 }
1661
1662 aty_st_8(PALETTE_INDEX, regno);
1663 aty_st_le32(PALETTE_DATA, (red<<16)|(green<<8)|blue);
1664 }
1665
aty128fb_sync(struct fb_info * info)1666 static int aty128fb_sync(struct fb_info *info)
1667 {
1668 struct aty128fb_par *par = info->par;
1669
1670 if (par->blitter_may_be_busy)
1671 wait_for_idle(par);
1672 return 0;
1673 }
1674
1675 #ifndef MODULE
aty128fb_setup(char * options)1676 static int aty128fb_setup(char *options)
1677 {
1678 char *this_opt;
1679
1680 if (!options || !*options)
1681 return 0;
1682
1683 while ((this_opt = strsep(&options, ",")) != NULL) {
1684 if (!strncmp(this_opt, "lcd:", 4)) {
1685 default_lcd_on = simple_strtoul(this_opt+4, NULL, 0);
1686 continue;
1687 } else if (!strncmp(this_opt, "crt:", 4)) {
1688 default_crt_on = simple_strtoul(this_opt+4, NULL, 0);
1689 continue;
1690 } else if (!strncmp(this_opt, "backlight:", 10)) {
1691 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1692 backlight = simple_strtoul(this_opt+10, NULL, 0);
1693 #endif
1694 continue;
1695 }
1696 if(!strncmp(this_opt, "nomtrr", 6)) {
1697 mtrr = false;
1698 continue;
1699 }
1700 #ifdef CONFIG_PPC_PMAC
1701 /* vmode and cmode deprecated */
1702 if (!strncmp(this_opt, "vmode:", 6)) {
1703 unsigned int vmode = simple_strtoul(this_opt+6, NULL, 0);
1704 if (vmode > 0 && vmode <= VMODE_MAX)
1705 default_vmode = vmode;
1706 continue;
1707 } else if (!strncmp(this_opt, "cmode:", 6)) {
1708 unsigned int cmode = simple_strtoul(this_opt+6, NULL, 0);
1709 switch (cmode) {
1710 case 0:
1711 case 8:
1712 default_cmode = CMODE_8;
1713 break;
1714 case 15:
1715 case 16:
1716 default_cmode = CMODE_16;
1717 break;
1718 case 24:
1719 case 32:
1720 default_cmode = CMODE_32;
1721 break;
1722 }
1723 continue;
1724 }
1725 #endif /* CONFIG_PPC_PMAC */
1726 mode_option = this_opt;
1727 }
1728 return 0;
1729 }
1730 #endif /* MODULE */
1731
1732 /* Backlight */
1733 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1734 #define MAX_LEVEL 0xFF
1735
aty128_bl_get_level_brightness(struct aty128fb_par * par,int level)1736 static int aty128_bl_get_level_brightness(struct aty128fb_par *par,
1737 int level)
1738 {
1739 struct fb_info *info = pci_get_drvdata(par->pdev);
1740 int atylevel;
1741
1742 /* Get and convert the value */
1743 /* No locking of bl_curve since we read a single value */
1744 atylevel = MAX_LEVEL -
1745 (info->bl_curve[level] * FB_BACKLIGHT_MAX / MAX_LEVEL);
1746
1747 if (atylevel < 0)
1748 atylevel = 0;
1749 else if (atylevel > MAX_LEVEL)
1750 atylevel = MAX_LEVEL;
1751
1752 return atylevel;
1753 }
1754
1755 /* We turn off the LCD completely instead of just dimming the backlight.
1756 * This provides greater power saving and the display is useless without
1757 * backlight anyway
1758 */
1759 #define BACKLIGHT_LVDS_OFF
1760 /* That one prevents proper CRT output with LCD off */
1761 #undef BACKLIGHT_DAC_OFF
1762
aty128_bl_update_status(struct backlight_device * bd)1763 static int aty128_bl_update_status(struct backlight_device *bd)
1764 {
1765 struct aty128fb_par *par = bl_get_data(bd);
1766 unsigned int reg = aty_ld_le32(LVDS_GEN_CNTL);
1767 int level;
1768
1769 if (bd->props.power != FB_BLANK_UNBLANK ||
1770 bd->props.fb_blank != FB_BLANK_UNBLANK ||
1771 !par->lcd_on)
1772 level = 0;
1773 else
1774 level = bd->props.brightness;
1775
1776 reg |= LVDS_BL_MOD_EN | LVDS_BLON;
1777 if (level > 0) {
1778 reg |= LVDS_DIGION;
1779 if (!(reg & LVDS_ON)) {
1780 reg &= ~LVDS_BLON;
1781 aty_st_le32(LVDS_GEN_CNTL, reg);
1782 aty_ld_le32(LVDS_GEN_CNTL);
1783 mdelay(10);
1784 reg |= LVDS_BLON;
1785 aty_st_le32(LVDS_GEN_CNTL, reg);
1786 }
1787 reg &= ~LVDS_BL_MOD_LEVEL_MASK;
1788 reg |= (aty128_bl_get_level_brightness(par, level) <<
1789 LVDS_BL_MOD_LEVEL_SHIFT);
1790 #ifdef BACKLIGHT_LVDS_OFF
1791 reg |= LVDS_ON | LVDS_EN;
1792 reg &= ~LVDS_DISPLAY_DIS;
1793 #endif
1794 aty_st_le32(LVDS_GEN_CNTL, reg);
1795 #ifdef BACKLIGHT_DAC_OFF
1796 aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) & (~DAC_PDWN));
1797 #endif
1798 } else {
1799 reg &= ~LVDS_BL_MOD_LEVEL_MASK;
1800 reg |= (aty128_bl_get_level_brightness(par, 0) <<
1801 LVDS_BL_MOD_LEVEL_SHIFT);
1802 #ifdef BACKLIGHT_LVDS_OFF
1803 reg |= LVDS_DISPLAY_DIS;
1804 aty_st_le32(LVDS_GEN_CNTL, reg);
1805 aty_ld_le32(LVDS_GEN_CNTL);
1806 udelay(10);
1807 reg &= ~(LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION);
1808 #endif
1809 aty_st_le32(LVDS_GEN_CNTL, reg);
1810 #ifdef BACKLIGHT_DAC_OFF
1811 aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) | DAC_PDWN);
1812 #endif
1813 }
1814
1815 return 0;
1816 }
1817
1818 static const struct backlight_ops aty128_bl_data = {
1819 .update_status = aty128_bl_update_status,
1820 };
1821
aty128_bl_set_power(struct fb_info * info,int power)1822 static void aty128_bl_set_power(struct fb_info *info, int power)
1823 {
1824 if (info->bl_dev) {
1825 info->bl_dev->props.power = power;
1826 backlight_update_status(info->bl_dev);
1827 }
1828 }
1829
aty128_bl_init(struct aty128fb_par * par)1830 static void aty128_bl_init(struct aty128fb_par *par)
1831 {
1832 struct backlight_properties props;
1833 struct fb_info *info = pci_get_drvdata(par->pdev);
1834 struct backlight_device *bd;
1835 char name[12];
1836
1837 /* Could be extended to Rage128Pro LVDS output too */
1838 if (par->chip_gen != rage_M3)
1839 return;
1840
1841 #ifdef CONFIG_PMAC_BACKLIGHT
1842 if (!pmac_has_backlight_type("ati"))
1843 return;
1844 #endif
1845
1846 snprintf(name, sizeof(name), "aty128bl%d", info->node);
1847
1848 memset(&props, 0, sizeof(struct backlight_properties));
1849 props.type = BACKLIGHT_RAW;
1850 props.max_brightness = FB_BACKLIGHT_LEVELS - 1;
1851 bd = backlight_device_register(name, info->dev, par, &aty128_bl_data,
1852 &props);
1853 if (IS_ERR(bd)) {
1854 info->bl_dev = NULL;
1855 printk(KERN_WARNING "aty128: Backlight registration failed\n");
1856 goto error;
1857 }
1858
1859 info->bl_dev = bd;
1860 fb_bl_default_curve(info, 0,
1861 63 * FB_BACKLIGHT_MAX / MAX_LEVEL,
1862 219 * FB_BACKLIGHT_MAX / MAX_LEVEL);
1863
1864 bd->props.brightness = bd->props.max_brightness;
1865 bd->props.power = FB_BLANK_UNBLANK;
1866 backlight_update_status(bd);
1867
1868 printk("aty128: Backlight initialized (%s)\n", name);
1869
1870 return;
1871
1872 error:
1873 return;
1874 }
1875
aty128_bl_exit(struct backlight_device * bd)1876 static void aty128_bl_exit(struct backlight_device *bd)
1877 {
1878 backlight_device_unregister(bd);
1879 printk("aty128: Backlight unloaded\n");
1880 }
1881 #endif /* CONFIG_FB_ATY128_BACKLIGHT */
1882
1883 /*
1884 * Initialisation
1885 */
1886
1887 #ifdef CONFIG_PPC_PMAC__disabled
aty128_early_resume(void * data)1888 static void aty128_early_resume(void *data)
1889 {
1890 struct aty128fb_par *par = data;
1891
1892 if (!console_trylock())
1893 return;
1894 pci_restore_state(par->pdev);
1895 aty128_do_resume(par->pdev);
1896 console_unlock();
1897 }
1898 #endif /* CONFIG_PPC_PMAC */
1899
aty128_init(struct pci_dev * pdev,const struct pci_device_id * ent)1900 static int aty128_init(struct pci_dev *pdev, const struct pci_device_id *ent)
1901 {
1902 struct fb_info *info = pci_get_drvdata(pdev);
1903 struct aty128fb_par *par = info->par;
1904 struct fb_var_screeninfo var;
1905 char video_card[50];
1906 u8 chip_rev;
1907 u32 dac;
1908
1909 /* Get the chip revision */
1910 chip_rev = (aty_ld_le32(CNFG_CNTL) >> 16) & 0x1F;
1911
1912 strcpy(video_card, "Rage128 XX ");
1913 video_card[8] = ent->device >> 8;
1914 video_card[9] = ent->device & 0xFF;
1915
1916 /* range check to make sure */
1917 if (ent->driver_data < ARRAY_SIZE(r128_family))
1918 strlcat(video_card, r128_family[ent->driver_data],
1919 sizeof(video_card));
1920
1921 printk(KERN_INFO "aty128fb: %s [chip rev 0x%x] ", video_card, chip_rev);
1922
1923 if (par->vram_size % (1024 * 1024) == 0)
1924 printk("%dM %s\n", par->vram_size / (1024*1024), par->mem->name);
1925 else
1926 printk("%dk %s\n", par->vram_size / 1024, par->mem->name);
1927
1928 par->chip_gen = ent->driver_data;
1929
1930 /* fill in info */
1931 info->fbops = &aty128fb_ops;
1932 info->flags = FBINFO_FLAG_DEFAULT;
1933
1934 par->lcd_on = default_lcd_on;
1935 par->crt_on = default_crt_on;
1936
1937 var = default_var;
1938 #ifdef CONFIG_PPC_PMAC
1939 if (machine_is(powermac)) {
1940 /* Indicate sleep capability */
1941 if (par->chip_gen == rage_M3) {
1942 pmac_call_feature(PMAC_FTR_DEVICE_CAN_WAKE, NULL, 0, 1);
1943 #if 0 /* Disable the early video resume hack for now as it's causing problems,
1944 * among others we now rely on the PCI core restoring the config space
1945 * for us, which isn't the case with that hack, and that code path causes
1946 * various things to be called with interrupts off while they shouldn't.
1947 * I'm leaving the code in as it can be useful for debugging purposes
1948 */
1949 pmac_set_early_video_resume(aty128_early_resume, par);
1950 #endif
1951 }
1952
1953 /* Find default mode */
1954 if (mode_option) {
1955 if (!mac_find_mode(&var, info, mode_option, 8))
1956 var = default_var;
1957 } else {
1958 if (default_vmode <= 0 || default_vmode > VMODE_MAX)
1959 default_vmode = VMODE_1024_768_60;
1960
1961 /* iMacs need that resolution
1962 * PowerMac2,1 first r128 iMacs
1963 * PowerMac2,2 summer 2000 iMacs
1964 * PowerMac4,1 january 2001 iMacs "flower power"
1965 */
1966 if (of_machine_is_compatible("PowerMac2,1") ||
1967 of_machine_is_compatible("PowerMac2,2") ||
1968 of_machine_is_compatible("PowerMac4,1"))
1969 default_vmode = VMODE_1024_768_75;
1970
1971 /* iBook SE */
1972 if (of_machine_is_compatible("PowerBook2,2"))
1973 default_vmode = VMODE_800_600_60;
1974
1975 /* PowerBook Firewire (Pismo), iBook Dual USB */
1976 if (of_machine_is_compatible("PowerBook3,1") ||
1977 of_machine_is_compatible("PowerBook4,1"))
1978 default_vmode = VMODE_1024_768_60;
1979
1980 /* PowerBook Titanium */
1981 if (of_machine_is_compatible("PowerBook3,2"))
1982 default_vmode = VMODE_1152_768_60;
1983
1984 if (default_cmode > 16)
1985 default_cmode = CMODE_32;
1986 else if (default_cmode > 8)
1987 default_cmode = CMODE_16;
1988 else
1989 default_cmode = CMODE_8;
1990
1991 if (mac_vmode_to_var(default_vmode, default_cmode, &var))
1992 var = default_var;
1993 }
1994 } else
1995 #endif /* CONFIG_PPC_PMAC */
1996 {
1997 if (mode_option)
1998 if (fb_find_mode(&var, info, mode_option, NULL,
1999 0, &defaultmode, 8) == 0)
2000 var = default_var;
2001 }
2002
2003 var.accel_flags &= ~FB_ACCELF_TEXT;
2004 // var.accel_flags |= FB_ACCELF_TEXT;/* FIXME Will add accel later */
2005
2006 if (aty128fb_check_var(&var, info)) {
2007 printk(KERN_ERR "aty128fb: Cannot set default mode.\n");
2008 return 0;
2009 }
2010
2011 /* setup the DAC the way we like it */
2012 dac = aty_ld_le32(DAC_CNTL);
2013 dac |= (DAC_8BIT_EN | DAC_RANGE_CNTL);
2014 dac |= DAC_MASK;
2015 if (par->chip_gen == rage_M3)
2016 dac |= DAC_PALETTE2_SNOOP_EN;
2017 aty_st_le32(DAC_CNTL, dac);
2018
2019 /* turn off bus mastering, just in case */
2020 aty_st_le32(BUS_CNTL, aty_ld_le32(BUS_CNTL) | BUS_MASTER_DIS);
2021
2022 info->var = var;
2023 fb_alloc_cmap(&info->cmap, 256, 0);
2024
2025 var.activate = FB_ACTIVATE_NOW;
2026
2027 aty128_init_engine(par);
2028
2029 par->pdev = pdev;
2030 par->asleep = 0;
2031 par->lock_blank = 0;
2032
2033 #ifdef CONFIG_FB_ATY128_BACKLIGHT
2034 if (backlight)
2035 aty128_bl_init(par);
2036 #endif
2037
2038 if (register_framebuffer(info) < 0)
2039 return 0;
2040
2041 fb_info(info, "%s frame buffer device on %s\n",
2042 info->fix.id, video_card);
2043
2044 return 1; /* success! */
2045 }
2046
2047 #ifdef CONFIG_PCI
2048 /* register a card ++ajoshi */
aty128_probe(struct pci_dev * pdev,const struct pci_device_id * ent)2049 static int aty128_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2050 {
2051 unsigned long fb_addr, reg_addr;
2052 struct aty128fb_par *par;
2053 struct fb_info *info;
2054 int err;
2055 #ifndef __sparc__
2056 void __iomem *bios = NULL;
2057 #endif
2058
2059 err = aperture_remove_conflicting_pci_devices(pdev, "aty128fb");
2060 if (err)
2061 return err;
2062
2063 /* Enable device in PCI config */
2064 if ((err = pci_enable_device(pdev))) {
2065 printk(KERN_ERR "aty128fb: Cannot enable PCI device: %d\n",
2066 err);
2067 return -ENODEV;
2068 }
2069
2070 fb_addr = pci_resource_start(pdev, 0);
2071 if (!request_mem_region(fb_addr, pci_resource_len(pdev, 0),
2072 "aty128fb FB")) {
2073 printk(KERN_ERR "aty128fb: cannot reserve frame "
2074 "buffer memory\n");
2075 return -ENODEV;
2076 }
2077
2078 reg_addr = pci_resource_start(pdev, 2);
2079 if (!request_mem_region(reg_addr, pci_resource_len(pdev, 2),
2080 "aty128fb MMIO")) {
2081 printk(KERN_ERR "aty128fb: cannot reserve MMIO region\n");
2082 goto err_free_fb;
2083 }
2084
2085 /* We have the resources. Now virtualize them */
2086 info = framebuffer_alloc(sizeof(struct aty128fb_par), &pdev->dev);
2087 if (!info)
2088 goto err_free_mmio;
2089
2090 par = info->par;
2091
2092 info->pseudo_palette = par->pseudo_palette;
2093
2094 /* Virtualize mmio region */
2095 info->fix.mmio_start = reg_addr;
2096 par->regbase = pci_ioremap_bar(pdev, 2);
2097 if (!par->regbase)
2098 goto err_free_info;
2099
2100 /* Grab memory size from the card */
2101 // How does this relate to the resource length from the PCI hardware?
2102 par->vram_size = aty_ld_le32(CNFG_MEMSIZE) & 0x03FFFFFF;
2103
2104 /* Virtualize the framebuffer */
2105 info->screen_base = ioremap_wc(fb_addr, par->vram_size);
2106 if (!info->screen_base)
2107 goto err_unmap_out;
2108
2109 /* Set up info->fix */
2110 info->fix = aty128fb_fix;
2111 info->fix.smem_start = fb_addr;
2112 info->fix.smem_len = par->vram_size;
2113 info->fix.mmio_start = reg_addr;
2114
2115 /* If we can't test scratch registers, something is seriously wrong */
2116 if (!register_test(par)) {
2117 printk(KERN_ERR "aty128fb: Can't write to video register!\n");
2118 goto err_out;
2119 }
2120
2121 #ifndef __sparc__
2122 bios = aty128_map_ROM(par, pdev);
2123 #ifdef CONFIG_X86
2124 if (bios == NULL)
2125 bios = aty128_find_mem_vbios(par);
2126 #endif
2127 if (bios == NULL)
2128 printk(KERN_INFO "aty128fb: BIOS not located, guessing timings.\n");
2129 else {
2130 printk(KERN_INFO "aty128fb: Rage128 BIOS located\n");
2131 aty128_get_pllinfo(par, bios);
2132 pci_unmap_rom(pdev, bios);
2133 }
2134 #endif /* __sparc__ */
2135
2136 aty128_timings(par);
2137 pci_set_drvdata(pdev, info);
2138
2139 if (!aty128_init(pdev, ent))
2140 goto err_out;
2141
2142 if (mtrr)
2143 par->wc_cookie = arch_phys_wc_add(info->fix.smem_start,
2144 par->vram_size);
2145 return 0;
2146
2147 err_out:
2148 iounmap(info->screen_base);
2149 err_unmap_out:
2150 iounmap(par->regbase);
2151 err_free_info:
2152 framebuffer_release(info);
2153 err_free_mmio:
2154 release_mem_region(pci_resource_start(pdev, 2),
2155 pci_resource_len(pdev, 2));
2156 err_free_fb:
2157 release_mem_region(pci_resource_start(pdev, 0),
2158 pci_resource_len(pdev, 0));
2159 return -ENODEV;
2160 }
2161
aty128_remove(struct pci_dev * pdev)2162 static void aty128_remove(struct pci_dev *pdev)
2163 {
2164 struct fb_info *info = pci_get_drvdata(pdev);
2165 struct aty128fb_par *par;
2166
2167 if (!info)
2168 return;
2169
2170 par = info->par;
2171
2172 unregister_framebuffer(info);
2173
2174 #ifdef CONFIG_FB_ATY128_BACKLIGHT
2175 aty128_bl_exit(info->bl_dev);
2176 #endif
2177
2178 arch_phys_wc_del(par->wc_cookie);
2179 iounmap(par->regbase);
2180 iounmap(info->screen_base);
2181
2182 release_mem_region(pci_resource_start(pdev, 0),
2183 pci_resource_len(pdev, 0));
2184 release_mem_region(pci_resource_start(pdev, 2),
2185 pci_resource_len(pdev, 2));
2186 framebuffer_release(info);
2187 }
2188 #endif /* CONFIG_PCI */
2189
2190
2191
2192 /*
2193 * Blank the display.
2194 */
aty128fb_blank(int blank,struct fb_info * fb)2195 static int aty128fb_blank(int blank, struct fb_info *fb)
2196 {
2197 struct aty128fb_par *par = fb->par;
2198 u8 state;
2199
2200 if (par->lock_blank || par->asleep)
2201 return 0;
2202
2203 switch (blank) {
2204 case FB_BLANK_NORMAL:
2205 state = 4;
2206 break;
2207 case FB_BLANK_VSYNC_SUSPEND:
2208 state = 6;
2209 break;
2210 case FB_BLANK_HSYNC_SUSPEND:
2211 state = 5;
2212 break;
2213 case FB_BLANK_POWERDOWN:
2214 state = 7;
2215 break;
2216 case FB_BLANK_UNBLANK:
2217 default:
2218 state = 0;
2219 break;
2220 }
2221 aty_st_8(CRTC_EXT_CNTL+1, state);
2222
2223 if (par->chip_gen == rage_M3) {
2224 aty128_set_crt_enable(par, par->crt_on && !blank);
2225 aty128_set_lcd_enable(par, par->lcd_on && !blank);
2226 }
2227
2228 return 0;
2229 }
2230
2231 /*
2232 * Set a single color register. The values supplied are already
2233 * rounded down to the hardware's capabilities (according to the
2234 * entries in the var structure). Return != 0 for invalid regno.
2235 */
aty128fb_setcolreg(u_int regno,u_int red,u_int green,u_int blue,u_int transp,struct fb_info * info)2236 static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
2237 u_int transp, struct fb_info *info)
2238 {
2239 struct aty128fb_par *par = info->par;
2240
2241 if (regno > 255
2242 || (par->crtc.depth == 16 && regno > 63)
2243 || (par->crtc.depth == 15 && regno > 31))
2244 return 1;
2245
2246 red >>= 8;
2247 green >>= 8;
2248 blue >>= 8;
2249
2250 if (regno < 16) {
2251 int i;
2252 u32 *pal = info->pseudo_palette;
2253
2254 switch (par->crtc.depth) {
2255 case 15:
2256 pal[regno] = (regno << 10) | (regno << 5) | regno;
2257 break;
2258 case 16:
2259 pal[regno] = (regno << 11) | (regno << 6) | regno;
2260 break;
2261 case 24:
2262 pal[regno] = (regno << 16) | (regno << 8) | regno;
2263 break;
2264 case 32:
2265 i = (regno << 8) | regno;
2266 pal[regno] = (i << 16) | i;
2267 break;
2268 }
2269 }
2270
2271 if (par->crtc.depth == 16 && regno > 0) {
2272 /*
2273 * With the 5-6-5 split of bits for RGB at 16 bits/pixel, we
2274 * have 32 slots for R and B values but 64 slots for G values.
2275 * Thus the R and B values go in one slot but the G value
2276 * goes in a different slot, and we have to avoid disturbing
2277 * the other fields in the slots we touch.
2278 */
2279 par->green[regno] = green;
2280 if (regno < 32) {
2281 par->red[regno] = red;
2282 par->blue[regno] = blue;
2283 aty128_st_pal(regno * 8, red, par->green[regno*2],
2284 blue, par);
2285 }
2286 red = par->red[regno/2];
2287 blue = par->blue[regno/2];
2288 regno <<= 2;
2289 } else if (par->crtc.bpp == 16)
2290 regno <<= 3;
2291 aty128_st_pal(regno, red, green, blue, par);
2292
2293 return 0;
2294 }
2295
2296 #define ATY_MIRROR_LCD_ON 0x00000001
2297 #define ATY_MIRROR_CRT_ON 0x00000002
2298
2299 /* out param: u32* backlight value: 0 to 15 */
2300 #define FBIO_ATY128_GET_MIRROR _IOR('@', 1, __u32)
2301 /* in param: u32* backlight value: 0 to 15 */
2302 #define FBIO_ATY128_SET_MIRROR _IOW('@', 2, __u32)
2303
aty128fb_ioctl(struct fb_info * info,u_int cmd,u_long arg)2304 static int aty128fb_ioctl(struct fb_info *info, u_int cmd, u_long arg)
2305 {
2306 struct aty128fb_par *par = info->par;
2307 u32 value;
2308 int rc;
2309
2310 switch (cmd) {
2311 case FBIO_ATY128_SET_MIRROR:
2312 if (par->chip_gen != rage_M3)
2313 return -EINVAL;
2314 rc = get_user(value, (__u32 __user *)arg);
2315 if (rc)
2316 return rc;
2317 par->lcd_on = (value & 0x01) != 0;
2318 par->crt_on = (value & 0x02) != 0;
2319 if (!par->crt_on && !par->lcd_on)
2320 par->lcd_on = 1;
2321 aty128_set_crt_enable(par, par->crt_on);
2322 aty128_set_lcd_enable(par, par->lcd_on);
2323 return 0;
2324 case FBIO_ATY128_GET_MIRROR:
2325 if (par->chip_gen != rage_M3)
2326 return -EINVAL;
2327 value = (par->crt_on << 1) | par->lcd_on;
2328 return put_user(value, (__u32 __user *)arg);
2329 }
2330 return -EINVAL;
2331 }
2332
aty128_set_suspend(struct aty128fb_par * par,int suspend)2333 static void aty128_set_suspend(struct aty128fb_par *par, int suspend)
2334 {
2335 u32 pmgt;
2336
2337 if (!par->pdev->pm_cap)
2338 return;
2339
2340 /* Set the chip into the appropriate suspend mode (we use D2,
2341 * D3 would require a complete re-initialisation of the chip,
2342 * including PCI config registers, clocks, AGP configuration, ...)
2343 *
2344 * For resume, the core will have already brought us back to D0
2345 */
2346 if (suspend) {
2347 /* Make sure CRTC2 is reset. Remove that the day we decide to
2348 * actually use CRTC2 and replace it with real code for disabling
2349 * the CRTC2 output during sleep
2350 */
2351 aty_st_le32(CRTC2_GEN_CNTL, aty_ld_le32(CRTC2_GEN_CNTL) &
2352 ~(CRTC2_EN));
2353
2354 /* Set the power management mode to be PCI based */
2355 /* Use this magic value for now */
2356 pmgt = 0x0c005407;
2357 aty_st_pll(POWER_MANAGEMENT, pmgt);
2358 (void)aty_ld_pll(POWER_MANAGEMENT);
2359 aty_st_le32(BUS_CNTL1, 0x00000010);
2360 aty_st_le32(MEM_POWER_MISC, 0x0c830000);
2361 msleep(100);
2362 }
2363 }
2364
aty128_pci_suspend_late(struct device * dev,pm_message_t state)2365 static int aty128_pci_suspend_late(struct device *dev, pm_message_t state)
2366 {
2367 struct pci_dev *pdev = to_pci_dev(dev);
2368 struct fb_info *info = pci_get_drvdata(pdev);
2369 struct aty128fb_par *par = info->par;
2370
2371 /* We don't do anything but D2, for now we return 0, but
2372 * we may want to change that. How do we know if the BIOS
2373 * can properly take care of D3 ? Also, with swsusp, we
2374 * know we'll be rebooted, ...
2375 */
2376 #ifndef CONFIG_PPC_PMAC
2377 /* HACK ALERT ! Once I find a proper way to say to each driver
2378 * individually what will happen with it's PCI slot, I'll change
2379 * that. On laptops, the AGP slot is just unclocked, so D2 is
2380 * expected, while on desktops, the card is powered off
2381 */
2382 return 0;
2383 #endif /* CONFIG_PPC_PMAC */
2384
2385 if (state.event == pdev->dev.power.power_state.event)
2386 return 0;
2387
2388 printk(KERN_DEBUG "aty128fb: suspending...\n");
2389
2390 console_lock();
2391
2392 fb_set_suspend(info, 1);
2393
2394 /* Make sure engine is reset */
2395 wait_for_idle(par);
2396 aty128_reset_engine(par);
2397 wait_for_idle(par);
2398
2399 /* Blank display and LCD */
2400 aty128fb_blank(FB_BLANK_POWERDOWN, info);
2401
2402 /* Sleep */
2403 par->asleep = 1;
2404 par->lock_blank = 1;
2405
2406 #ifdef CONFIG_PPC_PMAC
2407 /* On powermac, we have hooks to properly suspend/resume AGP now,
2408 * use them here. We'll ultimately need some generic support here,
2409 * but the generic code isn't quite ready for that yet
2410 */
2411 pmac_suspend_agp_for_card(pdev);
2412 #endif /* CONFIG_PPC_PMAC */
2413
2414 /* We need a way to make sure the fbdev layer will _not_ touch the
2415 * framebuffer before we put the chip to suspend state. On 2.4, I
2416 * used dummy fb ops, 2.5 need proper support for this at the
2417 * fbdev level
2418 */
2419 if (state.event != PM_EVENT_ON)
2420 aty128_set_suspend(par, 1);
2421
2422 console_unlock();
2423
2424 pdev->dev.power.power_state = state;
2425
2426 return 0;
2427 }
2428
aty128_pci_suspend(struct device * dev)2429 static int __maybe_unused aty128_pci_suspend(struct device *dev)
2430 {
2431 return aty128_pci_suspend_late(dev, PMSG_SUSPEND);
2432 }
2433
aty128_pci_hibernate(struct device * dev)2434 static int __maybe_unused aty128_pci_hibernate(struct device *dev)
2435 {
2436 return aty128_pci_suspend_late(dev, PMSG_HIBERNATE);
2437 }
2438
aty128_pci_freeze(struct device * dev)2439 static int __maybe_unused aty128_pci_freeze(struct device *dev)
2440 {
2441 return aty128_pci_suspend_late(dev, PMSG_FREEZE);
2442 }
2443
aty128_do_resume(struct pci_dev * pdev)2444 static int aty128_do_resume(struct pci_dev *pdev)
2445 {
2446 struct fb_info *info = pci_get_drvdata(pdev);
2447 struct aty128fb_par *par = info->par;
2448
2449 if (pdev->dev.power.power_state.event == PM_EVENT_ON)
2450 return 0;
2451
2452 /* PCI state will have been restored by the core, so
2453 * we should be in D0 now with our config space fully
2454 * restored
2455 */
2456
2457 /* Wakeup chip */
2458 aty128_set_suspend(par, 0);
2459 par->asleep = 0;
2460
2461 /* Restore display & engine */
2462 aty128_reset_engine(par);
2463 wait_for_idle(par);
2464 aty128fb_set_par(info);
2465 fb_pan_display(info, &info->var);
2466 fb_set_cmap(&info->cmap, info);
2467
2468 /* Refresh */
2469 fb_set_suspend(info, 0);
2470
2471 /* Unblank */
2472 par->lock_blank = 0;
2473 aty128fb_blank(0, info);
2474
2475 #ifdef CONFIG_PPC_PMAC
2476 /* On powermac, we have hooks to properly suspend/resume AGP now,
2477 * use them here. We'll ultimately need some generic support here,
2478 * but the generic code isn't quite ready for that yet
2479 */
2480 pmac_resume_agp_for_card(pdev);
2481 #endif /* CONFIG_PPC_PMAC */
2482
2483 pdev->dev.power.power_state = PMSG_ON;
2484
2485 printk(KERN_DEBUG "aty128fb: resumed !\n");
2486
2487 return 0;
2488 }
2489
aty128_pci_resume(struct device * dev)2490 static int __maybe_unused aty128_pci_resume(struct device *dev)
2491 {
2492 int rc;
2493
2494 console_lock();
2495 rc = aty128_do_resume(to_pci_dev(dev));
2496 console_unlock();
2497
2498 return rc;
2499 }
2500
2501
aty128fb_init(void)2502 static int aty128fb_init(void)
2503 {
2504 #ifndef MODULE
2505 char *option = NULL;
2506
2507 if (fb_get_options("aty128fb", &option))
2508 return -ENODEV;
2509 aty128fb_setup(option);
2510 #endif
2511
2512 return pci_register_driver(&aty128fb_driver);
2513 }
2514
aty128fb_exit(void)2515 static void __exit aty128fb_exit(void)
2516 {
2517 pci_unregister_driver(&aty128fb_driver);
2518 }
2519
2520 module_init(aty128fb_init);
2521
2522 module_exit(aty128fb_exit);
2523
2524 MODULE_AUTHOR("(c)1999-2003 Brad Douglas <brad@neruo.com>");
2525 MODULE_DESCRIPTION("FBDev driver for ATI Rage128 / Pro cards");
2526 MODULE_LICENSE("GPL");
2527 module_param(mode_option, charp, 0);
2528 MODULE_PARM_DESC(mode_option, "Specify resolution as \"<xres>x<yres>[-<bpp>][@<refresh>]\" ");
2529 module_param_named(nomtrr, mtrr, invbool, 0);
2530 MODULE_PARM_DESC(nomtrr, "bool: Disable MTRR support (0 or 1=disabled) (default=0)");
2531