1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Serial Attached SCSI (SAS) Expander discovery and configuration
4 *
5 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
6 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 *
8 * This file is licensed under GPLv2.
9 */
10
11 #include <linux/scatterlist.h>
12 #include <linux/blkdev.h>
13 #include <linux/slab.h>
14 #include <asm/unaligned.h>
15
16 #include "sas_internal.h"
17
18 #include <scsi/sas_ata.h>
19 #include <scsi/scsi_transport.h>
20 #include <scsi/scsi_transport_sas.h>
21 #include "scsi_sas_internal.h"
22
23 static int sas_discover_expander(struct domain_device *dev);
24 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
25 static int sas_configure_phy(struct domain_device *dev, int phy_id,
26 u8 *sas_addr, int include);
27 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr);
28
29 /* ---------- SMP task management ---------- */
30
31 /* Give it some long enough timeout. In seconds. */
32 #define SMP_TIMEOUT 10
33
smp_execute_task_sg(struct domain_device * dev,struct scatterlist * req,struct scatterlist * resp)34 static int smp_execute_task_sg(struct domain_device *dev,
35 struct scatterlist *req, struct scatterlist *resp)
36 {
37 int res, retry;
38 struct sas_task *task = NULL;
39 struct sas_internal *i =
40 to_sas_internal(dev->port->ha->core.shost->transportt);
41 struct sas_ha_struct *ha = dev->port->ha;
42
43 pm_runtime_get_sync(ha->dev);
44 mutex_lock(&dev->ex_dev.cmd_mutex);
45 for (retry = 0; retry < 3; retry++) {
46 if (test_bit(SAS_DEV_GONE, &dev->state)) {
47 res = -ECOMM;
48 break;
49 }
50
51 task = sas_alloc_slow_task(GFP_KERNEL);
52 if (!task) {
53 res = -ENOMEM;
54 break;
55 }
56 task->dev = dev;
57 task->task_proto = dev->tproto;
58 task->smp_task.smp_req = *req;
59 task->smp_task.smp_resp = *resp;
60
61 task->task_done = sas_task_internal_done;
62
63 task->slow_task->timer.function = sas_task_internal_timedout;
64 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
65 add_timer(&task->slow_task->timer);
66
67 res = i->dft->lldd_execute_task(task, GFP_KERNEL);
68
69 if (res) {
70 del_timer_sync(&task->slow_task->timer);
71 pr_notice("executing SMP task failed:%d\n", res);
72 break;
73 }
74
75 wait_for_completion(&task->slow_task->completion);
76 res = -ECOMM;
77 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
78 pr_notice("smp task timed out or aborted\n");
79 i->dft->lldd_abort_task(task);
80 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
81 pr_notice("SMP task aborted and not done\n");
82 break;
83 }
84 }
85 if (task->task_status.resp == SAS_TASK_COMPLETE &&
86 task->task_status.stat == SAS_SAM_STAT_GOOD) {
87 res = 0;
88 break;
89 }
90 if (task->task_status.resp == SAS_TASK_COMPLETE &&
91 task->task_status.stat == SAS_DATA_UNDERRUN) {
92 /* no error, but return the number of bytes of
93 * underrun */
94 res = task->task_status.residual;
95 break;
96 }
97 if (task->task_status.resp == SAS_TASK_COMPLETE &&
98 task->task_status.stat == SAS_DATA_OVERRUN) {
99 res = -EMSGSIZE;
100 break;
101 }
102 if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
103 task->task_status.stat == SAS_DEVICE_UNKNOWN)
104 break;
105 else {
106 pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n",
107 __func__,
108 SAS_ADDR(dev->sas_addr),
109 task->task_status.resp,
110 task->task_status.stat);
111 sas_free_task(task);
112 task = NULL;
113 }
114 }
115 mutex_unlock(&dev->ex_dev.cmd_mutex);
116 pm_runtime_put_sync(ha->dev);
117
118 BUG_ON(retry == 3 && task != NULL);
119 sas_free_task(task);
120 return res;
121 }
122
smp_execute_task(struct domain_device * dev,void * req,int req_size,void * resp,int resp_size)123 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
124 void *resp, int resp_size)
125 {
126 struct scatterlist req_sg;
127 struct scatterlist resp_sg;
128
129 sg_init_one(&req_sg, req, req_size);
130 sg_init_one(&resp_sg, resp, resp_size);
131 return smp_execute_task_sg(dev, &req_sg, &resp_sg);
132 }
133
134 /* ---------- Allocations ---------- */
135
alloc_smp_req(int size)136 static inline void *alloc_smp_req(int size)
137 {
138 u8 *p = kzalloc(size, GFP_KERNEL);
139 if (p)
140 p[0] = SMP_REQUEST;
141 return p;
142 }
143
alloc_smp_resp(int size)144 static inline void *alloc_smp_resp(int size)
145 {
146 return kzalloc(size, GFP_KERNEL);
147 }
148
sas_route_char(struct domain_device * dev,struct ex_phy * phy)149 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
150 {
151 switch (phy->routing_attr) {
152 case TABLE_ROUTING:
153 if (dev->ex_dev.t2t_supp)
154 return 'U';
155 else
156 return 'T';
157 case DIRECT_ROUTING:
158 return 'D';
159 case SUBTRACTIVE_ROUTING:
160 return 'S';
161 default:
162 return '?';
163 }
164 }
165
to_dev_type(struct discover_resp * dr)166 static enum sas_device_type to_dev_type(struct discover_resp *dr)
167 {
168 /* This is detecting a failure to transmit initial dev to host
169 * FIS as described in section J.5 of sas-2 r16
170 */
171 if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
172 dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
173 return SAS_SATA_PENDING;
174 else
175 return dr->attached_dev_type;
176 }
177
sas_set_ex_phy(struct domain_device * dev,int phy_id,struct smp_disc_resp * disc_resp)178 static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
179 struct smp_disc_resp *disc_resp)
180 {
181 enum sas_device_type dev_type;
182 enum sas_linkrate linkrate;
183 u8 sas_addr[SAS_ADDR_SIZE];
184 struct discover_resp *dr = &disc_resp->disc;
185 struct sas_ha_struct *ha = dev->port->ha;
186 struct expander_device *ex = &dev->ex_dev;
187 struct ex_phy *phy = &ex->ex_phy[phy_id];
188 struct sas_rphy *rphy = dev->rphy;
189 bool new_phy = !phy->phy;
190 char *type;
191
192 if (new_phy) {
193 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
194 return;
195 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
196
197 /* FIXME: error_handling */
198 BUG_ON(!phy->phy);
199 }
200
201 switch (disc_resp->result) {
202 case SMP_RESP_PHY_VACANT:
203 phy->phy_state = PHY_VACANT;
204 break;
205 default:
206 phy->phy_state = PHY_NOT_PRESENT;
207 break;
208 case SMP_RESP_FUNC_ACC:
209 phy->phy_state = PHY_EMPTY; /* do not know yet */
210 break;
211 }
212
213 /* check if anything important changed to squelch debug */
214 dev_type = phy->attached_dev_type;
215 linkrate = phy->linkrate;
216 memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
217
218 /* Handle vacant phy - rest of dr data is not valid so skip it */
219 if (phy->phy_state == PHY_VACANT) {
220 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
221 phy->attached_dev_type = SAS_PHY_UNUSED;
222 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
223 phy->phy_id = phy_id;
224 goto skip;
225 } else
226 goto out;
227 }
228
229 phy->attached_dev_type = to_dev_type(dr);
230 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
231 goto out;
232 phy->phy_id = phy_id;
233 phy->linkrate = dr->linkrate;
234 phy->attached_sata_host = dr->attached_sata_host;
235 phy->attached_sata_dev = dr->attached_sata_dev;
236 phy->attached_sata_ps = dr->attached_sata_ps;
237 phy->attached_iproto = dr->iproto << 1;
238 phy->attached_tproto = dr->tproto << 1;
239 /* help some expanders that fail to zero sas_address in the 'no
240 * device' case
241 */
242 if (phy->attached_dev_type == SAS_PHY_UNUSED ||
243 phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
244 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
245 else
246 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
247 phy->attached_phy_id = dr->attached_phy_id;
248 phy->phy_change_count = dr->change_count;
249 phy->routing_attr = dr->routing_attr;
250 phy->virtual = dr->virtual;
251 phy->last_da_index = -1;
252
253 phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
254 phy->phy->identify.device_type = dr->attached_dev_type;
255 phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
256 phy->phy->identify.target_port_protocols = phy->attached_tproto;
257 if (!phy->attached_tproto && dr->attached_sata_dev)
258 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
259 phy->phy->identify.phy_identifier = phy_id;
260 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
261 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
262 phy->phy->minimum_linkrate = dr->pmin_linkrate;
263 phy->phy->maximum_linkrate = dr->pmax_linkrate;
264 phy->phy->negotiated_linkrate = phy->linkrate;
265 phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
266
267 skip:
268 if (new_phy)
269 if (sas_phy_add(phy->phy)) {
270 sas_phy_free(phy->phy);
271 return;
272 }
273
274 out:
275 switch (phy->attached_dev_type) {
276 case SAS_SATA_PENDING:
277 type = "stp pending";
278 break;
279 case SAS_PHY_UNUSED:
280 type = "no device";
281 break;
282 case SAS_END_DEVICE:
283 if (phy->attached_iproto) {
284 if (phy->attached_tproto)
285 type = "host+target";
286 else
287 type = "host";
288 } else {
289 if (dr->attached_sata_dev)
290 type = "stp";
291 else
292 type = "ssp";
293 }
294 break;
295 case SAS_EDGE_EXPANDER_DEVICE:
296 case SAS_FANOUT_EXPANDER_DEVICE:
297 type = "smp";
298 break;
299 default:
300 type = "unknown";
301 }
302
303 /* this routine is polled by libata error recovery so filter
304 * unimportant messages
305 */
306 if (new_phy || phy->attached_dev_type != dev_type ||
307 phy->linkrate != linkrate ||
308 SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
309 /* pass */;
310 else
311 return;
312
313 /* if the attached device type changed and ata_eh is active,
314 * make sure we run revalidation when eh completes (see:
315 * sas_enable_revalidation)
316 */
317 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
318 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
319
320 pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
321 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
322 SAS_ADDR(dev->sas_addr), phy->phy_id,
323 sas_route_char(dev, phy), phy->linkrate,
324 SAS_ADDR(phy->attached_sas_addr), type);
325 }
326
327 /* check if we have an existing attached ata device on this expander phy */
sas_ex_to_ata(struct domain_device * ex_dev,int phy_id)328 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
329 {
330 struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
331 struct domain_device *dev;
332 struct sas_rphy *rphy;
333
334 if (!ex_phy->port)
335 return NULL;
336
337 rphy = ex_phy->port->rphy;
338 if (!rphy)
339 return NULL;
340
341 dev = sas_find_dev_by_rphy(rphy);
342
343 if (dev && dev_is_sata(dev))
344 return dev;
345
346 return NULL;
347 }
348
349 #define DISCOVER_REQ_SIZE 16
350 #define DISCOVER_RESP_SIZE sizeof(struct smp_disc_resp)
351
sas_ex_phy_discover_helper(struct domain_device * dev,u8 * disc_req,struct smp_disc_resp * disc_resp,int single)352 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
353 struct smp_disc_resp *disc_resp,
354 int single)
355 {
356 struct discover_resp *dr = &disc_resp->disc;
357 int res;
358
359 disc_req[9] = single;
360
361 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
362 disc_resp, DISCOVER_RESP_SIZE);
363 if (res)
364 return res;
365 if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
366 pr_notice("Found loopback topology, just ignore it!\n");
367 return 0;
368 }
369 sas_set_ex_phy(dev, single, disc_resp);
370 return 0;
371 }
372
sas_ex_phy_discover(struct domain_device * dev,int single)373 int sas_ex_phy_discover(struct domain_device *dev, int single)
374 {
375 struct expander_device *ex = &dev->ex_dev;
376 int res = 0;
377 u8 *disc_req;
378 struct smp_disc_resp *disc_resp;
379
380 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
381 if (!disc_req)
382 return -ENOMEM;
383
384 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
385 if (!disc_resp) {
386 kfree(disc_req);
387 return -ENOMEM;
388 }
389
390 disc_req[1] = SMP_DISCOVER;
391
392 if (0 <= single && single < ex->num_phys) {
393 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
394 } else {
395 int i;
396
397 for (i = 0; i < ex->num_phys; i++) {
398 res = sas_ex_phy_discover_helper(dev, disc_req,
399 disc_resp, i);
400 if (res)
401 goto out_err;
402 }
403 }
404 out_err:
405 kfree(disc_resp);
406 kfree(disc_req);
407 return res;
408 }
409
sas_expander_discover(struct domain_device * dev)410 static int sas_expander_discover(struct domain_device *dev)
411 {
412 struct expander_device *ex = &dev->ex_dev;
413 int res;
414
415 ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
416 if (!ex->ex_phy)
417 return -ENOMEM;
418
419 res = sas_ex_phy_discover(dev, -1);
420 if (res)
421 goto out_err;
422
423 return 0;
424 out_err:
425 kfree(ex->ex_phy);
426 ex->ex_phy = NULL;
427 return res;
428 }
429
430 #define MAX_EXPANDER_PHYS 128
431
432 #define RG_REQ_SIZE 8
433 #define RG_RESP_SIZE sizeof(struct smp_rg_resp)
434
sas_ex_general(struct domain_device * dev)435 static int sas_ex_general(struct domain_device *dev)
436 {
437 u8 *rg_req;
438 struct smp_rg_resp *rg_resp;
439 struct report_general_resp *rg;
440 int res;
441 int i;
442
443 rg_req = alloc_smp_req(RG_REQ_SIZE);
444 if (!rg_req)
445 return -ENOMEM;
446
447 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
448 if (!rg_resp) {
449 kfree(rg_req);
450 return -ENOMEM;
451 }
452
453 rg_req[1] = SMP_REPORT_GENERAL;
454
455 for (i = 0; i < 5; i++) {
456 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
457 RG_RESP_SIZE);
458
459 if (res) {
460 pr_notice("RG to ex %016llx failed:0x%x\n",
461 SAS_ADDR(dev->sas_addr), res);
462 goto out;
463 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
464 pr_debug("RG:ex %016llx returned SMP result:0x%x\n",
465 SAS_ADDR(dev->sas_addr), rg_resp->result);
466 res = rg_resp->result;
467 goto out;
468 }
469
470 rg = &rg_resp->rg;
471 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
472 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
473 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
474 dev->ex_dev.t2t_supp = rg->t2t_supp;
475 dev->ex_dev.conf_route_table = rg->conf_route_table;
476 dev->ex_dev.configuring = rg->configuring;
477 memcpy(dev->ex_dev.enclosure_logical_id,
478 rg->enclosure_logical_id, 8);
479
480 if (dev->ex_dev.configuring) {
481 pr_debug("RG: ex %016llx self-configuring...\n",
482 SAS_ADDR(dev->sas_addr));
483 schedule_timeout_interruptible(5*HZ);
484 } else
485 break;
486 }
487 out:
488 kfree(rg_req);
489 kfree(rg_resp);
490 return res;
491 }
492
ex_assign_manuf_info(struct domain_device * dev,void * _mi_resp)493 static void ex_assign_manuf_info(struct domain_device *dev, void
494 *_mi_resp)
495 {
496 u8 *mi_resp = _mi_resp;
497 struct sas_rphy *rphy = dev->rphy;
498 struct sas_expander_device *edev = rphy_to_expander_device(rphy);
499
500 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
501 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
502 memcpy(edev->product_rev, mi_resp + 36,
503 SAS_EXPANDER_PRODUCT_REV_LEN);
504
505 if (mi_resp[8] & 1) {
506 memcpy(edev->component_vendor_id, mi_resp + 40,
507 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
508 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
509 edev->component_revision_id = mi_resp[50];
510 }
511 }
512
513 #define MI_REQ_SIZE 8
514 #define MI_RESP_SIZE 64
515
sas_ex_manuf_info(struct domain_device * dev)516 static int sas_ex_manuf_info(struct domain_device *dev)
517 {
518 u8 *mi_req;
519 u8 *mi_resp;
520 int res;
521
522 mi_req = alloc_smp_req(MI_REQ_SIZE);
523 if (!mi_req)
524 return -ENOMEM;
525
526 mi_resp = alloc_smp_resp(MI_RESP_SIZE);
527 if (!mi_resp) {
528 kfree(mi_req);
529 return -ENOMEM;
530 }
531
532 mi_req[1] = SMP_REPORT_MANUF_INFO;
533
534 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp, MI_RESP_SIZE);
535 if (res) {
536 pr_notice("MI: ex %016llx failed:0x%x\n",
537 SAS_ADDR(dev->sas_addr), res);
538 goto out;
539 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
540 pr_debug("MI ex %016llx returned SMP result:0x%x\n",
541 SAS_ADDR(dev->sas_addr), mi_resp[2]);
542 goto out;
543 }
544
545 ex_assign_manuf_info(dev, mi_resp);
546 out:
547 kfree(mi_req);
548 kfree(mi_resp);
549 return res;
550 }
551
552 #define PC_REQ_SIZE 44
553 #define PC_RESP_SIZE 8
554
sas_smp_phy_control(struct domain_device * dev,int phy_id,enum phy_func phy_func,struct sas_phy_linkrates * rates)555 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
556 enum phy_func phy_func,
557 struct sas_phy_linkrates *rates)
558 {
559 u8 *pc_req;
560 u8 *pc_resp;
561 int res;
562
563 pc_req = alloc_smp_req(PC_REQ_SIZE);
564 if (!pc_req)
565 return -ENOMEM;
566
567 pc_resp = alloc_smp_resp(PC_RESP_SIZE);
568 if (!pc_resp) {
569 kfree(pc_req);
570 return -ENOMEM;
571 }
572
573 pc_req[1] = SMP_PHY_CONTROL;
574 pc_req[9] = phy_id;
575 pc_req[10] = phy_func;
576 if (rates) {
577 pc_req[32] = rates->minimum_linkrate << 4;
578 pc_req[33] = rates->maximum_linkrate << 4;
579 }
580
581 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp, PC_RESP_SIZE);
582 if (res) {
583 pr_err("ex %016llx phy%02d PHY control failed: %d\n",
584 SAS_ADDR(dev->sas_addr), phy_id, res);
585 } else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
586 pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
587 SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
588 res = pc_resp[2];
589 }
590 kfree(pc_resp);
591 kfree(pc_req);
592 return res;
593 }
594
sas_ex_disable_phy(struct domain_device * dev,int phy_id)595 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
596 {
597 struct expander_device *ex = &dev->ex_dev;
598 struct ex_phy *phy = &ex->ex_phy[phy_id];
599
600 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
601 phy->linkrate = SAS_PHY_DISABLED;
602 }
603
sas_ex_disable_port(struct domain_device * dev,u8 * sas_addr)604 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
605 {
606 struct expander_device *ex = &dev->ex_dev;
607 int i;
608
609 for (i = 0; i < ex->num_phys; i++) {
610 struct ex_phy *phy = &ex->ex_phy[i];
611
612 if (phy->phy_state == PHY_VACANT ||
613 phy->phy_state == PHY_NOT_PRESENT)
614 continue;
615
616 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
617 sas_ex_disable_phy(dev, i);
618 }
619 }
620
sas_dev_present_in_domain(struct asd_sas_port * port,u8 * sas_addr)621 static int sas_dev_present_in_domain(struct asd_sas_port *port,
622 u8 *sas_addr)
623 {
624 struct domain_device *dev;
625
626 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
627 return 1;
628 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
629 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
630 return 1;
631 }
632 return 0;
633 }
634
635 #define RPEL_REQ_SIZE 16
636 #define RPEL_RESP_SIZE 32
sas_smp_get_phy_events(struct sas_phy * phy)637 int sas_smp_get_phy_events(struct sas_phy *phy)
638 {
639 int res;
640 u8 *req;
641 u8 *resp;
642 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
643 struct domain_device *dev = sas_find_dev_by_rphy(rphy);
644
645 req = alloc_smp_req(RPEL_REQ_SIZE);
646 if (!req)
647 return -ENOMEM;
648
649 resp = alloc_smp_resp(RPEL_RESP_SIZE);
650 if (!resp) {
651 kfree(req);
652 return -ENOMEM;
653 }
654
655 req[1] = SMP_REPORT_PHY_ERR_LOG;
656 req[9] = phy->number;
657
658 res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
659 resp, RPEL_RESP_SIZE);
660
661 if (res)
662 goto out;
663
664 phy->invalid_dword_count = get_unaligned_be32(&resp[12]);
665 phy->running_disparity_error_count = get_unaligned_be32(&resp[16]);
666 phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]);
667 phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]);
668
669 out:
670 kfree(req);
671 kfree(resp);
672 return res;
673
674 }
675
676 #ifdef CONFIG_SCSI_SAS_ATA
677
678 #define RPS_REQ_SIZE 16
679 #define RPS_RESP_SIZE sizeof(struct smp_rps_resp)
680
sas_get_report_phy_sata(struct domain_device * dev,int phy_id,struct smp_rps_resp * rps_resp)681 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
682 struct smp_rps_resp *rps_resp)
683 {
684 int res;
685 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
686 u8 *resp = (u8 *)rps_resp;
687
688 if (!rps_req)
689 return -ENOMEM;
690
691 rps_req[1] = SMP_REPORT_PHY_SATA;
692 rps_req[9] = phy_id;
693
694 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
695 rps_resp, RPS_RESP_SIZE);
696
697 /* 0x34 is the FIS type for the D2H fis. There's a potential
698 * standards cockup here. sas-2 explicitly specifies the FIS
699 * should be encoded so that FIS type is in resp[24].
700 * However, some expanders endian reverse this. Undo the
701 * reversal here */
702 if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
703 int i;
704
705 for (i = 0; i < 5; i++) {
706 int j = 24 + (i*4);
707 u8 a, b;
708 a = resp[j + 0];
709 b = resp[j + 1];
710 resp[j + 0] = resp[j + 3];
711 resp[j + 1] = resp[j + 2];
712 resp[j + 2] = b;
713 resp[j + 3] = a;
714 }
715 }
716
717 kfree(rps_req);
718 return res;
719 }
720 #endif
721
sas_ex_get_linkrate(struct domain_device * parent,struct domain_device * child,struct ex_phy * parent_phy)722 static void sas_ex_get_linkrate(struct domain_device *parent,
723 struct domain_device *child,
724 struct ex_phy *parent_phy)
725 {
726 struct expander_device *parent_ex = &parent->ex_dev;
727 struct sas_port *port;
728 int i;
729
730 child->pathways = 0;
731
732 port = parent_phy->port;
733
734 for (i = 0; i < parent_ex->num_phys; i++) {
735 struct ex_phy *phy = &parent_ex->ex_phy[i];
736
737 if (phy->phy_state == PHY_VACANT ||
738 phy->phy_state == PHY_NOT_PRESENT)
739 continue;
740
741 if (SAS_ADDR(phy->attached_sas_addr) ==
742 SAS_ADDR(child->sas_addr)) {
743
744 child->min_linkrate = min(parent->min_linkrate,
745 phy->linkrate);
746 child->max_linkrate = max(parent->max_linkrate,
747 phy->linkrate);
748 child->pathways++;
749 sas_port_add_phy(port, phy->phy);
750 }
751 }
752 child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
753 child->pathways = min(child->pathways, parent->pathways);
754 }
755
sas_ex_discover_end_dev(struct domain_device * parent,int phy_id)756 static struct domain_device *sas_ex_discover_end_dev(
757 struct domain_device *parent, int phy_id)
758 {
759 struct expander_device *parent_ex = &parent->ex_dev;
760 struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
761 struct domain_device *child = NULL;
762 struct sas_rphy *rphy;
763 int res;
764
765 if (phy->attached_sata_host || phy->attached_sata_ps)
766 return NULL;
767
768 child = sas_alloc_device();
769 if (!child)
770 return NULL;
771
772 kref_get(&parent->kref);
773 child->parent = parent;
774 child->port = parent->port;
775 child->iproto = phy->attached_iproto;
776 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
777 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
778 if (!phy->port) {
779 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
780 if (unlikely(!phy->port))
781 goto out_err;
782 if (unlikely(sas_port_add(phy->port) != 0)) {
783 sas_port_free(phy->port);
784 goto out_err;
785 }
786 }
787 sas_ex_get_linkrate(parent, child, phy);
788 sas_device_set_phy(child, phy->port);
789
790 #ifdef CONFIG_SCSI_SAS_ATA
791 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
792 if (child->linkrate > parent->min_linkrate) {
793 struct sas_phy *cphy = child->phy;
794 enum sas_linkrate min_prate = cphy->minimum_linkrate,
795 parent_min_lrate = parent->min_linkrate,
796 min_linkrate = (min_prate > parent_min_lrate) ?
797 parent_min_lrate : 0;
798 struct sas_phy_linkrates rates = {
799 .maximum_linkrate = parent->min_linkrate,
800 .minimum_linkrate = min_linkrate,
801 };
802 int ret;
803
804 pr_notice("ex %016llx phy%02d SATA device linkrate > min pathway connection rate, attempting to lower device linkrate\n",
805 SAS_ADDR(child->sas_addr), phy_id);
806 ret = sas_smp_phy_control(parent, phy_id,
807 PHY_FUNC_LINK_RESET, &rates);
808 if (ret) {
809 pr_err("ex %016llx phy%02d SATA device could not set linkrate (%d)\n",
810 SAS_ADDR(child->sas_addr), phy_id, ret);
811 goto out_free;
812 }
813 pr_notice("ex %016llx phy%02d SATA device set linkrate successfully\n",
814 SAS_ADDR(child->sas_addr), phy_id);
815 child->linkrate = child->min_linkrate;
816 }
817 res = sas_get_ata_info(child, phy);
818 if (res)
819 goto out_free;
820
821 sas_init_dev(child);
822 res = sas_ata_init(child);
823 if (res)
824 goto out_free;
825 rphy = sas_end_device_alloc(phy->port);
826 if (!rphy)
827 goto out_free;
828 rphy->identify.phy_identifier = phy_id;
829
830 child->rphy = rphy;
831 get_device(&rphy->dev);
832
833 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
834
835 res = sas_discover_sata(child);
836 if (res) {
837 pr_notice("sas_discover_sata() for device %16llx at %016llx:%02d returned 0x%x\n",
838 SAS_ADDR(child->sas_addr),
839 SAS_ADDR(parent->sas_addr), phy_id, res);
840 goto out_list_del;
841 }
842 } else
843 #endif
844 if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
845 child->dev_type = SAS_END_DEVICE;
846 rphy = sas_end_device_alloc(phy->port);
847 /* FIXME: error handling */
848 if (unlikely(!rphy))
849 goto out_free;
850 child->tproto = phy->attached_tproto;
851 sas_init_dev(child);
852
853 child->rphy = rphy;
854 get_device(&rphy->dev);
855 rphy->identify.phy_identifier = phy_id;
856 sas_fill_in_rphy(child, rphy);
857
858 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
859
860 res = sas_discover_end_dev(child);
861 if (res) {
862 pr_notice("sas_discover_end_dev() for device %016llx at %016llx:%02d returned 0x%x\n",
863 SAS_ADDR(child->sas_addr),
864 SAS_ADDR(parent->sas_addr), phy_id, res);
865 goto out_list_del;
866 }
867 } else {
868 pr_notice("target proto 0x%x at %016llx:0x%x not handled\n",
869 phy->attached_tproto, SAS_ADDR(parent->sas_addr),
870 phy_id);
871 goto out_free;
872 }
873
874 list_add_tail(&child->siblings, &parent_ex->children);
875 return child;
876
877 out_list_del:
878 sas_rphy_free(child->rphy);
879 list_del(&child->disco_list_node);
880 spin_lock_irq(&parent->port->dev_list_lock);
881 list_del(&child->dev_list_node);
882 spin_unlock_irq(&parent->port->dev_list_lock);
883 out_free:
884 sas_port_delete(phy->port);
885 out_err:
886 phy->port = NULL;
887 sas_put_device(child);
888 return NULL;
889 }
890
891 /* See if this phy is part of a wide port */
sas_ex_join_wide_port(struct domain_device * parent,int phy_id)892 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
893 {
894 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
895 int i;
896
897 for (i = 0; i < parent->ex_dev.num_phys; i++) {
898 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
899
900 if (ephy == phy)
901 continue;
902
903 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
904 SAS_ADDR_SIZE) && ephy->port) {
905 sas_port_add_phy(ephy->port, phy->phy);
906 phy->port = ephy->port;
907 phy->phy_state = PHY_DEVICE_DISCOVERED;
908 return true;
909 }
910 }
911
912 return false;
913 }
914
sas_ex_discover_expander(struct domain_device * parent,int phy_id)915 static struct domain_device *sas_ex_discover_expander(
916 struct domain_device *parent, int phy_id)
917 {
918 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
919 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
920 struct domain_device *child = NULL;
921 struct sas_rphy *rphy;
922 struct sas_expander_device *edev;
923 struct asd_sas_port *port;
924 int res;
925
926 if (phy->routing_attr == DIRECT_ROUTING) {
927 pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n",
928 SAS_ADDR(parent->sas_addr), phy_id,
929 SAS_ADDR(phy->attached_sas_addr),
930 phy->attached_phy_id);
931 return NULL;
932 }
933 child = sas_alloc_device();
934 if (!child)
935 return NULL;
936
937 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
938 /* FIXME: better error handling */
939 BUG_ON(sas_port_add(phy->port) != 0);
940
941
942 switch (phy->attached_dev_type) {
943 case SAS_EDGE_EXPANDER_DEVICE:
944 rphy = sas_expander_alloc(phy->port,
945 SAS_EDGE_EXPANDER_DEVICE);
946 break;
947 case SAS_FANOUT_EXPANDER_DEVICE:
948 rphy = sas_expander_alloc(phy->port,
949 SAS_FANOUT_EXPANDER_DEVICE);
950 break;
951 default:
952 rphy = NULL; /* shut gcc up */
953 BUG();
954 }
955 port = parent->port;
956 child->rphy = rphy;
957 get_device(&rphy->dev);
958 edev = rphy_to_expander_device(rphy);
959 child->dev_type = phy->attached_dev_type;
960 kref_get(&parent->kref);
961 child->parent = parent;
962 child->port = port;
963 child->iproto = phy->attached_iproto;
964 child->tproto = phy->attached_tproto;
965 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
966 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
967 sas_ex_get_linkrate(parent, child, phy);
968 edev->level = parent_ex->level + 1;
969 parent->port->disc.max_level = max(parent->port->disc.max_level,
970 edev->level);
971 sas_init_dev(child);
972 sas_fill_in_rphy(child, rphy);
973 sas_rphy_add(rphy);
974
975 spin_lock_irq(&parent->port->dev_list_lock);
976 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
977 spin_unlock_irq(&parent->port->dev_list_lock);
978
979 res = sas_discover_expander(child);
980 if (res) {
981 sas_rphy_delete(rphy);
982 spin_lock_irq(&parent->port->dev_list_lock);
983 list_del(&child->dev_list_node);
984 spin_unlock_irq(&parent->port->dev_list_lock);
985 sas_put_device(child);
986 sas_port_delete(phy->port);
987 phy->port = NULL;
988 return NULL;
989 }
990 list_add_tail(&child->siblings, &parent->ex_dev.children);
991 return child;
992 }
993
sas_ex_discover_dev(struct domain_device * dev,int phy_id)994 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
995 {
996 struct expander_device *ex = &dev->ex_dev;
997 struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
998 struct domain_device *child = NULL;
999 int res = 0;
1000
1001 /* Phy state */
1002 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
1003 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
1004 res = sas_ex_phy_discover(dev, phy_id);
1005 if (res)
1006 return res;
1007 }
1008
1009 /* Parent and domain coherency */
1010 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1011 SAS_ADDR(dev->port->sas_addr))) {
1012 sas_add_parent_port(dev, phy_id);
1013 return 0;
1014 }
1015 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1016 SAS_ADDR(dev->parent->sas_addr))) {
1017 sas_add_parent_port(dev, phy_id);
1018 if (ex_phy->routing_attr == TABLE_ROUTING)
1019 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1020 return 0;
1021 }
1022
1023 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1024 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1025
1026 if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1027 if (ex_phy->routing_attr == DIRECT_ROUTING) {
1028 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1029 sas_configure_routing(dev, ex_phy->attached_sas_addr);
1030 }
1031 return 0;
1032 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1033 return 0;
1034
1035 if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1036 ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1037 ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1038 ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1039 pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n",
1040 ex_phy->attached_dev_type,
1041 SAS_ADDR(dev->sas_addr),
1042 phy_id);
1043 return 0;
1044 }
1045
1046 res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1047 if (res) {
1048 pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n",
1049 SAS_ADDR(ex_phy->attached_sas_addr), res);
1050 sas_disable_routing(dev, ex_phy->attached_sas_addr);
1051 return res;
1052 }
1053
1054 if (sas_ex_join_wide_port(dev, phy_id)) {
1055 pr_debug("Attaching ex phy%02d to wide port %016llx\n",
1056 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1057 return res;
1058 }
1059
1060 switch (ex_phy->attached_dev_type) {
1061 case SAS_END_DEVICE:
1062 case SAS_SATA_PENDING:
1063 child = sas_ex_discover_end_dev(dev, phy_id);
1064 break;
1065 case SAS_FANOUT_EXPANDER_DEVICE:
1066 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1067 pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n",
1068 SAS_ADDR(ex_phy->attached_sas_addr),
1069 ex_phy->attached_phy_id,
1070 SAS_ADDR(dev->sas_addr),
1071 phy_id);
1072 sas_ex_disable_phy(dev, phy_id);
1073 return res;
1074 } else
1075 memcpy(dev->port->disc.fanout_sas_addr,
1076 ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1077 fallthrough;
1078 case SAS_EDGE_EXPANDER_DEVICE:
1079 child = sas_ex_discover_expander(dev, phy_id);
1080 break;
1081 default:
1082 break;
1083 }
1084
1085 if (!child)
1086 pr_notice("ex %016llx phy%02d failed to discover\n",
1087 SAS_ADDR(dev->sas_addr), phy_id);
1088 return res;
1089 }
1090
sas_find_sub_addr(struct domain_device * dev,u8 * sub_addr)1091 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1092 {
1093 struct expander_device *ex = &dev->ex_dev;
1094 int i;
1095
1096 for (i = 0; i < ex->num_phys; i++) {
1097 struct ex_phy *phy = &ex->ex_phy[i];
1098
1099 if (phy->phy_state == PHY_VACANT ||
1100 phy->phy_state == PHY_NOT_PRESENT)
1101 continue;
1102
1103 if (dev_is_expander(phy->attached_dev_type) &&
1104 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1105
1106 memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
1107
1108 return 1;
1109 }
1110 }
1111 return 0;
1112 }
1113
sas_check_level_subtractive_boundary(struct domain_device * dev)1114 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1115 {
1116 struct expander_device *ex = &dev->ex_dev;
1117 struct domain_device *child;
1118 u8 sub_addr[SAS_ADDR_SIZE] = {0, };
1119
1120 list_for_each_entry(child, &ex->children, siblings) {
1121 if (!dev_is_expander(child->dev_type))
1122 continue;
1123 if (sub_addr[0] == 0) {
1124 sas_find_sub_addr(child, sub_addr);
1125 continue;
1126 } else {
1127 u8 s2[SAS_ADDR_SIZE];
1128
1129 if (sas_find_sub_addr(child, s2) &&
1130 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1131
1132 pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n",
1133 SAS_ADDR(dev->sas_addr),
1134 SAS_ADDR(child->sas_addr),
1135 SAS_ADDR(s2),
1136 SAS_ADDR(sub_addr));
1137
1138 sas_ex_disable_port(child, s2);
1139 }
1140 }
1141 }
1142 return 0;
1143 }
1144 /**
1145 * sas_ex_discover_devices - discover devices attached to this expander
1146 * @dev: pointer to the expander domain device
1147 * @single: if you want to do a single phy, else set to -1;
1148 *
1149 * Configure this expander for use with its devices and register the
1150 * devices of this expander.
1151 */
sas_ex_discover_devices(struct domain_device * dev,int single)1152 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1153 {
1154 struct expander_device *ex = &dev->ex_dev;
1155 int i = 0, end = ex->num_phys;
1156 int res = 0;
1157
1158 if (0 <= single && single < end) {
1159 i = single;
1160 end = i+1;
1161 }
1162
1163 for ( ; i < end; i++) {
1164 struct ex_phy *ex_phy = &ex->ex_phy[i];
1165
1166 if (ex_phy->phy_state == PHY_VACANT ||
1167 ex_phy->phy_state == PHY_NOT_PRESENT ||
1168 ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1169 continue;
1170
1171 switch (ex_phy->linkrate) {
1172 case SAS_PHY_DISABLED:
1173 case SAS_PHY_RESET_PROBLEM:
1174 case SAS_SATA_PORT_SELECTOR:
1175 continue;
1176 default:
1177 res = sas_ex_discover_dev(dev, i);
1178 if (res)
1179 break;
1180 continue;
1181 }
1182 }
1183
1184 if (!res)
1185 sas_check_level_subtractive_boundary(dev);
1186
1187 return res;
1188 }
1189
sas_check_ex_subtractive_boundary(struct domain_device * dev)1190 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1191 {
1192 struct expander_device *ex = &dev->ex_dev;
1193 int i;
1194 u8 *sub_sas_addr = NULL;
1195
1196 if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1197 return 0;
1198
1199 for (i = 0; i < ex->num_phys; i++) {
1200 struct ex_phy *phy = &ex->ex_phy[i];
1201
1202 if (phy->phy_state == PHY_VACANT ||
1203 phy->phy_state == PHY_NOT_PRESENT)
1204 continue;
1205
1206 if (dev_is_expander(phy->attached_dev_type) &&
1207 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1208
1209 if (!sub_sas_addr)
1210 sub_sas_addr = &phy->attached_sas_addr[0];
1211 else if (SAS_ADDR(sub_sas_addr) !=
1212 SAS_ADDR(phy->attached_sas_addr)) {
1213
1214 pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n",
1215 SAS_ADDR(dev->sas_addr), i,
1216 SAS_ADDR(phy->attached_sas_addr),
1217 SAS_ADDR(sub_sas_addr));
1218 sas_ex_disable_phy(dev, i);
1219 }
1220 }
1221 }
1222 return 0;
1223 }
1224
sas_print_parent_topology_bug(struct domain_device * child,struct ex_phy * parent_phy,struct ex_phy * child_phy)1225 static void sas_print_parent_topology_bug(struct domain_device *child,
1226 struct ex_phy *parent_phy,
1227 struct ex_phy *child_phy)
1228 {
1229 static const char *ex_type[] = {
1230 [SAS_EDGE_EXPANDER_DEVICE] = "edge",
1231 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1232 };
1233 struct domain_device *parent = child->parent;
1234
1235 pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n",
1236 ex_type[parent->dev_type],
1237 SAS_ADDR(parent->sas_addr),
1238 parent_phy->phy_id,
1239
1240 ex_type[child->dev_type],
1241 SAS_ADDR(child->sas_addr),
1242 child_phy->phy_id,
1243
1244 sas_route_char(parent, parent_phy),
1245 sas_route_char(child, child_phy));
1246 }
1247
sas_check_eeds(struct domain_device * child,struct ex_phy * parent_phy,struct ex_phy * child_phy)1248 static int sas_check_eeds(struct domain_device *child,
1249 struct ex_phy *parent_phy,
1250 struct ex_phy *child_phy)
1251 {
1252 int res = 0;
1253 struct domain_device *parent = child->parent;
1254
1255 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1256 res = -ENODEV;
1257 pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n",
1258 SAS_ADDR(parent->sas_addr),
1259 parent_phy->phy_id,
1260 SAS_ADDR(child->sas_addr),
1261 child_phy->phy_id,
1262 SAS_ADDR(parent->port->disc.fanout_sas_addr));
1263 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1264 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1265 SAS_ADDR_SIZE);
1266 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1267 SAS_ADDR_SIZE);
1268 } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1269 SAS_ADDR(parent->sas_addr)) ||
1270 (SAS_ADDR(parent->port->disc.eeds_a) ==
1271 SAS_ADDR(child->sas_addr)))
1272 &&
1273 ((SAS_ADDR(parent->port->disc.eeds_b) ==
1274 SAS_ADDR(parent->sas_addr)) ||
1275 (SAS_ADDR(parent->port->disc.eeds_b) ==
1276 SAS_ADDR(child->sas_addr))))
1277 ;
1278 else {
1279 res = -ENODEV;
1280 pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n",
1281 SAS_ADDR(parent->sas_addr),
1282 parent_phy->phy_id,
1283 SAS_ADDR(child->sas_addr),
1284 child_phy->phy_id);
1285 }
1286
1287 return res;
1288 }
1289
1290 /* Here we spill over 80 columns. It is intentional.
1291 */
sas_check_parent_topology(struct domain_device * child)1292 static int sas_check_parent_topology(struct domain_device *child)
1293 {
1294 struct expander_device *child_ex = &child->ex_dev;
1295 struct expander_device *parent_ex;
1296 int i;
1297 int res = 0;
1298
1299 if (!child->parent)
1300 return 0;
1301
1302 if (!dev_is_expander(child->parent->dev_type))
1303 return 0;
1304
1305 parent_ex = &child->parent->ex_dev;
1306
1307 for (i = 0; i < parent_ex->num_phys; i++) {
1308 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1309 struct ex_phy *child_phy;
1310
1311 if (parent_phy->phy_state == PHY_VACANT ||
1312 parent_phy->phy_state == PHY_NOT_PRESENT)
1313 continue;
1314
1315 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1316 continue;
1317
1318 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1319
1320 switch (child->parent->dev_type) {
1321 case SAS_EDGE_EXPANDER_DEVICE:
1322 if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1323 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1324 child_phy->routing_attr != TABLE_ROUTING) {
1325 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1326 res = -ENODEV;
1327 }
1328 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1329 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1330 res = sas_check_eeds(child, parent_phy, child_phy);
1331 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1332 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1333 res = -ENODEV;
1334 }
1335 } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1336 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1337 (child_phy->routing_attr == TABLE_ROUTING &&
1338 child_ex->t2t_supp && parent_ex->t2t_supp)) {
1339 /* All good */;
1340 } else {
1341 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1342 res = -ENODEV;
1343 }
1344 }
1345 break;
1346 case SAS_FANOUT_EXPANDER_DEVICE:
1347 if (parent_phy->routing_attr != TABLE_ROUTING ||
1348 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1349 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1350 res = -ENODEV;
1351 }
1352 break;
1353 default:
1354 break;
1355 }
1356 }
1357
1358 return res;
1359 }
1360
1361 #define RRI_REQ_SIZE 16
1362 #define RRI_RESP_SIZE 44
1363
sas_configure_present(struct domain_device * dev,int phy_id,u8 * sas_addr,int * index,int * present)1364 static int sas_configure_present(struct domain_device *dev, int phy_id,
1365 u8 *sas_addr, int *index, int *present)
1366 {
1367 int i, res = 0;
1368 struct expander_device *ex = &dev->ex_dev;
1369 struct ex_phy *phy = &ex->ex_phy[phy_id];
1370 u8 *rri_req;
1371 u8 *rri_resp;
1372
1373 *present = 0;
1374 *index = 0;
1375
1376 rri_req = alloc_smp_req(RRI_REQ_SIZE);
1377 if (!rri_req)
1378 return -ENOMEM;
1379
1380 rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1381 if (!rri_resp) {
1382 kfree(rri_req);
1383 return -ENOMEM;
1384 }
1385
1386 rri_req[1] = SMP_REPORT_ROUTE_INFO;
1387 rri_req[9] = phy_id;
1388
1389 for (i = 0; i < ex->max_route_indexes ; i++) {
1390 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1391 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1392 RRI_RESP_SIZE);
1393 if (res)
1394 goto out;
1395 res = rri_resp[2];
1396 if (res == SMP_RESP_NO_INDEX) {
1397 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1398 SAS_ADDR(dev->sas_addr), phy_id, i);
1399 goto out;
1400 } else if (res != SMP_RESP_FUNC_ACC) {
1401 pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n",
1402 __func__, SAS_ADDR(dev->sas_addr), phy_id,
1403 i, res);
1404 goto out;
1405 }
1406 if (SAS_ADDR(sas_addr) != 0) {
1407 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1408 *index = i;
1409 if ((rri_resp[12] & 0x80) == 0x80)
1410 *present = 0;
1411 else
1412 *present = 1;
1413 goto out;
1414 } else if (SAS_ADDR(rri_resp+16) == 0) {
1415 *index = i;
1416 *present = 0;
1417 goto out;
1418 }
1419 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1420 phy->last_da_index < i) {
1421 phy->last_da_index = i;
1422 *index = i;
1423 *present = 0;
1424 goto out;
1425 }
1426 }
1427 res = -1;
1428 out:
1429 kfree(rri_req);
1430 kfree(rri_resp);
1431 return res;
1432 }
1433
1434 #define CRI_REQ_SIZE 44
1435 #define CRI_RESP_SIZE 8
1436
sas_configure_set(struct domain_device * dev,int phy_id,u8 * sas_addr,int index,int include)1437 static int sas_configure_set(struct domain_device *dev, int phy_id,
1438 u8 *sas_addr, int index, int include)
1439 {
1440 int res;
1441 u8 *cri_req;
1442 u8 *cri_resp;
1443
1444 cri_req = alloc_smp_req(CRI_REQ_SIZE);
1445 if (!cri_req)
1446 return -ENOMEM;
1447
1448 cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1449 if (!cri_resp) {
1450 kfree(cri_req);
1451 return -ENOMEM;
1452 }
1453
1454 cri_req[1] = SMP_CONF_ROUTE_INFO;
1455 *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1456 cri_req[9] = phy_id;
1457 if (SAS_ADDR(sas_addr) == 0 || !include)
1458 cri_req[12] |= 0x80;
1459 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1460
1461 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1462 CRI_RESP_SIZE);
1463 if (res)
1464 goto out;
1465 res = cri_resp[2];
1466 if (res == SMP_RESP_NO_INDEX) {
1467 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1468 SAS_ADDR(dev->sas_addr), phy_id, index);
1469 }
1470 out:
1471 kfree(cri_req);
1472 kfree(cri_resp);
1473 return res;
1474 }
1475
sas_configure_phy(struct domain_device * dev,int phy_id,u8 * sas_addr,int include)1476 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1477 u8 *sas_addr, int include)
1478 {
1479 int index;
1480 int present;
1481 int res;
1482
1483 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1484 if (res)
1485 return res;
1486 if (include ^ present)
1487 return sas_configure_set(dev, phy_id, sas_addr, index,
1488 include);
1489
1490 return res;
1491 }
1492
1493 /**
1494 * sas_configure_parent - configure routing table of parent
1495 * @parent: parent expander
1496 * @child: child expander
1497 * @sas_addr: SAS port identifier of device directly attached to child
1498 * @include: whether or not to include @child in the expander routing table
1499 */
sas_configure_parent(struct domain_device * parent,struct domain_device * child,u8 * sas_addr,int include)1500 static int sas_configure_parent(struct domain_device *parent,
1501 struct domain_device *child,
1502 u8 *sas_addr, int include)
1503 {
1504 struct expander_device *ex_parent = &parent->ex_dev;
1505 int res = 0;
1506 int i;
1507
1508 if (parent->parent) {
1509 res = sas_configure_parent(parent->parent, parent, sas_addr,
1510 include);
1511 if (res)
1512 return res;
1513 }
1514
1515 if (ex_parent->conf_route_table == 0) {
1516 pr_debug("ex %016llx has self-configuring routing table\n",
1517 SAS_ADDR(parent->sas_addr));
1518 return 0;
1519 }
1520
1521 for (i = 0; i < ex_parent->num_phys; i++) {
1522 struct ex_phy *phy = &ex_parent->ex_phy[i];
1523
1524 if ((phy->routing_attr == TABLE_ROUTING) &&
1525 (SAS_ADDR(phy->attached_sas_addr) ==
1526 SAS_ADDR(child->sas_addr))) {
1527 res = sas_configure_phy(parent, i, sas_addr, include);
1528 if (res)
1529 return res;
1530 }
1531 }
1532
1533 return res;
1534 }
1535
1536 /**
1537 * sas_configure_routing - configure routing
1538 * @dev: expander device
1539 * @sas_addr: port identifier of device directly attached to the expander device
1540 */
sas_configure_routing(struct domain_device * dev,u8 * sas_addr)1541 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1542 {
1543 if (dev->parent)
1544 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1545 return 0;
1546 }
1547
sas_disable_routing(struct domain_device * dev,u8 * sas_addr)1548 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr)
1549 {
1550 if (dev->parent)
1551 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1552 return 0;
1553 }
1554
1555 /**
1556 * sas_discover_expander - expander discovery
1557 * @dev: pointer to expander domain device
1558 *
1559 * See comment in sas_discover_sata().
1560 */
sas_discover_expander(struct domain_device * dev)1561 static int sas_discover_expander(struct domain_device *dev)
1562 {
1563 int res;
1564
1565 res = sas_notify_lldd_dev_found(dev);
1566 if (res)
1567 return res;
1568
1569 res = sas_ex_general(dev);
1570 if (res)
1571 goto out_err;
1572 res = sas_ex_manuf_info(dev);
1573 if (res)
1574 goto out_err;
1575
1576 res = sas_expander_discover(dev);
1577 if (res) {
1578 pr_warn("expander %016llx discovery failed(0x%x)\n",
1579 SAS_ADDR(dev->sas_addr), res);
1580 goto out_err;
1581 }
1582
1583 sas_check_ex_subtractive_boundary(dev);
1584 res = sas_check_parent_topology(dev);
1585 if (res)
1586 goto out_err;
1587 return 0;
1588 out_err:
1589 sas_notify_lldd_dev_gone(dev);
1590 return res;
1591 }
1592
sas_ex_level_discovery(struct asd_sas_port * port,const int level)1593 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1594 {
1595 int res = 0;
1596 struct domain_device *dev;
1597
1598 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1599 if (dev_is_expander(dev->dev_type)) {
1600 struct sas_expander_device *ex =
1601 rphy_to_expander_device(dev->rphy);
1602
1603 if (level == ex->level)
1604 res = sas_ex_discover_devices(dev, -1);
1605 else if (level > 0)
1606 res = sas_ex_discover_devices(port->port_dev, -1);
1607
1608 }
1609 }
1610
1611 return res;
1612 }
1613
sas_ex_bfs_disc(struct asd_sas_port * port)1614 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1615 {
1616 int res;
1617 int level;
1618
1619 do {
1620 level = port->disc.max_level;
1621 res = sas_ex_level_discovery(port, level);
1622 mb();
1623 } while (level < port->disc.max_level);
1624
1625 return res;
1626 }
1627
sas_discover_root_expander(struct domain_device * dev)1628 int sas_discover_root_expander(struct domain_device *dev)
1629 {
1630 int res;
1631 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1632
1633 res = sas_rphy_add(dev->rphy);
1634 if (res)
1635 goto out_err;
1636
1637 ex->level = dev->port->disc.max_level; /* 0 */
1638 res = sas_discover_expander(dev);
1639 if (res)
1640 goto out_err2;
1641
1642 sas_ex_bfs_disc(dev->port);
1643
1644 return res;
1645
1646 out_err2:
1647 sas_rphy_remove(dev->rphy);
1648 out_err:
1649 return res;
1650 }
1651
1652 /* ---------- Domain revalidation ---------- */
1653
sas_get_phy_discover(struct domain_device * dev,int phy_id,struct smp_disc_resp * disc_resp)1654 static int sas_get_phy_discover(struct domain_device *dev,
1655 int phy_id, struct smp_disc_resp *disc_resp)
1656 {
1657 int res;
1658 u8 *disc_req;
1659
1660 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1661 if (!disc_req)
1662 return -ENOMEM;
1663
1664 disc_req[1] = SMP_DISCOVER;
1665 disc_req[9] = phy_id;
1666
1667 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1668 disc_resp, DISCOVER_RESP_SIZE);
1669 if (res)
1670 goto out;
1671 if (disc_resp->result != SMP_RESP_FUNC_ACC)
1672 res = disc_resp->result;
1673 out:
1674 kfree(disc_req);
1675 return res;
1676 }
1677
sas_get_phy_change_count(struct domain_device * dev,int phy_id,int * pcc)1678 static int sas_get_phy_change_count(struct domain_device *dev,
1679 int phy_id, int *pcc)
1680 {
1681 int res;
1682 struct smp_disc_resp *disc_resp;
1683
1684 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1685 if (!disc_resp)
1686 return -ENOMEM;
1687
1688 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1689 if (!res)
1690 *pcc = disc_resp->disc.change_count;
1691
1692 kfree(disc_resp);
1693 return res;
1694 }
1695
sas_get_phy_attached_dev(struct domain_device * dev,int phy_id,u8 * sas_addr,enum sas_device_type * type)1696 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1697 u8 *sas_addr, enum sas_device_type *type)
1698 {
1699 int res;
1700 struct smp_disc_resp *disc_resp;
1701
1702 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1703 if (!disc_resp)
1704 return -ENOMEM;
1705
1706 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1707 if (res == 0) {
1708 memcpy(sas_addr, disc_resp->disc.attached_sas_addr,
1709 SAS_ADDR_SIZE);
1710 *type = to_dev_type(&disc_resp->disc);
1711 if (*type == 0)
1712 memset(sas_addr, 0, SAS_ADDR_SIZE);
1713 }
1714 kfree(disc_resp);
1715 return res;
1716 }
1717
sas_find_bcast_phy(struct domain_device * dev,int * phy_id,int from_phy,bool update)1718 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1719 int from_phy, bool update)
1720 {
1721 struct expander_device *ex = &dev->ex_dev;
1722 int res = 0;
1723 int i;
1724
1725 for (i = from_phy; i < ex->num_phys; i++) {
1726 int phy_change_count = 0;
1727
1728 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1729 switch (res) {
1730 case SMP_RESP_PHY_VACANT:
1731 case SMP_RESP_NO_PHY:
1732 continue;
1733 case SMP_RESP_FUNC_ACC:
1734 break;
1735 default:
1736 return res;
1737 }
1738
1739 if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1740 if (update)
1741 ex->ex_phy[i].phy_change_count =
1742 phy_change_count;
1743 *phy_id = i;
1744 return 0;
1745 }
1746 }
1747 return 0;
1748 }
1749
sas_get_ex_change_count(struct domain_device * dev,int * ecc)1750 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1751 {
1752 int res;
1753 u8 *rg_req;
1754 struct smp_rg_resp *rg_resp;
1755
1756 rg_req = alloc_smp_req(RG_REQ_SIZE);
1757 if (!rg_req)
1758 return -ENOMEM;
1759
1760 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1761 if (!rg_resp) {
1762 kfree(rg_req);
1763 return -ENOMEM;
1764 }
1765
1766 rg_req[1] = SMP_REPORT_GENERAL;
1767
1768 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1769 RG_RESP_SIZE);
1770 if (res)
1771 goto out;
1772 if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1773 res = rg_resp->result;
1774 goto out;
1775 }
1776
1777 *ecc = be16_to_cpu(rg_resp->rg.change_count);
1778 out:
1779 kfree(rg_resp);
1780 kfree(rg_req);
1781 return res;
1782 }
1783 /**
1784 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1785 * @dev:domain device to be detect.
1786 * @src_dev: the device which originated BROADCAST(CHANGE).
1787 *
1788 * Add self-configuration expander support. Suppose two expander cascading,
1789 * when the first level expander is self-configuring, hotplug the disks in
1790 * second level expander, BROADCAST(CHANGE) will not only be originated
1791 * in the second level expander, but also be originated in the first level
1792 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1793 * expander changed count in two level expanders will all increment at least
1794 * once, but the phy which chang count has changed is the source device which
1795 * we concerned.
1796 */
1797
sas_find_bcast_dev(struct domain_device * dev,struct domain_device ** src_dev)1798 static int sas_find_bcast_dev(struct domain_device *dev,
1799 struct domain_device **src_dev)
1800 {
1801 struct expander_device *ex = &dev->ex_dev;
1802 int ex_change_count = -1;
1803 int phy_id = -1;
1804 int res;
1805 struct domain_device *ch;
1806
1807 res = sas_get_ex_change_count(dev, &ex_change_count);
1808 if (res)
1809 goto out;
1810 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1811 /* Just detect if this expander phys phy change count changed,
1812 * in order to determine if this expander originate BROADCAST,
1813 * and do not update phy change count field in our structure.
1814 */
1815 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1816 if (phy_id != -1) {
1817 *src_dev = dev;
1818 ex->ex_change_count = ex_change_count;
1819 pr_info("ex %016llx phy%02d change count has changed\n",
1820 SAS_ADDR(dev->sas_addr), phy_id);
1821 return res;
1822 } else
1823 pr_info("ex %016llx phys DID NOT change\n",
1824 SAS_ADDR(dev->sas_addr));
1825 }
1826 list_for_each_entry(ch, &ex->children, siblings) {
1827 if (dev_is_expander(ch->dev_type)) {
1828 res = sas_find_bcast_dev(ch, src_dev);
1829 if (*src_dev)
1830 return res;
1831 }
1832 }
1833 out:
1834 return res;
1835 }
1836
sas_unregister_ex_tree(struct asd_sas_port * port,struct domain_device * dev)1837 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1838 {
1839 struct expander_device *ex = &dev->ex_dev;
1840 struct domain_device *child, *n;
1841
1842 list_for_each_entry_safe(child, n, &ex->children, siblings) {
1843 set_bit(SAS_DEV_GONE, &child->state);
1844 if (dev_is_expander(child->dev_type))
1845 sas_unregister_ex_tree(port, child);
1846 else
1847 sas_unregister_dev(port, child);
1848 }
1849 sas_unregister_dev(port, dev);
1850 }
1851
sas_unregister_devs_sas_addr(struct domain_device * parent,int phy_id,bool last)1852 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1853 int phy_id, bool last)
1854 {
1855 struct expander_device *ex_dev = &parent->ex_dev;
1856 struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1857 struct domain_device *child, *n, *found = NULL;
1858 if (last) {
1859 list_for_each_entry_safe(child, n,
1860 &ex_dev->children, siblings) {
1861 if (SAS_ADDR(child->sas_addr) ==
1862 SAS_ADDR(phy->attached_sas_addr)) {
1863 set_bit(SAS_DEV_GONE, &child->state);
1864 if (dev_is_expander(child->dev_type))
1865 sas_unregister_ex_tree(parent->port, child);
1866 else
1867 sas_unregister_dev(parent->port, child);
1868 found = child;
1869 break;
1870 }
1871 }
1872 sas_disable_routing(parent, phy->attached_sas_addr);
1873 }
1874 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1875 if (phy->port) {
1876 sas_port_delete_phy(phy->port, phy->phy);
1877 sas_device_set_phy(found, phy->port);
1878 if (phy->port->num_phys == 0)
1879 list_add_tail(&phy->port->del_list,
1880 &parent->port->sas_port_del_list);
1881 phy->port = NULL;
1882 }
1883 }
1884
sas_discover_bfs_by_root_level(struct domain_device * root,const int level)1885 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1886 const int level)
1887 {
1888 struct expander_device *ex_root = &root->ex_dev;
1889 struct domain_device *child;
1890 int res = 0;
1891
1892 list_for_each_entry(child, &ex_root->children, siblings) {
1893 if (dev_is_expander(child->dev_type)) {
1894 struct sas_expander_device *ex =
1895 rphy_to_expander_device(child->rphy);
1896
1897 if (level > ex->level)
1898 res = sas_discover_bfs_by_root_level(child,
1899 level);
1900 else if (level == ex->level)
1901 res = sas_ex_discover_devices(child, -1);
1902 }
1903 }
1904 return res;
1905 }
1906
sas_discover_bfs_by_root(struct domain_device * dev)1907 static int sas_discover_bfs_by_root(struct domain_device *dev)
1908 {
1909 int res;
1910 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1911 int level = ex->level+1;
1912
1913 res = sas_ex_discover_devices(dev, -1);
1914 if (res)
1915 goto out;
1916 do {
1917 res = sas_discover_bfs_by_root_level(dev, level);
1918 mb();
1919 level += 1;
1920 } while (level <= dev->port->disc.max_level);
1921 out:
1922 return res;
1923 }
1924
sas_discover_new(struct domain_device * dev,int phy_id)1925 static int sas_discover_new(struct domain_device *dev, int phy_id)
1926 {
1927 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1928 struct domain_device *child;
1929 int res;
1930
1931 pr_debug("ex %016llx phy%02d new device attached\n",
1932 SAS_ADDR(dev->sas_addr), phy_id);
1933 res = sas_ex_phy_discover(dev, phy_id);
1934 if (res)
1935 return res;
1936
1937 if (sas_ex_join_wide_port(dev, phy_id))
1938 return 0;
1939
1940 res = sas_ex_discover_devices(dev, phy_id);
1941 if (res)
1942 return res;
1943 list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1944 if (SAS_ADDR(child->sas_addr) ==
1945 SAS_ADDR(ex_phy->attached_sas_addr)) {
1946 if (dev_is_expander(child->dev_type))
1947 res = sas_discover_bfs_by_root(child);
1948 break;
1949 }
1950 }
1951 return res;
1952 }
1953
dev_type_flutter(enum sas_device_type new,enum sas_device_type old)1954 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1955 {
1956 if (old == new)
1957 return true;
1958
1959 /* treat device directed resets as flutter, if we went
1960 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1961 */
1962 if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1963 (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1964 return true;
1965
1966 return false;
1967 }
1968
sas_rediscover_dev(struct domain_device * dev,int phy_id,bool last,int sibling)1969 static int sas_rediscover_dev(struct domain_device *dev, int phy_id,
1970 bool last, int sibling)
1971 {
1972 struct expander_device *ex = &dev->ex_dev;
1973 struct ex_phy *phy = &ex->ex_phy[phy_id];
1974 enum sas_device_type type = SAS_PHY_UNUSED;
1975 u8 sas_addr[SAS_ADDR_SIZE];
1976 char msg[80] = "";
1977 int res;
1978
1979 if (!last)
1980 sprintf(msg, ", part of a wide port with phy%02d", sibling);
1981
1982 pr_debug("ex %016llx rediscovering phy%02d%s\n",
1983 SAS_ADDR(dev->sas_addr), phy_id, msg);
1984
1985 memset(sas_addr, 0, SAS_ADDR_SIZE);
1986 res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
1987 switch (res) {
1988 case SMP_RESP_NO_PHY:
1989 phy->phy_state = PHY_NOT_PRESENT;
1990 sas_unregister_devs_sas_addr(dev, phy_id, last);
1991 return res;
1992 case SMP_RESP_PHY_VACANT:
1993 phy->phy_state = PHY_VACANT;
1994 sas_unregister_devs_sas_addr(dev, phy_id, last);
1995 return res;
1996 case SMP_RESP_FUNC_ACC:
1997 break;
1998 case -ECOMM:
1999 break;
2000 default:
2001 return res;
2002 }
2003
2004 if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2005 phy->phy_state = PHY_EMPTY;
2006 sas_unregister_devs_sas_addr(dev, phy_id, last);
2007 /*
2008 * Even though the PHY is empty, for convenience we discover
2009 * the PHY to update the PHY info, like negotiated linkrate.
2010 */
2011 sas_ex_phy_discover(dev, phy_id);
2012 return res;
2013 } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2014 dev_type_flutter(type, phy->attached_dev_type)) {
2015 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2016 char *action = "";
2017
2018 sas_ex_phy_discover(dev, phy_id);
2019
2020 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2021 action = ", needs recovery";
2022 pr_debug("ex %016llx phy%02d broadcast flutter%s\n",
2023 SAS_ADDR(dev->sas_addr), phy_id, action);
2024 return res;
2025 }
2026
2027 /* we always have to delete the old device when we went here */
2028 pr_info("ex %016llx phy%02d replace %016llx\n",
2029 SAS_ADDR(dev->sas_addr), phy_id,
2030 SAS_ADDR(phy->attached_sas_addr));
2031 sas_unregister_devs_sas_addr(dev, phy_id, last);
2032
2033 return sas_discover_new(dev, phy_id);
2034 }
2035
2036 /**
2037 * sas_rediscover - revalidate the domain.
2038 * @dev:domain device to be detect.
2039 * @phy_id: the phy id will be detected.
2040 *
2041 * NOTE: this process _must_ quit (return) as soon as any connection
2042 * errors are encountered. Connection recovery is done elsewhere.
2043 * Discover process only interrogates devices in order to discover the
2044 * domain.For plugging out, we un-register the device only when it is
2045 * the last phy in the port, for other phys in this port, we just delete it
2046 * from the port.For inserting, we do discovery when it is the
2047 * first phy,for other phys in this port, we add it to the port to
2048 * forming the wide-port.
2049 */
sas_rediscover(struct domain_device * dev,const int phy_id)2050 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2051 {
2052 struct expander_device *ex = &dev->ex_dev;
2053 struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2054 int res = 0;
2055 int i;
2056 bool last = true; /* is this the last phy of the port */
2057
2058 pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n",
2059 SAS_ADDR(dev->sas_addr), phy_id);
2060
2061 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2062 for (i = 0; i < ex->num_phys; i++) {
2063 struct ex_phy *phy = &ex->ex_phy[i];
2064
2065 if (i == phy_id)
2066 continue;
2067 if (SAS_ADDR(phy->attached_sas_addr) ==
2068 SAS_ADDR(changed_phy->attached_sas_addr)) {
2069 last = false;
2070 break;
2071 }
2072 }
2073 res = sas_rediscover_dev(dev, phy_id, last, i);
2074 } else
2075 res = sas_discover_new(dev, phy_id);
2076 return res;
2077 }
2078
2079 /**
2080 * sas_ex_revalidate_domain - revalidate the domain
2081 * @port_dev: port domain device.
2082 *
2083 * NOTE: this process _must_ quit (return) as soon as any connection
2084 * errors are encountered. Connection recovery is done elsewhere.
2085 * Discover process only interrogates devices in order to discover the
2086 * domain.
2087 */
sas_ex_revalidate_domain(struct domain_device * port_dev)2088 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2089 {
2090 int res;
2091 struct domain_device *dev = NULL;
2092
2093 res = sas_find_bcast_dev(port_dev, &dev);
2094 if (res == 0 && dev) {
2095 struct expander_device *ex = &dev->ex_dev;
2096 int i = 0, phy_id;
2097
2098 do {
2099 phy_id = -1;
2100 res = sas_find_bcast_phy(dev, &phy_id, i, true);
2101 if (phy_id == -1)
2102 break;
2103 res = sas_rediscover(dev, phy_id);
2104 i = phy_id + 1;
2105 } while (i < ex->num_phys);
2106 }
2107 return res;
2108 }
2109
sas_smp_handler(struct bsg_job * job,struct Scsi_Host * shost,struct sas_rphy * rphy)2110 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2111 struct sas_rphy *rphy)
2112 {
2113 struct domain_device *dev;
2114 unsigned int rcvlen = 0;
2115 int ret = -EINVAL;
2116
2117 /* no rphy means no smp target support (ie aic94xx host) */
2118 if (!rphy)
2119 return sas_smp_host_handler(job, shost);
2120
2121 switch (rphy->identify.device_type) {
2122 case SAS_EDGE_EXPANDER_DEVICE:
2123 case SAS_FANOUT_EXPANDER_DEVICE:
2124 break;
2125 default:
2126 pr_err("%s: can we send a smp request to a device?\n",
2127 __func__);
2128 goto out;
2129 }
2130
2131 dev = sas_find_dev_by_rphy(rphy);
2132 if (!dev) {
2133 pr_err("%s: fail to find a domain_device?\n", __func__);
2134 goto out;
2135 }
2136
2137 /* do we need to support multiple segments? */
2138 if (job->request_payload.sg_cnt > 1 ||
2139 job->reply_payload.sg_cnt > 1) {
2140 pr_info("%s: multiple segments req %u, rsp %u\n",
2141 __func__, job->request_payload.payload_len,
2142 job->reply_payload.payload_len);
2143 goto out;
2144 }
2145
2146 ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2147 job->reply_payload.sg_list);
2148 if (ret >= 0) {
2149 /* bsg_job_done() requires the length received */
2150 rcvlen = job->reply_payload.payload_len - ret;
2151 ret = 0;
2152 }
2153
2154 out:
2155 bsg_job_done(job, ret, rcvlen);
2156 }
2157