1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common code for the NVMe target.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/random.h>
9 #include <linux/rculist.h>
10 #include <linux/pci-p2pdma.h>
11 #include <linux/scatterlist.h>
12 
13 #define CREATE_TRACE_POINTS
14 #include "trace.h"
15 
16 #include "nvmet.h"
17 
18 struct kmem_cache *nvmet_bvec_cache;
19 struct workqueue_struct *buffered_io_wq;
20 struct workqueue_struct *zbd_wq;
21 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
22 static DEFINE_IDA(cntlid_ida);
23 
24 struct workqueue_struct *nvmet_wq;
25 EXPORT_SYMBOL_GPL(nvmet_wq);
26 
27 /*
28  * This read/write semaphore is used to synchronize access to configuration
29  * information on a target system that will result in discovery log page
30  * information change for at least one host.
31  * The full list of resources to protected by this semaphore is:
32  *
33  *  - subsystems list
34  *  - per-subsystem allowed hosts list
35  *  - allow_any_host subsystem attribute
36  *  - nvmet_genctr
37  *  - the nvmet_transports array
38  *
39  * When updating any of those lists/structures write lock should be obtained,
40  * while when reading (popolating discovery log page or checking host-subsystem
41  * link) read lock is obtained to allow concurrent reads.
42  */
43 DECLARE_RWSEM(nvmet_config_sem);
44 
45 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
46 u64 nvmet_ana_chgcnt;
47 DECLARE_RWSEM(nvmet_ana_sem);
48 
errno_to_nvme_status(struct nvmet_req * req,int errno)49 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
50 {
51 	switch (errno) {
52 	case 0:
53 		return NVME_SC_SUCCESS;
54 	case -ENOSPC:
55 		req->error_loc = offsetof(struct nvme_rw_command, length);
56 		return NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
57 	case -EREMOTEIO:
58 		req->error_loc = offsetof(struct nvme_rw_command, slba);
59 		return  NVME_SC_LBA_RANGE | NVME_SC_DNR;
60 	case -EOPNOTSUPP:
61 		req->error_loc = offsetof(struct nvme_common_command, opcode);
62 		switch (req->cmd->common.opcode) {
63 		case nvme_cmd_dsm:
64 		case nvme_cmd_write_zeroes:
65 			return NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
66 		default:
67 			return NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
68 		}
69 		break;
70 	case -ENODATA:
71 		req->error_loc = offsetof(struct nvme_rw_command, nsid);
72 		return NVME_SC_ACCESS_DENIED;
73 	case -EIO:
74 		fallthrough;
75 	default:
76 		req->error_loc = offsetof(struct nvme_common_command, opcode);
77 		return NVME_SC_INTERNAL | NVME_SC_DNR;
78 	}
79 }
80 
nvmet_report_invalid_opcode(struct nvmet_req * req)81 u16 nvmet_report_invalid_opcode(struct nvmet_req *req)
82 {
83 	pr_debug("unhandled cmd %d on qid %d\n", req->cmd->common.opcode,
84 		 req->sq->qid);
85 
86 	req->error_loc = offsetof(struct nvme_common_command, opcode);
87 	return NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
88 }
89 
90 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
91 		const char *subsysnqn);
92 
nvmet_copy_to_sgl(struct nvmet_req * req,off_t off,const void * buf,size_t len)93 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
94 		size_t len)
95 {
96 	if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
97 		req->error_loc = offsetof(struct nvme_common_command, dptr);
98 		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
99 	}
100 	return 0;
101 }
102 
nvmet_copy_from_sgl(struct nvmet_req * req,off_t off,void * buf,size_t len)103 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
104 {
105 	if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
106 		req->error_loc = offsetof(struct nvme_common_command, dptr);
107 		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
108 	}
109 	return 0;
110 }
111 
nvmet_zero_sgl(struct nvmet_req * req,off_t off,size_t len)112 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
113 {
114 	if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
115 		req->error_loc = offsetof(struct nvme_common_command, dptr);
116 		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
117 	}
118 	return 0;
119 }
120 
nvmet_max_nsid(struct nvmet_subsys * subsys)121 static u32 nvmet_max_nsid(struct nvmet_subsys *subsys)
122 {
123 	struct nvmet_ns *cur;
124 	unsigned long idx;
125 	u32 nsid = 0;
126 
127 	xa_for_each(&subsys->namespaces, idx, cur)
128 		nsid = cur->nsid;
129 
130 	return nsid;
131 }
132 
nvmet_async_event_result(struct nvmet_async_event * aen)133 static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
134 {
135 	return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
136 }
137 
nvmet_async_events_failall(struct nvmet_ctrl * ctrl)138 static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl)
139 {
140 	struct nvmet_req *req;
141 
142 	mutex_lock(&ctrl->lock);
143 	while (ctrl->nr_async_event_cmds) {
144 		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
145 		mutex_unlock(&ctrl->lock);
146 		nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_SC_DNR);
147 		mutex_lock(&ctrl->lock);
148 	}
149 	mutex_unlock(&ctrl->lock);
150 }
151 
nvmet_async_events_process(struct nvmet_ctrl * ctrl)152 static void nvmet_async_events_process(struct nvmet_ctrl *ctrl)
153 {
154 	struct nvmet_async_event *aen;
155 	struct nvmet_req *req;
156 
157 	mutex_lock(&ctrl->lock);
158 	while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) {
159 		aen = list_first_entry(&ctrl->async_events,
160 				       struct nvmet_async_event, entry);
161 		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
162 		nvmet_set_result(req, nvmet_async_event_result(aen));
163 
164 		list_del(&aen->entry);
165 		kfree(aen);
166 
167 		mutex_unlock(&ctrl->lock);
168 		trace_nvmet_async_event(ctrl, req->cqe->result.u32);
169 		nvmet_req_complete(req, 0);
170 		mutex_lock(&ctrl->lock);
171 	}
172 	mutex_unlock(&ctrl->lock);
173 }
174 
nvmet_async_events_free(struct nvmet_ctrl * ctrl)175 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
176 {
177 	struct nvmet_async_event *aen, *tmp;
178 
179 	mutex_lock(&ctrl->lock);
180 	list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) {
181 		list_del(&aen->entry);
182 		kfree(aen);
183 	}
184 	mutex_unlock(&ctrl->lock);
185 }
186 
nvmet_async_event_work(struct work_struct * work)187 static void nvmet_async_event_work(struct work_struct *work)
188 {
189 	struct nvmet_ctrl *ctrl =
190 		container_of(work, struct nvmet_ctrl, async_event_work);
191 
192 	nvmet_async_events_process(ctrl);
193 }
194 
nvmet_add_async_event(struct nvmet_ctrl * ctrl,u8 event_type,u8 event_info,u8 log_page)195 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
196 		u8 event_info, u8 log_page)
197 {
198 	struct nvmet_async_event *aen;
199 
200 	aen = kmalloc(sizeof(*aen), GFP_KERNEL);
201 	if (!aen)
202 		return;
203 
204 	aen->event_type = event_type;
205 	aen->event_info = event_info;
206 	aen->log_page = log_page;
207 
208 	mutex_lock(&ctrl->lock);
209 	list_add_tail(&aen->entry, &ctrl->async_events);
210 	mutex_unlock(&ctrl->lock);
211 
212 	queue_work(nvmet_wq, &ctrl->async_event_work);
213 }
214 
nvmet_add_to_changed_ns_log(struct nvmet_ctrl * ctrl,__le32 nsid)215 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
216 {
217 	u32 i;
218 
219 	mutex_lock(&ctrl->lock);
220 	if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
221 		goto out_unlock;
222 
223 	for (i = 0; i < ctrl->nr_changed_ns; i++) {
224 		if (ctrl->changed_ns_list[i] == nsid)
225 			goto out_unlock;
226 	}
227 
228 	if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
229 		ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
230 		ctrl->nr_changed_ns = U32_MAX;
231 		goto out_unlock;
232 	}
233 
234 	ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
235 out_unlock:
236 	mutex_unlock(&ctrl->lock);
237 }
238 
nvmet_ns_changed(struct nvmet_subsys * subsys,u32 nsid)239 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
240 {
241 	struct nvmet_ctrl *ctrl;
242 
243 	lockdep_assert_held(&subsys->lock);
244 
245 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
246 		nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
247 		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
248 			continue;
249 		nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
250 				NVME_AER_NOTICE_NS_CHANGED,
251 				NVME_LOG_CHANGED_NS);
252 	}
253 }
254 
nvmet_send_ana_event(struct nvmet_subsys * subsys,struct nvmet_port * port)255 void nvmet_send_ana_event(struct nvmet_subsys *subsys,
256 		struct nvmet_port *port)
257 {
258 	struct nvmet_ctrl *ctrl;
259 
260 	mutex_lock(&subsys->lock);
261 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
262 		if (port && ctrl->port != port)
263 			continue;
264 		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
265 			continue;
266 		nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
267 				NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
268 	}
269 	mutex_unlock(&subsys->lock);
270 }
271 
nvmet_port_send_ana_event(struct nvmet_port * port)272 void nvmet_port_send_ana_event(struct nvmet_port *port)
273 {
274 	struct nvmet_subsys_link *p;
275 
276 	down_read(&nvmet_config_sem);
277 	list_for_each_entry(p, &port->subsystems, entry)
278 		nvmet_send_ana_event(p->subsys, port);
279 	up_read(&nvmet_config_sem);
280 }
281 
nvmet_register_transport(const struct nvmet_fabrics_ops * ops)282 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
283 {
284 	int ret = 0;
285 
286 	down_write(&nvmet_config_sem);
287 	if (nvmet_transports[ops->type])
288 		ret = -EINVAL;
289 	else
290 		nvmet_transports[ops->type] = ops;
291 	up_write(&nvmet_config_sem);
292 
293 	return ret;
294 }
295 EXPORT_SYMBOL_GPL(nvmet_register_transport);
296 
nvmet_unregister_transport(const struct nvmet_fabrics_ops * ops)297 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
298 {
299 	down_write(&nvmet_config_sem);
300 	nvmet_transports[ops->type] = NULL;
301 	up_write(&nvmet_config_sem);
302 }
303 EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
304 
nvmet_port_del_ctrls(struct nvmet_port * port,struct nvmet_subsys * subsys)305 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys)
306 {
307 	struct nvmet_ctrl *ctrl;
308 
309 	mutex_lock(&subsys->lock);
310 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
311 		if (ctrl->port == port)
312 			ctrl->ops->delete_ctrl(ctrl);
313 	}
314 	mutex_unlock(&subsys->lock);
315 }
316 
nvmet_enable_port(struct nvmet_port * port)317 int nvmet_enable_port(struct nvmet_port *port)
318 {
319 	const struct nvmet_fabrics_ops *ops;
320 	int ret;
321 
322 	lockdep_assert_held(&nvmet_config_sem);
323 
324 	ops = nvmet_transports[port->disc_addr.trtype];
325 	if (!ops) {
326 		up_write(&nvmet_config_sem);
327 		request_module("nvmet-transport-%d", port->disc_addr.trtype);
328 		down_write(&nvmet_config_sem);
329 		ops = nvmet_transports[port->disc_addr.trtype];
330 		if (!ops) {
331 			pr_err("transport type %d not supported\n",
332 				port->disc_addr.trtype);
333 			return -EINVAL;
334 		}
335 	}
336 
337 	if (!try_module_get(ops->owner))
338 		return -EINVAL;
339 
340 	/*
341 	 * If the user requested PI support and the transport isn't pi capable,
342 	 * don't enable the port.
343 	 */
344 	if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) {
345 		pr_err("T10-PI is not supported by transport type %d\n",
346 		       port->disc_addr.trtype);
347 		ret = -EINVAL;
348 		goto out_put;
349 	}
350 
351 	ret = ops->add_port(port);
352 	if (ret)
353 		goto out_put;
354 
355 	/* If the transport didn't set inline_data_size, then disable it. */
356 	if (port->inline_data_size < 0)
357 		port->inline_data_size = 0;
358 
359 	port->enabled = true;
360 	port->tr_ops = ops;
361 	return 0;
362 
363 out_put:
364 	module_put(ops->owner);
365 	return ret;
366 }
367 
nvmet_disable_port(struct nvmet_port * port)368 void nvmet_disable_port(struct nvmet_port *port)
369 {
370 	const struct nvmet_fabrics_ops *ops;
371 
372 	lockdep_assert_held(&nvmet_config_sem);
373 
374 	port->enabled = false;
375 	port->tr_ops = NULL;
376 
377 	ops = nvmet_transports[port->disc_addr.trtype];
378 	ops->remove_port(port);
379 	module_put(ops->owner);
380 }
381 
nvmet_keep_alive_timer(struct work_struct * work)382 static void nvmet_keep_alive_timer(struct work_struct *work)
383 {
384 	struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
385 			struct nvmet_ctrl, ka_work);
386 	bool reset_tbkas = ctrl->reset_tbkas;
387 
388 	ctrl->reset_tbkas = false;
389 	if (reset_tbkas) {
390 		pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
391 			ctrl->cntlid);
392 		queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
393 		return;
394 	}
395 
396 	pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
397 		ctrl->cntlid, ctrl->kato);
398 
399 	nvmet_ctrl_fatal_error(ctrl);
400 }
401 
nvmet_start_keep_alive_timer(struct nvmet_ctrl * ctrl)402 void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
403 {
404 	if (unlikely(ctrl->kato == 0))
405 		return;
406 
407 	pr_debug("ctrl %d start keep-alive timer for %d secs\n",
408 		ctrl->cntlid, ctrl->kato);
409 
410 	queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
411 }
412 
nvmet_stop_keep_alive_timer(struct nvmet_ctrl * ctrl)413 void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
414 {
415 	if (unlikely(ctrl->kato == 0))
416 		return;
417 
418 	pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
419 
420 	cancel_delayed_work_sync(&ctrl->ka_work);
421 }
422 
nvmet_req_find_ns(struct nvmet_req * req)423 u16 nvmet_req_find_ns(struct nvmet_req *req)
424 {
425 	u32 nsid = le32_to_cpu(req->cmd->common.nsid);
426 
427 	req->ns = xa_load(&nvmet_req_subsys(req)->namespaces, nsid);
428 	if (unlikely(!req->ns)) {
429 		req->error_loc = offsetof(struct nvme_common_command, nsid);
430 		return NVME_SC_INVALID_NS | NVME_SC_DNR;
431 	}
432 
433 	percpu_ref_get(&req->ns->ref);
434 	return NVME_SC_SUCCESS;
435 }
436 
nvmet_destroy_namespace(struct percpu_ref * ref)437 static void nvmet_destroy_namespace(struct percpu_ref *ref)
438 {
439 	struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
440 
441 	complete(&ns->disable_done);
442 }
443 
nvmet_put_namespace(struct nvmet_ns * ns)444 void nvmet_put_namespace(struct nvmet_ns *ns)
445 {
446 	percpu_ref_put(&ns->ref);
447 }
448 
nvmet_ns_dev_disable(struct nvmet_ns * ns)449 static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
450 {
451 	nvmet_bdev_ns_disable(ns);
452 	nvmet_file_ns_disable(ns);
453 }
454 
nvmet_p2pmem_ns_enable(struct nvmet_ns * ns)455 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
456 {
457 	int ret;
458 	struct pci_dev *p2p_dev;
459 
460 	if (!ns->use_p2pmem)
461 		return 0;
462 
463 	if (!ns->bdev) {
464 		pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
465 		return -EINVAL;
466 	}
467 
468 	if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) {
469 		pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
470 		       ns->device_path);
471 		return -EINVAL;
472 	}
473 
474 	if (ns->p2p_dev) {
475 		ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
476 		if (ret < 0)
477 			return -EINVAL;
478 	} else {
479 		/*
480 		 * Right now we just check that there is p2pmem available so
481 		 * we can report an error to the user right away if there
482 		 * is not. We'll find the actual device to use once we
483 		 * setup the controller when the port's device is available.
484 		 */
485 
486 		p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
487 		if (!p2p_dev) {
488 			pr_err("no peer-to-peer memory is available for %s\n",
489 			       ns->device_path);
490 			return -EINVAL;
491 		}
492 
493 		pci_dev_put(p2p_dev);
494 	}
495 
496 	return 0;
497 }
498 
499 /*
500  * Note: ctrl->subsys->lock should be held when calling this function
501  */
nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl * ctrl,struct nvmet_ns * ns)502 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
503 				    struct nvmet_ns *ns)
504 {
505 	struct device *clients[2];
506 	struct pci_dev *p2p_dev;
507 	int ret;
508 
509 	if (!ctrl->p2p_client || !ns->use_p2pmem)
510 		return;
511 
512 	if (ns->p2p_dev) {
513 		ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
514 		if (ret < 0)
515 			return;
516 
517 		p2p_dev = pci_dev_get(ns->p2p_dev);
518 	} else {
519 		clients[0] = ctrl->p2p_client;
520 		clients[1] = nvmet_ns_dev(ns);
521 
522 		p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
523 		if (!p2p_dev) {
524 			pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
525 			       dev_name(ctrl->p2p_client), ns->device_path);
526 			return;
527 		}
528 	}
529 
530 	ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
531 	if (ret < 0)
532 		pci_dev_put(p2p_dev);
533 
534 	pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
535 		ns->nsid);
536 }
537 
nvmet_ns_revalidate(struct nvmet_ns * ns)538 bool nvmet_ns_revalidate(struct nvmet_ns *ns)
539 {
540 	loff_t oldsize = ns->size;
541 
542 	if (ns->bdev)
543 		nvmet_bdev_ns_revalidate(ns);
544 	else
545 		nvmet_file_ns_revalidate(ns);
546 
547 	return oldsize != ns->size;
548 }
549 
nvmet_ns_enable(struct nvmet_ns * ns)550 int nvmet_ns_enable(struct nvmet_ns *ns)
551 {
552 	struct nvmet_subsys *subsys = ns->subsys;
553 	struct nvmet_ctrl *ctrl;
554 	int ret;
555 
556 	mutex_lock(&subsys->lock);
557 	ret = 0;
558 
559 	if (nvmet_is_passthru_subsys(subsys)) {
560 		pr_info("cannot enable both passthru and regular namespaces for a single subsystem");
561 		goto out_unlock;
562 	}
563 
564 	if (ns->enabled)
565 		goto out_unlock;
566 
567 	ret = -EMFILE;
568 	if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
569 		goto out_unlock;
570 
571 	ret = nvmet_bdev_ns_enable(ns);
572 	if (ret == -ENOTBLK)
573 		ret = nvmet_file_ns_enable(ns);
574 	if (ret)
575 		goto out_unlock;
576 
577 	ret = nvmet_p2pmem_ns_enable(ns);
578 	if (ret)
579 		goto out_dev_disable;
580 
581 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
582 		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
583 
584 	ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace,
585 				0, GFP_KERNEL);
586 	if (ret)
587 		goto out_dev_put;
588 
589 	if (ns->nsid > subsys->max_nsid)
590 		subsys->max_nsid = ns->nsid;
591 
592 	ret = xa_insert(&subsys->namespaces, ns->nsid, ns, GFP_KERNEL);
593 	if (ret)
594 		goto out_restore_subsys_maxnsid;
595 
596 	subsys->nr_namespaces++;
597 
598 	nvmet_ns_changed(subsys, ns->nsid);
599 	ns->enabled = true;
600 	ret = 0;
601 out_unlock:
602 	mutex_unlock(&subsys->lock);
603 	return ret;
604 
605 out_restore_subsys_maxnsid:
606 	subsys->max_nsid = nvmet_max_nsid(subsys);
607 	percpu_ref_exit(&ns->ref);
608 out_dev_put:
609 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
610 		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
611 out_dev_disable:
612 	nvmet_ns_dev_disable(ns);
613 	goto out_unlock;
614 }
615 
nvmet_ns_disable(struct nvmet_ns * ns)616 void nvmet_ns_disable(struct nvmet_ns *ns)
617 {
618 	struct nvmet_subsys *subsys = ns->subsys;
619 	struct nvmet_ctrl *ctrl;
620 
621 	mutex_lock(&subsys->lock);
622 	if (!ns->enabled)
623 		goto out_unlock;
624 
625 	ns->enabled = false;
626 	xa_erase(&ns->subsys->namespaces, ns->nsid);
627 	if (ns->nsid == subsys->max_nsid)
628 		subsys->max_nsid = nvmet_max_nsid(subsys);
629 
630 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
631 		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
632 
633 	mutex_unlock(&subsys->lock);
634 
635 	/*
636 	 * Now that we removed the namespaces from the lookup list, we
637 	 * can kill the per_cpu ref and wait for any remaining references
638 	 * to be dropped, as well as a RCU grace period for anyone only
639 	 * using the namepace under rcu_read_lock().  Note that we can't
640 	 * use call_rcu here as we need to ensure the namespaces have
641 	 * been fully destroyed before unloading the module.
642 	 */
643 	percpu_ref_kill(&ns->ref);
644 	synchronize_rcu();
645 	wait_for_completion(&ns->disable_done);
646 	percpu_ref_exit(&ns->ref);
647 
648 	mutex_lock(&subsys->lock);
649 
650 	subsys->nr_namespaces--;
651 	nvmet_ns_changed(subsys, ns->nsid);
652 	nvmet_ns_dev_disable(ns);
653 out_unlock:
654 	mutex_unlock(&subsys->lock);
655 }
656 
nvmet_ns_free(struct nvmet_ns * ns)657 void nvmet_ns_free(struct nvmet_ns *ns)
658 {
659 	nvmet_ns_disable(ns);
660 
661 	down_write(&nvmet_ana_sem);
662 	nvmet_ana_group_enabled[ns->anagrpid]--;
663 	up_write(&nvmet_ana_sem);
664 
665 	kfree(ns->device_path);
666 	kfree(ns);
667 }
668 
nvmet_ns_alloc(struct nvmet_subsys * subsys,u32 nsid)669 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
670 {
671 	struct nvmet_ns *ns;
672 
673 	ns = kzalloc(sizeof(*ns), GFP_KERNEL);
674 	if (!ns)
675 		return NULL;
676 
677 	init_completion(&ns->disable_done);
678 
679 	ns->nsid = nsid;
680 	ns->subsys = subsys;
681 
682 	down_write(&nvmet_ana_sem);
683 	ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
684 	nvmet_ana_group_enabled[ns->anagrpid]++;
685 	up_write(&nvmet_ana_sem);
686 
687 	uuid_gen(&ns->uuid);
688 	ns->buffered_io = false;
689 	ns->csi = NVME_CSI_NVM;
690 
691 	return ns;
692 }
693 
nvmet_update_sq_head(struct nvmet_req * req)694 static void nvmet_update_sq_head(struct nvmet_req *req)
695 {
696 	if (req->sq->size) {
697 		u32 old_sqhd, new_sqhd;
698 
699 		do {
700 			old_sqhd = req->sq->sqhd;
701 			new_sqhd = (old_sqhd + 1) % req->sq->size;
702 		} while (cmpxchg(&req->sq->sqhd, old_sqhd, new_sqhd) !=
703 					old_sqhd);
704 	}
705 	req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
706 }
707 
nvmet_set_error(struct nvmet_req * req,u16 status)708 static void nvmet_set_error(struct nvmet_req *req, u16 status)
709 {
710 	struct nvmet_ctrl *ctrl = req->sq->ctrl;
711 	struct nvme_error_slot *new_error_slot;
712 	unsigned long flags;
713 
714 	req->cqe->status = cpu_to_le16(status << 1);
715 
716 	if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
717 		return;
718 
719 	spin_lock_irqsave(&ctrl->error_lock, flags);
720 	ctrl->err_counter++;
721 	new_error_slot =
722 		&ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];
723 
724 	new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
725 	new_error_slot->sqid = cpu_to_le16(req->sq->qid);
726 	new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
727 	new_error_slot->status_field = cpu_to_le16(status << 1);
728 	new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
729 	new_error_slot->lba = cpu_to_le64(req->error_slba);
730 	new_error_slot->nsid = req->cmd->common.nsid;
731 	spin_unlock_irqrestore(&ctrl->error_lock, flags);
732 
733 	/* set the more bit for this request */
734 	req->cqe->status |= cpu_to_le16(1 << 14);
735 }
736 
__nvmet_req_complete(struct nvmet_req * req,u16 status)737 static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
738 {
739 	struct nvmet_ns *ns = req->ns;
740 
741 	if (!req->sq->sqhd_disabled)
742 		nvmet_update_sq_head(req);
743 	req->cqe->sq_id = cpu_to_le16(req->sq->qid);
744 	req->cqe->command_id = req->cmd->common.command_id;
745 
746 	if (unlikely(status))
747 		nvmet_set_error(req, status);
748 
749 	trace_nvmet_req_complete(req);
750 
751 	req->ops->queue_response(req);
752 	if (ns)
753 		nvmet_put_namespace(ns);
754 }
755 
nvmet_req_complete(struct nvmet_req * req,u16 status)756 void nvmet_req_complete(struct nvmet_req *req, u16 status)
757 {
758 	__nvmet_req_complete(req, status);
759 	percpu_ref_put(&req->sq->ref);
760 }
761 EXPORT_SYMBOL_GPL(nvmet_req_complete);
762 
nvmet_cq_setup(struct nvmet_ctrl * ctrl,struct nvmet_cq * cq,u16 qid,u16 size)763 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
764 		u16 qid, u16 size)
765 {
766 	cq->qid = qid;
767 	cq->size = size;
768 }
769 
nvmet_sq_setup(struct nvmet_ctrl * ctrl,struct nvmet_sq * sq,u16 qid,u16 size)770 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
771 		u16 qid, u16 size)
772 {
773 	sq->sqhd = 0;
774 	sq->qid = qid;
775 	sq->size = size;
776 
777 	ctrl->sqs[qid] = sq;
778 }
779 
nvmet_confirm_sq(struct percpu_ref * ref)780 static void nvmet_confirm_sq(struct percpu_ref *ref)
781 {
782 	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
783 
784 	complete(&sq->confirm_done);
785 }
786 
nvmet_sq_destroy(struct nvmet_sq * sq)787 void nvmet_sq_destroy(struct nvmet_sq *sq)
788 {
789 	struct nvmet_ctrl *ctrl = sq->ctrl;
790 
791 	/*
792 	 * If this is the admin queue, complete all AERs so that our
793 	 * queue doesn't have outstanding requests on it.
794 	 */
795 	if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq)
796 		nvmet_async_events_failall(ctrl);
797 	percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
798 	wait_for_completion(&sq->confirm_done);
799 	wait_for_completion(&sq->free_done);
800 	percpu_ref_exit(&sq->ref);
801 	nvmet_auth_sq_free(sq);
802 
803 	if (ctrl) {
804 		/*
805 		 * The teardown flow may take some time, and the host may not
806 		 * send us keep-alive during this period, hence reset the
807 		 * traffic based keep-alive timer so we don't trigger a
808 		 * controller teardown as a result of a keep-alive expiration.
809 		 */
810 		ctrl->reset_tbkas = true;
811 		sq->ctrl->sqs[sq->qid] = NULL;
812 		nvmet_ctrl_put(ctrl);
813 		sq->ctrl = NULL; /* allows reusing the queue later */
814 	}
815 }
816 EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
817 
nvmet_sq_free(struct percpu_ref * ref)818 static void nvmet_sq_free(struct percpu_ref *ref)
819 {
820 	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
821 
822 	complete(&sq->free_done);
823 }
824 
nvmet_sq_init(struct nvmet_sq * sq)825 int nvmet_sq_init(struct nvmet_sq *sq)
826 {
827 	int ret;
828 
829 	ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
830 	if (ret) {
831 		pr_err("percpu_ref init failed!\n");
832 		return ret;
833 	}
834 	init_completion(&sq->free_done);
835 	init_completion(&sq->confirm_done);
836 	nvmet_auth_sq_init(sq);
837 
838 	return 0;
839 }
840 EXPORT_SYMBOL_GPL(nvmet_sq_init);
841 
nvmet_check_ana_state(struct nvmet_port * port,struct nvmet_ns * ns)842 static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
843 		struct nvmet_ns *ns)
844 {
845 	enum nvme_ana_state state = port->ana_state[ns->anagrpid];
846 
847 	if (unlikely(state == NVME_ANA_INACCESSIBLE))
848 		return NVME_SC_ANA_INACCESSIBLE;
849 	if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
850 		return NVME_SC_ANA_PERSISTENT_LOSS;
851 	if (unlikely(state == NVME_ANA_CHANGE))
852 		return NVME_SC_ANA_TRANSITION;
853 	return 0;
854 }
855 
nvmet_io_cmd_check_access(struct nvmet_req * req)856 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
857 {
858 	if (unlikely(req->ns->readonly)) {
859 		switch (req->cmd->common.opcode) {
860 		case nvme_cmd_read:
861 		case nvme_cmd_flush:
862 			break;
863 		default:
864 			return NVME_SC_NS_WRITE_PROTECTED;
865 		}
866 	}
867 
868 	return 0;
869 }
870 
nvmet_parse_io_cmd(struct nvmet_req * req)871 static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
872 {
873 	struct nvme_command *cmd = req->cmd;
874 	u16 ret;
875 
876 	if (nvme_is_fabrics(cmd))
877 		return nvmet_parse_fabrics_io_cmd(req);
878 
879 	if (unlikely(!nvmet_check_auth_status(req)))
880 		return NVME_SC_AUTH_REQUIRED | NVME_SC_DNR;
881 
882 	ret = nvmet_check_ctrl_status(req);
883 	if (unlikely(ret))
884 		return ret;
885 
886 	if (nvmet_is_passthru_req(req))
887 		return nvmet_parse_passthru_io_cmd(req);
888 
889 	ret = nvmet_req_find_ns(req);
890 	if (unlikely(ret))
891 		return ret;
892 
893 	ret = nvmet_check_ana_state(req->port, req->ns);
894 	if (unlikely(ret)) {
895 		req->error_loc = offsetof(struct nvme_common_command, nsid);
896 		return ret;
897 	}
898 	ret = nvmet_io_cmd_check_access(req);
899 	if (unlikely(ret)) {
900 		req->error_loc = offsetof(struct nvme_common_command, nsid);
901 		return ret;
902 	}
903 
904 	switch (req->ns->csi) {
905 	case NVME_CSI_NVM:
906 		if (req->ns->file)
907 			return nvmet_file_parse_io_cmd(req);
908 		return nvmet_bdev_parse_io_cmd(req);
909 	case NVME_CSI_ZNS:
910 		if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
911 			return nvmet_bdev_zns_parse_io_cmd(req);
912 		return NVME_SC_INVALID_IO_CMD_SET;
913 	default:
914 		return NVME_SC_INVALID_IO_CMD_SET;
915 	}
916 }
917 
nvmet_req_init(struct nvmet_req * req,struct nvmet_cq * cq,struct nvmet_sq * sq,const struct nvmet_fabrics_ops * ops)918 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
919 		struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
920 {
921 	u8 flags = req->cmd->common.flags;
922 	u16 status;
923 
924 	req->cq = cq;
925 	req->sq = sq;
926 	req->ops = ops;
927 	req->sg = NULL;
928 	req->metadata_sg = NULL;
929 	req->sg_cnt = 0;
930 	req->metadata_sg_cnt = 0;
931 	req->transfer_len = 0;
932 	req->metadata_len = 0;
933 	req->cqe->status = 0;
934 	req->cqe->sq_head = 0;
935 	req->ns = NULL;
936 	req->error_loc = NVMET_NO_ERROR_LOC;
937 	req->error_slba = 0;
938 
939 	/* no support for fused commands yet */
940 	if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
941 		req->error_loc = offsetof(struct nvme_common_command, flags);
942 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
943 		goto fail;
944 	}
945 
946 	/*
947 	 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
948 	 * contains an address of a single contiguous physical buffer that is
949 	 * byte aligned.
950 	 */
951 	if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
952 		req->error_loc = offsetof(struct nvme_common_command, flags);
953 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
954 		goto fail;
955 	}
956 
957 	if (unlikely(!req->sq->ctrl))
958 		/* will return an error for any non-connect command: */
959 		status = nvmet_parse_connect_cmd(req);
960 	else if (likely(req->sq->qid != 0))
961 		status = nvmet_parse_io_cmd(req);
962 	else
963 		status = nvmet_parse_admin_cmd(req);
964 
965 	if (status)
966 		goto fail;
967 
968 	trace_nvmet_req_init(req, req->cmd);
969 
970 	if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
971 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
972 		goto fail;
973 	}
974 
975 	if (sq->ctrl)
976 		sq->ctrl->reset_tbkas = true;
977 
978 	return true;
979 
980 fail:
981 	__nvmet_req_complete(req, status);
982 	return false;
983 }
984 EXPORT_SYMBOL_GPL(nvmet_req_init);
985 
nvmet_req_uninit(struct nvmet_req * req)986 void nvmet_req_uninit(struct nvmet_req *req)
987 {
988 	percpu_ref_put(&req->sq->ref);
989 	if (req->ns)
990 		nvmet_put_namespace(req->ns);
991 }
992 EXPORT_SYMBOL_GPL(nvmet_req_uninit);
993 
nvmet_check_transfer_len(struct nvmet_req * req,size_t len)994 bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len)
995 {
996 	if (unlikely(len != req->transfer_len)) {
997 		req->error_loc = offsetof(struct nvme_common_command, dptr);
998 		nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
999 		return false;
1000 	}
1001 
1002 	return true;
1003 }
1004 EXPORT_SYMBOL_GPL(nvmet_check_transfer_len);
1005 
nvmet_check_data_len_lte(struct nvmet_req * req,size_t data_len)1006 bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len)
1007 {
1008 	if (unlikely(data_len > req->transfer_len)) {
1009 		req->error_loc = offsetof(struct nvme_common_command, dptr);
1010 		nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
1011 		return false;
1012 	}
1013 
1014 	return true;
1015 }
1016 
nvmet_data_transfer_len(struct nvmet_req * req)1017 static unsigned int nvmet_data_transfer_len(struct nvmet_req *req)
1018 {
1019 	return req->transfer_len - req->metadata_len;
1020 }
1021 
nvmet_req_alloc_p2pmem_sgls(struct pci_dev * p2p_dev,struct nvmet_req * req)1022 static int nvmet_req_alloc_p2pmem_sgls(struct pci_dev *p2p_dev,
1023 		struct nvmet_req *req)
1024 {
1025 	req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt,
1026 			nvmet_data_transfer_len(req));
1027 	if (!req->sg)
1028 		goto out_err;
1029 
1030 	if (req->metadata_len) {
1031 		req->metadata_sg = pci_p2pmem_alloc_sgl(p2p_dev,
1032 				&req->metadata_sg_cnt, req->metadata_len);
1033 		if (!req->metadata_sg)
1034 			goto out_free_sg;
1035 	}
1036 
1037 	req->p2p_dev = p2p_dev;
1038 
1039 	return 0;
1040 out_free_sg:
1041 	pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1042 out_err:
1043 	return -ENOMEM;
1044 }
1045 
nvmet_req_find_p2p_dev(struct nvmet_req * req)1046 static struct pci_dev *nvmet_req_find_p2p_dev(struct nvmet_req *req)
1047 {
1048 	if (!IS_ENABLED(CONFIG_PCI_P2PDMA) ||
1049 	    !req->sq->ctrl || !req->sq->qid || !req->ns)
1050 		return NULL;
1051 	return radix_tree_lookup(&req->sq->ctrl->p2p_ns_map, req->ns->nsid);
1052 }
1053 
nvmet_req_alloc_sgls(struct nvmet_req * req)1054 int nvmet_req_alloc_sgls(struct nvmet_req *req)
1055 {
1056 	struct pci_dev *p2p_dev = nvmet_req_find_p2p_dev(req);
1057 
1058 	if (p2p_dev && !nvmet_req_alloc_p2pmem_sgls(p2p_dev, req))
1059 		return 0;
1060 
1061 	req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL,
1062 			    &req->sg_cnt);
1063 	if (unlikely(!req->sg))
1064 		goto out;
1065 
1066 	if (req->metadata_len) {
1067 		req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL,
1068 					     &req->metadata_sg_cnt);
1069 		if (unlikely(!req->metadata_sg))
1070 			goto out_free;
1071 	}
1072 
1073 	return 0;
1074 out_free:
1075 	sgl_free(req->sg);
1076 out:
1077 	return -ENOMEM;
1078 }
1079 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls);
1080 
nvmet_req_free_sgls(struct nvmet_req * req)1081 void nvmet_req_free_sgls(struct nvmet_req *req)
1082 {
1083 	if (req->p2p_dev) {
1084 		pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1085 		if (req->metadata_sg)
1086 			pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg);
1087 		req->p2p_dev = NULL;
1088 	} else {
1089 		sgl_free(req->sg);
1090 		if (req->metadata_sg)
1091 			sgl_free(req->metadata_sg);
1092 	}
1093 
1094 	req->sg = NULL;
1095 	req->metadata_sg = NULL;
1096 	req->sg_cnt = 0;
1097 	req->metadata_sg_cnt = 0;
1098 }
1099 EXPORT_SYMBOL_GPL(nvmet_req_free_sgls);
1100 
nvmet_cc_en(u32 cc)1101 static inline bool nvmet_cc_en(u32 cc)
1102 {
1103 	return (cc >> NVME_CC_EN_SHIFT) & 0x1;
1104 }
1105 
nvmet_cc_css(u32 cc)1106 static inline u8 nvmet_cc_css(u32 cc)
1107 {
1108 	return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
1109 }
1110 
nvmet_cc_mps(u32 cc)1111 static inline u8 nvmet_cc_mps(u32 cc)
1112 {
1113 	return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
1114 }
1115 
nvmet_cc_ams(u32 cc)1116 static inline u8 nvmet_cc_ams(u32 cc)
1117 {
1118 	return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
1119 }
1120 
nvmet_cc_shn(u32 cc)1121 static inline u8 nvmet_cc_shn(u32 cc)
1122 {
1123 	return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
1124 }
1125 
nvmet_cc_iosqes(u32 cc)1126 static inline u8 nvmet_cc_iosqes(u32 cc)
1127 {
1128 	return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
1129 }
1130 
nvmet_cc_iocqes(u32 cc)1131 static inline u8 nvmet_cc_iocqes(u32 cc)
1132 {
1133 	return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
1134 }
1135 
nvmet_css_supported(u8 cc_css)1136 static inline bool nvmet_css_supported(u8 cc_css)
1137 {
1138 	switch (cc_css << NVME_CC_CSS_SHIFT) {
1139 	case NVME_CC_CSS_NVM:
1140 	case NVME_CC_CSS_CSI:
1141 		return true;
1142 	default:
1143 		return false;
1144 	}
1145 }
1146 
nvmet_start_ctrl(struct nvmet_ctrl * ctrl)1147 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
1148 {
1149 	lockdep_assert_held(&ctrl->lock);
1150 
1151 	/*
1152 	 * Only I/O controllers should verify iosqes,iocqes.
1153 	 * Strictly speaking, the spec says a discovery controller
1154 	 * should verify iosqes,iocqes are zeroed, however that
1155 	 * would break backwards compatibility, so don't enforce it.
1156 	 */
1157 	if (!nvmet_is_disc_subsys(ctrl->subsys) &&
1158 	    (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
1159 	     nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES)) {
1160 		ctrl->csts = NVME_CSTS_CFS;
1161 		return;
1162 	}
1163 
1164 	if (nvmet_cc_mps(ctrl->cc) != 0 ||
1165 	    nvmet_cc_ams(ctrl->cc) != 0 ||
1166 	    !nvmet_css_supported(nvmet_cc_css(ctrl->cc))) {
1167 		ctrl->csts = NVME_CSTS_CFS;
1168 		return;
1169 	}
1170 
1171 	ctrl->csts = NVME_CSTS_RDY;
1172 
1173 	/*
1174 	 * Controllers that are not yet enabled should not really enforce the
1175 	 * keep alive timeout, but we still want to track a timeout and cleanup
1176 	 * in case a host died before it enabled the controller.  Hence, simply
1177 	 * reset the keep alive timer when the controller is enabled.
1178 	 */
1179 	if (ctrl->kato)
1180 		mod_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
1181 }
1182 
nvmet_clear_ctrl(struct nvmet_ctrl * ctrl)1183 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
1184 {
1185 	lockdep_assert_held(&ctrl->lock);
1186 
1187 	/* XXX: tear down queues? */
1188 	ctrl->csts &= ~NVME_CSTS_RDY;
1189 	ctrl->cc = 0;
1190 }
1191 
nvmet_update_cc(struct nvmet_ctrl * ctrl,u32 new)1192 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
1193 {
1194 	u32 old;
1195 
1196 	mutex_lock(&ctrl->lock);
1197 	old = ctrl->cc;
1198 	ctrl->cc = new;
1199 
1200 	if (nvmet_cc_en(new) && !nvmet_cc_en(old))
1201 		nvmet_start_ctrl(ctrl);
1202 	if (!nvmet_cc_en(new) && nvmet_cc_en(old))
1203 		nvmet_clear_ctrl(ctrl);
1204 	if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
1205 		nvmet_clear_ctrl(ctrl);
1206 		ctrl->csts |= NVME_CSTS_SHST_CMPLT;
1207 	}
1208 	if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
1209 		ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
1210 	mutex_unlock(&ctrl->lock);
1211 }
1212 
nvmet_init_cap(struct nvmet_ctrl * ctrl)1213 static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
1214 {
1215 	/* command sets supported: NVMe command set: */
1216 	ctrl->cap = (1ULL << 37);
1217 	/* Controller supports one or more I/O Command Sets */
1218 	ctrl->cap |= (1ULL << 43);
1219 	/* CC.EN timeout in 500msec units: */
1220 	ctrl->cap |= (15ULL << 24);
1221 	/* maximum queue entries supported: */
1222 	if (ctrl->ops->get_max_queue_size)
1223 		ctrl->cap |= ctrl->ops->get_max_queue_size(ctrl) - 1;
1224 	else
1225 		ctrl->cap |= NVMET_QUEUE_SIZE - 1;
1226 
1227 	if (nvmet_is_passthru_subsys(ctrl->subsys))
1228 		nvmet_passthrough_override_cap(ctrl);
1229 }
1230 
nvmet_ctrl_find_get(const char * subsysnqn,const char * hostnqn,u16 cntlid,struct nvmet_req * req)1231 struct nvmet_ctrl *nvmet_ctrl_find_get(const char *subsysnqn,
1232 				       const char *hostnqn, u16 cntlid,
1233 				       struct nvmet_req *req)
1234 {
1235 	struct nvmet_ctrl *ctrl = NULL;
1236 	struct nvmet_subsys *subsys;
1237 
1238 	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1239 	if (!subsys) {
1240 		pr_warn("connect request for invalid subsystem %s!\n",
1241 			subsysnqn);
1242 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1243 		goto out;
1244 	}
1245 
1246 	mutex_lock(&subsys->lock);
1247 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
1248 		if (ctrl->cntlid == cntlid) {
1249 			if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
1250 				pr_warn("hostnqn mismatch.\n");
1251 				continue;
1252 			}
1253 			if (!kref_get_unless_zero(&ctrl->ref))
1254 				continue;
1255 
1256 			/* ctrl found */
1257 			goto found;
1258 		}
1259 	}
1260 
1261 	ctrl = NULL; /* ctrl not found */
1262 	pr_warn("could not find controller %d for subsys %s / host %s\n",
1263 		cntlid, subsysnqn, hostnqn);
1264 	req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1265 
1266 found:
1267 	mutex_unlock(&subsys->lock);
1268 	nvmet_subsys_put(subsys);
1269 out:
1270 	return ctrl;
1271 }
1272 
nvmet_check_ctrl_status(struct nvmet_req * req)1273 u16 nvmet_check_ctrl_status(struct nvmet_req *req)
1274 {
1275 	if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1276 		pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1277 		       req->cmd->common.opcode, req->sq->qid);
1278 		return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1279 	}
1280 
1281 	if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1282 		pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1283 		       req->cmd->common.opcode, req->sq->qid);
1284 		return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1285 	}
1286 
1287 	if (unlikely(!nvmet_check_auth_status(req))) {
1288 		pr_warn("qid %d not authenticated\n", req->sq->qid);
1289 		return NVME_SC_AUTH_REQUIRED | NVME_SC_DNR;
1290 	}
1291 	return 0;
1292 }
1293 
nvmet_host_allowed(struct nvmet_subsys * subsys,const char * hostnqn)1294 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1295 {
1296 	struct nvmet_host_link *p;
1297 
1298 	lockdep_assert_held(&nvmet_config_sem);
1299 
1300 	if (subsys->allow_any_host)
1301 		return true;
1302 
1303 	if (nvmet_is_disc_subsys(subsys)) /* allow all access to disc subsys */
1304 		return true;
1305 
1306 	list_for_each_entry(p, &subsys->hosts, entry) {
1307 		if (!strcmp(nvmet_host_name(p->host), hostnqn))
1308 			return true;
1309 	}
1310 
1311 	return false;
1312 }
1313 
1314 /*
1315  * Note: ctrl->subsys->lock should be held when calling this function
1316  */
nvmet_setup_p2p_ns_map(struct nvmet_ctrl * ctrl,struct nvmet_req * req)1317 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
1318 		struct nvmet_req *req)
1319 {
1320 	struct nvmet_ns *ns;
1321 	unsigned long idx;
1322 
1323 	if (!req->p2p_client)
1324 		return;
1325 
1326 	ctrl->p2p_client = get_device(req->p2p_client);
1327 
1328 	xa_for_each(&ctrl->subsys->namespaces, idx, ns)
1329 		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
1330 }
1331 
1332 /*
1333  * Note: ctrl->subsys->lock should be held when calling this function
1334  */
nvmet_release_p2p_ns_map(struct nvmet_ctrl * ctrl)1335 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
1336 {
1337 	struct radix_tree_iter iter;
1338 	void __rcu **slot;
1339 
1340 	radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
1341 		pci_dev_put(radix_tree_deref_slot(slot));
1342 
1343 	put_device(ctrl->p2p_client);
1344 }
1345 
nvmet_fatal_error_handler(struct work_struct * work)1346 static void nvmet_fatal_error_handler(struct work_struct *work)
1347 {
1348 	struct nvmet_ctrl *ctrl =
1349 			container_of(work, struct nvmet_ctrl, fatal_err_work);
1350 
1351 	pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
1352 	ctrl->ops->delete_ctrl(ctrl);
1353 }
1354 
nvmet_alloc_ctrl(const char * subsysnqn,const char * hostnqn,struct nvmet_req * req,u32 kato,struct nvmet_ctrl ** ctrlp)1355 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
1356 		struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp)
1357 {
1358 	struct nvmet_subsys *subsys;
1359 	struct nvmet_ctrl *ctrl;
1360 	int ret;
1361 	u16 status;
1362 
1363 	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1364 	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1365 	if (!subsys) {
1366 		pr_warn("connect request for invalid subsystem %s!\n",
1367 			subsysnqn);
1368 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1369 		req->error_loc = offsetof(struct nvme_common_command, dptr);
1370 		goto out;
1371 	}
1372 
1373 	down_read(&nvmet_config_sem);
1374 	if (!nvmet_host_allowed(subsys, hostnqn)) {
1375 		pr_info("connect by host %s for subsystem %s not allowed\n",
1376 			hostnqn, subsysnqn);
1377 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
1378 		up_read(&nvmet_config_sem);
1379 		status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR;
1380 		req->error_loc = offsetof(struct nvme_common_command, dptr);
1381 		goto out_put_subsystem;
1382 	}
1383 	up_read(&nvmet_config_sem);
1384 
1385 	status = NVME_SC_INTERNAL;
1386 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1387 	if (!ctrl)
1388 		goto out_put_subsystem;
1389 	mutex_init(&ctrl->lock);
1390 
1391 	ctrl->port = req->port;
1392 	ctrl->ops = req->ops;
1393 
1394 #ifdef CONFIG_NVME_TARGET_PASSTHRU
1395 	/* By default, set loop targets to clear IDS by default */
1396 	if (ctrl->port->disc_addr.trtype == NVMF_TRTYPE_LOOP)
1397 		subsys->clear_ids = 1;
1398 #endif
1399 
1400 	INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
1401 	INIT_LIST_HEAD(&ctrl->async_events);
1402 	INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1403 	INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1404 	INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
1405 
1406 	memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
1407 	memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);
1408 
1409 	kref_init(&ctrl->ref);
1410 	ctrl->subsys = subsys;
1411 	nvmet_init_cap(ctrl);
1412 	WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1413 
1414 	ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
1415 			sizeof(__le32), GFP_KERNEL);
1416 	if (!ctrl->changed_ns_list)
1417 		goto out_free_ctrl;
1418 
1419 	ctrl->sqs = kcalloc(subsys->max_qid + 1,
1420 			sizeof(struct nvmet_sq *),
1421 			GFP_KERNEL);
1422 	if (!ctrl->sqs)
1423 		goto out_free_changed_ns_list;
1424 
1425 	if (subsys->cntlid_min > subsys->cntlid_max)
1426 		goto out_free_sqs;
1427 
1428 	ret = ida_alloc_range(&cntlid_ida,
1429 			     subsys->cntlid_min, subsys->cntlid_max,
1430 			     GFP_KERNEL);
1431 	if (ret < 0) {
1432 		status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR;
1433 		goto out_free_sqs;
1434 	}
1435 	ctrl->cntlid = ret;
1436 
1437 	/*
1438 	 * Discovery controllers may use some arbitrary high value
1439 	 * in order to cleanup stale discovery sessions
1440 	 */
1441 	if (nvmet_is_disc_subsys(ctrl->subsys) && !kato)
1442 		kato = NVMET_DISC_KATO_MS;
1443 
1444 	/* keep-alive timeout in seconds */
1445 	ctrl->kato = DIV_ROUND_UP(kato, 1000);
1446 
1447 	ctrl->err_counter = 0;
1448 	spin_lock_init(&ctrl->error_lock);
1449 
1450 	nvmet_start_keep_alive_timer(ctrl);
1451 
1452 	mutex_lock(&subsys->lock);
1453 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1454 	nvmet_setup_p2p_ns_map(ctrl, req);
1455 	mutex_unlock(&subsys->lock);
1456 
1457 	*ctrlp = ctrl;
1458 	return 0;
1459 
1460 out_free_sqs:
1461 	kfree(ctrl->sqs);
1462 out_free_changed_ns_list:
1463 	kfree(ctrl->changed_ns_list);
1464 out_free_ctrl:
1465 	kfree(ctrl);
1466 out_put_subsystem:
1467 	nvmet_subsys_put(subsys);
1468 out:
1469 	return status;
1470 }
1471 
nvmet_ctrl_free(struct kref * ref)1472 static void nvmet_ctrl_free(struct kref *ref)
1473 {
1474 	struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
1475 	struct nvmet_subsys *subsys = ctrl->subsys;
1476 
1477 	mutex_lock(&subsys->lock);
1478 	nvmet_release_p2p_ns_map(ctrl);
1479 	list_del(&ctrl->subsys_entry);
1480 	mutex_unlock(&subsys->lock);
1481 
1482 	nvmet_stop_keep_alive_timer(ctrl);
1483 
1484 	flush_work(&ctrl->async_event_work);
1485 	cancel_work_sync(&ctrl->fatal_err_work);
1486 
1487 	nvmet_destroy_auth(ctrl);
1488 
1489 	ida_free(&cntlid_ida, ctrl->cntlid);
1490 
1491 	nvmet_async_events_free(ctrl);
1492 	kfree(ctrl->sqs);
1493 	kfree(ctrl->changed_ns_list);
1494 	kfree(ctrl);
1495 
1496 	nvmet_subsys_put(subsys);
1497 }
1498 
nvmet_ctrl_put(struct nvmet_ctrl * ctrl)1499 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
1500 {
1501 	kref_put(&ctrl->ref, nvmet_ctrl_free);
1502 }
1503 
nvmet_ctrl_fatal_error(struct nvmet_ctrl * ctrl)1504 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
1505 {
1506 	mutex_lock(&ctrl->lock);
1507 	if (!(ctrl->csts & NVME_CSTS_CFS)) {
1508 		ctrl->csts |= NVME_CSTS_CFS;
1509 		queue_work(nvmet_wq, &ctrl->fatal_err_work);
1510 	}
1511 	mutex_unlock(&ctrl->lock);
1512 }
1513 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
1514 
nvmet_find_get_subsys(struct nvmet_port * port,const char * subsysnqn)1515 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
1516 		const char *subsysnqn)
1517 {
1518 	struct nvmet_subsys_link *p;
1519 
1520 	if (!port)
1521 		return NULL;
1522 
1523 	if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1524 		if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
1525 			return NULL;
1526 		return nvmet_disc_subsys;
1527 	}
1528 
1529 	down_read(&nvmet_config_sem);
1530 	list_for_each_entry(p, &port->subsystems, entry) {
1531 		if (!strncmp(p->subsys->subsysnqn, subsysnqn,
1532 				NVMF_NQN_SIZE)) {
1533 			if (!kref_get_unless_zero(&p->subsys->ref))
1534 				break;
1535 			up_read(&nvmet_config_sem);
1536 			return p->subsys;
1537 		}
1538 	}
1539 	up_read(&nvmet_config_sem);
1540 	return NULL;
1541 }
1542 
nvmet_subsys_alloc(const char * subsysnqn,enum nvme_subsys_type type)1543 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
1544 		enum nvme_subsys_type type)
1545 {
1546 	struct nvmet_subsys *subsys;
1547 	char serial[NVMET_SN_MAX_SIZE / 2];
1548 	int ret;
1549 
1550 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
1551 	if (!subsys)
1552 		return ERR_PTR(-ENOMEM);
1553 
1554 	subsys->ver = NVMET_DEFAULT_VS;
1555 	/* generate a random serial number as our controllers are ephemeral: */
1556 	get_random_bytes(&serial, sizeof(serial));
1557 	bin2hex(subsys->serial, &serial, sizeof(serial));
1558 
1559 	subsys->model_number = kstrdup(NVMET_DEFAULT_CTRL_MODEL, GFP_KERNEL);
1560 	if (!subsys->model_number) {
1561 		ret = -ENOMEM;
1562 		goto free_subsys;
1563 	}
1564 
1565 	switch (type) {
1566 	case NVME_NQN_NVME:
1567 		subsys->max_qid = NVMET_NR_QUEUES;
1568 		break;
1569 	case NVME_NQN_DISC:
1570 	case NVME_NQN_CURR:
1571 		subsys->max_qid = 0;
1572 		break;
1573 	default:
1574 		pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
1575 		ret = -EINVAL;
1576 		goto free_mn;
1577 	}
1578 	subsys->type = type;
1579 	subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
1580 			GFP_KERNEL);
1581 	if (!subsys->subsysnqn) {
1582 		ret = -ENOMEM;
1583 		goto free_mn;
1584 	}
1585 	subsys->cntlid_min = NVME_CNTLID_MIN;
1586 	subsys->cntlid_max = NVME_CNTLID_MAX;
1587 	kref_init(&subsys->ref);
1588 
1589 	mutex_init(&subsys->lock);
1590 	xa_init(&subsys->namespaces);
1591 	INIT_LIST_HEAD(&subsys->ctrls);
1592 	INIT_LIST_HEAD(&subsys->hosts);
1593 
1594 	return subsys;
1595 
1596 free_mn:
1597 	kfree(subsys->model_number);
1598 free_subsys:
1599 	kfree(subsys);
1600 	return ERR_PTR(ret);
1601 }
1602 
nvmet_subsys_free(struct kref * ref)1603 static void nvmet_subsys_free(struct kref *ref)
1604 {
1605 	struct nvmet_subsys *subsys =
1606 		container_of(ref, struct nvmet_subsys, ref);
1607 
1608 	WARN_ON_ONCE(!xa_empty(&subsys->namespaces));
1609 
1610 	xa_destroy(&subsys->namespaces);
1611 	nvmet_passthru_subsys_free(subsys);
1612 
1613 	kfree(subsys->subsysnqn);
1614 	kfree(subsys->model_number);
1615 	kfree(subsys);
1616 }
1617 
nvmet_subsys_del_ctrls(struct nvmet_subsys * subsys)1618 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
1619 {
1620 	struct nvmet_ctrl *ctrl;
1621 
1622 	mutex_lock(&subsys->lock);
1623 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
1624 		ctrl->ops->delete_ctrl(ctrl);
1625 	mutex_unlock(&subsys->lock);
1626 }
1627 
nvmet_subsys_put(struct nvmet_subsys * subsys)1628 void nvmet_subsys_put(struct nvmet_subsys *subsys)
1629 {
1630 	kref_put(&subsys->ref, nvmet_subsys_free);
1631 }
1632 
nvmet_init(void)1633 static int __init nvmet_init(void)
1634 {
1635 	int error = -ENOMEM;
1636 
1637 	nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
1638 
1639 	nvmet_bvec_cache = kmem_cache_create("nvmet-bvec",
1640 			NVMET_MAX_MPOOL_BVEC * sizeof(struct bio_vec), 0,
1641 			SLAB_HWCACHE_ALIGN, NULL);
1642 	if (!nvmet_bvec_cache)
1643 		return -ENOMEM;
1644 
1645 	zbd_wq = alloc_workqueue("nvmet-zbd-wq", WQ_MEM_RECLAIM, 0);
1646 	if (!zbd_wq)
1647 		goto out_destroy_bvec_cache;
1648 
1649 	buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
1650 			WQ_MEM_RECLAIM, 0);
1651 	if (!buffered_io_wq)
1652 		goto out_free_zbd_work_queue;
1653 
1654 	nvmet_wq = alloc_workqueue("nvmet-wq", WQ_MEM_RECLAIM, 0);
1655 	if (!nvmet_wq)
1656 		goto out_free_buffered_work_queue;
1657 
1658 	error = nvmet_init_discovery();
1659 	if (error)
1660 		goto out_free_nvmet_work_queue;
1661 
1662 	error = nvmet_init_configfs();
1663 	if (error)
1664 		goto out_exit_discovery;
1665 	return 0;
1666 
1667 out_exit_discovery:
1668 	nvmet_exit_discovery();
1669 out_free_nvmet_work_queue:
1670 	destroy_workqueue(nvmet_wq);
1671 out_free_buffered_work_queue:
1672 	destroy_workqueue(buffered_io_wq);
1673 out_free_zbd_work_queue:
1674 	destroy_workqueue(zbd_wq);
1675 out_destroy_bvec_cache:
1676 	kmem_cache_destroy(nvmet_bvec_cache);
1677 	return error;
1678 }
1679 
nvmet_exit(void)1680 static void __exit nvmet_exit(void)
1681 {
1682 	nvmet_exit_configfs();
1683 	nvmet_exit_discovery();
1684 	ida_destroy(&cntlid_ida);
1685 	destroy_workqueue(nvmet_wq);
1686 	destroy_workqueue(buffered_io_wq);
1687 	destroy_workqueue(zbd_wq);
1688 	kmem_cache_destroy(nvmet_bvec_cache);
1689 
1690 	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
1691 	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
1692 }
1693 
1694 module_init(nvmet_init);
1695 module_exit(nvmet_exit);
1696 
1697 MODULE_LICENSE("GPL v2");
1698