1 /*
2 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
5 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 *
19 */
20
21 /***********************\
22 * PHY related functions *
23 \***********************/
24
25 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26
27 #include <linux/delay.h>
28 #include <linux/slab.h>
29 #include <asm/unaligned.h>
30
31 #include "ath5k.h"
32 #include "reg.h"
33 #include "rfbuffer.h"
34 #include "rfgain.h"
35 #include "../regd.h"
36
37
38 /**
39 * DOC: PHY related functions
40 *
41 * Here we handle the low-level functions related to baseband
42 * and analog frontend (RF) parts. This is by far the most complex
43 * part of the hw code so make sure you know what you are doing.
44 *
45 * Here is a list of what this is all about:
46 *
47 * - Channel setting/switching
48 *
49 * - Automatic Gain Control (AGC) calibration
50 *
51 * - Noise Floor calibration
52 *
53 * - I/Q imbalance calibration (QAM correction)
54 *
55 * - Calibration due to thermal changes (gain_F)
56 *
57 * - Spur noise mitigation
58 *
59 * - RF/PHY initialization for the various operating modes and bwmodes
60 *
61 * - Antenna control
62 *
63 * - TX power control per channel/rate/packet type
64 *
65 * Also have in mind we never got documentation for most of these
66 * functions, what we have comes mostly from Atheros's code, reverse
67 * engineering and patent docs/presentations etc.
68 */
69
70
71 /******************\
72 * Helper functions *
73 \******************/
74
75 /**
76 * ath5k_hw_radio_revision() - Get the PHY Chip revision
77 * @ah: The &struct ath5k_hw
78 * @band: One of enum nl80211_band
79 *
80 * Returns the revision number of a 2GHz, 5GHz or single chip
81 * radio.
82 */
83 u16
ath5k_hw_radio_revision(struct ath5k_hw * ah,enum nl80211_band band)84 ath5k_hw_radio_revision(struct ath5k_hw *ah, enum nl80211_band band)
85 {
86 unsigned int i;
87 u32 srev;
88 u16 ret;
89
90 /*
91 * Set the radio chip access register
92 */
93 switch (band) {
94 case NL80211_BAND_2GHZ:
95 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
96 break;
97 case NL80211_BAND_5GHZ:
98 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
99 break;
100 default:
101 return 0;
102 }
103
104 usleep_range(2000, 2500);
105
106 /* ...wait until PHY is ready and read the selected radio revision */
107 ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
108
109 for (i = 0; i < 8; i++)
110 ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
111
112 if (ah->ah_version == AR5K_AR5210) {
113 srev = (ath5k_hw_reg_read(ah, AR5K_PHY(256)) >> 28) & 0xf;
114 ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
115 } else {
116 srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
117 ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
118 ((srev & 0x0f) << 4), 8);
119 }
120
121 /* Reset to the 5GHz mode */
122 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
123
124 return ret;
125 }
126
127 /**
128 * ath5k_channel_ok() - Check if a channel is supported by the hw
129 * @ah: The &struct ath5k_hw
130 * @channel: The &struct ieee80211_channel
131 *
132 * Note: We don't do any regulatory domain checks here, it's just
133 * a sanity check.
134 */
135 bool
ath5k_channel_ok(struct ath5k_hw * ah,struct ieee80211_channel * channel)136 ath5k_channel_ok(struct ath5k_hw *ah, struct ieee80211_channel *channel)
137 {
138 u16 freq = channel->center_freq;
139
140 /* Check if the channel is in our supported range */
141 if (channel->band == NL80211_BAND_2GHZ) {
142 if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
143 (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
144 return true;
145 } else if (channel->band == NL80211_BAND_5GHZ)
146 if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
147 (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
148 return true;
149
150 return false;
151 }
152
153 /**
154 * ath5k_hw_chan_has_spur_noise() - Check if channel is sensitive to spur noise
155 * @ah: The &struct ath5k_hw
156 * @channel: The &struct ieee80211_channel
157 */
158 bool
ath5k_hw_chan_has_spur_noise(struct ath5k_hw * ah,struct ieee80211_channel * channel)159 ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
160 struct ieee80211_channel *channel)
161 {
162 u8 refclk_freq;
163
164 if ((ah->ah_radio == AR5K_RF5112) ||
165 (ah->ah_radio == AR5K_RF5413) ||
166 (ah->ah_radio == AR5K_RF2413) ||
167 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
168 refclk_freq = 40;
169 else
170 refclk_freq = 32;
171
172 if ((channel->center_freq % refclk_freq != 0) &&
173 ((channel->center_freq % refclk_freq < 10) ||
174 (channel->center_freq % refclk_freq > 22)))
175 return true;
176 else
177 return false;
178 }
179
180 /**
181 * ath5k_hw_rfb_op() - Perform an operation on the given RF Buffer
182 * @ah: The &struct ath5k_hw
183 * @rf_regs: The struct ath5k_rf_reg
184 * @val: New value
185 * @reg_id: RF register ID
186 * @set: Indicate we need to swap data
187 *
188 * This is an internal function used to modify RF Banks before
189 * writing them to AR5K_RF_BUFFER. Check out rfbuffer.h for more
190 * infos.
191 */
192 static unsigned int
ath5k_hw_rfb_op(struct ath5k_hw * ah,const struct ath5k_rf_reg * rf_regs,u32 val,u8 reg_id,bool set)193 ath5k_hw_rfb_op(struct ath5k_hw *ah, const struct ath5k_rf_reg *rf_regs,
194 u32 val, u8 reg_id, bool set)
195 {
196 const struct ath5k_rf_reg *rfreg = NULL;
197 u8 offset, bank, num_bits, col, position;
198 u16 entry;
199 u32 mask, data, last_bit, bits_shifted, first_bit;
200 u32 *rfb;
201 s32 bits_left;
202 int i;
203
204 data = 0;
205 rfb = ah->ah_rf_banks;
206
207 for (i = 0; i < ah->ah_rf_regs_count; i++) {
208 if (rf_regs[i].index == reg_id) {
209 rfreg = &rf_regs[i];
210 break;
211 }
212 }
213
214 if (rfb == NULL || rfreg == NULL) {
215 ATH5K_PRINTF("Rf register not found!\n");
216 /* should not happen */
217 return 0;
218 }
219
220 bank = rfreg->bank;
221 num_bits = rfreg->field.len;
222 first_bit = rfreg->field.pos;
223 col = rfreg->field.col;
224
225 /* first_bit is an offset from bank's
226 * start. Since we have all banks on
227 * the same array, we use this offset
228 * to mark each bank's start */
229 offset = ah->ah_offset[bank];
230
231 /* Boundary check */
232 if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
233 ATH5K_PRINTF("invalid values at offset %u\n", offset);
234 return 0;
235 }
236
237 entry = ((first_bit - 1) / 8) + offset;
238 position = (first_bit - 1) % 8;
239
240 if (set)
241 data = ath5k_hw_bitswap(val, num_bits);
242
243 for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
244 position = 0, entry++) {
245
246 last_bit = (position + bits_left > 8) ? 8 :
247 position + bits_left;
248
249 mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
250 (col * 8);
251
252 if (set) {
253 rfb[entry] &= ~mask;
254 rfb[entry] |= ((data << position) << (col * 8)) & mask;
255 data >>= (8 - position);
256 } else {
257 data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
258 << bits_shifted;
259 bits_shifted += last_bit - position;
260 }
261
262 bits_left -= 8 - position;
263 }
264
265 data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
266
267 return data;
268 }
269
270 /**
271 * ath5k_hw_write_ofdm_timings() - set OFDM timings on AR5212
272 * @ah: the &struct ath5k_hw
273 * @channel: the currently set channel upon reset
274 *
275 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
276 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
277 *
278 * Since delta slope is floating point we split it on its exponent and
279 * mantissa and provide these values on hw.
280 *
281 * For more infos i think this patent is related
282 * "http://www.freepatentsonline.com/7184495.html"
283 */
284 static inline int
ath5k_hw_write_ofdm_timings(struct ath5k_hw * ah,struct ieee80211_channel * channel)285 ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
286 struct ieee80211_channel *channel)
287 {
288 /* Get exponent and mantissa and set it */
289 u32 coef_scaled, coef_exp, coef_man,
290 ds_coef_exp, ds_coef_man, clock;
291
292 BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
293 (channel->hw_value == AR5K_MODE_11B));
294
295 /* Get coefficient
296 * ALGO: coef = (5 * clock / carrier_freq) / 2
297 * we scale coef by shifting clock value by 24 for
298 * better precision since we use integers */
299 switch (ah->ah_bwmode) {
300 case AR5K_BWMODE_40MHZ:
301 clock = 40 * 2;
302 break;
303 case AR5K_BWMODE_10MHZ:
304 clock = 40 / 2;
305 break;
306 case AR5K_BWMODE_5MHZ:
307 clock = 40 / 4;
308 break;
309 default:
310 clock = 40;
311 break;
312 }
313 coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
314
315 /* Get exponent
316 * ALGO: coef_exp = 14 - highest set bit position */
317 coef_exp = ilog2(coef_scaled);
318
319 /* Doesn't make sense if it's zero*/
320 if (!coef_scaled || !coef_exp)
321 return -EINVAL;
322
323 /* Note: we've shifted coef_scaled by 24 */
324 coef_exp = 14 - (coef_exp - 24);
325
326
327 /* Get mantissa (significant digits)
328 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
329 coef_man = coef_scaled +
330 (1 << (24 - coef_exp - 1));
331
332 /* Calculate delta slope coefficient exponent
333 * and mantissa (remove scaling) and set them on hw */
334 ds_coef_man = coef_man >> (24 - coef_exp);
335 ds_coef_exp = coef_exp - 16;
336
337 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
338 AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
339 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
340 AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
341
342 return 0;
343 }
344
345 /**
346 * ath5k_hw_phy_disable() - Disable PHY
347 * @ah: The &struct ath5k_hw
348 */
ath5k_hw_phy_disable(struct ath5k_hw * ah)349 int ath5k_hw_phy_disable(struct ath5k_hw *ah)
350 {
351 /*Just a try M.F.*/
352 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
353
354 return 0;
355 }
356
357 /**
358 * ath5k_hw_wait_for_synth() - Wait for synth to settle
359 * @ah: The &struct ath5k_hw
360 * @channel: The &struct ieee80211_channel
361 */
362 static void
ath5k_hw_wait_for_synth(struct ath5k_hw * ah,struct ieee80211_channel * channel)363 ath5k_hw_wait_for_synth(struct ath5k_hw *ah,
364 struct ieee80211_channel *channel)
365 {
366 /*
367 * On 5211+ read activation -> rx delay
368 * and use it (100ns steps).
369 */
370 if (ah->ah_version != AR5K_AR5210) {
371 u32 delay;
372 delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
373 AR5K_PHY_RX_DELAY_M;
374 delay = (channel->hw_value == AR5K_MODE_11B) ?
375 ((delay << 2) / 22) : (delay / 10);
376 if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
377 delay = delay << 1;
378 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
379 delay = delay << 2;
380 /* XXX: /2 on turbo ? Let's be safe
381 * for now */
382 usleep_range(100 + delay, 100 + (2 * delay));
383 } else {
384 usleep_range(1000, 1500);
385 }
386 }
387
388
389 /**********************\
390 * RF Gain optimization *
391 \**********************/
392
393 /**
394 * DOC: RF Gain optimization
395 *
396 * This code is used to optimize RF gain on different environments
397 * (temperature mostly) based on feedback from a power detector.
398 *
399 * It's only used on RF5111 and RF5112, later RF chips seem to have
400 * auto adjustment on hw -notice they have a much smaller BANK 7 and
401 * no gain optimization ladder-.
402 *
403 * For more infos check out this patent doc
404 * "http://www.freepatentsonline.com/7400691.html"
405 *
406 * This paper describes power drops as seen on the receiver due to
407 * probe packets
408 * "http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
409 * %20of%20Power%20Control.pdf"
410 *
411 * And this is the MadWiFi bug entry related to the above
412 * "http://madwifi-project.org/ticket/1659"
413 * with various measurements and diagrams
414 */
415
416 /**
417 * ath5k_hw_rfgain_opt_init() - Initialize ah_gain during attach
418 * @ah: The &struct ath5k_hw
419 */
ath5k_hw_rfgain_opt_init(struct ath5k_hw * ah)420 int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
421 {
422 /* Initialize the gain optimization values */
423 switch (ah->ah_radio) {
424 case AR5K_RF5111:
425 ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
426 ah->ah_gain.g_low = 20;
427 ah->ah_gain.g_high = 35;
428 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
429 break;
430 case AR5K_RF5112:
431 ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
432 ah->ah_gain.g_low = 20;
433 ah->ah_gain.g_high = 85;
434 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
435 break;
436 default:
437 return -EINVAL;
438 }
439
440 return 0;
441 }
442
443 /**
444 * ath5k_hw_request_rfgain_probe() - Request a PAPD probe packet
445 * @ah: The &struct ath5k_hw
446 *
447 * Schedules a gain probe check on the next transmitted packet.
448 * That means our next packet is going to be sent with lower
449 * tx power and a Peak to Average Power Detector (PAPD) will try
450 * to measure the gain.
451 *
452 * TODO: Force a tx packet (bypassing PCU arbitrator etc)
453 * just after we enable the probe so that we don't mess with
454 * standard traffic.
455 */
456 static void
ath5k_hw_request_rfgain_probe(struct ath5k_hw * ah)457 ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
458 {
459
460 /* Skip if gain calibration is inactive or
461 * we already handle a probe request */
462 if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
463 return;
464
465 /* Send the packet with 2dB below max power as
466 * patent doc suggest */
467 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
468 AR5K_PHY_PAPD_PROBE_TXPOWER) |
469 AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
470
471 ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
472
473 }
474
475 /**
476 * ath5k_hw_rf_gainf_corr() - Calculate Gain_F measurement correction
477 * @ah: The &struct ath5k_hw
478 *
479 * Calculate Gain_F measurement correction
480 * based on the current step for RF5112 rev. 2
481 */
482 static u32
ath5k_hw_rf_gainf_corr(struct ath5k_hw * ah)483 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
484 {
485 u32 mix, step;
486 const struct ath5k_gain_opt *go;
487 const struct ath5k_gain_opt_step *g_step;
488 const struct ath5k_rf_reg *rf_regs;
489
490 /* Only RF5112 Rev. 2 supports it */
491 if ((ah->ah_radio != AR5K_RF5112) ||
492 (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
493 return 0;
494
495 go = &rfgain_opt_5112;
496 rf_regs = rf_regs_5112a;
497 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
498
499 g_step = &go->go_step[ah->ah_gain.g_step_idx];
500
501 if (ah->ah_rf_banks == NULL)
502 return 0;
503
504 ah->ah_gain.g_f_corr = 0;
505
506 /* No VGA (Variable Gain Amplifier) override, skip */
507 if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
508 return 0;
509
510 /* Mix gain stepping */
511 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
512
513 /* Mix gain override */
514 mix = g_step->gos_param[0];
515
516 switch (mix) {
517 case 3:
518 ah->ah_gain.g_f_corr = step * 2;
519 break;
520 case 2:
521 ah->ah_gain.g_f_corr = (step - 5) * 2;
522 break;
523 case 1:
524 ah->ah_gain.g_f_corr = step;
525 break;
526 default:
527 ah->ah_gain.g_f_corr = 0;
528 break;
529 }
530
531 return ah->ah_gain.g_f_corr;
532 }
533
534 /**
535 * ath5k_hw_rf_check_gainf_readback() - Validate Gain_F feedback from detector
536 * @ah: The &struct ath5k_hw
537 *
538 * Check if current gain_F measurement is in the range of our
539 * power detector windows. If we get a measurement outside range
540 * we know it's not accurate (detectors can't measure anything outside
541 * their detection window) so we must ignore it.
542 *
543 * Returns true if readback was O.K. or false on failure
544 */
545 static bool
ath5k_hw_rf_check_gainf_readback(struct ath5k_hw * ah)546 ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
547 {
548 const struct ath5k_rf_reg *rf_regs;
549 u32 step, mix_ovr, level[4];
550
551 if (ah->ah_rf_banks == NULL)
552 return false;
553
554 if (ah->ah_radio == AR5K_RF5111) {
555
556 rf_regs = rf_regs_5111;
557 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
558
559 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
560 false);
561
562 level[0] = 0;
563 level[1] = (step == 63) ? 50 : step + 4;
564 level[2] = (step != 63) ? 64 : level[0];
565 level[3] = level[2] + 50;
566
567 ah->ah_gain.g_high = level[3] -
568 (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
569 ah->ah_gain.g_low = level[0] +
570 (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
571 } else {
572
573 rf_regs = rf_regs_5112;
574 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
575
576 mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
577 false);
578
579 level[0] = level[2] = 0;
580
581 if (mix_ovr == 1) {
582 level[1] = level[3] = 83;
583 } else {
584 level[1] = level[3] = 107;
585 ah->ah_gain.g_high = 55;
586 }
587 }
588
589 return (ah->ah_gain.g_current >= level[0] &&
590 ah->ah_gain.g_current <= level[1]) ||
591 (ah->ah_gain.g_current >= level[2] &&
592 ah->ah_gain.g_current <= level[3]);
593 }
594
595 /**
596 * ath5k_hw_rf_gainf_adjust() - Perform Gain_F adjustment
597 * @ah: The &struct ath5k_hw
598 *
599 * Choose the right target gain based on current gain
600 * and RF gain optimization ladder
601 */
602 static s8
ath5k_hw_rf_gainf_adjust(struct ath5k_hw * ah)603 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
604 {
605 const struct ath5k_gain_opt *go;
606 const struct ath5k_gain_opt_step *g_step;
607 int ret = 0;
608
609 switch (ah->ah_radio) {
610 case AR5K_RF5111:
611 go = &rfgain_opt_5111;
612 break;
613 case AR5K_RF5112:
614 go = &rfgain_opt_5112;
615 break;
616 default:
617 return 0;
618 }
619
620 g_step = &go->go_step[ah->ah_gain.g_step_idx];
621
622 if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
623
624 /* Reached maximum */
625 if (ah->ah_gain.g_step_idx == 0)
626 return -1;
627
628 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
629 ah->ah_gain.g_target >= ah->ah_gain.g_high &&
630 ah->ah_gain.g_step_idx > 0;
631 g_step = &go->go_step[ah->ah_gain.g_step_idx])
632 ah->ah_gain.g_target -= 2 *
633 (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
634 g_step->gos_gain);
635
636 ret = 1;
637 goto done;
638 }
639
640 if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
641
642 /* Reached minimum */
643 if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
644 return -2;
645
646 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
647 ah->ah_gain.g_target <= ah->ah_gain.g_low &&
648 ah->ah_gain.g_step_idx < go->go_steps_count - 1;
649 g_step = &go->go_step[ah->ah_gain.g_step_idx])
650 ah->ah_gain.g_target -= 2 *
651 (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
652 g_step->gos_gain);
653
654 ret = 2;
655 goto done;
656 }
657
658 done:
659 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
660 "ret %d, gain step %u, current gain %u, target gain %u\n",
661 ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
662 ah->ah_gain.g_target);
663
664 return ret;
665 }
666
667 /**
668 * ath5k_hw_gainf_calibrate() - Do a gain_F calibration
669 * @ah: The &struct ath5k_hw
670 *
671 * Main callback for thermal RF gain calibration engine
672 * Check for a new gain reading and schedule an adjustment
673 * if needed.
674 *
675 * Returns one of enum ath5k_rfgain codes
676 */
677 enum ath5k_rfgain
ath5k_hw_gainf_calibrate(struct ath5k_hw * ah)678 ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
679 {
680 u32 data, type;
681 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
682
683 if (ah->ah_rf_banks == NULL ||
684 ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
685 return AR5K_RFGAIN_INACTIVE;
686
687 /* No check requested, either engine is inactive
688 * or an adjustment is already requested */
689 if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
690 goto done;
691
692 /* Read the PAPD (Peak to Average Power Detector)
693 * register */
694 data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
695
696 /* No probe is scheduled, read gain_F measurement */
697 if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
698 ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
699 type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
700
701 /* If tx packet is CCK correct the gain_F measurement
702 * by cck ofdm gain delta */
703 if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
704 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
705 ah->ah_gain.g_current +=
706 ee->ee_cck_ofdm_gain_delta;
707 else
708 ah->ah_gain.g_current +=
709 AR5K_GAIN_CCK_PROBE_CORR;
710 }
711
712 /* Further correct gain_F measurement for
713 * RF5112A radios */
714 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
715 ath5k_hw_rf_gainf_corr(ah);
716 ah->ah_gain.g_current =
717 ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
718 (ah->ah_gain.g_current - ah->ah_gain.g_f_corr) :
719 0;
720 }
721
722 /* Check if measurement is ok and if we need
723 * to adjust gain, schedule a gain adjustment,
724 * else switch back to the active state */
725 if (ath5k_hw_rf_check_gainf_readback(ah) &&
726 AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
727 ath5k_hw_rf_gainf_adjust(ah)) {
728 ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
729 } else {
730 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
731 }
732 }
733
734 done:
735 return ah->ah_gain.g_state;
736 }
737
738 /**
739 * ath5k_hw_rfgain_init() - Write initial RF gain settings to hw
740 * @ah: The &struct ath5k_hw
741 * @band: One of enum nl80211_band
742 *
743 * Write initial RF gain table to set the RF sensitivity.
744 *
745 * NOTE: This one works on all RF chips and has nothing to do
746 * with Gain_F calibration
747 */
748 static int
ath5k_hw_rfgain_init(struct ath5k_hw * ah,enum nl80211_band band)749 ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum nl80211_band band)
750 {
751 const struct ath5k_ini_rfgain *ath5k_rfg;
752 unsigned int i, size, index;
753
754 switch (ah->ah_radio) {
755 case AR5K_RF5111:
756 ath5k_rfg = rfgain_5111;
757 size = ARRAY_SIZE(rfgain_5111);
758 break;
759 case AR5K_RF5112:
760 ath5k_rfg = rfgain_5112;
761 size = ARRAY_SIZE(rfgain_5112);
762 break;
763 case AR5K_RF2413:
764 ath5k_rfg = rfgain_2413;
765 size = ARRAY_SIZE(rfgain_2413);
766 break;
767 case AR5K_RF2316:
768 ath5k_rfg = rfgain_2316;
769 size = ARRAY_SIZE(rfgain_2316);
770 break;
771 case AR5K_RF5413:
772 ath5k_rfg = rfgain_5413;
773 size = ARRAY_SIZE(rfgain_5413);
774 break;
775 case AR5K_RF2317:
776 case AR5K_RF2425:
777 ath5k_rfg = rfgain_2425;
778 size = ARRAY_SIZE(rfgain_2425);
779 break;
780 default:
781 return -EINVAL;
782 }
783
784 index = (band == NL80211_BAND_2GHZ) ? 1 : 0;
785
786 for (i = 0; i < size; i++) {
787 AR5K_REG_WAIT(i);
788 ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index],
789 (u32)ath5k_rfg[i].rfg_register);
790 }
791
792 return 0;
793 }
794
795
796 /********************\
797 * RF Registers setup *
798 \********************/
799
800 /**
801 * ath5k_hw_rfregs_init() - Initialize RF register settings
802 * @ah: The &struct ath5k_hw
803 * @channel: The &struct ieee80211_channel
804 * @mode: One of enum ath5k_driver_mode
805 *
806 * Setup RF registers by writing RF buffer on hw. For
807 * more infos on this, check out rfbuffer.h
808 */
809 static int
ath5k_hw_rfregs_init(struct ath5k_hw * ah,struct ieee80211_channel * channel,unsigned int mode)810 ath5k_hw_rfregs_init(struct ath5k_hw *ah,
811 struct ieee80211_channel *channel,
812 unsigned int mode)
813 {
814 const struct ath5k_rf_reg *rf_regs;
815 const struct ath5k_ini_rfbuffer *ini_rfb;
816 const struct ath5k_gain_opt *go = NULL;
817 const struct ath5k_gain_opt_step *g_step;
818 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
819 u8 ee_mode = 0;
820 u32 *rfb;
821 int i, obdb = -1, bank = -1;
822
823 switch (ah->ah_radio) {
824 case AR5K_RF5111:
825 rf_regs = rf_regs_5111;
826 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
827 ini_rfb = rfb_5111;
828 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
829 go = &rfgain_opt_5111;
830 break;
831 case AR5K_RF5112:
832 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
833 rf_regs = rf_regs_5112a;
834 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
835 ini_rfb = rfb_5112a;
836 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
837 } else {
838 rf_regs = rf_regs_5112;
839 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
840 ini_rfb = rfb_5112;
841 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
842 }
843 go = &rfgain_opt_5112;
844 break;
845 case AR5K_RF2413:
846 rf_regs = rf_regs_2413;
847 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
848 ini_rfb = rfb_2413;
849 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
850 break;
851 case AR5K_RF2316:
852 rf_regs = rf_regs_2316;
853 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
854 ini_rfb = rfb_2316;
855 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
856 break;
857 case AR5K_RF5413:
858 rf_regs = rf_regs_5413;
859 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
860 ini_rfb = rfb_5413;
861 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
862 break;
863 case AR5K_RF2317:
864 rf_regs = rf_regs_2425;
865 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
866 ini_rfb = rfb_2317;
867 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
868 break;
869 case AR5K_RF2425:
870 rf_regs = rf_regs_2425;
871 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
872 if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
873 ini_rfb = rfb_2425;
874 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
875 } else {
876 ini_rfb = rfb_2417;
877 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
878 }
879 break;
880 default:
881 return -EINVAL;
882 }
883
884 /* If it's the first time we set RF buffer, allocate
885 * ah->ah_rf_banks based on ah->ah_rf_banks_size
886 * we set above */
887 if (ah->ah_rf_banks == NULL) {
888 ah->ah_rf_banks = kmalloc_array(ah->ah_rf_banks_size,
889 sizeof(u32),
890 GFP_KERNEL);
891 if (ah->ah_rf_banks == NULL) {
892 ATH5K_ERR(ah, "out of memory\n");
893 return -ENOMEM;
894 }
895 }
896
897 /* Copy values to modify them */
898 rfb = ah->ah_rf_banks;
899
900 for (i = 0; i < ah->ah_rf_banks_size; i++) {
901 if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
902 ATH5K_ERR(ah, "invalid bank\n");
903 return -EINVAL;
904 }
905
906 /* Bank changed, write down the offset */
907 if (bank != ini_rfb[i].rfb_bank) {
908 bank = ini_rfb[i].rfb_bank;
909 ah->ah_offset[bank] = i;
910 }
911
912 rfb[i] = ini_rfb[i].rfb_mode_data[mode];
913 }
914
915 /* Set Output and Driver bias current (OB/DB) */
916 if (channel->band == NL80211_BAND_2GHZ) {
917
918 if (channel->hw_value == AR5K_MODE_11B)
919 ee_mode = AR5K_EEPROM_MODE_11B;
920 else
921 ee_mode = AR5K_EEPROM_MODE_11G;
922
923 /* For RF511X/RF211X combination we
924 * use b_OB and b_DB parameters stored
925 * in eeprom on ee->ee_ob[ee_mode][0]
926 *
927 * For all other chips we use OB/DB for 2GHz
928 * stored in the b/g modal section just like
929 * 802.11a on ee->ee_ob[ee_mode][1] */
930 if ((ah->ah_radio == AR5K_RF5111) ||
931 (ah->ah_radio == AR5K_RF5112))
932 obdb = 0;
933 else
934 obdb = 1;
935
936 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
937 AR5K_RF_OB_2GHZ, true);
938
939 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
940 AR5K_RF_DB_2GHZ, true);
941
942 /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
943 } else if ((channel->band == NL80211_BAND_5GHZ) ||
944 (ah->ah_radio == AR5K_RF5111)) {
945
946 /* For 11a, Turbo and XR we need to choose
947 * OB/DB based on frequency range */
948 ee_mode = AR5K_EEPROM_MODE_11A;
949 obdb = channel->center_freq >= 5725 ? 3 :
950 (channel->center_freq >= 5500 ? 2 :
951 (channel->center_freq >= 5260 ? 1 :
952 (channel->center_freq > 4000 ? 0 : -1)));
953
954 if (obdb < 0)
955 return -EINVAL;
956
957 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
958 AR5K_RF_OB_5GHZ, true);
959
960 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
961 AR5K_RF_DB_5GHZ, true);
962 }
963
964 g_step = &go->go_step[ah->ah_gain.g_step_idx];
965
966 /* Set turbo mode (N/A on RF5413) */
967 if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
968 (ah->ah_radio != AR5K_RF5413))
969 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);
970
971 /* Bank Modifications (chip-specific) */
972 if (ah->ah_radio == AR5K_RF5111) {
973
974 /* Set gain_F settings according to current step */
975 if (channel->hw_value != AR5K_MODE_11B) {
976
977 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
978 AR5K_PHY_FRAME_CTL_TX_CLIP,
979 g_step->gos_param[0]);
980
981 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
982 AR5K_RF_PWD_90, true);
983
984 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
985 AR5K_RF_PWD_84, true);
986
987 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
988 AR5K_RF_RFGAIN_SEL, true);
989
990 /* We programmed gain_F parameters, switch back
991 * to active state */
992 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
993
994 }
995
996 /* Bank 6/7 setup */
997
998 ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
999 AR5K_RF_PWD_XPD, true);
1000
1001 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
1002 AR5K_RF_XPD_GAIN, true);
1003
1004 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1005 AR5K_RF_GAIN_I, true);
1006
1007 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
1008 AR5K_RF_PLO_SEL, true);
1009
1010 /* Tweak power detectors for half/quarter rate support */
1011 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1012 ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1013 u8 wait_i;
1014
1015 ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
1016 AR5K_RF_WAIT_S, true);
1017
1018 wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1019 0x1f : 0x10;
1020
1021 ath5k_hw_rfb_op(ah, rf_regs, wait_i,
1022 AR5K_RF_WAIT_I, true);
1023 ath5k_hw_rfb_op(ah, rf_regs, 3,
1024 AR5K_RF_MAX_TIME, true);
1025
1026 }
1027 }
1028
1029 if (ah->ah_radio == AR5K_RF5112) {
1030
1031 /* Set gain_F settings according to current step */
1032 if (channel->hw_value != AR5K_MODE_11B) {
1033
1034 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
1035 AR5K_RF_MIXGAIN_OVR, true);
1036
1037 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
1038 AR5K_RF_PWD_138, true);
1039
1040 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
1041 AR5K_RF_PWD_137, true);
1042
1043 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
1044 AR5K_RF_PWD_136, true);
1045
1046 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
1047 AR5K_RF_PWD_132, true);
1048
1049 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
1050 AR5K_RF_PWD_131, true);
1051
1052 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
1053 AR5K_RF_PWD_130, true);
1054
1055 /* We programmed gain_F parameters, switch back
1056 * to active state */
1057 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
1058 }
1059
1060 /* Bank 6/7 setup */
1061
1062 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
1063 AR5K_RF_XPD_SEL, true);
1064
1065 if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
1066 /* Rev. 1 supports only one xpd */
1067 ath5k_hw_rfb_op(ah, rf_regs,
1068 ee->ee_x_gain[ee_mode],
1069 AR5K_RF_XPD_GAIN, true);
1070
1071 } else {
1072 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
1073 if (ee->ee_pd_gains[ee_mode] > 1) {
1074 ath5k_hw_rfb_op(ah, rf_regs,
1075 pdg_curve_to_idx[0],
1076 AR5K_RF_PD_GAIN_LO, true);
1077 ath5k_hw_rfb_op(ah, rf_regs,
1078 pdg_curve_to_idx[1],
1079 AR5K_RF_PD_GAIN_HI, true);
1080 } else {
1081 ath5k_hw_rfb_op(ah, rf_regs,
1082 pdg_curve_to_idx[0],
1083 AR5K_RF_PD_GAIN_LO, true);
1084 ath5k_hw_rfb_op(ah, rf_regs,
1085 pdg_curve_to_idx[0],
1086 AR5K_RF_PD_GAIN_HI, true);
1087 }
1088
1089 /* Lower synth voltage on Rev 2 */
1090 if (ah->ah_radio == AR5K_RF5112 &&
1091 (ah->ah_radio_5ghz_revision & AR5K_SREV_REV) > 0) {
1092 ath5k_hw_rfb_op(ah, rf_regs, 2,
1093 AR5K_RF_HIGH_VC_CP, true);
1094
1095 ath5k_hw_rfb_op(ah, rf_regs, 2,
1096 AR5K_RF_MID_VC_CP, true);
1097
1098 ath5k_hw_rfb_op(ah, rf_regs, 2,
1099 AR5K_RF_LOW_VC_CP, true);
1100
1101 ath5k_hw_rfb_op(ah, rf_regs, 2,
1102 AR5K_RF_PUSH_UP, true);
1103 }
1104
1105 /* Decrease power consumption on 5213+ BaseBand */
1106 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
1107 ath5k_hw_rfb_op(ah, rf_regs, 1,
1108 AR5K_RF_PAD2GND, true);
1109
1110 ath5k_hw_rfb_op(ah, rf_regs, 1,
1111 AR5K_RF_XB2_LVL, true);
1112
1113 ath5k_hw_rfb_op(ah, rf_regs, 1,
1114 AR5K_RF_XB5_LVL, true);
1115
1116 ath5k_hw_rfb_op(ah, rf_regs, 1,
1117 AR5K_RF_PWD_167, true);
1118
1119 ath5k_hw_rfb_op(ah, rf_regs, 1,
1120 AR5K_RF_PWD_166, true);
1121 }
1122 }
1123
1124 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1125 AR5K_RF_GAIN_I, true);
1126
1127 /* Tweak power detector for half/quarter rates */
1128 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1129 ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1130 u8 pd_delay;
1131
1132 pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1133 0xf : 0x8;
1134
1135 ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
1136 AR5K_RF_PD_PERIOD_A, true);
1137 ath5k_hw_rfb_op(ah, rf_regs, 0xf,
1138 AR5K_RF_PD_DELAY_A, true);
1139
1140 }
1141 }
1142
1143 if (ah->ah_radio == AR5K_RF5413 &&
1144 channel->band == NL80211_BAND_2GHZ) {
1145
1146 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
1147 true);
1148
1149 /* Set optimum value for early revisions (on pci-e chips) */
1150 if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
1151 ah->ah_mac_srev < AR5K_SREV_AR5413)
1152 ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
1153 AR5K_RF_PWD_ICLOBUF_2G, true);
1154
1155 }
1156
1157 /* Write RF banks on hw */
1158 for (i = 0; i < ah->ah_rf_banks_size; i++) {
1159 AR5K_REG_WAIT(i);
1160 ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
1161 }
1162
1163 return 0;
1164 }
1165
1166
1167 /**************************\
1168 PHY/RF channel functions
1169 \**************************/
1170
1171 /**
1172 * ath5k_hw_rf5110_chan2athchan() - Convert channel freq on RF5110
1173 * @channel: The &struct ieee80211_channel
1174 *
1175 * Map channel frequency to IEEE channel number and convert it
1176 * to an internal channel value used by the RF5110 chipset.
1177 */
1178 static u32
ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel * channel)1179 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
1180 {
1181 u32 athchan;
1182
1183 athchan = (ath5k_hw_bitswap(
1184 (ieee80211_frequency_to_channel(
1185 channel->center_freq) - 24) / 2, 5)
1186 << 1) | (1 << 6) | 0x1;
1187 return athchan;
1188 }
1189
1190 /**
1191 * ath5k_hw_rf5110_channel() - Set channel frequency on RF5110
1192 * @ah: The &struct ath5k_hw
1193 * @channel: The &struct ieee80211_channel
1194 */
1195 static int
ath5k_hw_rf5110_channel(struct ath5k_hw * ah,struct ieee80211_channel * channel)1196 ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
1197 struct ieee80211_channel *channel)
1198 {
1199 u32 data;
1200
1201 /*
1202 * Set the channel and wait
1203 */
1204 data = ath5k_hw_rf5110_chan2athchan(channel);
1205 ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
1206 ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
1207 usleep_range(1000, 1500);
1208
1209 return 0;
1210 }
1211
1212 /**
1213 * ath5k_hw_rf5111_chan2athchan() - Handle 2GHz channels on RF5111/2111
1214 * @ieee: IEEE channel number
1215 * @athchan: The &struct ath5k_athchan_2ghz
1216 *
1217 * In order to enable the RF2111 frequency converter on RF5111/2111 setups
1218 * we need to add some offsets and extra flags to the data values we pass
1219 * on to the PHY. So for every 2GHz channel this function gets called
1220 * to do the conversion.
1221 */
1222 static int
ath5k_hw_rf5111_chan2athchan(unsigned int ieee,struct ath5k_athchan_2ghz * athchan)1223 ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
1224 struct ath5k_athchan_2ghz *athchan)
1225 {
1226 int channel;
1227
1228 /* Cast this value to catch negative channel numbers (>= -19) */
1229 channel = (int)ieee;
1230
1231 /*
1232 * Map 2GHz IEEE channel to 5GHz Atheros channel
1233 */
1234 if (channel <= 13) {
1235 athchan->a2_athchan = 115 + channel;
1236 athchan->a2_flags = 0x46;
1237 } else if (channel == 14) {
1238 athchan->a2_athchan = 124;
1239 athchan->a2_flags = 0x44;
1240 } else if (channel >= 15 && channel <= 26) {
1241 athchan->a2_athchan = ((channel - 14) * 4) + 132;
1242 athchan->a2_flags = 0x46;
1243 } else
1244 return -EINVAL;
1245
1246 return 0;
1247 }
1248
1249 /**
1250 * ath5k_hw_rf5111_channel() - Set channel frequency on RF5111/2111
1251 * @ah: The &struct ath5k_hw
1252 * @channel: The &struct ieee80211_channel
1253 */
1254 static int
ath5k_hw_rf5111_channel(struct ath5k_hw * ah,struct ieee80211_channel * channel)1255 ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
1256 struct ieee80211_channel *channel)
1257 {
1258 struct ath5k_athchan_2ghz ath5k_channel_2ghz;
1259 unsigned int ath5k_channel =
1260 ieee80211_frequency_to_channel(channel->center_freq);
1261 u32 data0, data1, clock;
1262 int ret;
1263
1264 /*
1265 * Set the channel on the RF5111 radio
1266 */
1267 data0 = data1 = 0;
1268
1269 if (channel->band == NL80211_BAND_2GHZ) {
1270 /* Map 2GHz channel to 5GHz Atheros channel ID */
1271 ret = ath5k_hw_rf5111_chan2athchan(
1272 ieee80211_frequency_to_channel(channel->center_freq),
1273 &ath5k_channel_2ghz);
1274 if (ret)
1275 return ret;
1276
1277 ath5k_channel = ath5k_channel_2ghz.a2_athchan;
1278 data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
1279 << 5) | (1 << 4);
1280 }
1281
1282 if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
1283 clock = 1;
1284 data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
1285 (clock << 1) | (1 << 10) | 1;
1286 } else {
1287 clock = 0;
1288 data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
1289 << 2) | (clock << 1) | (1 << 10) | 1;
1290 }
1291
1292 ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
1293 AR5K_RF_BUFFER);
1294 ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
1295 AR5K_RF_BUFFER_CONTROL_3);
1296
1297 return 0;
1298 }
1299
1300 /**
1301 * ath5k_hw_rf5112_channel() - Set channel frequency on 5112 and newer
1302 * @ah: The &struct ath5k_hw
1303 * @channel: The &struct ieee80211_channel
1304 *
1305 * On RF5112/2112 and newer we don't need to do any conversion.
1306 * We pass the frequency value after a few modifications to the
1307 * chip directly.
1308 *
1309 * NOTE: Make sure channel frequency given is within our range or else
1310 * we might damage the chip ! Use ath5k_channel_ok before calling this one.
1311 */
1312 static int
ath5k_hw_rf5112_channel(struct ath5k_hw * ah,struct ieee80211_channel * channel)1313 ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
1314 struct ieee80211_channel *channel)
1315 {
1316 u32 data, data0, data1, data2;
1317 u16 c;
1318
1319 data = data0 = data1 = data2 = 0;
1320 c = channel->center_freq;
1321
1322 /* My guess based on code:
1323 * 2GHz RF has 2 synth modes, one with a Local Oscillator
1324 * at 2224Hz and one with a LO at 2192Hz. IF is 1520Hz
1325 * (3040/2). data0 is used to set the PLL divider and data1
1326 * selects synth mode. */
1327 if (c < 4800) {
1328 /* Channel 14 and all frequencies with 2Hz spacing
1329 * below/above (non-standard channels) */
1330 if (!((c - 2224) % 5)) {
1331 /* Same as (c - 2224) / 5 */
1332 data0 = ((2 * (c - 704)) - 3040) / 10;
1333 data1 = 1;
1334 /* Channel 1 and all frequencies with 5Hz spacing
1335 * below/above (standard channels without channel 14) */
1336 } else if (!((c - 2192) % 5)) {
1337 /* Same as (c - 2192) / 5 */
1338 data0 = ((2 * (c - 672)) - 3040) / 10;
1339 data1 = 0;
1340 } else
1341 return -EINVAL;
1342
1343 data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
1344 /* This is more complex, we have a single synthesizer with
1345 * 4 reference clock settings (?) based on frequency spacing
1346 * and set using data2. LO is at 4800Hz and data0 is again used
1347 * to set some divider.
1348 *
1349 * NOTE: There is an old atheros presentation at Stanford
1350 * that mentions a method called dual direct conversion
1351 * with 1GHz sliding IF for RF5110. Maybe that's what we
1352 * have here, or an updated version. */
1353 } else if ((c % 5) != 2 || c > 5435) {
1354 if (!(c % 20) && c >= 5120) {
1355 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1356 data2 = ath5k_hw_bitswap(3, 2);
1357 } else if (!(c % 10)) {
1358 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1359 data2 = ath5k_hw_bitswap(2, 2);
1360 } else if (!(c % 5)) {
1361 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1362 data2 = ath5k_hw_bitswap(1, 2);
1363 } else
1364 return -EINVAL;
1365 } else {
1366 data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1367 data2 = ath5k_hw_bitswap(0, 2);
1368 }
1369
1370 data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1371
1372 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1373 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1374
1375 return 0;
1376 }
1377
1378 /**
1379 * ath5k_hw_rf2425_channel() - Set channel frequency on RF2425
1380 * @ah: The &struct ath5k_hw
1381 * @channel: The &struct ieee80211_channel
1382 *
1383 * AR2425/2417 have a different 2GHz RF so code changes
1384 * a little bit from RF5112.
1385 */
1386 static int
ath5k_hw_rf2425_channel(struct ath5k_hw * ah,struct ieee80211_channel * channel)1387 ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1388 struct ieee80211_channel *channel)
1389 {
1390 u32 data, data0, data2;
1391 u16 c;
1392
1393 data = data0 = data2 = 0;
1394 c = channel->center_freq;
1395
1396 if (c < 4800) {
1397 data0 = ath5k_hw_bitswap((c - 2272), 8);
1398 data2 = 0;
1399 /* ? 5GHz ? */
1400 } else if ((c % 5) != 2 || c > 5435) {
1401 if (!(c % 20) && c < 5120)
1402 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1403 else if (!(c % 10))
1404 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1405 else if (!(c % 5))
1406 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1407 else
1408 return -EINVAL;
1409 data2 = ath5k_hw_bitswap(1, 2);
1410 } else {
1411 data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1412 data2 = ath5k_hw_bitswap(0, 2);
1413 }
1414
1415 data = (data0 << 4) | data2 << 2 | 0x1001;
1416
1417 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1418 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1419
1420 return 0;
1421 }
1422
1423 /**
1424 * ath5k_hw_channel() - Set a channel on the radio chip
1425 * @ah: The &struct ath5k_hw
1426 * @channel: The &struct ieee80211_channel
1427 *
1428 * This is the main function called to set a channel on the
1429 * radio chip based on the radio chip version.
1430 */
1431 static int
ath5k_hw_channel(struct ath5k_hw * ah,struct ieee80211_channel * channel)1432 ath5k_hw_channel(struct ath5k_hw *ah,
1433 struct ieee80211_channel *channel)
1434 {
1435 int ret;
1436 /*
1437 * Check bounds supported by the PHY (we don't care about regulatory
1438 * restrictions at this point).
1439 */
1440 if (!ath5k_channel_ok(ah, channel)) {
1441 ATH5K_ERR(ah,
1442 "channel frequency (%u MHz) out of supported "
1443 "band range\n",
1444 channel->center_freq);
1445 return -EINVAL;
1446 }
1447
1448 /*
1449 * Set the channel and wait
1450 */
1451 switch (ah->ah_radio) {
1452 case AR5K_RF5110:
1453 ret = ath5k_hw_rf5110_channel(ah, channel);
1454 break;
1455 case AR5K_RF5111:
1456 ret = ath5k_hw_rf5111_channel(ah, channel);
1457 break;
1458 case AR5K_RF2317:
1459 case AR5K_RF2425:
1460 ret = ath5k_hw_rf2425_channel(ah, channel);
1461 break;
1462 default:
1463 ret = ath5k_hw_rf5112_channel(ah, channel);
1464 break;
1465 }
1466
1467 if (ret)
1468 return ret;
1469
1470 /* Set JAPAN setting for channel 14 */
1471 if (channel->center_freq == 2484) {
1472 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1473 AR5K_PHY_CCKTXCTL_JAPAN);
1474 } else {
1475 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1476 AR5K_PHY_CCKTXCTL_WORLD);
1477 }
1478
1479 ah->ah_current_channel = channel;
1480
1481 return 0;
1482 }
1483
1484
1485 /*****************\
1486 PHY calibration
1487 \*****************/
1488
1489 /**
1490 * DOC: PHY Calibration routines
1491 *
1492 * Noise floor calibration: When we tell the hardware to
1493 * perform a noise floor calibration by setting the
1494 * AR5K_PHY_AGCCTL_NF bit on AR5K_PHY_AGCCTL, it will periodically
1495 * sample-and-hold the minimum noise level seen at the antennas.
1496 * This value is then stored in a ring buffer of recently measured
1497 * noise floor values so we have a moving window of the last few
1498 * samples. The median of the values in the history is then loaded
1499 * into the hardware for its own use for RSSI and CCA measurements.
1500 * This type of calibration doesn't interfere with traffic.
1501 *
1502 * AGC calibration: When we tell the hardware to perform
1503 * an AGC (Automatic Gain Control) calibration by setting the
1504 * AR5K_PHY_AGCCTL_CAL, hw disconnects the antennas and does
1505 * a calibration on the DC offsets of ADCs. During this period
1506 * rx/tx gets disabled so we have to deal with it on the driver
1507 * part.
1508 *
1509 * I/Q calibration: When we tell the hardware to perform
1510 * an I/Q calibration, it tries to correct I/Q imbalance and
1511 * fix QAM constellation by sampling data from rxed frames.
1512 * It doesn't interfere with traffic.
1513 *
1514 * For more infos on AGC and I/Q calibration check out patent doc
1515 * #03/094463.
1516 */
1517
1518 /**
1519 * ath5k_hw_read_measured_noise_floor() - Read measured NF from hw
1520 * @ah: The &struct ath5k_hw
1521 */
1522 static s32
ath5k_hw_read_measured_noise_floor(struct ath5k_hw * ah)1523 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1524 {
1525 s32 val;
1526
1527 val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1528 return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
1529 }
1530
1531 /**
1532 * ath5k_hw_init_nfcal_hist() - Initialize NF calibration history buffer
1533 * @ah: The &struct ath5k_hw
1534 */
1535 void
ath5k_hw_init_nfcal_hist(struct ath5k_hw * ah)1536 ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1537 {
1538 int i;
1539
1540 ah->ah_nfcal_hist.index = 0;
1541 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1542 ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1543 }
1544
1545 /**
1546 * ath5k_hw_update_nfcal_hist() - Update NF calibration history buffer
1547 * @ah: The &struct ath5k_hw
1548 * @noise_floor: The NF we got from hw
1549 */
ath5k_hw_update_nfcal_hist(struct ath5k_hw * ah,s16 noise_floor)1550 static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1551 {
1552 struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1553 hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1);
1554 hist->nfval[hist->index] = noise_floor;
1555 }
1556
1557 /**
1558 * ath5k_hw_get_median_noise_floor() - Get median NF from history buffer
1559 * @ah: The &struct ath5k_hw
1560 */
1561 static s16
ath5k_hw_get_median_noise_floor(struct ath5k_hw * ah)1562 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1563 {
1564 s16 sort[ATH5K_NF_CAL_HIST_MAX];
1565 s16 tmp;
1566 int i, j;
1567
1568 memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1569 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1570 for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1571 if (sort[j] > sort[j - 1]) {
1572 tmp = sort[j];
1573 sort[j] = sort[j - 1];
1574 sort[j - 1] = tmp;
1575 }
1576 }
1577 }
1578 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1579 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1580 "cal %d:%d\n", i, sort[i]);
1581 }
1582 return sort[(ATH5K_NF_CAL_HIST_MAX - 1) / 2];
1583 }
1584
1585 /**
1586 * ath5k_hw_update_noise_floor() - Update NF on hardware
1587 * @ah: The &struct ath5k_hw
1588 *
1589 * This is the main function we call to perform a NF calibration,
1590 * it reads NF from hardware, calculates the median and updates
1591 * NF on hw.
1592 */
1593 void
ath5k_hw_update_noise_floor(struct ath5k_hw * ah)1594 ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1595 {
1596 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1597 u32 val;
1598 s16 nf, threshold;
1599 u8 ee_mode;
1600
1601 /* keep last value if calibration hasn't completed */
1602 if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1603 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1604 "NF did not complete in calibration window\n");
1605
1606 return;
1607 }
1608
1609 ah->ah_cal_mask |= AR5K_CALIBRATION_NF;
1610
1611 ee_mode = ath5k_eeprom_mode_from_channel(ah, ah->ah_current_channel);
1612
1613 /* completed NF calibration, test threshold */
1614 nf = ath5k_hw_read_measured_noise_floor(ah);
1615 threshold = ee->ee_noise_floor_thr[ee_mode];
1616
1617 if (nf > threshold) {
1618 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1619 "noise floor failure detected; "
1620 "read %d, threshold %d\n",
1621 nf, threshold);
1622
1623 nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1624 }
1625
1626 ath5k_hw_update_nfcal_hist(ah, nf);
1627 nf = ath5k_hw_get_median_noise_floor(ah);
1628
1629 /* load noise floor (in .5 dBm) so the hardware will use it */
1630 val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1631 val |= (nf * 2) & AR5K_PHY_NF_M;
1632 ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1633
1634 AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1635 ~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1636
1637 ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1638 0, false);
1639
1640 /*
1641 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1642 * so that we're not capped by the median we just loaded.
1643 * This will be used as the initial value for the next noise
1644 * floor calibration.
1645 */
1646 val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1647 ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1648 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1649 AR5K_PHY_AGCCTL_NF_EN |
1650 AR5K_PHY_AGCCTL_NF_NOUPDATE |
1651 AR5K_PHY_AGCCTL_NF);
1652
1653 ah->ah_noise_floor = nf;
1654
1655 ah->ah_cal_mask &= ~AR5K_CALIBRATION_NF;
1656
1657 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1658 "noise floor calibrated: %d\n", nf);
1659 }
1660
1661 /**
1662 * ath5k_hw_rf5110_calibrate() - Perform a PHY calibration on RF5110
1663 * @ah: The &struct ath5k_hw
1664 * @channel: The &struct ieee80211_channel
1665 *
1666 * Do a complete PHY calibration (AGC + NF + I/Q) on RF5110
1667 */
1668 static int
ath5k_hw_rf5110_calibrate(struct ath5k_hw * ah,struct ieee80211_channel * channel)1669 ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1670 struct ieee80211_channel *channel)
1671 {
1672 u32 phy_sig, phy_agc, phy_sat, beacon;
1673 int ret;
1674
1675 if (!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL))
1676 return 0;
1677
1678 /*
1679 * Disable beacons and RX/TX queues, wait
1680 */
1681 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1682 AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1683 beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1684 ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1685
1686 usleep_range(2000, 2500);
1687
1688 /*
1689 * Set the channel (with AGC turned off)
1690 */
1691 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1692 udelay(10);
1693 ret = ath5k_hw_channel(ah, channel);
1694
1695 /*
1696 * Activate PHY and wait
1697 */
1698 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1699 usleep_range(1000, 1500);
1700
1701 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1702
1703 if (ret)
1704 return ret;
1705
1706 /*
1707 * Calibrate the radio chip
1708 */
1709
1710 /* Remember normal state */
1711 phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1712 phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1713 phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1714
1715 /* Update radio registers */
1716 ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1717 AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1718
1719 ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1720 AR5K_PHY_AGCCOARSE_LO)) |
1721 AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1722 AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1723
1724 ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1725 AR5K_PHY_ADCSAT_THR)) |
1726 AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1727 AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1728
1729 udelay(20);
1730
1731 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1732 udelay(10);
1733 ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1734 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1735
1736 usleep_range(1000, 1500);
1737
1738 /*
1739 * Enable calibration and wait until completion
1740 */
1741 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1742
1743 ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1744 AR5K_PHY_AGCCTL_CAL, 0, false);
1745
1746 /* Reset to normal state */
1747 ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1748 ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1749 ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1750
1751 if (ret) {
1752 ATH5K_ERR(ah, "calibration timeout (%uMHz)\n",
1753 channel->center_freq);
1754 return ret;
1755 }
1756
1757 /*
1758 * Re-enable RX/TX and beacons
1759 */
1760 AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1761 AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1762 ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1763
1764 return 0;
1765 }
1766
1767 /**
1768 * ath5k_hw_rf511x_iq_calibrate() - Perform I/Q calibration on RF5111 and newer
1769 * @ah: The &struct ath5k_hw
1770 */
1771 static int
ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw * ah)1772 ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
1773 {
1774 u32 i_pwr, q_pwr;
1775 s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1776 int i;
1777
1778 /* Skip if I/Q calibration is not needed or if it's still running */
1779 if (!ah->ah_iq_cal_needed)
1780 return -EINVAL;
1781 else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN) {
1782 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1783 "I/Q calibration still running");
1784 return -EBUSY;
1785 }
1786
1787 /* Calibration has finished, get the results and re-run */
1788
1789 /* Work around for empty results which can apparently happen on 5212:
1790 * Read registers up to 10 times until we get both i_pr and q_pwr */
1791 for (i = 0; i <= 10; i++) {
1792 iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1793 i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1794 q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1795 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1796 "iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1797 if (i_pwr && q_pwr)
1798 break;
1799 }
1800
1801 i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1802
1803 if (ah->ah_version == AR5K_AR5211)
1804 q_coffd = q_pwr >> 6;
1805 else
1806 q_coffd = q_pwr >> 7;
1807
1808 /* In case i_coffd became zero, cancel calibration
1809 * not only it's too small, it'll also result a divide
1810 * by zero later on. */
1811 if (i_coffd == 0 || q_coffd < 2)
1812 return -ECANCELED;
1813
1814 /* Protect against loss of sign bits */
1815
1816 i_coff = (-iq_corr) / i_coffd;
1817 i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1818
1819 if (ah->ah_version == AR5K_AR5211)
1820 q_coff = (i_pwr / q_coffd) - 64;
1821 else
1822 q_coff = (i_pwr / q_coffd) - 128;
1823 q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1824
1825 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1826 "new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1827 i_coff, q_coff, i_coffd, q_coffd);
1828
1829 /* Commit new I/Q values (set enable bit last to match HAL sources) */
1830 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1831 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1832 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1833
1834 /* Re-enable calibration -if we don't we'll commit
1835 * the same values again and again */
1836 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1837 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1838 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1839
1840 return 0;
1841 }
1842
1843 /**
1844 * ath5k_hw_phy_calibrate() - Perform a PHY calibration
1845 * @ah: The &struct ath5k_hw
1846 * @channel: The &struct ieee80211_channel
1847 *
1848 * The main function we call from above to perform
1849 * a short or full PHY calibration based on RF chip
1850 * and current channel
1851 */
1852 int
ath5k_hw_phy_calibrate(struct ath5k_hw * ah,struct ieee80211_channel * channel)1853 ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1854 struct ieee80211_channel *channel)
1855 {
1856 int ret;
1857
1858 if (ah->ah_radio == AR5K_RF5110)
1859 return ath5k_hw_rf5110_calibrate(ah, channel);
1860
1861 ret = ath5k_hw_rf511x_iq_calibrate(ah);
1862 if (ret) {
1863 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1864 "No I/Q correction performed (%uMHz)\n",
1865 channel->center_freq);
1866
1867 /* Happens all the time if there is not much
1868 * traffic, consider it normal behaviour. */
1869 ret = 0;
1870 }
1871
1872 /* On full calibration request a PAPD probe for
1873 * gainf calibration if needed */
1874 if ((ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
1875 (ah->ah_radio == AR5K_RF5111 ||
1876 ah->ah_radio == AR5K_RF5112) &&
1877 channel->hw_value != AR5K_MODE_11B)
1878 ath5k_hw_request_rfgain_probe(ah);
1879
1880 /* Update noise floor */
1881 if (!(ah->ah_cal_mask & AR5K_CALIBRATION_NF))
1882 ath5k_hw_update_noise_floor(ah);
1883
1884 return ret;
1885 }
1886
1887
1888 /***************************\
1889 * Spur mitigation functions *
1890 \***************************/
1891
1892 /**
1893 * ath5k_hw_set_spur_mitigation_filter() - Configure SPUR filter
1894 * @ah: The &struct ath5k_hw
1895 * @channel: The &struct ieee80211_channel
1896 *
1897 * This function gets called during PHY initialization to
1898 * configure the spur filter for the given channel. Spur is noise
1899 * generated due to "reflection" effects, for more information on this
1900 * method check out patent US7643810
1901 */
1902 static void
ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw * ah,struct ieee80211_channel * channel)1903 ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1904 struct ieee80211_channel *channel)
1905 {
1906 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1907 u32 mag_mask[4] = {0, 0, 0, 0};
1908 u32 pilot_mask[2] = {0, 0};
1909 /* Note: fbin values are scaled up by 2 */
1910 u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1911 s32 spur_delta_phase, spur_freq_sigma_delta;
1912 s32 spur_offset, num_symbols_x16;
1913 u8 num_symbol_offsets, i, freq_band;
1914
1915 /* Convert current frequency to fbin value (the same way channels
1916 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1917 * up by 2 so we can compare it later */
1918 if (channel->band == NL80211_BAND_2GHZ) {
1919 chan_fbin = (channel->center_freq - 2300) * 10;
1920 freq_band = AR5K_EEPROM_BAND_2GHZ;
1921 } else {
1922 chan_fbin = (channel->center_freq - 4900) * 10;
1923 freq_band = AR5K_EEPROM_BAND_5GHZ;
1924 }
1925
1926 /* Check if any spur_chan_fbin from EEPROM is
1927 * within our current channel's spur detection range */
1928 spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1929 spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1930 /* XXX: Half/Quarter channels ?*/
1931 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
1932 spur_detection_window *= 2;
1933
1934 for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1935 spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1936
1937 /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1938 * so it's zero if we got nothing from EEPROM */
1939 if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1940 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1941 break;
1942 }
1943
1944 if ((chan_fbin - spur_detection_window <=
1945 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1946 (chan_fbin + spur_detection_window >=
1947 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1948 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1949 break;
1950 }
1951 }
1952
1953 /* We need to enable spur filter for this channel */
1954 if (spur_chan_fbin) {
1955 spur_offset = spur_chan_fbin - chan_fbin;
1956 /*
1957 * Calculate deltas:
1958 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1959 * spur_delta_phase -> spur_offset / chip_freq << 11
1960 * Note: Both values have 100Hz resolution
1961 */
1962 switch (ah->ah_bwmode) {
1963 case AR5K_BWMODE_40MHZ:
1964 /* Both sample_freq and chip_freq are 80MHz */
1965 spur_delta_phase = (spur_offset << 16) / 25;
1966 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1967 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
1968 break;
1969 case AR5K_BWMODE_10MHZ:
1970 /* Both sample_freq and chip_freq are 20MHz (?) */
1971 spur_delta_phase = (spur_offset << 18) / 25;
1972 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1973 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
1974 break;
1975 case AR5K_BWMODE_5MHZ:
1976 /* Both sample_freq and chip_freq are 10MHz (?) */
1977 spur_delta_phase = (spur_offset << 19) / 25;
1978 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1979 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
1980 break;
1981 default:
1982 if (channel->band == NL80211_BAND_5GHZ) {
1983 /* Both sample_freq and chip_freq are 40MHz */
1984 spur_delta_phase = (spur_offset << 17) / 25;
1985 spur_freq_sigma_delta =
1986 (spur_delta_phase >> 10);
1987 symbol_width =
1988 AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1989 } else {
1990 /* sample_freq -> 40MHz chip_freq -> 44MHz
1991 * (for b compatibility) */
1992 spur_delta_phase = (spur_offset << 17) / 25;
1993 spur_freq_sigma_delta =
1994 (spur_offset << 8) / 55;
1995 symbol_width =
1996 AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1997 }
1998 break;
1999 }
2000
2001 /* Calculate pilot and magnitude masks */
2002
2003 /* Scale up spur_offset by 1000 to switch to 100HZ resolution
2004 * and divide by symbol_width to find how many symbols we have
2005 * Note: number of symbols is scaled up by 16 */
2006 num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
2007
2008 /* Spur is on a symbol if num_symbols_x16 % 16 is zero */
2009 if (!(num_symbols_x16 & 0xF))
2010 /* _X_ */
2011 num_symbol_offsets = 3;
2012 else
2013 /* _xx_ */
2014 num_symbol_offsets = 4;
2015
2016 for (i = 0; i < num_symbol_offsets; i++) {
2017
2018 /* Calculate pilot mask */
2019 s32 curr_sym_off =
2020 (num_symbols_x16 / 16) + i + 25;
2021
2022 /* Pilot magnitude mask seems to be a way to
2023 * declare the boundaries for our detection
2024 * window or something, it's 2 for the middle
2025 * value(s) where the symbol is expected to be
2026 * and 1 on the boundary values */
2027 u8 plt_mag_map =
2028 (i == 0 || i == (num_symbol_offsets - 1))
2029 ? 1 : 2;
2030
2031 if (curr_sym_off >= 0 && curr_sym_off <= 32) {
2032 if (curr_sym_off <= 25)
2033 pilot_mask[0] |= 1 << curr_sym_off;
2034 else if (curr_sym_off >= 27)
2035 pilot_mask[0] |= 1 << (curr_sym_off - 1);
2036 } else if (curr_sym_off >= 33 && curr_sym_off <= 52)
2037 pilot_mask[1] |= 1 << (curr_sym_off - 33);
2038
2039 /* Calculate magnitude mask (for viterbi decoder) */
2040 if (curr_sym_off >= -1 && curr_sym_off <= 14)
2041 mag_mask[0] |=
2042 plt_mag_map << (curr_sym_off + 1) * 2;
2043 else if (curr_sym_off >= 15 && curr_sym_off <= 30)
2044 mag_mask[1] |=
2045 plt_mag_map << (curr_sym_off - 15) * 2;
2046 else if (curr_sym_off >= 31 && curr_sym_off <= 46)
2047 mag_mask[2] |=
2048 plt_mag_map << (curr_sym_off - 31) * 2;
2049 else if (curr_sym_off >= 47 && curr_sym_off <= 53)
2050 mag_mask[3] |=
2051 plt_mag_map << (curr_sym_off - 47) * 2;
2052
2053 }
2054
2055 /* Write settings on hw to enable spur filter */
2056 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2057 AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
2058 /* XXX: Self correlator also ? */
2059 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
2060 AR5K_PHY_IQ_PILOT_MASK_EN |
2061 AR5K_PHY_IQ_CHAN_MASK_EN |
2062 AR5K_PHY_IQ_SPUR_FILT_EN);
2063
2064 /* Set delta phase and freq sigma delta */
2065 ath5k_hw_reg_write(ah,
2066 AR5K_REG_SM(spur_delta_phase,
2067 AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
2068 AR5K_REG_SM(spur_freq_sigma_delta,
2069 AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
2070 AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
2071 AR5K_PHY_TIMING_11);
2072
2073 /* Write pilot masks */
2074 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
2075 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
2076 AR5K_PHY_TIMING_8_PILOT_MASK_2,
2077 pilot_mask[1]);
2078
2079 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
2080 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
2081 AR5K_PHY_TIMING_10_PILOT_MASK_2,
2082 pilot_mask[1]);
2083
2084 /* Write magnitude masks */
2085 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
2086 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
2087 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
2088 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2089 AR5K_PHY_BIN_MASK_CTL_MASK_4,
2090 mag_mask[3]);
2091
2092 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
2093 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
2094 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
2095 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
2096 AR5K_PHY_BIN_MASK2_4_MASK_4,
2097 mag_mask[3]);
2098
2099 } else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
2100 AR5K_PHY_IQ_SPUR_FILT_EN) {
2101 /* Clean up spur mitigation settings and disable filter */
2102 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2103 AR5K_PHY_BIN_MASK_CTL_RATE, 0);
2104 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
2105 AR5K_PHY_IQ_PILOT_MASK_EN |
2106 AR5K_PHY_IQ_CHAN_MASK_EN |
2107 AR5K_PHY_IQ_SPUR_FILT_EN);
2108 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
2109
2110 /* Clear pilot masks */
2111 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
2112 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
2113 AR5K_PHY_TIMING_8_PILOT_MASK_2,
2114 0);
2115
2116 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
2117 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
2118 AR5K_PHY_TIMING_10_PILOT_MASK_2,
2119 0);
2120
2121 /* Clear magnitude masks */
2122 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
2123 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
2124 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
2125 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2126 AR5K_PHY_BIN_MASK_CTL_MASK_4,
2127 0);
2128
2129 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
2130 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
2131 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
2132 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
2133 AR5K_PHY_BIN_MASK2_4_MASK_4,
2134 0);
2135 }
2136 }
2137
2138
2139 /*****************\
2140 * Antenna control *
2141 \*****************/
2142
2143 /**
2144 * DOC: Antenna control
2145 *
2146 * Hw supports up to 14 antennas ! I haven't found any card that implements
2147 * that. The maximum number of antennas I've seen is up to 4 (2 for 2GHz and 2
2148 * for 5GHz). Antenna 1 (MAIN) should be omnidirectional, 2 (AUX)
2149 * omnidirectional or sectorial and antennas 3-14 sectorial (or directional).
2150 *
2151 * We can have a single antenna for RX and multiple antennas for TX.
2152 * RX antenna is our "default" antenna (usually antenna 1) set on
2153 * DEFAULT_ANTENNA register and TX antenna is set on each TX control descriptor
2154 * (0 for automatic selection, 1 - 14 antenna number).
2155 *
2156 * We can let hw do all the work doing fast antenna diversity for both
2157 * tx and rx or we can do things manually. Here are the options we have
2158 * (all are bits of STA_ID1 register):
2159 *
2160 * AR5K_STA_ID1_DEFAULT_ANTENNA -> When 0 is set as the TX antenna on TX
2161 * control descriptor, use the default antenna to transmit or else use the last
2162 * antenna on which we received an ACK.
2163 *
2164 * AR5K_STA_ID1_DESC_ANTENNA -> Update default antenna after each TX frame to
2165 * the antenna on which we got the ACK for that frame.
2166 *
2167 * AR5K_STA_ID1_RTS_DEF_ANTENNA -> Use default antenna for RTS or else use the
2168 * one on the TX descriptor.
2169 *
2170 * AR5K_STA_ID1_SELFGEN_DEF_ANT -> Use default antenna for self generated frames
2171 * (ACKs etc), or else use current antenna (the one we just used for TX).
2172 *
2173 * Using the above we support the following scenarios:
2174 *
2175 * AR5K_ANTMODE_DEFAULT -> Hw handles antenna diversity etc automatically
2176 *
2177 * AR5K_ANTMODE_FIXED_A -> Only antenna A (MAIN) is present
2178 *
2179 * AR5K_ANTMODE_FIXED_B -> Only antenna B (AUX) is present
2180 *
2181 * AR5K_ANTMODE_SINGLE_AP -> Sta locked on a single ap
2182 *
2183 * AR5K_ANTMODE_SECTOR_AP -> AP with tx antenna set on tx desc
2184 *
2185 * AR5K_ANTMODE_SECTOR_STA -> STA with tx antenna set on tx desc
2186 *
2187 * AR5K_ANTMODE_DEBUG Debug mode -A -> Rx, B-> Tx-
2188 *
2189 * Also note that when setting antenna to F on tx descriptor card inverts
2190 * current tx antenna.
2191 */
2192
2193 /**
2194 * ath5k_hw_set_def_antenna() - Set default rx antenna on AR5211/5212 and newer
2195 * @ah: The &struct ath5k_hw
2196 * @ant: Antenna number
2197 */
2198 static void
ath5k_hw_set_def_antenna(struct ath5k_hw * ah,u8 ant)2199 ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
2200 {
2201 if (ah->ah_version != AR5K_AR5210)
2202 ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
2203 }
2204
2205 /**
2206 * ath5k_hw_set_fast_div() - Enable/disable fast rx antenna diversity
2207 * @ah: The &struct ath5k_hw
2208 * @ee_mode: One of enum ath5k_driver_mode
2209 * @enable: True to enable, false to disable
2210 */
2211 static void
ath5k_hw_set_fast_div(struct ath5k_hw * ah,u8 ee_mode,bool enable)2212 ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
2213 {
2214 switch (ee_mode) {
2215 case AR5K_EEPROM_MODE_11G:
2216 /* XXX: This is set to
2217 * disabled on initvals !!! */
2218 case AR5K_EEPROM_MODE_11A:
2219 if (enable)
2220 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
2221 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2222 else
2223 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
2224 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2225 break;
2226 case AR5K_EEPROM_MODE_11B:
2227 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
2228 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2229 break;
2230 default:
2231 return;
2232 }
2233
2234 if (enable) {
2235 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
2236 AR5K_PHY_RESTART_DIV_GC, 4);
2237
2238 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
2239 AR5K_PHY_FAST_ANT_DIV_EN);
2240 } else {
2241 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
2242 AR5K_PHY_RESTART_DIV_GC, 0);
2243
2244 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
2245 AR5K_PHY_FAST_ANT_DIV_EN);
2246 }
2247 }
2248
2249 /**
2250 * ath5k_hw_set_antenna_switch() - Set up antenna switch table
2251 * @ah: The &struct ath5k_hw
2252 * @ee_mode: One of enum ath5k_driver_mode
2253 *
2254 * Switch table comes from EEPROM and includes information on controlling
2255 * the 2 antenna RX attenuators
2256 */
2257 void
ath5k_hw_set_antenna_switch(struct ath5k_hw * ah,u8 ee_mode)2258 ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
2259 {
2260 u8 ant0, ant1;
2261
2262 /*
2263 * In case a fixed antenna was set as default
2264 * use the same switch table twice.
2265 */
2266 if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
2267 ant0 = ant1 = AR5K_ANT_SWTABLE_A;
2268 else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
2269 ant0 = ant1 = AR5K_ANT_SWTABLE_B;
2270 else {
2271 ant0 = AR5K_ANT_SWTABLE_A;
2272 ant1 = AR5K_ANT_SWTABLE_B;
2273 }
2274
2275 /* Set antenna idle switch table */
2276 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
2277 AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
2278 (ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
2279 AR5K_PHY_ANT_CTL_TXRX_EN));
2280
2281 /* Set antenna switch tables */
2282 ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
2283 AR5K_PHY_ANT_SWITCH_TABLE_0);
2284 ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
2285 AR5K_PHY_ANT_SWITCH_TABLE_1);
2286 }
2287
2288 /**
2289 * ath5k_hw_set_antenna_mode() - Set antenna operating mode
2290 * @ah: The &struct ath5k_hw
2291 * @ant_mode: One of enum ath5k_ant_mode
2292 */
2293 void
ath5k_hw_set_antenna_mode(struct ath5k_hw * ah,u8 ant_mode)2294 ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
2295 {
2296 struct ieee80211_channel *channel = ah->ah_current_channel;
2297 bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
2298 bool use_def_for_sg;
2299 int ee_mode;
2300 u8 def_ant, tx_ant;
2301 u32 sta_id1 = 0;
2302
2303 /* if channel is not initialized yet we can't set the antennas
2304 * so just store the mode. it will be set on the next reset */
2305 if (channel == NULL) {
2306 ah->ah_ant_mode = ant_mode;
2307 return;
2308 }
2309
2310 def_ant = ah->ah_def_ant;
2311
2312 ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);
2313
2314 switch (ant_mode) {
2315 case AR5K_ANTMODE_DEFAULT:
2316 tx_ant = 0;
2317 use_def_for_tx = false;
2318 update_def_on_tx = false;
2319 use_def_for_rts = false;
2320 use_def_for_sg = false;
2321 fast_div = true;
2322 break;
2323 case AR5K_ANTMODE_FIXED_A:
2324 def_ant = 1;
2325 tx_ant = 1;
2326 use_def_for_tx = true;
2327 update_def_on_tx = false;
2328 use_def_for_rts = true;
2329 use_def_for_sg = true;
2330 fast_div = false;
2331 break;
2332 case AR5K_ANTMODE_FIXED_B:
2333 def_ant = 2;
2334 tx_ant = 2;
2335 use_def_for_tx = true;
2336 update_def_on_tx = false;
2337 use_def_for_rts = true;
2338 use_def_for_sg = true;
2339 fast_div = false;
2340 break;
2341 case AR5K_ANTMODE_SINGLE_AP:
2342 def_ant = 1; /* updated on tx */
2343 tx_ant = 0;
2344 use_def_for_tx = true;
2345 update_def_on_tx = true;
2346 use_def_for_rts = true;
2347 use_def_for_sg = true;
2348 fast_div = true;
2349 break;
2350 case AR5K_ANTMODE_SECTOR_AP:
2351 tx_ant = 1; /* variable */
2352 use_def_for_tx = false;
2353 update_def_on_tx = false;
2354 use_def_for_rts = true;
2355 use_def_for_sg = false;
2356 fast_div = false;
2357 break;
2358 case AR5K_ANTMODE_SECTOR_STA:
2359 tx_ant = 1; /* variable */
2360 use_def_for_tx = true;
2361 update_def_on_tx = false;
2362 use_def_for_rts = true;
2363 use_def_for_sg = false;
2364 fast_div = true;
2365 break;
2366 case AR5K_ANTMODE_DEBUG:
2367 def_ant = 1;
2368 tx_ant = 2;
2369 use_def_for_tx = false;
2370 update_def_on_tx = false;
2371 use_def_for_rts = false;
2372 use_def_for_sg = false;
2373 fast_div = false;
2374 break;
2375 default:
2376 return;
2377 }
2378
2379 ah->ah_tx_ant = tx_ant;
2380 ah->ah_ant_mode = ant_mode;
2381 ah->ah_def_ant = def_ant;
2382
2383 sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
2384 sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
2385 sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
2386 sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
2387
2388 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
2389
2390 if (sta_id1)
2391 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
2392
2393 ath5k_hw_set_antenna_switch(ah, ee_mode);
2394 /* Note: set diversity before default antenna
2395 * because it won't work correctly */
2396 ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
2397 ath5k_hw_set_def_antenna(ah, def_ant);
2398 }
2399
2400
2401 /****************\
2402 * TX power setup *
2403 \****************/
2404
2405 /*
2406 * Helper functions
2407 */
2408
2409 /**
2410 * ath5k_get_interpolated_value() - Get interpolated Y val between two points
2411 * @target: X value of the middle point
2412 * @x_left: X value of the left point
2413 * @x_right: X value of the right point
2414 * @y_left: Y value of the left point
2415 * @y_right: Y value of the right point
2416 */
2417 static s16
ath5k_get_interpolated_value(s16 target,s16 x_left,s16 x_right,s16 y_left,s16 y_right)2418 ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
2419 s16 y_left, s16 y_right)
2420 {
2421 s16 ratio, result;
2422
2423 /* Avoid divide by zero and skip interpolation
2424 * if we have the same point */
2425 if ((x_left == x_right) || (y_left == y_right))
2426 return y_left;
2427
2428 /*
2429 * Since we use ints and not fps, we need to scale up in
2430 * order to get a sane ratio value (or else we 'll eg. get
2431 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2432 * to have some accuracy both for 0.5 and 0.25 steps.
2433 */
2434 ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left));
2435
2436 /* Now scale down to be in range */
2437 result = y_left + (ratio * (target - x_left) / 100);
2438
2439 return result;
2440 }
2441
2442 /**
2443 * ath5k_get_linear_pcdac_min() - Find vertical boundary (min pwr) for the
2444 * linear PCDAC curve
2445 * @stepL: Left array with y values (pcdac steps)
2446 * @stepR: Right array with y values (pcdac steps)
2447 * @pwrL: Left array with x values (power steps)
2448 * @pwrR: Right array with x values (power steps)
2449 *
2450 * Since we have the top of the curve and we draw the line below
2451 * until we reach 1 (1 pcdac step) we need to know which point
2452 * (x value) that is so that we don't go below x axis and have negative
2453 * pcdac values when creating the curve, or fill the table with zeros.
2454 */
2455 static s16
ath5k_get_linear_pcdac_min(const u8 * stepL,const u8 * stepR,const s16 * pwrL,const s16 * pwrR)2456 ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2457 const s16 *pwrL, const s16 *pwrR)
2458 {
2459 s8 tmp;
2460 s16 min_pwrL, min_pwrR;
2461 s16 pwr_i;
2462
2463 /* Some vendors write the same pcdac value twice !!! */
2464 if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2465 return max(pwrL[0], pwrR[0]);
2466
2467 if (pwrL[0] == pwrL[1])
2468 min_pwrL = pwrL[0];
2469 else {
2470 pwr_i = pwrL[0];
2471 do {
2472 pwr_i--;
2473 tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2474 pwrL[0], pwrL[1],
2475 stepL[0], stepL[1]);
2476 } while (tmp > 1);
2477
2478 min_pwrL = pwr_i;
2479 }
2480
2481 if (pwrR[0] == pwrR[1])
2482 min_pwrR = pwrR[0];
2483 else {
2484 pwr_i = pwrR[0];
2485 do {
2486 pwr_i--;
2487 tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2488 pwrR[0], pwrR[1],
2489 stepR[0], stepR[1]);
2490 } while (tmp > 1);
2491
2492 min_pwrR = pwr_i;
2493 }
2494
2495 /* Keep the right boundary so that it works for both curves */
2496 return max(min_pwrL, min_pwrR);
2497 }
2498
2499 /**
2500 * ath5k_create_power_curve() - Create a Power to PDADC or PCDAC curve
2501 * @pmin: Minimum power value (xmin)
2502 * @pmax: Maximum power value (xmax)
2503 * @pwr: Array of power steps (x values)
2504 * @vpd: Array of matching PCDAC/PDADC steps (y values)
2505 * @num_points: Number of provided points
2506 * @vpd_table: Array to fill with the full PCDAC/PDADC values (y values)
2507 * @type: One of enum ath5k_powertable_type (eeprom.h)
2508 *
2509 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2510 * Power to PCDAC curve.
2511 *
2512 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2513 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2514 * PCDAC/PDADC step for each curve is 64 but we can write more than
2515 * one curves on hw so we can go up to 128 (which is the max step we
2516 * can write on the final table).
2517 *
2518 * We write y values (PCDAC/PDADC steps) on hw.
2519 */
2520 static void
ath5k_create_power_curve(s16 pmin,s16 pmax,const s16 * pwr,const u8 * vpd,u8 num_points,u8 * vpd_table,u8 type)2521 ath5k_create_power_curve(s16 pmin, s16 pmax,
2522 const s16 *pwr, const u8 *vpd,
2523 u8 num_points,
2524 u8 *vpd_table, u8 type)
2525 {
2526 u8 idx[2] = { 0, 1 };
2527 s16 pwr_i = 2 * pmin;
2528 int i;
2529
2530 if (num_points < 2)
2531 return;
2532
2533 /* We want the whole line, so adjust boundaries
2534 * to cover the entire power range. Note that
2535 * power values are already 0.25dB so no need
2536 * to multiply pwr_i by 2 */
2537 if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2538 pwr_i = pmin;
2539 pmin = 0;
2540 pmax = 63;
2541 }
2542
2543 /* Find surrounding turning points (TPs)
2544 * and interpolate between them */
2545 for (i = 0; (i <= (u16) (pmax - pmin)) &&
2546 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2547
2548 /* We passed the right TP, move to the next set of TPs
2549 * if we pass the last TP, extrapolate above using the last
2550 * two TPs for ratio */
2551 if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2552 idx[0]++;
2553 idx[1]++;
2554 }
2555
2556 vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2557 pwr[idx[0]], pwr[idx[1]],
2558 vpd[idx[0]], vpd[idx[1]]);
2559
2560 /* Increase by 0.5dB
2561 * (0.25 dB units) */
2562 pwr_i += 2;
2563 }
2564 }
2565
2566 /**
2567 * ath5k_get_chan_pcal_surrounding_piers() - Get surrounding calibration piers
2568 * for a given channel.
2569 * @ah: The &struct ath5k_hw
2570 * @channel: The &struct ieee80211_channel
2571 * @pcinfo_l: The &struct ath5k_chan_pcal_info to put the left cal. pier
2572 * @pcinfo_r: The &struct ath5k_chan_pcal_info to put the right cal. pier
2573 *
2574 * Get the surrounding per-channel power calibration piers
2575 * for a given frequency so that we can interpolate between
2576 * them and come up with an appropriate dataset for our current
2577 * channel.
2578 */
2579 static void
ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw * ah,struct ieee80211_channel * channel,struct ath5k_chan_pcal_info ** pcinfo_l,struct ath5k_chan_pcal_info ** pcinfo_r)2580 ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2581 struct ieee80211_channel *channel,
2582 struct ath5k_chan_pcal_info **pcinfo_l,
2583 struct ath5k_chan_pcal_info **pcinfo_r)
2584 {
2585 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2586 struct ath5k_chan_pcal_info *pcinfo;
2587 u8 idx_l, idx_r;
2588 u8 mode, max, i;
2589 u32 target = channel->center_freq;
2590
2591 idx_l = 0;
2592 idx_r = 0;
2593
2594 switch (channel->hw_value) {
2595 case AR5K_EEPROM_MODE_11A:
2596 pcinfo = ee->ee_pwr_cal_a;
2597 mode = AR5K_EEPROM_MODE_11A;
2598 break;
2599 case AR5K_EEPROM_MODE_11B:
2600 pcinfo = ee->ee_pwr_cal_b;
2601 mode = AR5K_EEPROM_MODE_11B;
2602 break;
2603 case AR5K_EEPROM_MODE_11G:
2604 default:
2605 pcinfo = ee->ee_pwr_cal_g;
2606 mode = AR5K_EEPROM_MODE_11G;
2607 break;
2608 }
2609 max = ee->ee_n_piers[mode] - 1;
2610
2611 /* Frequency is below our calibrated
2612 * range. Use the lowest power curve
2613 * we have */
2614 if (target < pcinfo[0].freq) {
2615 idx_l = idx_r = 0;
2616 goto done;
2617 }
2618
2619 /* Frequency is above our calibrated
2620 * range. Use the highest power curve
2621 * we have */
2622 if (target > pcinfo[max].freq) {
2623 idx_l = idx_r = max;
2624 goto done;
2625 }
2626
2627 /* Frequency is inside our calibrated
2628 * channel range. Pick the surrounding
2629 * calibration piers so that we can
2630 * interpolate */
2631 for (i = 0; i <= max; i++) {
2632
2633 /* Frequency matches one of our calibration
2634 * piers, no need to interpolate, just use
2635 * that calibration pier */
2636 if (pcinfo[i].freq == target) {
2637 idx_l = idx_r = i;
2638 goto done;
2639 }
2640
2641 /* We found a calibration pier that's above
2642 * frequency, use this pier and the previous
2643 * one to interpolate */
2644 if (target < pcinfo[i].freq) {
2645 idx_r = i;
2646 idx_l = idx_r - 1;
2647 goto done;
2648 }
2649 }
2650
2651 done:
2652 *pcinfo_l = &pcinfo[idx_l];
2653 *pcinfo_r = &pcinfo[idx_r];
2654 }
2655
2656 /**
2657 * ath5k_get_rate_pcal_data() - Get the interpolated per-rate power
2658 * calibration data
2659 * @ah: The &struct ath5k_hw *ah,
2660 * @channel: The &struct ieee80211_channel
2661 * @rates: The &struct ath5k_rate_pcal_info to fill
2662 *
2663 * Get the surrounding per-rate power calibration data
2664 * for a given frequency and interpolate between power
2665 * values to set max target power supported by hw for
2666 * each rate on this frequency.
2667 */
2668 static void
ath5k_get_rate_pcal_data(struct ath5k_hw * ah,struct ieee80211_channel * channel,struct ath5k_rate_pcal_info * rates)2669 ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2670 struct ieee80211_channel *channel,
2671 struct ath5k_rate_pcal_info *rates)
2672 {
2673 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2674 struct ath5k_rate_pcal_info *rpinfo;
2675 u8 idx_l, idx_r;
2676 u8 mode, max, i;
2677 u32 target = channel->center_freq;
2678
2679 idx_l = 0;
2680 idx_r = 0;
2681
2682 switch (channel->hw_value) {
2683 case AR5K_MODE_11A:
2684 rpinfo = ee->ee_rate_tpwr_a;
2685 mode = AR5K_EEPROM_MODE_11A;
2686 break;
2687 case AR5K_MODE_11B:
2688 rpinfo = ee->ee_rate_tpwr_b;
2689 mode = AR5K_EEPROM_MODE_11B;
2690 break;
2691 case AR5K_MODE_11G:
2692 default:
2693 rpinfo = ee->ee_rate_tpwr_g;
2694 mode = AR5K_EEPROM_MODE_11G;
2695 break;
2696 }
2697 max = ee->ee_rate_target_pwr_num[mode] - 1;
2698
2699 /* Get the surrounding calibration
2700 * piers - same as above */
2701 if (target < rpinfo[0].freq) {
2702 idx_l = idx_r = 0;
2703 goto done;
2704 }
2705
2706 if (target > rpinfo[max].freq) {
2707 idx_l = idx_r = max;
2708 goto done;
2709 }
2710
2711 for (i = 0; i <= max; i++) {
2712
2713 if (rpinfo[i].freq == target) {
2714 idx_l = idx_r = i;
2715 goto done;
2716 }
2717
2718 if (target < rpinfo[i].freq) {
2719 idx_r = i;
2720 idx_l = idx_r - 1;
2721 goto done;
2722 }
2723 }
2724
2725 done:
2726 /* Now interpolate power value, based on the frequency */
2727 rates->freq = target;
2728
2729 rates->target_power_6to24 =
2730 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2731 rpinfo[idx_r].freq,
2732 rpinfo[idx_l].target_power_6to24,
2733 rpinfo[idx_r].target_power_6to24);
2734
2735 rates->target_power_36 =
2736 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2737 rpinfo[idx_r].freq,
2738 rpinfo[idx_l].target_power_36,
2739 rpinfo[idx_r].target_power_36);
2740
2741 rates->target_power_48 =
2742 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2743 rpinfo[idx_r].freq,
2744 rpinfo[idx_l].target_power_48,
2745 rpinfo[idx_r].target_power_48);
2746
2747 rates->target_power_54 =
2748 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2749 rpinfo[idx_r].freq,
2750 rpinfo[idx_l].target_power_54,
2751 rpinfo[idx_r].target_power_54);
2752 }
2753
2754 /**
2755 * ath5k_get_max_ctl_power() - Get max edge power for a given frequency
2756 * @ah: the &struct ath5k_hw
2757 * @channel: The &struct ieee80211_channel
2758 *
2759 * Get the max edge power for this channel if
2760 * we have such data from EEPROM's Conformance Test
2761 * Limits (CTL), and limit max power if needed.
2762 */
2763 static void
ath5k_get_max_ctl_power(struct ath5k_hw * ah,struct ieee80211_channel * channel)2764 ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2765 struct ieee80211_channel *channel)
2766 {
2767 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2768 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2769 struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2770 u8 *ctl_val = ee->ee_ctl;
2771 s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2772 s16 edge_pwr = 0;
2773 u8 rep_idx;
2774 u8 i, ctl_mode;
2775 u8 ctl_idx = 0xFF;
2776 u32 target = channel->center_freq;
2777
2778 ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2779
2780 switch (channel->hw_value) {
2781 case AR5K_MODE_11A:
2782 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2783 ctl_mode |= AR5K_CTL_TURBO;
2784 else
2785 ctl_mode |= AR5K_CTL_11A;
2786 break;
2787 case AR5K_MODE_11G:
2788 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2789 ctl_mode |= AR5K_CTL_TURBOG;
2790 else
2791 ctl_mode |= AR5K_CTL_11G;
2792 break;
2793 case AR5K_MODE_11B:
2794 ctl_mode |= AR5K_CTL_11B;
2795 break;
2796 default:
2797 return;
2798 }
2799
2800 for (i = 0; i < ee->ee_ctls; i++) {
2801 if (ctl_val[i] == ctl_mode) {
2802 ctl_idx = i;
2803 break;
2804 }
2805 }
2806
2807 /* If we have a CTL dataset available grab it and find the
2808 * edge power for our frequency */
2809 if (ctl_idx == 0xFF)
2810 return;
2811
2812 /* Edge powers are sorted by frequency from lower
2813 * to higher. Each CTL corresponds to 8 edge power
2814 * measurements. */
2815 rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2816
2817 /* Don't do boundaries check because we
2818 * might have more that one bands defined
2819 * for this mode */
2820
2821 /* Get the edge power that's closer to our
2822 * frequency */
2823 for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2824 rep_idx += i;
2825 if (target <= rep[rep_idx].freq)
2826 edge_pwr = (s16) rep[rep_idx].edge;
2827 }
2828
2829 if (edge_pwr)
2830 ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr);
2831 }
2832
2833
2834 /*
2835 * Power to PCDAC table functions
2836 */
2837
2838 /**
2839 * DOC: Power to PCDAC table functions
2840 *
2841 * For RF5111 we have an XPD -eXternal Power Detector- curve
2842 * for each calibrated channel. Each curve has 0,5dB Power steps
2843 * on x axis and PCDAC steps (offsets) on y axis and looks like an
2844 * exponential function. To recreate the curve we read 11 points
2845 * from eeprom (eeprom.c) and interpolate here.
2846 *
2847 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
2848 * for each calibrated channel on 0, -6, -12 and -18dBm but we only
2849 * use the higher (3) and the lower (0) curves. Each curve again has 0.5dB
2850 * power steps on x axis and PCDAC steps on y axis and looks like a
2851 * linear function. To recreate the curve and pass the power values
2852 * on hw, we get 4 points for xpd 0 (lower gain -> max power)
2853 * and 3 points for xpd 3 (higher gain -> lower power) from eeprom (eeprom.c)
2854 * and interpolate here.
2855 *
2856 * For a given channel we get the calibrated points (piers) for it or
2857 * -if we don't have calibration data for this specific channel- from the
2858 * available surrounding channels we have calibration data for, after we do a
2859 * linear interpolation between them. Then since we have our calibrated points
2860 * for this channel, we do again a linear interpolation between them to get the
2861 * whole curve.
2862 *
2863 * We finally write the Y values of the curve(s) (the PCDAC values) on hw
2864 */
2865
2866 /**
2867 * ath5k_fill_pwr_to_pcdac_table() - Fill Power to PCDAC table on RF5111
2868 * @ah: The &struct ath5k_hw
2869 * @table_min: Minimum power (x min)
2870 * @table_max: Maximum power (x max)
2871 *
2872 * No further processing is needed for RF5111, the only thing we have to
2873 * do is fill the values below and above calibration range since eeprom data
2874 * may not cover the entire PCDAC table.
2875 */
2876 static void
ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw * ah,s16 * table_min,s16 * table_max)2877 ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2878 s16 *table_max)
2879 {
2880 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2881 u8 *pcdac_tmp = ah->ah_txpower.tmpL[0];
2882 u8 pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2883 s16 min_pwr, max_pwr;
2884
2885 /* Get table boundaries */
2886 min_pwr = table_min[0];
2887 pcdac_0 = pcdac_tmp[0];
2888
2889 max_pwr = table_max[0];
2890 pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2891
2892 /* Extrapolate below minimum using pcdac_0 */
2893 pcdac_i = 0;
2894 for (i = 0; i < min_pwr; i++)
2895 pcdac_out[pcdac_i++] = pcdac_0;
2896
2897 /* Copy values from pcdac_tmp */
2898 pwr_idx = min_pwr;
2899 for (i = 0; pwr_idx <= max_pwr &&
2900 pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2901 pcdac_out[pcdac_i++] = pcdac_tmp[i];
2902 pwr_idx++;
2903 }
2904
2905 /* Extrapolate above maximum */
2906 while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2907 pcdac_out[pcdac_i++] = pcdac_n;
2908
2909 }
2910
2911 /**
2912 * ath5k_combine_linear_pcdac_curves() - Combine available PCDAC Curves
2913 * @ah: The &struct ath5k_hw
2914 * @table_min: Minimum power (x min)
2915 * @table_max: Maximum power (x max)
2916 * @pdcurves: Number of pd curves
2917 *
2918 * Combine available XPD Curves and fill Linear Power to PCDAC table on RF5112
2919 * RFX112 can have up to 2 curves (one for low txpower range and one for
2920 * higher txpower range). We need to put them both on pcdac_out and place
2921 * them in the correct location. In case we only have one curve available
2922 * just fit it on pcdac_out (it's supposed to cover the entire range of
2923 * available pwr levels since it's always the higher power curve). Extrapolate
2924 * below and above final table if needed.
2925 */
2926 static void
ath5k_combine_linear_pcdac_curves(struct ath5k_hw * ah,s16 * table_min,s16 * table_max,u8 pdcurves)2927 ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2928 s16 *table_max, u8 pdcurves)
2929 {
2930 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2931 u8 *pcdac_low_pwr;
2932 u8 *pcdac_high_pwr;
2933 u8 *pcdac_tmp;
2934 u8 pwr;
2935 s16 max_pwr_idx;
2936 s16 min_pwr_idx;
2937 s16 mid_pwr_idx = 0;
2938 /* Edge flag turns on the 7nth bit on the PCDAC
2939 * to declare the higher power curve (force values
2940 * to be greater than 64). If we only have one curve
2941 * we don't need to set this, if we have 2 curves and
2942 * fill the table backwards this can also be used to
2943 * switch from higher power curve to lower power curve */
2944 u8 edge_flag;
2945 int i;
2946
2947 /* When we have only one curve available
2948 * that's the higher power curve. If we have
2949 * two curves the first is the high power curve
2950 * and the next is the low power curve. */
2951 if (pdcurves > 1) {
2952 pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2953 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2954 mid_pwr_idx = table_max[1] - table_min[1] - 1;
2955 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2956
2957 /* If table size goes beyond 31.5dB, keep the
2958 * upper 31.5dB range when setting tx power.
2959 * Note: 126 = 31.5 dB in quarter dB steps */
2960 if (table_max[0] - table_min[1] > 126)
2961 min_pwr_idx = table_max[0] - 126;
2962 else
2963 min_pwr_idx = table_min[1];
2964
2965 /* Since we fill table backwards
2966 * start from high power curve */
2967 pcdac_tmp = pcdac_high_pwr;
2968
2969 edge_flag = 0x40;
2970 } else {
2971 pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2972 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2973 min_pwr_idx = table_min[0];
2974 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2975 pcdac_tmp = pcdac_high_pwr;
2976 edge_flag = 0;
2977 }
2978
2979 /* This is used when setting tx power*/
2980 ah->ah_txpower.txp_min_idx = min_pwr_idx / 2;
2981
2982 /* Fill Power to PCDAC table backwards */
2983 pwr = max_pwr_idx;
2984 for (i = 63; i >= 0; i--) {
2985 /* Entering lower power range, reset
2986 * edge flag and set pcdac_tmp to lower
2987 * power curve.*/
2988 if (edge_flag == 0x40 &&
2989 (2 * pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2990 edge_flag = 0x00;
2991 pcdac_tmp = pcdac_low_pwr;
2992 pwr = mid_pwr_idx / 2;
2993 }
2994
2995 /* Don't go below 1, extrapolate below if we have
2996 * already switched to the lower power curve -or
2997 * we only have one curve and edge_flag is zero
2998 * anyway */
2999 if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
3000 while (i >= 0) {
3001 pcdac_out[i] = pcdac_out[i + 1];
3002 i--;
3003 }
3004 break;
3005 }
3006
3007 pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
3008
3009 /* Extrapolate above if pcdac is greater than
3010 * 126 -this can happen because we OR pcdac_out
3011 * value with edge_flag on high power curve */
3012 if (pcdac_out[i] > 126)
3013 pcdac_out[i] = 126;
3014
3015 /* Decrease by a 0.5dB step */
3016 pwr--;
3017 }
3018 }
3019
3020 /**
3021 * ath5k_write_pcdac_table() - Write the PCDAC values on hw
3022 * @ah: The &struct ath5k_hw
3023 */
3024 static void
ath5k_write_pcdac_table(struct ath5k_hw * ah)3025 ath5k_write_pcdac_table(struct ath5k_hw *ah)
3026 {
3027 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
3028 int i;
3029
3030 /*
3031 * Write TX power values
3032 */
3033 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
3034 ath5k_hw_reg_write(ah,
3035 (((pcdac_out[2 * i + 0] << 8 | 0xff) & 0xffff) << 0) |
3036 (((pcdac_out[2 * i + 1] << 8 | 0xff) & 0xffff) << 16),
3037 AR5K_PHY_PCDAC_TXPOWER(i));
3038 }
3039 }
3040
3041
3042 /*
3043 * Power to PDADC table functions
3044 */
3045
3046 /**
3047 * DOC: Power to PDADC table functions
3048 *
3049 * For RF2413 and later we have a Power to PDADC table (Power Detector)
3050 * instead of a PCDAC (Power Control) and 4 pd gain curves for each
3051 * calibrated channel. Each curve has power on x axis in 0.5 db steps and
3052 * PDADC steps on y axis and looks like an exponential function like the
3053 * RF5111 curve.
3054 *
3055 * To recreate the curves we read the points from eeprom (eeprom.c)
3056 * and interpolate here. Note that in most cases only 2 (higher and lower)
3057 * curves are used (like RF5112) but vendors have the opportunity to include
3058 * all 4 curves on eeprom. The final curve (higher power) has an extra
3059 * point for better accuracy like RF5112.
3060 *
3061 * The process is similar to what we do above for RF5111/5112
3062 */
3063
3064 /**
3065 * ath5k_combine_pwr_to_pdadc_curves() - Combine the various PDADC curves
3066 * @ah: The &struct ath5k_hw
3067 * @pwr_min: Minimum power (x min)
3068 * @pwr_max: Maximum power (x max)
3069 * @pdcurves: Number of available curves
3070 *
3071 * Combine the various pd curves and create the final Power to PDADC table
3072 * We can have up to 4 pd curves, we need to do a similar process
3073 * as we do for RF5112. This time we don't have an edge_flag but we
3074 * set the gain boundaries on a separate register.
3075 */
3076 static void
ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw * ah,s16 * pwr_min,s16 * pwr_max,u8 pdcurves)3077 ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
3078 s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
3079 {
3080 u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
3081 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
3082 u8 *pdadc_tmp;
3083 s16 pdadc_0;
3084 u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
3085 u8 pd_gain_overlap;
3086
3087 /* Note: Register value is initialized on initvals
3088 * there is no feedback from hw.
3089 * XXX: What about pd_gain_overlap from EEPROM ? */
3090 pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
3091 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
3092
3093 /* Create final PDADC table */
3094 for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
3095 pdadc_tmp = ah->ah_txpower.tmpL[pdg];
3096
3097 if (pdg == pdcurves - 1)
3098 /* 2 dB boundary stretch for last
3099 * (higher power) curve */
3100 gain_boundaries[pdg] = pwr_max[pdg] + 4;
3101 else
3102 /* Set gain boundary in the middle
3103 * between this curve and the next one */
3104 gain_boundaries[pdg] =
3105 (pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
3106
3107 /* Sanity check in case our 2 db stretch got out of
3108 * range. */
3109 if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
3110 gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
3111
3112 /* For the first curve (lower power)
3113 * start from 0 dB */
3114 if (pdg == 0)
3115 pdadc_0 = 0;
3116 else
3117 /* For the other curves use the gain overlap */
3118 pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
3119 pd_gain_overlap;
3120
3121 /* Force each power step to be at least 0.5 dB */
3122 if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
3123 pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
3124 else
3125 pwr_step = 1;
3126
3127 /* If pdadc_0 is negative, we need to extrapolate
3128 * below this pdgain by a number of pwr_steps */
3129 while ((pdadc_0 < 0) && (pdadc_i < 128)) {
3130 s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
3131 pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
3132 pdadc_0++;
3133 }
3134
3135 /* Set last pwr level, using gain boundaries */
3136 pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
3137 /* Limit it to be inside pwr range */
3138 table_size = pwr_max[pdg] - pwr_min[pdg];
3139 max_idx = min(pdadc_n, table_size);
3140
3141 /* Fill pdadc_out table */
3142 while (pdadc_0 < max_idx && pdadc_i < 128)
3143 pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
3144
3145 /* Need to extrapolate above this pdgain? */
3146 if (pdadc_n <= max_idx)
3147 continue;
3148
3149 /* Force each power step to be at least 0.5 dB */
3150 if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
3151 pwr_step = pdadc_tmp[table_size - 1] -
3152 pdadc_tmp[table_size - 2];
3153 else
3154 pwr_step = 1;
3155
3156 /* Extrapolate above */
3157 while ((pdadc_0 < (s16) pdadc_n) &&
3158 (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
3159 s16 tmp = pdadc_tmp[table_size - 1] +
3160 (pdadc_0 - max_idx) * pwr_step;
3161 pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
3162 pdadc_0++;
3163 }
3164 }
3165
3166 while (pdg < AR5K_EEPROM_N_PD_GAINS) {
3167 gain_boundaries[pdg] = gain_boundaries[pdg - 1];
3168 pdg++;
3169 }
3170
3171 while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
3172 pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
3173 pdadc_i++;
3174 }
3175
3176 /* Set gain boundaries */
3177 ath5k_hw_reg_write(ah,
3178 AR5K_REG_SM(pd_gain_overlap,
3179 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
3180 AR5K_REG_SM(gain_boundaries[0],
3181 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
3182 AR5K_REG_SM(gain_boundaries[1],
3183 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
3184 AR5K_REG_SM(gain_boundaries[2],
3185 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
3186 AR5K_REG_SM(gain_boundaries[3],
3187 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
3188 AR5K_PHY_TPC_RG5);
3189
3190 /* Used for setting rate power table */
3191 ah->ah_txpower.txp_min_idx = pwr_min[0];
3192
3193 }
3194
3195 /**
3196 * ath5k_write_pwr_to_pdadc_table() - Write the PDADC values on hw
3197 * @ah: The &struct ath5k_hw
3198 * @ee_mode: One of enum ath5k_driver_mode
3199 */
3200 static void
ath5k_write_pwr_to_pdadc_table(struct ath5k_hw * ah,u8 ee_mode)3201 ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
3202 {
3203 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
3204 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
3205 u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
3206 u8 pdcurves = ee->ee_pd_gains[ee_mode];
3207 u32 reg;
3208 u8 i;
3209
3210 /* Select the right pdgain curves */
3211
3212 /* Clear current settings */
3213 reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
3214 reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
3215 AR5K_PHY_TPC_RG1_PDGAIN_2 |
3216 AR5K_PHY_TPC_RG1_PDGAIN_3 |
3217 AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
3218
3219 /*
3220 * Use pd_gains curve from eeprom
3221 *
3222 * This overrides the default setting from initvals
3223 * in case some vendors (e.g. Zcomax) don't use the default
3224 * curves. If we don't honor their settings we 'll get a
3225 * 5dB (1 * gain overlap ?) drop.
3226 */
3227 reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
3228
3229 switch (pdcurves) {
3230 case 3:
3231 reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
3232 fallthrough;
3233 case 2:
3234 reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
3235 fallthrough;
3236 case 1:
3237 reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
3238 break;
3239 }
3240 ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
3241
3242 /*
3243 * Write TX power values
3244 */
3245 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
3246 u32 val = get_unaligned_le32(&pdadc_out[4 * i]);
3247 ath5k_hw_reg_write(ah, val, AR5K_PHY_PDADC_TXPOWER(i));
3248 }
3249 }
3250
3251
3252 /*
3253 * Common code for PCDAC/PDADC tables
3254 */
3255
3256 /**
3257 * ath5k_setup_channel_powertable() - Set up power table for this channel
3258 * @ah: The &struct ath5k_hw
3259 * @channel: The &struct ieee80211_channel
3260 * @ee_mode: One of enum ath5k_driver_mode
3261 * @type: One of enum ath5k_powertable_type (eeprom.h)
3262 *
3263 * This is the main function that uses all of the above
3264 * to set PCDAC/PDADC table on hw for the current channel.
3265 * This table is used for tx power calibration on the baseband,
3266 * without it we get weird tx power levels and in some cases
3267 * distorted spectral mask
3268 */
3269 static int
ath5k_setup_channel_powertable(struct ath5k_hw * ah,struct ieee80211_channel * channel,u8 ee_mode,u8 type)3270 ath5k_setup_channel_powertable(struct ath5k_hw *ah,
3271 struct ieee80211_channel *channel,
3272 u8 ee_mode, u8 type)
3273 {
3274 struct ath5k_pdgain_info *pdg_L, *pdg_R;
3275 struct ath5k_chan_pcal_info *pcinfo_L;
3276 struct ath5k_chan_pcal_info *pcinfo_R;
3277 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
3278 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
3279 s16 table_min[AR5K_EEPROM_N_PD_GAINS];
3280 s16 table_max[AR5K_EEPROM_N_PD_GAINS];
3281 u8 *tmpL;
3282 u8 *tmpR;
3283 u32 target = channel->center_freq;
3284 int pdg, i;
3285
3286 /* Get surrounding freq piers for this channel */
3287 ath5k_get_chan_pcal_surrounding_piers(ah, channel,
3288 &pcinfo_L,
3289 &pcinfo_R);
3290
3291 /* Loop over pd gain curves on
3292 * surrounding freq piers by index */
3293 for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
3294
3295 /* Fill curves in reverse order
3296 * from lower power (max gain)
3297 * to higher power. Use curve -> idx
3298 * backmapping we did on eeprom init */
3299 u8 idx = pdg_curve_to_idx[pdg];
3300
3301 /* Grab the needed curves by index */
3302 pdg_L = &pcinfo_L->pd_curves[idx];
3303 pdg_R = &pcinfo_R->pd_curves[idx];
3304
3305 /* Initialize the temp tables */
3306 tmpL = ah->ah_txpower.tmpL[pdg];
3307 tmpR = ah->ah_txpower.tmpR[pdg];
3308
3309 /* Set curve's x boundaries and create
3310 * curves so that they cover the same
3311 * range (if we don't do that one table
3312 * will have values on some range and the
3313 * other one won't have any so interpolation
3314 * will fail) */
3315 table_min[pdg] = min(pdg_L->pd_pwr[0],
3316 pdg_R->pd_pwr[0]) / 2;
3317
3318 table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
3319 pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
3320
3321 /* Now create the curves on surrounding channels
3322 * and interpolate if needed to get the final
3323 * curve for this gain on this channel */
3324 switch (type) {
3325 case AR5K_PWRTABLE_LINEAR_PCDAC:
3326 /* Override min/max so that we don't loose
3327 * accuracy (don't divide by 2) */
3328 table_min[pdg] = min(pdg_L->pd_pwr[0],
3329 pdg_R->pd_pwr[0]);
3330
3331 table_max[pdg] =
3332 max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
3333 pdg_R->pd_pwr[pdg_R->pd_points - 1]);
3334
3335 /* Override minimum so that we don't get
3336 * out of bounds while extrapolating
3337 * below. Don't do this when we have 2
3338 * curves and we are on the high power curve
3339 * because table_min is ok in this case */
3340 if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
3341
3342 table_min[pdg] =
3343 ath5k_get_linear_pcdac_min(pdg_L->pd_step,
3344 pdg_R->pd_step,
3345 pdg_L->pd_pwr,
3346 pdg_R->pd_pwr);
3347
3348 /* Don't go too low because we will
3349 * miss the upper part of the curve.
3350 * Note: 126 = 31.5dB (max power supported)
3351 * in 0.25dB units */
3352 if (table_max[pdg] - table_min[pdg] > 126)
3353 table_min[pdg] = table_max[pdg] - 126;
3354 }
3355
3356 fallthrough;
3357 case AR5K_PWRTABLE_PWR_TO_PCDAC:
3358 case AR5K_PWRTABLE_PWR_TO_PDADC:
3359
3360 ath5k_create_power_curve(table_min[pdg],
3361 table_max[pdg],
3362 pdg_L->pd_pwr,
3363 pdg_L->pd_step,
3364 pdg_L->pd_points, tmpL, type);
3365
3366 /* We are in a calibration
3367 * pier, no need to interpolate
3368 * between freq piers */
3369 if (pcinfo_L == pcinfo_R)
3370 continue;
3371
3372 ath5k_create_power_curve(table_min[pdg],
3373 table_max[pdg],
3374 pdg_R->pd_pwr,
3375 pdg_R->pd_step,
3376 pdg_R->pd_points, tmpR, type);
3377 break;
3378 default:
3379 return -EINVAL;
3380 }
3381
3382 /* Interpolate between curves
3383 * of surrounding freq piers to
3384 * get the final curve for this
3385 * pd gain. Re-use tmpL for interpolation
3386 * output */
3387 for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
3388 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
3389 tmpL[i] = (u8) ath5k_get_interpolated_value(target,
3390 (s16) pcinfo_L->freq,
3391 (s16) pcinfo_R->freq,
3392 (s16) tmpL[i],
3393 (s16) tmpR[i]);
3394 }
3395 }
3396
3397 /* Now we have a set of curves for this
3398 * channel on tmpL (x range is table_max - table_min
3399 * and y values are tmpL[pdg][]) sorted in the same
3400 * order as EEPROM (because we've used the backmapping).
3401 * So for RF5112 it's from higher power to lower power
3402 * and for RF2413 it's from lower power to higher power.
3403 * For RF5111 we only have one curve. */
3404
3405 /* Fill min and max power levels for this
3406 * channel by interpolating the values on
3407 * surrounding channels to complete the dataset */
3408 ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
3409 (s16) pcinfo_L->freq,
3410 (s16) pcinfo_R->freq,
3411 pcinfo_L->min_pwr, pcinfo_R->min_pwr);
3412
3413 ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
3414 (s16) pcinfo_L->freq,
3415 (s16) pcinfo_R->freq,
3416 pcinfo_L->max_pwr, pcinfo_R->max_pwr);
3417
3418 /* Fill PCDAC/PDADC table */
3419 switch (type) {
3420 case AR5K_PWRTABLE_LINEAR_PCDAC:
3421 /* For RF5112 we can have one or two curves
3422 * and each curve covers a certain power lvl
3423 * range so we need to do some more processing */
3424 ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
3425 ee->ee_pd_gains[ee_mode]);
3426
3427 /* Set txp.offset so that we can
3428 * match max power value with max
3429 * table index */
3430 ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
3431 break;
3432 case AR5K_PWRTABLE_PWR_TO_PCDAC:
3433 /* We are done for RF5111 since it has only
3434 * one curve, just fit the curve on the table */
3435 ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
3436
3437 /* No rate powertable adjustment for RF5111 */
3438 ah->ah_txpower.txp_min_idx = 0;
3439 ah->ah_txpower.txp_offset = 0;
3440 break;
3441 case AR5K_PWRTABLE_PWR_TO_PDADC:
3442 /* Set PDADC boundaries and fill
3443 * final PDADC table */
3444 ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
3445 ee->ee_pd_gains[ee_mode]);
3446
3447 /* Set txp.offset, note that table_min
3448 * can be negative */
3449 ah->ah_txpower.txp_offset = table_min[0];
3450 break;
3451 default:
3452 return -EINVAL;
3453 }
3454
3455 ah->ah_txpower.txp_setup = true;
3456
3457 return 0;
3458 }
3459
3460 /**
3461 * ath5k_write_channel_powertable() - Set power table for current channel on hw
3462 * @ah: The &struct ath5k_hw
3463 * @ee_mode: One of enum ath5k_driver_mode
3464 * @type: One of enum ath5k_powertable_type (eeprom.h)
3465 */
3466 static void
ath5k_write_channel_powertable(struct ath5k_hw * ah,u8 ee_mode,u8 type)3467 ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
3468 {
3469 if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
3470 ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
3471 else
3472 ath5k_write_pcdac_table(ah);
3473 }
3474
3475
3476 /**
3477 * DOC: Per-rate tx power setting
3478 *
3479 * This is the code that sets the desired tx power limit (below
3480 * maximum) on hw for each rate (we also have TPC that sets
3481 * power per packet type). We do that by providing an index on the
3482 * PCDAC/PDADC table we set up above, for each rate.
3483 *
3484 * For now we only limit txpower based on maximum tx power
3485 * supported by hw (what's inside rate_info) + conformance test
3486 * limits. We need to limit this even more, based on regulatory domain
3487 * etc to be safe. Normally this is done from above so we don't care
3488 * here, all we care is that the tx power we set will be O.K.
3489 * for the hw (e.g. won't create noise on PA etc).
3490 *
3491 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps -
3492 * x values) and is indexed as follows:
3493 * rates[0] - rates[7] -> OFDM rates
3494 * rates[8] - rates[14] -> CCK rates
3495 * rates[15] -> XR rates (they all have the same power)
3496 */
3497
3498 /**
3499 * ath5k_setup_rate_powertable() - Set up rate power table for a given tx power
3500 * @ah: The &struct ath5k_hw
3501 * @max_pwr: The maximum tx power requested in 0.5dB steps
3502 * @rate_info: The &struct ath5k_rate_pcal_info to fill
3503 * @ee_mode: One of enum ath5k_driver_mode
3504 */
3505 static void
ath5k_setup_rate_powertable(struct ath5k_hw * ah,u16 max_pwr,struct ath5k_rate_pcal_info * rate_info,u8 ee_mode)3506 ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
3507 struct ath5k_rate_pcal_info *rate_info,
3508 u8 ee_mode)
3509 {
3510 unsigned int i;
3511 u16 *rates;
3512 s16 rate_idx_scaled = 0;
3513
3514 /* max_pwr is power level we got from driver/user in 0.5dB
3515 * units, switch to 0.25dB units so we can compare */
3516 max_pwr *= 2;
3517 max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
3518
3519 /* apply rate limits */
3520 rates = ah->ah_txpower.txp_rates_power_table;
3521
3522 /* OFDM rates 6 to 24Mb/s */
3523 for (i = 0; i < 5; i++)
3524 rates[i] = min(max_pwr, rate_info->target_power_6to24);
3525
3526 /* Rest OFDM rates */
3527 rates[5] = min(rates[0], rate_info->target_power_36);
3528 rates[6] = min(rates[0], rate_info->target_power_48);
3529 rates[7] = min(rates[0], rate_info->target_power_54);
3530
3531 /* CCK rates */
3532 /* 1L */
3533 rates[8] = min(rates[0], rate_info->target_power_6to24);
3534 /* 2L */
3535 rates[9] = min(rates[0], rate_info->target_power_36);
3536 /* 2S */
3537 rates[10] = min(rates[0], rate_info->target_power_36);
3538 /* 5L */
3539 rates[11] = min(rates[0], rate_info->target_power_48);
3540 /* 5S */
3541 rates[12] = min(rates[0], rate_info->target_power_48);
3542 /* 11L */
3543 rates[13] = min(rates[0], rate_info->target_power_54);
3544 /* 11S */
3545 rates[14] = min(rates[0], rate_info->target_power_54);
3546
3547 /* XR rates */
3548 rates[15] = min(rates[0], rate_info->target_power_6to24);
3549
3550 /* CCK rates have different peak to average ratio
3551 * so we have to tweak their power so that gainf
3552 * correction works ok. For this we use OFDM to
3553 * CCK delta from eeprom */
3554 if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
3555 (ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3556 for (i = 8; i <= 15; i++)
3557 rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3558
3559 /* Save min/max and current tx power for this channel
3560 * in 0.25dB units.
3561 *
3562 * Note: We use rates[0] for current tx power because
3563 * it covers most of the rates, in most cases. It's our
3564 * tx power limit and what the user expects to see. */
3565 ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3566 ah->ah_txpower.txp_cur_pwr = 2 * rates[0];
3567
3568 /* Set max txpower for correct OFDM operation on all rates
3569 * -that is the txpower for 54Mbit-, it's used for the PAPD
3570 * gain probe and it's in 0.5dB units */
3571 ah->ah_txpower.txp_ofdm = rates[7];
3572
3573 /* Now that we have all rates setup use table offset to
3574 * match the power range set by user with the power indices
3575 * on PCDAC/PDADC table */
3576 for (i = 0; i < 16; i++) {
3577 rate_idx_scaled = rates[i] + ah->ah_txpower.txp_offset;
3578 /* Don't get out of bounds */
3579 if (rate_idx_scaled > 63)
3580 rate_idx_scaled = 63;
3581 if (rate_idx_scaled < 0)
3582 rate_idx_scaled = 0;
3583 rates[i] = rate_idx_scaled;
3584 }
3585 }
3586
3587
3588 /**
3589 * ath5k_hw_txpower() - Set transmission power limit for a given channel
3590 * @ah: The &struct ath5k_hw
3591 * @channel: The &struct ieee80211_channel
3592 * @txpower: Requested tx power in 0.5dB steps
3593 *
3594 * Combines all of the above to set the requested tx power limit
3595 * on hw.
3596 */
3597 static int
ath5k_hw_txpower(struct ath5k_hw * ah,struct ieee80211_channel * channel,u8 txpower)3598 ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3599 u8 txpower)
3600 {
3601 struct ath5k_rate_pcal_info rate_info;
3602 struct ieee80211_channel *curr_channel = ah->ah_current_channel;
3603 int ee_mode;
3604 u8 type;
3605 int ret;
3606
3607 if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3608 ATH5K_ERR(ah, "invalid tx power: %u\n", txpower);
3609 return -EINVAL;
3610 }
3611
3612 ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);
3613
3614 /* Initialize TX power table */
3615 switch (ah->ah_radio) {
3616 case AR5K_RF5110:
3617 /* TODO */
3618 return 0;
3619 case AR5K_RF5111:
3620 type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3621 break;
3622 case AR5K_RF5112:
3623 type = AR5K_PWRTABLE_LINEAR_PCDAC;
3624 break;
3625 case AR5K_RF2413:
3626 case AR5K_RF5413:
3627 case AR5K_RF2316:
3628 case AR5K_RF2317:
3629 case AR5K_RF2425:
3630 type = AR5K_PWRTABLE_PWR_TO_PDADC;
3631 break;
3632 default:
3633 return -EINVAL;
3634 }
3635
3636 /*
3637 * If we don't change channel/mode skip tx powertable calculation
3638 * and use the cached one.
3639 */
3640 if (!ah->ah_txpower.txp_setup ||
3641 (channel->hw_value != curr_channel->hw_value) ||
3642 (channel->center_freq != curr_channel->center_freq)) {
3643 /* Reset TX power values but preserve requested
3644 * tx power from above */
3645 int requested_txpower = ah->ah_txpower.txp_requested;
3646
3647 memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3648
3649 /* Restore TPC setting and requested tx power */
3650 ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3651
3652 ah->ah_txpower.txp_requested = requested_txpower;
3653
3654 /* Calculate the powertable */
3655 ret = ath5k_setup_channel_powertable(ah, channel,
3656 ee_mode, type);
3657 if (ret)
3658 return ret;
3659 }
3660
3661 /* Write table on hw */
3662 ath5k_write_channel_powertable(ah, ee_mode, type);
3663
3664 /* Limit max power if we have a CTL available */
3665 ath5k_get_max_ctl_power(ah, channel);
3666
3667 /* FIXME: Antenna reduction stuff */
3668
3669 /* FIXME: Limit power on turbo modes */
3670
3671 /* FIXME: TPC scale reduction */
3672
3673 /* Get surrounding channels for per-rate power table
3674 * calibration */
3675 ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3676
3677 /* Setup rate power table */
3678 ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3679
3680 /* Write rate power table on hw */
3681 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3682 AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3683 AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3684
3685 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3686 AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3687 AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3688
3689 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3690 AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3691 AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3692
3693 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3694 AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3695 AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3696
3697 /* FIXME: TPC support */
3698 if (ah->ah_txpower.txp_tpc) {
3699 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3700 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3701
3702 ath5k_hw_reg_write(ah,
3703 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3704 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3705 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3706 AR5K_TPC);
3707 } else {
3708 ath5k_hw_reg_write(ah, AR5K_TUNE_MAX_TXPOWER,
3709 AR5K_PHY_TXPOWER_RATE_MAX);
3710 }
3711
3712 return 0;
3713 }
3714
3715 /**
3716 * ath5k_hw_set_txpower_limit() - Set txpower limit for the current channel
3717 * @ah: The &struct ath5k_hw
3718 * @txpower: The requested tx power limit in 0.5dB steps
3719 *
3720 * This function provides access to ath5k_hw_txpower to the driver in
3721 * case user or an application changes it while PHY is running.
3722 */
3723 int
ath5k_hw_set_txpower_limit(struct ath5k_hw * ah,u8 txpower)3724 ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3725 {
3726 ATH5K_DBG(ah, ATH5K_DEBUG_TXPOWER,
3727 "changing txpower to %d\n", txpower);
3728
3729 return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower);
3730 }
3731
3732
3733 /*************\
3734 Init function
3735 \*************/
3736
3737 /**
3738 * ath5k_hw_phy_init() - Initialize PHY
3739 * @ah: The &struct ath5k_hw
3740 * @channel: The @struct ieee80211_channel
3741 * @mode: One of enum ath5k_driver_mode
3742 * @fast: Try a fast channel switch instead
3743 *
3744 * This is the main function used during reset to initialize PHY
3745 * or do a fast channel change if possible.
3746 *
3747 * NOTE: Do not call this one from the driver, it assumes PHY is in a
3748 * warm reset state !
3749 */
3750 int
ath5k_hw_phy_init(struct ath5k_hw * ah,struct ieee80211_channel * channel,u8 mode,bool fast)3751 ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3752 u8 mode, bool fast)
3753 {
3754 struct ieee80211_channel *curr_channel;
3755 int ret, i;
3756 u32 phy_tst1;
3757 ret = 0;
3758
3759 /*
3760 * Sanity check for fast flag
3761 * Don't try fast channel change when changing modulation
3762 * mode/band. We check for chip compatibility on
3763 * ath5k_hw_reset.
3764 */
3765 curr_channel = ah->ah_current_channel;
3766 if (fast && (channel->hw_value != curr_channel->hw_value))
3767 return -EINVAL;
3768
3769 /*
3770 * On fast channel change we only set the synth parameters
3771 * while PHY is running, enable calibration and skip the rest.
3772 */
3773 if (fast) {
3774 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3775 AR5K_PHY_RFBUS_REQ_REQUEST);
3776 for (i = 0; i < 100; i++) {
3777 if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
3778 break;
3779 udelay(5);
3780 }
3781 /* Failed */
3782 if (i >= 100)
3783 return -EIO;
3784
3785 /* Set channel and wait for synth */
3786 ret = ath5k_hw_channel(ah, channel);
3787 if (ret)
3788 return ret;
3789
3790 ath5k_hw_wait_for_synth(ah, channel);
3791 }
3792
3793 /*
3794 * Set TX power
3795 *
3796 * Note: We need to do that before we set
3797 * RF buffer settings on 5211/5212+ so that we
3798 * properly set curve indices.
3799 */
3800 ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_requested ?
3801 ah->ah_txpower.txp_requested * 2 :
3802 AR5K_TUNE_MAX_TXPOWER);
3803 if (ret)
3804 return ret;
3805
3806 /* Write OFDM timings on 5212*/
3807 if (ah->ah_version == AR5K_AR5212 &&
3808 channel->hw_value != AR5K_MODE_11B) {
3809
3810 ret = ath5k_hw_write_ofdm_timings(ah, channel);
3811 if (ret)
3812 return ret;
3813
3814 /* Spur info is available only from EEPROM versions
3815 * greater than 5.3, but the EEPROM routines will use
3816 * static values for older versions */
3817 if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
3818 ath5k_hw_set_spur_mitigation_filter(ah,
3819 channel);
3820 }
3821
3822 /* If we used fast channel switching
3823 * we are done, release RF bus and
3824 * fire up NF calibration.
3825 *
3826 * Note: Only NF calibration due to
3827 * channel change, not AGC calibration
3828 * since AGC is still running !
3829 */
3830 if (fast) {
3831 /*
3832 * Release RF Bus grant
3833 */
3834 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3835 AR5K_PHY_RFBUS_REQ_REQUEST);
3836
3837 /*
3838 * Start NF calibration
3839 */
3840 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3841 AR5K_PHY_AGCCTL_NF);
3842
3843 return ret;
3844 }
3845
3846 /*
3847 * For 5210 we do all initialization using
3848 * initvals, so we don't have to modify
3849 * any settings (5210 also only supports
3850 * a/aturbo modes)
3851 */
3852 if (ah->ah_version != AR5K_AR5210) {
3853
3854 /*
3855 * Write initial RF gain settings
3856 * This should work for both 5111/5112
3857 */
3858 ret = ath5k_hw_rfgain_init(ah, channel->band);
3859 if (ret)
3860 return ret;
3861
3862 usleep_range(1000, 1500);
3863
3864 /*
3865 * Write RF buffer
3866 */
3867 ret = ath5k_hw_rfregs_init(ah, channel, mode);
3868 if (ret)
3869 return ret;
3870
3871 /*Enable/disable 802.11b mode on 5111
3872 (enable 2111 frequency converter + CCK)*/
3873 if (ah->ah_radio == AR5K_RF5111) {
3874 if (mode == AR5K_MODE_11B)
3875 AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
3876 AR5K_TXCFG_B_MODE);
3877 else
3878 AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
3879 AR5K_TXCFG_B_MODE);
3880 }
3881
3882 } else if (ah->ah_version == AR5K_AR5210) {
3883 usleep_range(1000, 1500);
3884 /* Disable phy and wait */
3885 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
3886 usleep_range(1000, 1500);
3887 }
3888
3889 /* Set channel on PHY */
3890 ret = ath5k_hw_channel(ah, channel);
3891 if (ret)
3892 return ret;
3893
3894 /*
3895 * Enable the PHY and wait until completion
3896 * This includes BaseBand and Synthesizer
3897 * activation.
3898 */
3899 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
3900
3901 ath5k_hw_wait_for_synth(ah, channel);
3902
3903 /*
3904 * Perform ADC test to see if baseband is ready
3905 * Set tx hold and check adc test register
3906 */
3907 phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
3908 ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
3909 for (i = 0; i <= 20; i++) {
3910 if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
3911 break;
3912 usleep_range(200, 250);
3913 }
3914 ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
3915
3916 /*
3917 * Start automatic gain control calibration
3918 *
3919 * During AGC calibration RX path is re-routed to
3920 * a power detector so we don't receive anything.
3921 *
3922 * This method is used to calibrate some static offsets
3923 * used together with on-the fly I/Q calibration (the
3924 * one performed via ath5k_hw_phy_calibrate), which doesn't
3925 * interrupt rx path.
3926 *
3927 * While rx path is re-routed to the power detector we also
3928 * start a noise floor calibration to measure the
3929 * card's noise floor (the noise we measure when we are not
3930 * transmitting or receiving anything).
3931 *
3932 * If we are in a noisy environment, AGC calibration may time
3933 * out and/or noise floor calibration might timeout.
3934 */
3935 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3936 AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
3937
3938 /* At the same time start I/Q calibration for QAM constellation
3939 * -no need for CCK- */
3940 ah->ah_iq_cal_needed = false;
3941 if (!(mode == AR5K_MODE_11B)) {
3942 ah->ah_iq_cal_needed = true;
3943 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
3944 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
3945 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
3946 AR5K_PHY_IQ_RUN);
3947 }
3948
3949 /* Wait for gain calibration to finish (we check for I/Q calibration
3950 * during ath5k_phy_calibrate) */
3951 if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
3952 AR5K_PHY_AGCCTL_CAL, 0, false)) {
3953 ATH5K_ERR(ah, "gain calibration timeout (%uMHz)\n",
3954 channel->center_freq);
3955 }
3956
3957 /* Restore antenna mode */
3958 ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3959
3960 return ret;
3961 }
3962