1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (c) International Business Machines Corp., 2006
4 * Copyright (c) Nokia Corporation, 2007
5 *
6 * Author: Artem Bityutskiy (Битюцкий Артём),
7 * Frank Haverkamp
8 */
9
10 /*
11 * This file includes UBI initialization and building of UBI devices.
12 *
13 * When UBI is initialized, it attaches all the MTD devices specified as the
14 * module load parameters or the kernel boot parameters. If MTD devices were
15 * specified, UBI does not attach any MTD device, but it is possible to do
16 * later using the "UBI control device".
17 */
18
19 #include <linux/err.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/stringify.h>
23 #include <linux/namei.h>
24 #include <linux/stat.h>
25 #include <linux/miscdevice.h>
26 #include <linux/mtd/partitions.h>
27 #include <linux/log2.h>
28 #include <linux/kthread.h>
29 #include <linux/kernel.h>
30 #include <linux/slab.h>
31 #include <linux/major.h>
32 #include "ubi.h"
33
34 /* Maximum length of the 'mtd=' parameter */
35 #define MTD_PARAM_LEN_MAX 64
36
37 /* Maximum number of comma-separated items in the 'mtd=' parameter */
38 #define MTD_PARAM_MAX_COUNT 4
39
40 /* Maximum value for the number of bad PEBs per 1024 PEBs */
41 #define MAX_MTD_UBI_BEB_LIMIT 768
42
43 #ifdef CONFIG_MTD_UBI_MODULE
44 #define ubi_is_module() 1
45 #else
46 #define ubi_is_module() 0
47 #endif
48
49 /**
50 * struct mtd_dev_param - MTD device parameter description data structure.
51 * @name: MTD character device node path, MTD device name, or MTD device number
52 * string
53 * @ubi_num: UBI number
54 * @vid_hdr_offs: VID header offset
55 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs
56 */
57 struct mtd_dev_param {
58 char name[MTD_PARAM_LEN_MAX];
59 int ubi_num;
60 int vid_hdr_offs;
61 int max_beb_per1024;
62 };
63
64 /* Numbers of elements set in the @mtd_dev_param array */
65 static int mtd_devs;
66
67 /* MTD devices specification parameters */
68 static struct mtd_dev_param mtd_dev_param[UBI_MAX_DEVICES];
69 #ifdef CONFIG_MTD_UBI_FASTMAP
70 /* UBI module parameter to enable fastmap automatically on non-fastmap images */
71 static bool fm_autoconvert;
72 static bool fm_debug;
73 #endif
74
75 /* Slab cache for wear-leveling entries */
76 struct kmem_cache *ubi_wl_entry_slab;
77
78 /* UBI control character device */
79 static struct miscdevice ubi_ctrl_cdev = {
80 .minor = MISC_DYNAMIC_MINOR,
81 .name = "ubi_ctrl",
82 .fops = &ubi_ctrl_cdev_operations,
83 };
84
85 /* All UBI devices in system */
86 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
87
88 /* Serializes UBI devices creations and removals */
89 DEFINE_MUTEX(ubi_devices_mutex);
90
91 /* Protects @ubi_devices and @ubi->ref_count */
92 static DEFINE_SPINLOCK(ubi_devices_lock);
93
94 /* "Show" method for files in '/<sysfs>/class/ubi/' */
95 /* UBI version attribute ('/<sysfs>/class/ubi/version') */
version_show(struct class * class,struct class_attribute * attr,char * buf)96 static ssize_t version_show(struct class *class, struct class_attribute *attr,
97 char *buf)
98 {
99 return sprintf(buf, "%d\n", UBI_VERSION);
100 }
101 static CLASS_ATTR_RO(version);
102
103 static struct attribute *ubi_class_attrs[] = {
104 &class_attr_version.attr,
105 NULL,
106 };
107 ATTRIBUTE_GROUPS(ubi_class);
108
109 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
110 struct class ubi_class = {
111 .name = UBI_NAME_STR,
112 .owner = THIS_MODULE,
113 .class_groups = ubi_class_groups,
114 };
115
116 static ssize_t dev_attribute_show(struct device *dev,
117 struct device_attribute *attr, char *buf);
118
119 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
120 static struct device_attribute dev_eraseblock_size =
121 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
122 static struct device_attribute dev_avail_eraseblocks =
123 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
124 static struct device_attribute dev_total_eraseblocks =
125 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
126 static struct device_attribute dev_volumes_count =
127 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
128 static struct device_attribute dev_max_ec =
129 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
130 static struct device_attribute dev_reserved_for_bad =
131 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
132 static struct device_attribute dev_bad_peb_count =
133 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
134 static struct device_attribute dev_max_vol_count =
135 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
136 static struct device_attribute dev_min_io_size =
137 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
138 static struct device_attribute dev_bgt_enabled =
139 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
140 static struct device_attribute dev_mtd_num =
141 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
142 static struct device_attribute dev_ro_mode =
143 __ATTR(ro_mode, S_IRUGO, dev_attribute_show, NULL);
144
145 /**
146 * ubi_volume_notify - send a volume change notification.
147 * @ubi: UBI device description object
148 * @vol: volume description object of the changed volume
149 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
150 *
151 * This is a helper function which notifies all subscribers about a volume
152 * change event (creation, removal, re-sizing, re-naming, updating). Returns
153 * zero in case of success and a negative error code in case of failure.
154 */
ubi_volume_notify(struct ubi_device * ubi,struct ubi_volume * vol,int ntype)155 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)
156 {
157 int ret;
158 struct ubi_notification nt;
159
160 ubi_do_get_device_info(ubi, &nt.di);
161 ubi_do_get_volume_info(ubi, vol, &nt.vi);
162
163 switch (ntype) {
164 case UBI_VOLUME_ADDED:
165 case UBI_VOLUME_REMOVED:
166 case UBI_VOLUME_RESIZED:
167 case UBI_VOLUME_RENAMED:
168 ret = ubi_update_fastmap(ubi);
169 if (ret)
170 ubi_msg(ubi, "Unable to write a new fastmap: %i", ret);
171 }
172
173 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt);
174 }
175
176 /**
177 * ubi_notify_all - send a notification to all volumes.
178 * @ubi: UBI device description object
179 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
180 * @nb: the notifier to call
181 *
182 * This function walks all volumes of UBI device @ubi and sends the @ntype
183 * notification for each volume. If @nb is %NULL, then all registered notifiers
184 * are called, otherwise only the @nb notifier is called. Returns the number of
185 * sent notifications.
186 */
ubi_notify_all(struct ubi_device * ubi,int ntype,struct notifier_block * nb)187 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)
188 {
189 struct ubi_notification nt;
190 int i, count = 0;
191
192 ubi_do_get_device_info(ubi, &nt.di);
193
194 mutex_lock(&ubi->device_mutex);
195 for (i = 0; i < ubi->vtbl_slots; i++) {
196 /*
197 * Since the @ubi->device is locked, and we are not going to
198 * change @ubi->volumes, we do not have to lock
199 * @ubi->volumes_lock.
200 */
201 if (!ubi->volumes[i])
202 continue;
203
204 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi);
205 if (nb)
206 nb->notifier_call(nb, ntype, &nt);
207 else
208 blocking_notifier_call_chain(&ubi_notifiers, ntype,
209 &nt);
210 count += 1;
211 }
212 mutex_unlock(&ubi->device_mutex);
213
214 return count;
215 }
216
217 /**
218 * ubi_enumerate_volumes - send "add" notification for all existing volumes.
219 * @nb: the notifier to call
220 *
221 * This function walks all UBI devices and volumes and sends the
222 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
223 * registered notifiers are called, otherwise only the @nb notifier is called.
224 * Returns the number of sent notifications.
225 */
ubi_enumerate_volumes(struct notifier_block * nb)226 int ubi_enumerate_volumes(struct notifier_block *nb)
227 {
228 int i, count = 0;
229
230 /*
231 * Since the @ubi_devices_mutex is locked, and we are not going to
232 * change @ubi_devices, we do not have to lock @ubi_devices_lock.
233 */
234 for (i = 0; i < UBI_MAX_DEVICES; i++) {
235 struct ubi_device *ubi = ubi_devices[i];
236
237 if (!ubi)
238 continue;
239 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb);
240 }
241
242 return count;
243 }
244
245 /**
246 * ubi_get_device - get UBI device.
247 * @ubi_num: UBI device number
248 *
249 * This function returns UBI device description object for UBI device number
250 * @ubi_num, or %NULL if the device does not exist. This function increases the
251 * device reference count to prevent removal of the device. In other words, the
252 * device cannot be removed if its reference count is not zero.
253 */
ubi_get_device(int ubi_num)254 struct ubi_device *ubi_get_device(int ubi_num)
255 {
256 struct ubi_device *ubi;
257
258 spin_lock(&ubi_devices_lock);
259 ubi = ubi_devices[ubi_num];
260 if (ubi) {
261 ubi_assert(ubi->ref_count >= 0);
262 ubi->ref_count += 1;
263 get_device(&ubi->dev);
264 }
265 spin_unlock(&ubi_devices_lock);
266
267 return ubi;
268 }
269
270 /**
271 * ubi_put_device - drop an UBI device reference.
272 * @ubi: UBI device description object
273 */
ubi_put_device(struct ubi_device * ubi)274 void ubi_put_device(struct ubi_device *ubi)
275 {
276 spin_lock(&ubi_devices_lock);
277 ubi->ref_count -= 1;
278 put_device(&ubi->dev);
279 spin_unlock(&ubi_devices_lock);
280 }
281
282 /**
283 * ubi_get_by_major - get UBI device by character device major number.
284 * @major: major number
285 *
286 * This function is similar to 'ubi_get_device()', but it searches the device
287 * by its major number.
288 */
ubi_get_by_major(int major)289 struct ubi_device *ubi_get_by_major(int major)
290 {
291 int i;
292 struct ubi_device *ubi;
293
294 spin_lock(&ubi_devices_lock);
295 for (i = 0; i < UBI_MAX_DEVICES; i++) {
296 ubi = ubi_devices[i];
297 if (ubi && MAJOR(ubi->cdev.dev) == major) {
298 ubi_assert(ubi->ref_count >= 0);
299 ubi->ref_count += 1;
300 get_device(&ubi->dev);
301 spin_unlock(&ubi_devices_lock);
302 return ubi;
303 }
304 }
305 spin_unlock(&ubi_devices_lock);
306
307 return NULL;
308 }
309
310 /**
311 * ubi_major2num - get UBI device number by character device major number.
312 * @major: major number
313 *
314 * This function searches UBI device number object by its major number. If UBI
315 * device was not found, this function returns -ENODEV, otherwise the UBI device
316 * number is returned.
317 */
ubi_major2num(int major)318 int ubi_major2num(int major)
319 {
320 int i, ubi_num = -ENODEV;
321
322 spin_lock(&ubi_devices_lock);
323 for (i = 0; i < UBI_MAX_DEVICES; i++) {
324 struct ubi_device *ubi = ubi_devices[i];
325
326 if (ubi && MAJOR(ubi->cdev.dev) == major) {
327 ubi_num = ubi->ubi_num;
328 break;
329 }
330 }
331 spin_unlock(&ubi_devices_lock);
332
333 return ubi_num;
334 }
335
336 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
dev_attribute_show(struct device * dev,struct device_attribute * attr,char * buf)337 static ssize_t dev_attribute_show(struct device *dev,
338 struct device_attribute *attr, char *buf)
339 {
340 ssize_t ret;
341 struct ubi_device *ubi;
342
343 /*
344 * The below code looks weird, but it actually makes sense. We get the
345 * UBI device reference from the contained 'struct ubi_device'. But it
346 * is unclear if the device was removed or not yet. Indeed, if the
347 * device was removed before we increased its reference count,
348 * 'ubi_get_device()' will return -ENODEV and we fail.
349 *
350 * Remember, 'struct ubi_device' is freed in the release function, so
351 * we still can use 'ubi->ubi_num'.
352 */
353 ubi = container_of(dev, struct ubi_device, dev);
354
355 if (attr == &dev_eraseblock_size)
356 ret = sprintf(buf, "%d\n", ubi->leb_size);
357 else if (attr == &dev_avail_eraseblocks)
358 ret = sprintf(buf, "%d\n", ubi->avail_pebs);
359 else if (attr == &dev_total_eraseblocks)
360 ret = sprintf(buf, "%d\n", ubi->good_peb_count);
361 else if (attr == &dev_volumes_count)
362 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
363 else if (attr == &dev_max_ec)
364 ret = sprintf(buf, "%d\n", ubi->max_ec);
365 else if (attr == &dev_reserved_for_bad)
366 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
367 else if (attr == &dev_bad_peb_count)
368 ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
369 else if (attr == &dev_max_vol_count)
370 ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
371 else if (attr == &dev_min_io_size)
372 ret = sprintf(buf, "%d\n", ubi->min_io_size);
373 else if (attr == &dev_bgt_enabled)
374 ret = sprintf(buf, "%d\n", ubi->thread_enabled);
375 else if (attr == &dev_mtd_num)
376 ret = sprintf(buf, "%d\n", ubi->mtd->index);
377 else if (attr == &dev_ro_mode)
378 ret = sprintf(buf, "%d\n", ubi->ro_mode);
379 else
380 ret = -EINVAL;
381
382 return ret;
383 }
384
385 static struct attribute *ubi_dev_attrs[] = {
386 &dev_eraseblock_size.attr,
387 &dev_avail_eraseblocks.attr,
388 &dev_total_eraseblocks.attr,
389 &dev_volumes_count.attr,
390 &dev_max_ec.attr,
391 &dev_reserved_for_bad.attr,
392 &dev_bad_peb_count.attr,
393 &dev_max_vol_count.attr,
394 &dev_min_io_size.attr,
395 &dev_bgt_enabled.attr,
396 &dev_mtd_num.attr,
397 &dev_ro_mode.attr,
398 NULL
399 };
400 ATTRIBUTE_GROUPS(ubi_dev);
401
dev_release(struct device * dev)402 static void dev_release(struct device *dev)
403 {
404 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
405
406 kfree(ubi);
407 }
408
409 /**
410 * kill_volumes - destroy all user volumes.
411 * @ubi: UBI device description object
412 */
kill_volumes(struct ubi_device * ubi)413 static void kill_volumes(struct ubi_device *ubi)
414 {
415 int i;
416
417 for (i = 0; i < ubi->vtbl_slots; i++)
418 if (ubi->volumes[i])
419 ubi_free_volume(ubi, ubi->volumes[i]);
420 }
421
422 /**
423 * uif_init - initialize user interfaces for an UBI device.
424 * @ubi: UBI device description object
425 *
426 * This function initializes various user interfaces for an UBI device. If the
427 * initialization fails at an early stage, this function frees all the
428 * resources it allocated, returns an error.
429 *
430 * This function returns zero in case of success and a negative error code in
431 * case of failure.
432 */
uif_init(struct ubi_device * ubi)433 static int uif_init(struct ubi_device *ubi)
434 {
435 int i, err;
436 dev_t dev;
437
438 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
439
440 /*
441 * Major numbers for the UBI character devices are allocated
442 * dynamically. Major numbers of volume character devices are
443 * equivalent to ones of the corresponding UBI character device. Minor
444 * numbers of UBI character devices are 0, while minor numbers of
445 * volume character devices start from 1. Thus, we allocate one major
446 * number and ubi->vtbl_slots + 1 minor numbers.
447 */
448 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
449 if (err) {
450 ubi_err(ubi, "cannot register UBI character devices");
451 return err;
452 }
453
454 ubi->dev.devt = dev;
455
456 ubi_assert(MINOR(dev) == 0);
457 cdev_init(&ubi->cdev, &ubi_cdev_operations);
458 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
459 ubi->cdev.owner = THIS_MODULE;
460
461 dev_set_name(&ubi->dev, UBI_NAME_STR "%d", ubi->ubi_num);
462 err = cdev_device_add(&ubi->cdev, &ubi->dev);
463 if (err)
464 goto out_unreg;
465
466 for (i = 0; i < ubi->vtbl_slots; i++)
467 if (ubi->volumes[i]) {
468 err = ubi_add_volume(ubi, ubi->volumes[i]);
469 if (err) {
470 ubi_err(ubi, "cannot add volume %d", i);
471 goto out_volumes;
472 }
473 }
474
475 return 0;
476
477 out_volumes:
478 kill_volumes(ubi);
479 cdev_device_del(&ubi->cdev, &ubi->dev);
480 out_unreg:
481 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
482 ubi_err(ubi, "cannot initialize UBI %s, error %d",
483 ubi->ubi_name, err);
484 return err;
485 }
486
487 /**
488 * uif_close - close user interfaces for an UBI device.
489 * @ubi: UBI device description object
490 *
491 * Note, since this function un-registers UBI volume device objects (@vol->dev),
492 * the memory allocated voe the volumes is freed as well (in the release
493 * function).
494 */
uif_close(struct ubi_device * ubi)495 static void uif_close(struct ubi_device *ubi)
496 {
497 kill_volumes(ubi);
498 cdev_device_del(&ubi->cdev, &ubi->dev);
499 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
500 }
501
502 /**
503 * ubi_free_volumes_from - free volumes from specific index.
504 * @ubi: UBI device description object
505 * @from: the start index used for volume free.
506 */
ubi_free_volumes_from(struct ubi_device * ubi,int from)507 static void ubi_free_volumes_from(struct ubi_device *ubi, int from)
508 {
509 int i;
510
511 for (i = from; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
512 if (!ubi->volumes[i])
513 continue;
514 ubi_eba_replace_table(ubi->volumes[i], NULL);
515 ubi_fastmap_destroy_checkmap(ubi->volumes[i]);
516 kfree(ubi->volumes[i]);
517 ubi->volumes[i] = NULL;
518 }
519 }
520
521 /**
522 * ubi_free_all_volumes - free all volumes.
523 * @ubi: UBI device description object
524 */
ubi_free_all_volumes(struct ubi_device * ubi)525 void ubi_free_all_volumes(struct ubi_device *ubi)
526 {
527 ubi_free_volumes_from(ubi, 0);
528 }
529
530 /**
531 * ubi_free_internal_volumes - free internal volumes.
532 * @ubi: UBI device description object
533 */
ubi_free_internal_volumes(struct ubi_device * ubi)534 void ubi_free_internal_volumes(struct ubi_device *ubi)
535 {
536 ubi_free_volumes_from(ubi, ubi->vtbl_slots);
537 }
538
get_bad_peb_limit(const struct ubi_device * ubi,int max_beb_per1024)539 static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024)
540 {
541 int limit, device_pebs;
542 uint64_t device_size;
543
544 if (!max_beb_per1024) {
545 /*
546 * Since max_beb_per1024 has not been set by the user in either
547 * the cmdline or Kconfig, use mtd_max_bad_blocks to set the
548 * limit if it is supported by the device.
549 */
550 limit = mtd_max_bad_blocks(ubi->mtd, 0, ubi->mtd->size);
551 if (limit < 0)
552 return 0;
553 return limit;
554 }
555
556 /*
557 * Here we are using size of the entire flash chip and
558 * not just the MTD partition size because the maximum
559 * number of bad eraseblocks is a percentage of the
560 * whole device and bad eraseblocks are not fairly
561 * distributed over the flash chip. So the worst case
562 * is that all the bad eraseblocks of the chip are in
563 * the MTD partition we are attaching (ubi->mtd).
564 */
565 device_size = mtd_get_device_size(ubi->mtd);
566 device_pebs = mtd_div_by_eb(device_size, ubi->mtd);
567 limit = mult_frac(device_pebs, max_beb_per1024, 1024);
568
569 /* Round it up */
570 if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs)
571 limit += 1;
572
573 return limit;
574 }
575
576 /**
577 * io_init - initialize I/O sub-system for a given UBI device.
578 * @ubi: UBI device description object
579 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
580 *
581 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
582 * assumed:
583 * o EC header is always at offset zero - this cannot be changed;
584 * o VID header starts just after the EC header at the closest address
585 * aligned to @io->hdrs_min_io_size;
586 * o data starts just after the VID header at the closest address aligned to
587 * @io->min_io_size
588 *
589 * This function returns zero in case of success and a negative error code in
590 * case of failure.
591 */
io_init(struct ubi_device * ubi,int max_beb_per1024)592 static int io_init(struct ubi_device *ubi, int max_beb_per1024)
593 {
594 dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb));
595 dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry));
596
597 if (ubi->mtd->numeraseregions != 0) {
598 /*
599 * Some flashes have several erase regions. Different regions
600 * may have different eraseblock size and other
601 * characteristics. It looks like mostly multi-region flashes
602 * have one "main" region and one or more small regions to
603 * store boot loader code or boot parameters or whatever. I
604 * guess we should just pick the largest region. But this is
605 * not implemented.
606 */
607 ubi_err(ubi, "multiple regions, not implemented");
608 return -EINVAL;
609 }
610
611 if (ubi->vid_hdr_offset < 0)
612 return -EINVAL;
613
614 /*
615 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
616 * physical eraseblocks maximum.
617 */
618
619 ubi->peb_size = ubi->mtd->erasesize;
620 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
621 ubi->flash_size = ubi->mtd->size;
622
623 if (mtd_can_have_bb(ubi->mtd)) {
624 ubi->bad_allowed = 1;
625 ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024);
626 }
627
628 if (ubi->mtd->type == MTD_NORFLASH)
629 ubi->nor_flash = 1;
630
631 ubi->min_io_size = ubi->mtd->writesize;
632 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
633
634 /*
635 * Make sure minimal I/O unit is power of 2. Note, there is no
636 * fundamental reason for this assumption. It is just an optimization
637 * which allows us to avoid costly division operations.
638 */
639 if (!is_power_of_2(ubi->min_io_size)) {
640 ubi_err(ubi, "min. I/O unit (%d) is not power of 2",
641 ubi->min_io_size);
642 return -EINVAL;
643 }
644
645 ubi_assert(ubi->hdrs_min_io_size > 0);
646 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
647 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
648
649 ubi->max_write_size = ubi->mtd->writebufsize;
650 /*
651 * Maximum write size has to be greater or equivalent to min. I/O
652 * size, and be multiple of min. I/O size.
653 */
654 if (ubi->max_write_size < ubi->min_io_size ||
655 ubi->max_write_size % ubi->min_io_size ||
656 !is_power_of_2(ubi->max_write_size)) {
657 ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit",
658 ubi->max_write_size, ubi->min_io_size);
659 return -EINVAL;
660 }
661
662 /* Calculate default aligned sizes of EC and VID headers */
663 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
664 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
665
666 dbg_gen("min_io_size %d", ubi->min_io_size);
667 dbg_gen("max_write_size %d", ubi->max_write_size);
668 dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
669 dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize);
670 dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize);
671
672 if (ubi->vid_hdr_offset == 0)
673 /* Default offset */
674 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
675 ubi->ec_hdr_alsize;
676 else {
677 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
678 ~(ubi->hdrs_min_io_size - 1);
679 ubi->vid_hdr_shift = ubi->vid_hdr_offset -
680 ubi->vid_hdr_aloffset;
681 }
682
683 /* Similar for the data offset */
684 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE;
685 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
686
687 dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset);
688 dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
689 dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift);
690 dbg_gen("leb_start %d", ubi->leb_start);
691
692 /* The shift must be aligned to 32-bit boundary */
693 if (ubi->vid_hdr_shift % 4) {
694 ubi_err(ubi, "unaligned VID header shift %d",
695 ubi->vid_hdr_shift);
696 return -EINVAL;
697 }
698
699 /* Check sanity */
700 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
701 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
702 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
703 ubi->leb_start & (ubi->min_io_size - 1)) {
704 ubi_err(ubi, "bad VID header (%d) or data offsets (%d)",
705 ubi->vid_hdr_offset, ubi->leb_start);
706 return -EINVAL;
707 }
708
709 /*
710 * Set maximum amount of physical erroneous eraseblocks to be 10%.
711 * Erroneous PEB are those which have read errors.
712 */
713 ubi->max_erroneous = ubi->peb_count / 10;
714 if (ubi->max_erroneous < 16)
715 ubi->max_erroneous = 16;
716 dbg_gen("max_erroneous %d", ubi->max_erroneous);
717
718 /*
719 * It may happen that EC and VID headers are situated in one minimal
720 * I/O unit. In this case we can only accept this UBI image in
721 * read-only mode.
722 */
723 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
724 ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode");
725 ubi->ro_mode = 1;
726 }
727
728 ubi->leb_size = ubi->peb_size - ubi->leb_start;
729
730 if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
731 ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode",
732 ubi->mtd->index);
733 ubi->ro_mode = 1;
734 }
735
736 /*
737 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But
738 * unfortunately, MTD does not provide this information. We should loop
739 * over all physical eraseblocks and invoke mtd->block_is_bad() for
740 * each physical eraseblock. So, we leave @ubi->bad_peb_count
741 * uninitialized so far.
742 */
743
744 return 0;
745 }
746
747 /**
748 * autoresize - re-size the volume which has the "auto-resize" flag set.
749 * @ubi: UBI device description object
750 * @vol_id: ID of the volume to re-size
751 *
752 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in
753 * the volume table to the largest possible size. See comments in ubi-header.h
754 * for more description of the flag. Returns zero in case of success and a
755 * negative error code in case of failure.
756 */
autoresize(struct ubi_device * ubi,int vol_id)757 static int autoresize(struct ubi_device *ubi, int vol_id)
758 {
759 struct ubi_volume_desc desc;
760 struct ubi_volume *vol = ubi->volumes[vol_id];
761 int err, old_reserved_pebs = vol->reserved_pebs;
762
763 if (ubi->ro_mode) {
764 ubi_warn(ubi, "skip auto-resize because of R/O mode");
765 return 0;
766 }
767
768 /*
769 * Clear the auto-resize flag in the volume in-memory copy of the
770 * volume table, and 'ubi_resize_volume()' will propagate this change
771 * to the flash.
772 */
773 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
774
775 if (ubi->avail_pebs == 0) {
776 struct ubi_vtbl_record vtbl_rec;
777
778 /*
779 * No available PEBs to re-size the volume, clear the flag on
780 * flash and exit.
781 */
782 vtbl_rec = ubi->vtbl[vol_id];
783 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
784 if (err)
785 ubi_err(ubi, "cannot clean auto-resize flag for volume %d",
786 vol_id);
787 } else {
788 desc.vol = vol;
789 err = ubi_resize_volume(&desc,
790 old_reserved_pebs + ubi->avail_pebs);
791 if (err)
792 ubi_err(ubi, "cannot auto-resize volume %d",
793 vol_id);
794 }
795
796 if (err)
797 return err;
798
799 ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs",
800 vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs);
801 return 0;
802 }
803
804 /**
805 * ubi_attach_mtd_dev - attach an MTD device.
806 * @mtd: MTD device description object
807 * @ubi_num: number to assign to the new UBI device
808 * @vid_hdr_offset: VID header offset
809 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
810 * @disable_fm: whether disable fastmap
811 *
812 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
813 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
814 * which case this function finds a vacant device number and assigns it
815 * automatically. Returns the new UBI device number in case of success and a
816 * negative error code in case of failure.
817 *
818 * If @disable_fm is true, ubi doesn't create new fastmap even the module param
819 * 'fm_autoconvert' is set, and existed old fastmap will be destroyed after
820 * doing full scanning.
821 *
822 * Note, the invocations of this function has to be serialized by the
823 * @ubi_devices_mutex.
824 */
ubi_attach_mtd_dev(struct mtd_info * mtd,int ubi_num,int vid_hdr_offset,int max_beb_per1024,bool disable_fm)825 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num,
826 int vid_hdr_offset, int max_beb_per1024, bool disable_fm)
827 {
828 struct ubi_device *ubi;
829 int i, err;
830
831 if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT)
832 return -EINVAL;
833
834 if (!max_beb_per1024)
835 max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT;
836
837 /*
838 * Check if we already have the same MTD device attached.
839 *
840 * Note, this function assumes that UBI devices creations and deletions
841 * are serialized, so it does not take the &ubi_devices_lock.
842 */
843 for (i = 0; i < UBI_MAX_DEVICES; i++) {
844 ubi = ubi_devices[i];
845 if (ubi && mtd->index == ubi->mtd->index) {
846 pr_err("ubi: mtd%d is already attached to ubi%d\n",
847 mtd->index, i);
848 return -EEXIST;
849 }
850 }
851
852 /*
853 * Make sure this MTD device is not emulated on top of an UBI volume
854 * already. Well, generally this recursion works fine, but there are
855 * different problems like the UBI module takes a reference to itself
856 * by attaching (and thus, opening) the emulated MTD device. This
857 * results in inability to unload the module. And in general it makes
858 * no sense to attach emulated MTD devices, so we prohibit this.
859 */
860 if (mtd->type == MTD_UBIVOLUME) {
861 pr_err("ubi: refuse attaching mtd%d - it is already emulated on top of UBI\n",
862 mtd->index);
863 return -EINVAL;
864 }
865
866 /*
867 * Both UBI and UBIFS have been designed for SLC NAND and NOR flashes.
868 * MLC NAND is different and needs special care, otherwise UBI or UBIFS
869 * will die soon and you will lose all your data.
870 * Relax this rule if the partition we're attaching to operates in SLC
871 * mode.
872 */
873 if (mtd->type == MTD_MLCNANDFLASH &&
874 !(mtd->flags & MTD_SLC_ON_MLC_EMULATION)) {
875 pr_err("ubi: refuse attaching mtd%d - MLC NAND is not supported\n",
876 mtd->index);
877 return -EINVAL;
878 }
879
880 if (ubi_num == UBI_DEV_NUM_AUTO) {
881 /* Search for an empty slot in the @ubi_devices array */
882 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
883 if (!ubi_devices[ubi_num])
884 break;
885 if (ubi_num == UBI_MAX_DEVICES) {
886 pr_err("ubi: only %d UBI devices may be created\n",
887 UBI_MAX_DEVICES);
888 return -ENFILE;
889 }
890 } else {
891 if (ubi_num >= UBI_MAX_DEVICES)
892 return -EINVAL;
893
894 /* Make sure ubi_num is not busy */
895 if (ubi_devices[ubi_num]) {
896 pr_err("ubi: ubi%i already exists\n", ubi_num);
897 return -EEXIST;
898 }
899 }
900
901 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
902 if (!ubi)
903 return -ENOMEM;
904
905 device_initialize(&ubi->dev);
906 ubi->dev.release = dev_release;
907 ubi->dev.class = &ubi_class;
908 ubi->dev.groups = ubi_dev_groups;
909
910 ubi->mtd = mtd;
911 ubi->ubi_num = ubi_num;
912 ubi->vid_hdr_offset = vid_hdr_offset;
913 ubi->autoresize_vol_id = -1;
914
915 #ifdef CONFIG_MTD_UBI_FASTMAP
916 ubi->fm_pool.used = ubi->fm_pool.size = 0;
917 ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0;
918
919 /*
920 * fm_pool.max_size is 5% of the total number of PEBs but it's also
921 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE.
922 */
923 ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size,
924 ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE);
925 ubi->fm_pool.max_size = max(ubi->fm_pool.max_size,
926 UBI_FM_MIN_POOL_SIZE);
927
928 ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2;
929 ubi->fm_disabled = (!fm_autoconvert || disable_fm) ? 1 : 0;
930 if (fm_debug)
931 ubi_enable_dbg_chk_fastmap(ubi);
932
933 if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd)
934 <= UBI_FM_MAX_START) {
935 ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.",
936 UBI_FM_MAX_START);
937 ubi->fm_disabled = 1;
938 }
939
940 ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size);
941 ubi_msg(ubi, "default fastmap WL pool size: %d",
942 ubi->fm_wl_pool.max_size);
943 #else
944 ubi->fm_disabled = 1;
945 #endif
946 mutex_init(&ubi->buf_mutex);
947 mutex_init(&ubi->ckvol_mutex);
948 mutex_init(&ubi->device_mutex);
949 spin_lock_init(&ubi->volumes_lock);
950 init_rwsem(&ubi->fm_protect);
951 init_rwsem(&ubi->fm_eba_sem);
952
953 ubi_msg(ubi, "attaching mtd%d", mtd->index);
954
955 err = io_init(ubi, max_beb_per1024);
956 if (err)
957 goto out_free;
958
959 err = -ENOMEM;
960 ubi->peb_buf = vmalloc(ubi->peb_size);
961 if (!ubi->peb_buf)
962 goto out_free;
963
964 #ifdef CONFIG_MTD_UBI_FASTMAP
965 ubi->fm_size = ubi_calc_fm_size(ubi);
966 ubi->fm_buf = vzalloc(ubi->fm_size);
967 if (!ubi->fm_buf)
968 goto out_free;
969 #endif
970 err = ubi_attach(ubi, disable_fm ? 1 : 0);
971 if (err) {
972 ubi_err(ubi, "failed to attach mtd%d, error %d",
973 mtd->index, err);
974 goto out_free;
975 }
976
977 if (ubi->autoresize_vol_id != -1) {
978 err = autoresize(ubi, ubi->autoresize_vol_id);
979 if (err)
980 goto out_detach;
981 }
982
983 err = uif_init(ubi);
984 if (err)
985 goto out_detach;
986
987 err = ubi_debugfs_init_dev(ubi);
988 if (err)
989 goto out_uif;
990
991 ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name);
992 if (IS_ERR(ubi->bgt_thread)) {
993 err = PTR_ERR(ubi->bgt_thread);
994 ubi_err(ubi, "cannot spawn \"%s\", error %d",
995 ubi->bgt_name, err);
996 goto out_debugfs;
997 }
998
999 ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)",
1000 mtd->index, mtd->name, ubi->flash_size >> 20);
1001 ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes",
1002 ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size);
1003 ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d",
1004 ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size);
1005 ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d",
1006 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start);
1007 ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d",
1008 ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count);
1009 ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d",
1010 ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT,
1011 ubi->vtbl_slots);
1012 ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u",
1013 ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD,
1014 ubi->image_seq);
1015 ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d",
1016 ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs);
1017
1018 /*
1019 * The below lock makes sure we do not race with 'ubi_thread()' which
1020 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
1021 */
1022 spin_lock(&ubi->wl_lock);
1023 ubi->thread_enabled = 1;
1024 wake_up_process(ubi->bgt_thread);
1025 spin_unlock(&ubi->wl_lock);
1026
1027 ubi_devices[ubi_num] = ubi;
1028 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL);
1029 return ubi_num;
1030
1031 out_debugfs:
1032 ubi_debugfs_exit_dev(ubi);
1033 out_uif:
1034 uif_close(ubi);
1035 out_detach:
1036 ubi_wl_close(ubi);
1037 ubi_free_all_volumes(ubi);
1038 vfree(ubi->vtbl);
1039 out_free:
1040 vfree(ubi->peb_buf);
1041 vfree(ubi->fm_buf);
1042 put_device(&ubi->dev);
1043 return err;
1044 }
1045
1046 /**
1047 * ubi_detach_mtd_dev - detach an MTD device.
1048 * @ubi_num: UBI device number to detach from
1049 * @anyway: detach MTD even if device reference count is not zero
1050 *
1051 * This function destroys an UBI device number @ubi_num and detaches the
1052 * underlying MTD device. Returns zero in case of success and %-EBUSY if the
1053 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
1054 * exist.
1055 *
1056 * Note, the invocations of this function has to be serialized by the
1057 * @ubi_devices_mutex.
1058 */
ubi_detach_mtd_dev(int ubi_num,int anyway)1059 int ubi_detach_mtd_dev(int ubi_num, int anyway)
1060 {
1061 struct ubi_device *ubi;
1062
1063 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
1064 return -EINVAL;
1065
1066 ubi = ubi_get_device(ubi_num);
1067 if (!ubi)
1068 return -EINVAL;
1069
1070 spin_lock(&ubi_devices_lock);
1071 put_device(&ubi->dev);
1072 ubi->ref_count -= 1;
1073 if (ubi->ref_count) {
1074 if (!anyway) {
1075 spin_unlock(&ubi_devices_lock);
1076 return -EBUSY;
1077 }
1078 /* This may only happen if there is a bug */
1079 ubi_err(ubi, "%s reference count %d, destroy anyway",
1080 ubi->ubi_name, ubi->ref_count);
1081 }
1082 ubi_devices[ubi_num] = NULL;
1083 spin_unlock(&ubi_devices_lock);
1084
1085 ubi_assert(ubi_num == ubi->ubi_num);
1086 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL);
1087 ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index);
1088 #ifdef CONFIG_MTD_UBI_FASTMAP
1089 /* If we don't write a new fastmap at detach time we lose all
1090 * EC updates that have been made since the last written fastmap.
1091 * In case of fastmap debugging we omit the update to simulate an
1092 * unclean shutdown. */
1093 if (!ubi_dbg_chk_fastmap(ubi))
1094 ubi_update_fastmap(ubi);
1095 #endif
1096 /*
1097 * Before freeing anything, we have to stop the background thread to
1098 * prevent it from doing anything on this device while we are freeing.
1099 */
1100 if (ubi->bgt_thread)
1101 kthread_stop(ubi->bgt_thread);
1102
1103 #ifdef CONFIG_MTD_UBI_FASTMAP
1104 cancel_work_sync(&ubi->fm_work);
1105 #endif
1106 ubi_debugfs_exit_dev(ubi);
1107 uif_close(ubi);
1108
1109 ubi_wl_close(ubi);
1110 ubi_free_internal_volumes(ubi);
1111 vfree(ubi->vtbl);
1112 vfree(ubi->peb_buf);
1113 vfree(ubi->fm_buf);
1114 ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index);
1115 put_mtd_device(ubi->mtd);
1116 put_device(&ubi->dev);
1117 return 0;
1118 }
1119
1120 /**
1121 * open_mtd_by_chdev - open an MTD device by its character device node path.
1122 * @mtd_dev: MTD character device node path
1123 *
1124 * This helper function opens an MTD device by its character node device path.
1125 * Returns MTD device description object in case of success and a negative
1126 * error code in case of failure.
1127 */
open_mtd_by_chdev(const char * mtd_dev)1128 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev)
1129 {
1130 int err, minor;
1131 struct path path;
1132 struct kstat stat;
1133
1134 /* Probably this is an MTD character device node path */
1135 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path);
1136 if (err)
1137 return ERR_PTR(err);
1138
1139 err = vfs_getattr(&path, &stat, STATX_TYPE, AT_STATX_SYNC_AS_STAT);
1140 path_put(&path);
1141 if (err)
1142 return ERR_PTR(err);
1143
1144 /* MTD device number is defined by the major / minor numbers */
1145 if (MAJOR(stat.rdev) != MTD_CHAR_MAJOR || !S_ISCHR(stat.mode))
1146 return ERR_PTR(-EINVAL);
1147
1148 minor = MINOR(stat.rdev);
1149
1150 if (minor & 1)
1151 /*
1152 * Just do not think the "/dev/mtdrX" devices support is need,
1153 * so do not support them to avoid doing extra work.
1154 */
1155 return ERR_PTR(-EINVAL);
1156
1157 return get_mtd_device(NULL, minor / 2);
1158 }
1159
1160 /**
1161 * open_mtd_device - open MTD device by name, character device path, or number.
1162 * @mtd_dev: name, character device node path, or MTD device device number
1163 *
1164 * This function tries to open and MTD device described by @mtd_dev string,
1165 * which is first treated as ASCII MTD device number, and if it is not true, it
1166 * is treated as MTD device name, and if that is also not true, it is treated
1167 * as MTD character device node path. Returns MTD device description object in
1168 * case of success and a negative error code in case of failure.
1169 */
open_mtd_device(const char * mtd_dev)1170 static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
1171 {
1172 struct mtd_info *mtd;
1173 int mtd_num;
1174 char *endp;
1175
1176 mtd_num = simple_strtoul(mtd_dev, &endp, 0);
1177 if (*endp != '\0' || mtd_dev == endp) {
1178 /*
1179 * This does not look like an ASCII integer, probably this is
1180 * MTD device name.
1181 */
1182 mtd = get_mtd_device_nm(mtd_dev);
1183 if (PTR_ERR(mtd) == -ENODEV)
1184 /* Probably this is an MTD character device node path */
1185 mtd = open_mtd_by_chdev(mtd_dev);
1186 } else
1187 mtd = get_mtd_device(NULL, mtd_num);
1188
1189 return mtd;
1190 }
1191
ubi_init(void)1192 static int __init ubi_init(void)
1193 {
1194 int err, i, k;
1195
1196 /* Ensure that EC and VID headers have correct size */
1197 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
1198 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1199
1200 if (mtd_devs > UBI_MAX_DEVICES) {
1201 pr_err("UBI error: too many MTD devices, maximum is %d\n",
1202 UBI_MAX_DEVICES);
1203 return -EINVAL;
1204 }
1205
1206 /* Create base sysfs directory and sysfs files */
1207 err = class_register(&ubi_class);
1208 if (err < 0)
1209 return err;
1210
1211 err = misc_register(&ubi_ctrl_cdev);
1212 if (err) {
1213 pr_err("UBI error: cannot register device\n");
1214 goto out;
1215 }
1216
1217 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1218 sizeof(struct ubi_wl_entry),
1219 0, 0, NULL);
1220 if (!ubi_wl_entry_slab) {
1221 err = -ENOMEM;
1222 goto out_dev_unreg;
1223 }
1224
1225 err = ubi_debugfs_init();
1226 if (err)
1227 goto out_slab;
1228
1229
1230 /* Attach MTD devices */
1231 for (i = 0; i < mtd_devs; i++) {
1232 struct mtd_dev_param *p = &mtd_dev_param[i];
1233 struct mtd_info *mtd;
1234
1235 cond_resched();
1236
1237 mtd = open_mtd_device(p->name);
1238 if (IS_ERR(mtd)) {
1239 err = PTR_ERR(mtd);
1240 pr_err("UBI error: cannot open mtd %s, error %d\n",
1241 p->name, err);
1242 /* See comment below re-ubi_is_module(). */
1243 if (ubi_is_module())
1244 goto out_detach;
1245 continue;
1246 }
1247
1248 mutex_lock(&ubi_devices_mutex);
1249 err = ubi_attach_mtd_dev(mtd, p->ubi_num,
1250 p->vid_hdr_offs, p->max_beb_per1024,
1251 false);
1252 mutex_unlock(&ubi_devices_mutex);
1253 if (err < 0) {
1254 pr_err("UBI error: cannot attach mtd%d\n",
1255 mtd->index);
1256 put_mtd_device(mtd);
1257
1258 /*
1259 * Originally UBI stopped initializing on any error.
1260 * However, later on it was found out that this
1261 * behavior is not very good when UBI is compiled into
1262 * the kernel and the MTD devices to attach are passed
1263 * through the command line. Indeed, UBI failure
1264 * stopped whole boot sequence.
1265 *
1266 * To fix this, we changed the behavior for the
1267 * non-module case, but preserved the old behavior for
1268 * the module case, just for compatibility. This is a
1269 * little inconsistent, though.
1270 */
1271 if (ubi_is_module())
1272 goto out_detach;
1273 }
1274 }
1275
1276 err = ubiblock_init();
1277 if (err) {
1278 pr_err("UBI error: block: cannot initialize, error %d\n", err);
1279
1280 /* See comment above re-ubi_is_module(). */
1281 if (ubi_is_module())
1282 goto out_detach;
1283 }
1284
1285 return 0;
1286
1287 out_detach:
1288 for (k = 0; k < i; k++)
1289 if (ubi_devices[k]) {
1290 mutex_lock(&ubi_devices_mutex);
1291 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1292 mutex_unlock(&ubi_devices_mutex);
1293 }
1294 ubi_debugfs_exit();
1295 out_slab:
1296 kmem_cache_destroy(ubi_wl_entry_slab);
1297 out_dev_unreg:
1298 misc_deregister(&ubi_ctrl_cdev);
1299 out:
1300 class_unregister(&ubi_class);
1301 pr_err("UBI error: cannot initialize UBI, error %d\n", err);
1302 return err;
1303 }
1304 late_initcall(ubi_init);
1305
ubi_exit(void)1306 static void __exit ubi_exit(void)
1307 {
1308 int i;
1309
1310 ubiblock_exit();
1311
1312 for (i = 0; i < UBI_MAX_DEVICES; i++)
1313 if (ubi_devices[i]) {
1314 mutex_lock(&ubi_devices_mutex);
1315 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1316 mutex_unlock(&ubi_devices_mutex);
1317 }
1318 ubi_debugfs_exit();
1319 kmem_cache_destroy(ubi_wl_entry_slab);
1320 misc_deregister(&ubi_ctrl_cdev);
1321 class_unregister(&ubi_class);
1322 }
1323 module_exit(ubi_exit);
1324
1325 /**
1326 * bytes_str_to_int - convert a number of bytes string into an integer.
1327 * @str: the string to convert
1328 *
1329 * This function returns positive resulting integer in case of success and a
1330 * negative error code in case of failure.
1331 */
bytes_str_to_int(const char * str)1332 static int bytes_str_to_int(const char *str)
1333 {
1334 char *endp;
1335 unsigned long result;
1336
1337 result = simple_strtoul(str, &endp, 0);
1338 if (str == endp || result >= INT_MAX) {
1339 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1340 return -EINVAL;
1341 }
1342
1343 switch (*endp) {
1344 case 'G':
1345 result *= 1024;
1346 fallthrough;
1347 case 'M':
1348 result *= 1024;
1349 fallthrough;
1350 case 'K':
1351 result *= 1024;
1352 break;
1353 case '\0':
1354 break;
1355 default:
1356 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1357 return -EINVAL;
1358 }
1359
1360 return result;
1361 }
1362
1363 /**
1364 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1365 * @val: the parameter value to parse
1366 * @kp: not used
1367 *
1368 * This function returns zero in case of success and a negative error code in
1369 * case of error.
1370 */
ubi_mtd_param_parse(const char * val,const struct kernel_param * kp)1371 static int ubi_mtd_param_parse(const char *val, const struct kernel_param *kp)
1372 {
1373 int i, len;
1374 struct mtd_dev_param *p;
1375 char buf[MTD_PARAM_LEN_MAX];
1376 char *pbuf = &buf[0];
1377 char *tokens[MTD_PARAM_MAX_COUNT], *token;
1378
1379 if (!val)
1380 return -EINVAL;
1381
1382 if (mtd_devs == UBI_MAX_DEVICES) {
1383 pr_err("UBI error: too many parameters, max. is %d\n",
1384 UBI_MAX_DEVICES);
1385 return -EINVAL;
1386 }
1387
1388 len = strnlen(val, MTD_PARAM_LEN_MAX);
1389 if (len == MTD_PARAM_LEN_MAX) {
1390 pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n",
1391 val, MTD_PARAM_LEN_MAX);
1392 return -EINVAL;
1393 }
1394
1395 if (len == 0) {
1396 pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n");
1397 return 0;
1398 }
1399
1400 strcpy(buf, val);
1401
1402 /* Get rid of the final newline */
1403 if (buf[len - 1] == '\n')
1404 buf[len - 1] = '\0';
1405
1406 for (i = 0; i < MTD_PARAM_MAX_COUNT; i++)
1407 tokens[i] = strsep(&pbuf, ",");
1408
1409 if (pbuf) {
1410 pr_err("UBI error: too many arguments at \"%s\"\n", val);
1411 return -EINVAL;
1412 }
1413
1414 p = &mtd_dev_param[mtd_devs];
1415 strcpy(&p->name[0], tokens[0]);
1416
1417 token = tokens[1];
1418 if (token) {
1419 p->vid_hdr_offs = bytes_str_to_int(token);
1420
1421 if (p->vid_hdr_offs < 0)
1422 return p->vid_hdr_offs;
1423 }
1424
1425 token = tokens[2];
1426 if (token) {
1427 int err = kstrtoint(token, 10, &p->max_beb_per1024);
1428
1429 if (err) {
1430 pr_err("UBI error: bad value for max_beb_per1024 parameter: %s",
1431 token);
1432 return -EINVAL;
1433 }
1434 }
1435
1436 token = tokens[3];
1437 if (token) {
1438 int err = kstrtoint(token, 10, &p->ubi_num);
1439
1440 if (err) {
1441 pr_err("UBI error: bad value for ubi_num parameter: %s",
1442 token);
1443 return -EINVAL;
1444 }
1445 } else
1446 p->ubi_num = UBI_DEV_NUM_AUTO;
1447
1448 mtd_devs += 1;
1449 return 0;
1450 }
1451
1452 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 0400);
1453 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n"
1454 "Multiple \"mtd\" parameters may be specified.\n"
1455 "MTD devices may be specified by their number, name, or path to the MTD character device node.\n"
1456 "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n"
1457 "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value ("
1458 __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n"
1459 "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n"
1460 "\n"
1461 "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n"
1462 "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n"
1463 "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n"
1464 "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n"
1465 "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device).");
1466 #ifdef CONFIG_MTD_UBI_FASTMAP
1467 module_param(fm_autoconvert, bool, 0644);
1468 MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap.");
1469 module_param(fm_debug, bool, 0);
1470 MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!");
1471 #endif
1472 MODULE_VERSION(__stringify(UBI_VERSION));
1473 MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1474 MODULE_AUTHOR("Artem Bityutskiy");
1475 MODULE_LICENSE("GPL");
1476