1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/efi.h>
15 #include <linux/interrupt.h>
16 #include <linux/iommu.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqdomain.h>
19 #include <linux/list.h>
20 #include <linux/log2.h>
21 #include <linux/memblock.h>
22 #include <linux/mm.h>
23 #include <linux/msi.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_pci.h>
28 #include <linux/of_platform.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/syscore_ops.h>
32
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 #include <linux/irqchip/arm-gic-v4.h>
36
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39
40 #include "irq-gic-common.h"
41
42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1)
44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2)
45
46 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0)
47 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED (1 << 1)
48
49 #define RD_LOCAL_LPI_ENABLED BIT(0)
50 #define RD_LOCAL_PENDTABLE_PREALLOCATED BIT(1)
51 #define RD_LOCAL_MEMRESERVE_DONE BIT(2)
52
53 static u32 lpi_id_bits;
54
55 /*
56 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
57 * deal with (one configuration byte per interrupt). PENDBASE has to
58 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
59 */
60 #define LPI_NRBITS lpi_id_bits
61 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K)
62 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
63
64 #define LPI_PROP_DEFAULT_PRIO GICD_INT_DEF_PRI
65
66 /*
67 * Collection structure - just an ID, and a redistributor address to
68 * ping. We use one per CPU as a bag of interrupts assigned to this
69 * CPU.
70 */
71 struct its_collection {
72 u64 target_address;
73 u16 col_id;
74 };
75
76 /*
77 * The ITS_BASER structure - contains memory information, cached
78 * value of BASER register configuration and ITS page size.
79 */
80 struct its_baser {
81 void *base;
82 u64 val;
83 u32 order;
84 u32 psz;
85 };
86
87 struct its_device;
88
89 /*
90 * The ITS structure - contains most of the infrastructure, with the
91 * top-level MSI domain, the command queue, the collections, and the
92 * list of devices writing to it.
93 *
94 * dev_alloc_lock has to be taken for device allocations, while the
95 * spinlock must be taken to parse data structures such as the device
96 * list.
97 */
98 struct its_node {
99 raw_spinlock_t lock;
100 struct mutex dev_alloc_lock;
101 struct list_head entry;
102 void __iomem *base;
103 void __iomem *sgir_base;
104 phys_addr_t phys_base;
105 struct its_cmd_block *cmd_base;
106 struct its_cmd_block *cmd_write;
107 struct its_baser tables[GITS_BASER_NR_REGS];
108 struct its_collection *collections;
109 struct fwnode_handle *fwnode_handle;
110 u64 (*get_msi_base)(struct its_device *its_dev);
111 u64 typer;
112 u64 cbaser_save;
113 u32 ctlr_save;
114 u32 mpidr;
115 struct list_head its_device_list;
116 u64 flags;
117 unsigned long list_nr;
118 int numa_node;
119 unsigned int msi_domain_flags;
120 u32 pre_its_base; /* for Socionext Synquacer */
121 int vlpi_redist_offset;
122 };
123
124 #define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS))
125 #define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP))
126 #define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
127
128 #define ITS_ITT_ALIGN SZ_256
129
130 /* The maximum number of VPEID bits supported by VLPI commands */
131 #define ITS_MAX_VPEID_BITS \
132 ({ \
133 int nvpeid = 16; \
134 if (gic_rdists->has_rvpeid && \
135 gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \
136 nvpeid = 1 + (gic_rdists->gicd_typer2 & \
137 GICD_TYPER2_VID); \
138 \
139 nvpeid; \
140 })
141 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS))
142
143 /* Convert page order to size in bytes */
144 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o))
145
146 struct event_lpi_map {
147 unsigned long *lpi_map;
148 u16 *col_map;
149 irq_hw_number_t lpi_base;
150 int nr_lpis;
151 raw_spinlock_t vlpi_lock;
152 struct its_vm *vm;
153 struct its_vlpi_map *vlpi_maps;
154 int nr_vlpis;
155 };
156
157 /*
158 * The ITS view of a device - belongs to an ITS, owns an interrupt
159 * translation table, and a list of interrupts. If it some of its
160 * LPIs are injected into a guest (GICv4), the event_map.vm field
161 * indicates which one.
162 */
163 struct its_device {
164 struct list_head entry;
165 struct its_node *its;
166 struct event_lpi_map event_map;
167 void *itt;
168 u32 nr_ites;
169 u32 device_id;
170 bool shared;
171 };
172
173 static struct {
174 raw_spinlock_t lock;
175 struct its_device *dev;
176 struct its_vpe **vpes;
177 int next_victim;
178 } vpe_proxy;
179
180 struct cpu_lpi_count {
181 atomic_t managed;
182 atomic_t unmanaged;
183 };
184
185 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
186
187 static LIST_HEAD(its_nodes);
188 static DEFINE_RAW_SPINLOCK(its_lock);
189 static struct rdists *gic_rdists;
190 static struct irq_domain *its_parent;
191
192 static unsigned long its_list_map;
193 static u16 vmovp_seq_num;
194 static DEFINE_RAW_SPINLOCK(vmovp_lock);
195
196 static DEFINE_IDA(its_vpeid_ida);
197
198 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist))
199 #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu))
200 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
201 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K)
202
203 /*
204 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
205 * always have vSGIs mapped.
206 */
require_its_list_vmovp(struct its_vm * vm,struct its_node * its)207 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
208 {
209 return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
210 }
211
get_its_list(struct its_vm * vm)212 static u16 get_its_list(struct its_vm *vm)
213 {
214 struct its_node *its;
215 unsigned long its_list = 0;
216
217 list_for_each_entry(its, &its_nodes, entry) {
218 if (!is_v4(its))
219 continue;
220
221 if (require_its_list_vmovp(vm, its))
222 __set_bit(its->list_nr, &its_list);
223 }
224
225 return (u16)its_list;
226 }
227
its_get_event_id(struct irq_data * d)228 static inline u32 its_get_event_id(struct irq_data *d)
229 {
230 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
231 return d->hwirq - its_dev->event_map.lpi_base;
232 }
233
dev_event_to_col(struct its_device * its_dev,u32 event)234 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
235 u32 event)
236 {
237 struct its_node *its = its_dev->its;
238
239 return its->collections + its_dev->event_map.col_map[event];
240 }
241
dev_event_to_vlpi_map(struct its_device * its_dev,u32 event)242 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
243 u32 event)
244 {
245 if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
246 return NULL;
247
248 return &its_dev->event_map.vlpi_maps[event];
249 }
250
get_vlpi_map(struct irq_data * d)251 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
252 {
253 if (irqd_is_forwarded_to_vcpu(d)) {
254 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
255 u32 event = its_get_event_id(d);
256
257 return dev_event_to_vlpi_map(its_dev, event);
258 }
259
260 return NULL;
261 }
262
vpe_to_cpuid_lock(struct its_vpe * vpe,unsigned long * flags)263 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
264 {
265 raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
266 return vpe->col_idx;
267 }
268
vpe_to_cpuid_unlock(struct its_vpe * vpe,unsigned long flags)269 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
270 {
271 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
272 }
273
irq_to_cpuid_lock(struct irq_data * d,unsigned long * flags)274 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
275 {
276 struct its_vlpi_map *map = get_vlpi_map(d);
277 int cpu;
278
279 if (map) {
280 cpu = vpe_to_cpuid_lock(map->vpe, flags);
281 } else {
282 /* Physical LPIs are already locked via the irq_desc lock */
283 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
284 cpu = its_dev->event_map.col_map[its_get_event_id(d)];
285 /* Keep GCC quiet... */
286 *flags = 0;
287 }
288
289 return cpu;
290 }
291
irq_to_cpuid_unlock(struct irq_data * d,unsigned long flags)292 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
293 {
294 struct its_vlpi_map *map = get_vlpi_map(d);
295
296 if (map)
297 vpe_to_cpuid_unlock(map->vpe, flags);
298 }
299
valid_col(struct its_collection * col)300 static struct its_collection *valid_col(struct its_collection *col)
301 {
302 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
303 return NULL;
304
305 return col;
306 }
307
valid_vpe(struct its_node * its,struct its_vpe * vpe)308 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
309 {
310 if (valid_col(its->collections + vpe->col_idx))
311 return vpe;
312
313 return NULL;
314 }
315
316 /*
317 * ITS command descriptors - parameters to be encoded in a command
318 * block.
319 */
320 struct its_cmd_desc {
321 union {
322 struct {
323 struct its_device *dev;
324 u32 event_id;
325 } its_inv_cmd;
326
327 struct {
328 struct its_device *dev;
329 u32 event_id;
330 } its_clear_cmd;
331
332 struct {
333 struct its_device *dev;
334 u32 event_id;
335 } its_int_cmd;
336
337 struct {
338 struct its_device *dev;
339 int valid;
340 } its_mapd_cmd;
341
342 struct {
343 struct its_collection *col;
344 int valid;
345 } its_mapc_cmd;
346
347 struct {
348 struct its_device *dev;
349 u32 phys_id;
350 u32 event_id;
351 } its_mapti_cmd;
352
353 struct {
354 struct its_device *dev;
355 struct its_collection *col;
356 u32 event_id;
357 } its_movi_cmd;
358
359 struct {
360 struct its_device *dev;
361 u32 event_id;
362 } its_discard_cmd;
363
364 struct {
365 struct its_collection *col;
366 } its_invall_cmd;
367
368 struct {
369 struct its_vpe *vpe;
370 } its_vinvall_cmd;
371
372 struct {
373 struct its_vpe *vpe;
374 struct its_collection *col;
375 bool valid;
376 } its_vmapp_cmd;
377
378 struct {
379 struct its_vpe *vpe;
380 struct its_device *dev;
381 u32 virt_id;
382 u32 event_id;
383 bool db_enabled;
384 } its_vmapti_cmd;
385
386 struct {
387 struct its_vpe *vpe;
388 struct its_device *dev;
389 u32 event_id;
390 bool db_enabled;
391 } its_vmovi_cmd;
392
393 struct {
394 struct its_vpe *vpe;
395 struct its_collection *col;
396 u16 seq_num;
397 u16 its_list;
398 } its_vmovp_cmd;
399
400 struct {
401 struct its_vpe *vpe;
402 } its_invdb_cmd;
403
404 struct {
405 struct its_vpe *vpe;
406 u8 sgi;
407 u8 priority;
408 bool enable;
409 bool group;
410 bool clear;
411 } its_vsgi_cmd;
412 };
413 };
414
415 /*
416 * The ITS command block, which is what the ITS actually parses.
417 */
418 struct its_cmd_block {
419 union {
420 u64 raw_cmd[4];
421 __le64 raw_cmd_le[4];
422 };
423 };
424
425 #define ITS_CMD_QUEUE_SZ SZ_64K
426 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
427
428 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
429 struct its_cmd_block *,
430 struct its_cmd_desc *);
431
432 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
433 struct its_cmd_block *,
434 struct its_cmd_desc *);
435
its_mask_encode(u64 * raw_cmd,u64 val,int h,int l)436 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
437 {
438 u64 mask = GENMASK_ULL(h, l);
439 *raw_cmd &= ~mask;
440 *raw_cmd |= (val << l) & mask;
441 }
442
its_encode_cmd(struct its_cmd_block * cmd,u8 cmd_nr)443 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
444 {
445 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
446 }
447
its_encode_devid(struct its_cmd_block * cmd,u32 devid)448 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
449 {
450 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
451 }
452
its_encode_event_id(struct its_cmd_block * cmd,u32 id)453 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
454 {
455 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
456 }
457
its_encode_phys_id(struct its_cmd_block * cmd,u32 phys_id)458 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
459 {
460 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
461 }
462
its_encode_size(struct its_cmd_block * cmd,u8 size)463 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
464 {
465 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
466 }
467
its_encode_itt(struct its_cmd_block * cmd,u64 itt_addr)468 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
469 {
470 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
471 }
472
its_encode_valid(struct its_cmd_block * cmd,int valid)473 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
474 {
475 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
476 }
477
its_encode_target(struct its_cmd_block * cmd,u64 target_addr)478 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
479 {
480 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
481 }
482
its_encode_collection(struct its_cmd_block * cmd,u16 col)483 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
484 {
485 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
486 }
487
its_encode_vpeid(struct its_cmd_block * cmd,u16 vpeid)488 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
489 {
490 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
491 }
492
its_encode_virt_id(struct its_cmd_block * cmd,u32 virt_id)493 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
494 {
495 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
496 }
497
its_encode_db_phys_id(struct its_cmd_block * cmd,u32 db_phys_id)498 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
499 {
500 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
501 }
502
its_encode_db_valid(struct its_cmd_block * cmd,bool db_valid)503 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
504 {
505 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
506 }
507
its_encode_seq_num(struct its_cmd_block * cmd,u16 seq_num)508 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
509 {
510 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
511 }
512
its_encode_its_list(struct its_cmd_block * cmd,u16 its_list)513 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
514 {
515 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
516 }
517
its_encode_vpt_addr(struct its_cmd_block * cmd,u64 vpt_pa)518 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
519 {
520 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
521 }
522
its_encode_vpt_size(struct its_cmd_block * cmd,u8 vpt_size)523 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
524 {
525 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
526 }
527
its_encode_vconf_addr(struct its_cmd_block * cmd,u64 vconf_pa)528 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
529 {
530 its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
531 }
532
its_encode_alloc(struct its_cmd_block * cmd,bool alloc)533 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
534 {
535 its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
536 }
537
its_encode_ptz(struct its_cmd_block * cmd,bool ptz)538 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
539 {
540 its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
541 }
542
its_encode_vmapp_default_db(struct its_cmd_block * cmd,u32 vpe_db_lpi)543 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
544 u32 vpe_db_lpi)
545 {
546 its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
547 }
548
its_encode_vmovp_default_db(struct its_cmd_block * cmd,u32 vpe_db_lpi)549 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
550 u32 vpe_db_lpi)
551 {
552 its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
553 }
554
its_encode_db(struct its_cmd_block * cmd,bool db)555 static void its_encode_db(struct its_cmd_block *cmd, bool db)
556 {
557 its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
558 }
559
its_encode_sgi_intid(struct its_cmd_block * cmd,u8 sgi)560 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
561 {
562 its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
563 }
564
its_encode_sgi_priority(struct its_cmd_block * cmd,u8 prio)565 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
566 {
567 its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
568 }
569
its_encode_sgi_group(struct its_cmd_block * cmd,bool grp)570 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
571 {
572 its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
573 }
574
its_encode_sgi_clear(struct its_cmd_block * cmd,bool clr)575 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
576 {
577 its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
578 }
579
its_encode_sgi_enable(struct its_cmd_block * cmd,bool en)580 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
581 {
582 its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
583 }
584
its_fixup_cmd(struct its_cmd_block * cmd)585 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
586 {
587 /* Let's fixup BE commands */
588 cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
589 cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
590 cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
591 cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
592 }
593
its_build_mapd_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)594 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
595 struct its_cmd_block *cmd,
596 struct its_cmd_desc *desc)
597 {
598 unsigned long itt_addr;
599 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
600
601 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
602 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
603
604 its_encode_cmd(cmd, GITS_CMD_MAPD);
605 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
606 its_encode_size(cmd, size - 1);
607 its_encode_itt(cmd, itt_addr);
608 its_encode_valid(cmd, desc->its_mapd_cmd.valid);
609
610 its_fixup_cmd(cmd);
611
612 return NULL;
613 }
614
its_build_mapc_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)615 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
616 struct its_cmd_block *cmd,
617 struct its_cmd_desc *desc)
618 {
619 its_encode_cmd(cmd, GITS_CMD_MAPC);
620 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
621 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
622 its_encode_valid(cmd, desc->its_mapc_cmd.valid);
623
624 its_fixup_cmd(cmd);
625
626 return desc->its_mapc_cmd.col;
627 }
628
its_build_mapti_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)629 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
630 struct its_cmd_block *cmd,
631 struct its_cmd_desc *desc)
632 {
633 struct its_collection *col;
634
635 col = dev_event_to_col(desc->its_mapti_cmd.dev,
636 desc->its_mapti_cmd.event_id);
637
638 its_encode_cmd(cmd, GITS_CMD_MAPTI);
639 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
640 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
641 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
642 its_encode_collection(cmd, col->col_id);
643
644 its_fixup_cmd(cmd);
645
646 return valid_col(col);
647 }
648
its_build_movi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)649 static struct its_collection *its_build_movi_cmd(struct its_node *its,
650 struct its_cmd_block *cmd,
651 struct its_cmd_desc *desc)
652 {
653 struct its_collection *col;
654
655 col = dev_event_to_col(desc->its_movi_cmd.dev,
656 desc->its_movi_cmd.event_id);
657
658 its_encode_cmd(cmd, GITS_CMD_MOVI);
659 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
660 its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
661 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
662
663 its_fixup_cmd(cmd);
664
665 return valid_col(col);
666 }
667
its_build_discard_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)668 static struct its_collection *its_build_discard_cmd(struct its_node *its,
669 struct its_cmd_block *cmd,
670 struct its_cmd_desc *desc)
671 {
672 struct its_collection *col;
673
674 col = dev_event_to_col(desc->its_discard_cmd.dev,
675 desc->its_discard_cmd.event_id);
676
677 its_encode_cmd(cmd, GITS_CMD_DISCARD);
678 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
679 its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
680
681 its_fixup_cmd(cmd);
682
683 return valid_col(col);
684 }
685
its_build_inv_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)686 static struct its_collection *its_build_inv_cmd(struct its_node *its,
687 struct its_cmd_block *cmd,
688 struct its_cmd_desc *desc)
689 {
690 struct its_collection *col;
691
692 col = dev_event_to_col(desc->its_inv_cmd.dev,
693 desc->its_inv_cmd.event_id);
694
695 its_encode_cmd(cmd, GITS_CMD_INV);
696 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
697 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
698
699 its_fixup_cmd(cmd);
700
701 return valid_col(col);
702 }
703
its_build_int_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)704 static struct its_collection *its_build_int_cmd(struct its_node *its,
705 struct its_cmd_block *cmd,
706 struct its_cmd_desc *desc)
707 {
708 struct its_collection *col;
709
710 col = dev_event_to_col(desc->its_int_cmd.dev,
711 desc->its_int_cmd.event_id);
712
713 its_encode_cmd(cmd, GITS_CMD_INT);
714 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
715 its_encode_event_id(cmd, desc->its_int_cmd.event_id);
716
717 its_fixup_cmd(cmd);
718
719 return valid_col(col);
720 }
721
its_build_clear_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)722 static struct its_collection *its_build_clear_cmd(struct its_node *its,
723 struct its_cmd_block *cmd,
724 struct its_cmd_desc *desc)
725 {
726 struct its_collection *col;
727
728 col = dev_event_to_col(desc->its_clear_cmd.dev,
729 desc->its_clear_cmd.event_id);
730
731 its_encode_cmd(cmd, GITS_CMD_CLEAR);
732 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
733 its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
734
735 its_fixup_cmd(cmd);
736
737 return valid_col(col);
738 }
739
its_build_invall_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)740 static struct its_collection *its_build_invall_cmd(struct its_node *its,
741 struct its_cmd_block *cmd,
742 struct its_cmd_desc *desc)
743 {
744 its_encode_cmd(cmd, GITS_CMD_INVALL);
745 its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
746
747 its_fixup_cmd(cmd);
748
749 return desc->its_invall_cmd.col;
750 }
751
its_build_vinvall_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)752 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
753 struct its_cmd_block *cmd,
754 struct its_cmd_desc *desc)
755 {
756 its_encode_cmd(cmd, GITS_CMD_VINVALL);
757 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
758
759 its_fixup_cmd(cmd);
760
761 return valid_vpe(its, desc->its_vinvall_cmd.vpe);
762 }
763
its_build_vmapp_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)764 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
765 struct its_cmd_block *cmd,
766 struct its_cmd_desc *desc)
767 {
768 unsigned long vpt_addr, vconf_addr;
769 u64 target;
770 bool alloc;
771
772 its_encode_cmd(cmd, GITS_CMD_VMAPP);
773 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
774 its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
775
776 if (!desc->its_vmapp_cmd.valid) {
777 if (is_v4_1(its)) {
778 alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
779 its_encode_alloc(cmd, alloc);
780 }
781
782 goto out;
783 }
784
785 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
786 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
787
788 its_encode_target(cmd, target);
789 its_encode_vpt_addr(cmd, vpt_addr);
790 its_encode_vpt_size(cmd, LPI_NRBITS - 1);
791
792 if (!is_v4_1(its))
793 goto out;
794
795 vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
796
797 alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
798
799 its_encode_alloc(cmd, alloc);
800
801 /*
802 * GICv4.1 provides a way to get the VLPI state, which needs the vPE
803 * to be unmapped first, and in this case, we may remap the vPE
804 * back while the VPT is not empty. So we can't assume that the
805 * VPT is empty on map. This is why we never advertise PTZ.
806 */
807 its_encode_ptz(cmd, false);
808 its_encode_vconf_addr(cmd, vconf_addr);
809 its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
810
811 out:
812 its_fixup_cmd(cmd);
813
814 return valid_vpe(its, desc->its_vmapp_cmd.vpe);
815 }
816
its_build_vmapti_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)817 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
818 struct its_cmd_block *cmd,
819 struct its_cmd_desc *desc)
820 {
821 u32 db;
822
823 if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
824 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
825 else
826 db = 1023;
827
828 its_encode_cmd(cmd, GITS_CMD_VMAPTI);
829 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
830 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
831 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
832 its_encode_db_phys_id(cmd, db);
833 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
834
835 its_fixup_cmd(cmd);
836
837 return valid_vpe(its, desc->its_vmapti_cmd.vpe);
838 }
839
its_build_vmovi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)840 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
841 struct its_cmd_block *cmd,
842 struct its_cmd_desc *desc)
843 {
844 u32 db;
845
846 if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
847 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
848 else
849 db = 1023;
850
851 its_encode_cmd(cmd, GITS_CMD_VMOVI);
852 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
853 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
854 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
855 its_encode_db_phys_id(cmd, db);
856 its_encode_db_valid(cmd, true);
857
858 its_fixup_cmd(cmd);
859
860 return valid_vpe(its, desc->its_vmovi_cmd.vpe);
861 }
862
its_build_vmovp_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)863 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
864 struct its_cmd_block *cmd,
865 struct its_cmd_desc *desc)
866 {
867 u64 target;
868
869 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
870 its_encode_cmd(cmd, GITS_CMD_VMOVP);
871 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
872 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
873 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
874 its_encode_target(cmd, target);
875
876 if (is_v4_1(its)) {
877 its_encode_db(cmd, true);
878 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
879 }
880
881 its_fixup_cmd(cmd);
882
883 return valid_vpe(its, desc->its_vmovp_cmd.vpe);
884 }
885
its_build_vinv_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)886 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
887 struct its_cmd_block *cmd,
888 struct its_cmd_desc *desc)
889 {
890 struct its_vlpi_map *map;
891
892 map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
893 desc->its_inv_cmd.event_id);
894
895 its_encode_cmd(cmd, GITS_CMD_INV);
896 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
897 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
898
899 its_fixup_cmd(cmd);
900
901 return valid_vpe(its, map->vpe);
902 }
903
its_build_vint_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)904 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
905 struct its_cmd_block *cmd,
906 struct its_cmd_desc *desc)
907 {
908 struct its_vlpi_map *map;
909
910 map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
911 desc->its_int_cmd.event_id);
912
913 its_encode_cmd(cmd, GITS_CMD_INT);
914 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
915 its_encode_event_id(cmd, desc->its_int_cmd.event_id);
916
917 its_fixup_cmd(cmd);
918
919 return valid_vpe(its, map->vpe);
920 }
921
its_build_vclear_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)922 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
923 struct its_cmd_block *cmd,
924 struct its_cmd_desc *desc)
925 {
926 struct its_vlpi_map *map;
927
928 map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
929 desc->its_clear_cmd.event_id);
930
931 its_encode_cmd(cmd, GITS_CMD_CLEAR);
932 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
933 its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
934
935 its_fixup_cmd(cmd);
936
937 return valid_vpe(its, map->vpe);
938 }
939
its_build_invdb_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)940 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
941 struct its_cmd_block *cmd,
942 struct its_cmd_desc *desc)
943 {
944 if (WARN_ON(!is_v4_1(its)))
945 return NULL;
946
947 its_encode_cmd(cmd, GITS_CMD_INVDB);
948 its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
949
950 its_fixup_cmd(cmd);
951
952 return valid_vpe(its, desc->its_invdb_cmd.vpe);
953 }
954
its_build_vsgi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)955 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
956 struct its_cmd_block *cmd,
957 struct its_cmd_desc *desc)
958 {
959 if (WARN_ON(!is_v4_1(its)))
960 return NULL;
961
962 its_encode_cmd(cmd, GITS_CMD_VSGI);
963 its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
964 its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
965 its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
966 its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
967 its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
968 its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
969
970 its_fixup_cmd(cmd);
971
972 return valid_vpe(its, desc->its_vsgi_cmd.vpe);
973 }
974
its_cmd_ptr_to_offset(struct its_node * its,struct its_cmd_block * ptr)975 static u64 its_cmd_ptr_to_offset(struct its_node *its,
976 struct its_cmd_block *ptr)
977 {
978 return (ptr - its->cmd_base) * sizeof(*ptr);
979 }
980
its_queue_full(struct its_node * its)981 static int its_queue_full(struct its_node *its)
982 {
983 int widx;
984 int ridx;
985
986 widx = its->cmd_write - its->cmd_base;
987 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
988
989 /* This is incredibly unlikely to happen, unless the ITS locks up. */
990 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
991 return 1;
992
993 return 0;
994 }
995
its_allocate_entry(struct its_node * its)996 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
997 {
998 struct its_cmd_block *cmd;
999 u32 count = 1000000; /* 1s! */
1000
1001 while (its_queue_full(its)) {
1002 count--;
1003 if (!count) {
1004 pr_err_ratelimited("ITS queue not draining\n");
1005 return NULL;
1006 }
1007 cpu_relax();
1008 udelay(1);
1009 }
1010
1011 cmd = its->cmd_write++;
1012
1013 /* Handle queue wrapping */
1014 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1015 its->cmd_write = its->cmd_base;
1016
1017 /* Clear command */
1018 cmd->raw_cmd[0] = 0;
1019 cmd->raw_cmd[1] = 0;
1020 cmd->raw_cmd[2] = 0;
1021 cmd->raw_cmd[3] = 0;
1022
1023 return cmd;
1024 }
1025
its_post_commands(struct its_node * its)1026 static struct its_cmd_block *its_post_commands(struct its_node *its)
1027 {
1028 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1029
1030 writel_relaxed(wr, its->base + GITS_CWRITER);
1031
1032 return its->cmd_write;
1033 }
1034
its_flush_cmd(struct its_node * its,struct its_cmd_block * cmd)1035 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1036 {
1037 /*
1038 * Make sure the commands written to memory are observable by
1039 * the ITS.
1040 */
1041 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1042 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1043 else
1044 dsb(ishst);
1045 }
1046
its_wait_for_range_completion(struct its_node * its,u64 prev_idx,struct its_cmd_block * to)1047 static int its_wait_for_range_completion(struct its_node *its,
1048 u64 prev_idx,
1049 struct its_cmd_block *to)
1050 {
1051 u64 rd_idx, to_idx, linear_idx;
1052 u32 count = 1000000; /* 1s! */
1053
1054 /* Linearize to_idx if the command set has wrapped around */
1055 to_idx = its_cmd_ptr_to_offset(its, to);
1056 if (to_idx < prev_idx)
1057 to_idx += ITS_CMD_QUEUE_SZ;
1058
1059 linear_idx = prev_idx;
1060
1061 while (1) {
1062 s64 delta;
1063
1064 rd_idx = readl_relaxed(its->base + GITS_CREADR);
1065
1066 /*
1067 * Compute the read pointer progress, taking the
1068 * potential wrap-around into account.
1069 */
1070 delta = rd_idx - prev_idx;
1071 if (rd_idx < prev_idx)
1072 delta += ITS_CMD_QUEUE_SZ;
1073
1074 linear_idx += delta;
1075 if (linear_idx >= to_idx)
1076 break;
1077
1078 count--;
1079 if (!count) {
1080 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1081 to_idx, linear_idx);
1082 return -1;
1083 }
1084 prev_idx = rd_idx;
1085 cpu_relax();
1086 udelay(1);
1087 }
1088
1089 return 0;
1090 }
1091
1092 /* Warning, macro hell follows */
1093 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \
1094 void name(struct its_node *its, \
1095 buildtype builder, \
1096 struct its_cmd_desc *desc) \
1097 { \
1098 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \
1099 synctype *sync_obj; \
1100 unsigned long flags; \
1101 u64 rd_idx; \
1102 \
1103 raw_spin_lock_irqsave(&its->lock, flags); \
1104 \
1105 cmd = its_allocate_entry(its); \
1106 if (!cmd) { /* We're soooooo screewed... */ \
1107 raw_spin_unlock_irqrestore(&its->lock, flags); \
1108 return; \
1109 } \
1110 sync_obj = builder(its, cmd, desc); \
1111 its_flush_cmd(its, cmd); \
1112 \
1113 if (sync_obj) { \
1114 sync_cmd = its_allocate_entry(its); \
1115 if (!sync_cmd) \
1116 goto post; \
1117 \
1118 buildfn(its, sync_cmd, sync_obj); \
1119 its_flush_cmd(its, sync_cmd); \
1120 } \
1121 \
1122 post: \
1123 rd_idx = readl_relaxed(its->base + GITS_CREADR); \
1124 next_cmd = its_post_commands(its); \
1125 raw_spin_unlock_irqrestore(&its->lock, flags); \
1126 \
1127 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \
1128 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \
1129 }
1130
its_build_sync_cmd(struct its_node * its,struct its_cmd_block * sync_cmd,struct its_collection * sync_col)1131 static void its_build_sync_cmd(struct its_node *its,
1132 struct its_cmd_block *sync_cmd,
1133 struct its_collection *sync_col)
1134 {
1135 its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1136 its_encode_target(sync_cmd, sync_col->target_address);
1137
1138 its_fixup_cmd(sync_cmd);
1139 }
1140
BUILD_SINGLE_CMD_FUNC(its_send_single_command,its_cmd_builder_t,struct its_collection,its_build_sync_cmd)1141 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1142 struct its_collection, its_build_sync_cmd)
1143
1144 static void its_build_vsync_cmd(struct its_node *its,
1145 struct its_cmd_block *sync_cmd,
1146 struct its_vpe *sync_vpe)
1147 {
1148 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1149 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1150
1151 its_fixup_cmd(sync_cmd);
1152 }
1153
BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand,its_cmd_vbuilder_t,struct its_vpe,its_build_vsync_cmd)1154 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1155 struct its_vpe, its_build_vsync_cmd)
1156
1157 static void its_send_int(struct its_device *dev, u32 event_id)
1158 {
1159 struct its_cmd_desc desc;
1160
1161 desc.its_int_cmd.dev = dev;
1162 desc.its_int_cmd.event_id = event_id;
1163
1164 its_send_single_command(dev->its, its_build_int_cmd, &desc);
1165 }
1166
its_send_clear(struct its_device * dev,u32 event_id)1167 static void its_send_clear(struct its_device *dev, u32 event_id)
1168 {
1169 struct its_cmd_desc desc;
1170
1171 desc.its_clear_cmd.dev = dev;
1172 desc.its_clear_cmd.event_id = event_id;
1173
1174 its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1175 }
1176
its_send_inv(struct its_device * dev,u32 event_id)1177 static void its_send_inv(struct its_device *dev, u32 event_id)
1178 {
1179 struct its_cmd_desc desc;
1180
1181 desc.its_inv_cmd.dev = dev;
1182 desc.its_inv_cmd.event_id = event_id;
1183
1184 its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1185 }
1186
its_send_mapd(struct its_device * dev,int valid)1187 static void its_send_mapd(struct its_device *dev, int valid)
1188 {
1189 struct its_cmd_desc desc;
1190
1191 desc.its_mapd_cmd.dev = dev;
1192 desc.its_mapd_cmd.valid = !!valid;
1193
1194 its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1195 }
1196
its_send_mapc(struct its_node * its,struct its_collection * col,int valid)1197 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1198 int valid)
1199 {
1200 struct its_cmd_desc desc;
1201
1202 desc.its_mapc_cmd.col = col;
1203 desc.its_mapc_cmd.valid = !!valid;
1204
1205 its_send_single_command(its, its_build_mapc_cmd, &desc);
1206 }
1207
its_send_mapti(struct its_device * dev,u32 irq_id,u32 id)1208 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1209 {
1210 struct its_cmd_desc desc;
1211
1212 desc.its_mapti_cmd.dev = dev;
1213 desc.its_mapti_cmd.phys_id = irq_id;
1214 desc.its_mapti_cmd.event_id = id;
1215
1216 its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1217 }
1218
its_send_movi(struct its_device * dev,struct its_collection * col,u32 id)1219 static void its_send_movi(struct its_device *dev,
1220 struct its_collection *col, u32 id)
1221 {
1222 struct its_cmd_desc desc;
1223
1224 desc.its_movi_cmd.dev = dev;
1225 desc.its_movi_cmd.col = col;
1226 desc.its_movi_cmd.event_id = id;
1227
1228 its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1229 }
1230
its_send_discard(struct its_device * dev,u32 id)1231 static void its_send_discard(struct its_device *dev, u32 id)
1232 {
1233 struct its_cmd_desc desc;
1234
1235 desc.its_discard_cmd.dev = dev;
1236 desc.its_discard_cmd.event_id = id;
1237
1238 its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1239 }
1240
its_send_invall(struct its_node * its,struct its_collection * col)1241 static void its_send_invall(struct its_node *its, struct its_collection *col)
1242 {
1243 struct its_cmd_desc desc;
1244
1245 desc.its_invall_cmd.col = col;
1246
1247 its_send_single_command(its, its_build_invall_cmd, &desc);
1248 }
1249
its_send_vmapti(struct its_device * dev,u32 id)1250 static void its_send_vmapti(struct its_device *dev, u32 id)
1251 {
1252 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1253 struct its_cmd_desc desc;
1254
1255 desc.its_vmapti_cmd.vpe = map->vpe;
1256 desc.its_vmapti_cmd.dev = dev;
1257 desc.its_vmapti_cmd.virt_id = map->vintid;
1258 desc.its_vmapti_cmd.event_id = id;
1259 desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1260
1261 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1262 }
1263
its_send_vmovi(struct its_device * dev,u32 id)1264 static void its_send_vmovi(struct its_device *dev, u32 id)
1265 {
1266 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1267 struct its_cmd_desc desc;
1268
1269 desc.its_vmovi_cmd.vpe = map->vpe;
1270 desc.its_vmovi_cmd.dev = dev;
1271 desc.its_vmovi_cmd.event_id = id;
1272 desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1273
1274 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1275 }
1276
its_send_vmapp(struct its_node * its,struct its_vpe * vpe,bool valid)1277 static void its_send_vmapp(struct its_node *its,
1278 struct its_vpe *vpe, bool valid)
1279 {
1280 struct its_cmd_desc desc;
1281
1282 desc.its_vmapp_cmd.vpe = vpe;
1283 desc.its_vmapp_cmd.valid = valid;
1284 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1285
1286 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1287 }
1288
its_send_vmovp(struct its_vpe * vpe)1289 static void its_send_vmovp(struct its_vpe *vpe)
1290 {
1291 struct its_cmd_desc desc = {};
1292 struct its_node *its;
1293 unsigned long flags;
1294 int col_id = vpe->col_idx;
1295
1296 desc.its_vmovp_cmd.vpe = vpe;
1297
1298 if (!its_list_map) {
1299 its = list_first_entry(&its_nodes, struct its_node, entry);
1300 desc.its_vmovp_cmd.col = &its->collections[col_id];
1301 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1302 return;
1303 }
1304
1305 /*
1306 * Yet another marvel of the architecture. If using the
1307 * its_list "feature", we need to make sure that all ITSs
1308 * receive all VMOVP commands in the same order. The only way
1309 * to guarantee this is to make vmovp a serialization point.
1310 *
1311 * Wall <-- Head.
1312 */
1313 raw_spin_lock_irqsave(&vmovp_lock, flags);
1314
1315 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1316 desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1317
1318 /* Emit VMOVPs */
1319 list_for_each_entry(its, &its_nodes, entry) {
1320 if (!is_v4(its))
1321 continue;
1322
1323 if (!require_its_list_vmovp(vpe->its_vm, its))
1324 continue;
1325
1326 desc.its_vmovp_cmd.col = &its->collections[col_id];
1327 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1328 }
1329
1330 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1331 }
1332
its_send_vinvall(struct its_node * its,struct its_vpe * vpe)1333 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1334 {
1335 struct its_cmd_desc desc;
1336
1337 desc.its_vinvall_cmd.vpe = vpe;
1338 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1339 }
1340
its_send_vinv(struct its_device * dev,u32 event_id)1341 static void its_send_vinv(struct its_device *dev, u32 event_id)
1342 {
1343 struct its_cmd_desc desc;
1344
1345 /*
1346 * There is no real VINV command. This is just a normal INV,
1347 * with a VSYNC instead of a SYNC.
1348 */
1349 desc.its_inv_cmd.dev = dev;
1350 desc.its_inv_cmd.event_id = event_id;
1351
1352 its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1353 }
1354
its_send_vint(struct its_device * dev,u32 event_id)1355 static void its_send_vint(struct its_device *dev, u32 event_id)
1356 {
1357 struct its_cmd_desc desc;
1358
1359 /*
1360 * There is no real VINT command. This is just a normal INT,
1361 * with a VSYNC instead of a SYNC.
1362 */
1363 desc.its_int_cmd.dev = dev;
1364 desc.its_int_cmd.event_id = event_id;
1365
1366 its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1367 }
1368
its_send_vclear(struct its_device * dev,u32 event_id)1369 static void its_send_vclear(struct its_device *dev, u32 event_id)
1370 {
1371 struct its_cmd_desc desc;
1372
1373 /*
1374 * There is no real VCLEAR command. This is just a normal CLEAR,
1375 * with a VSYNC instead of a SYNC.
1376 */
1377 desc.its_clear_cmd.dev = dev;
1378 desc.its_clear_cmd.event_id = event_id;
1379
1380 its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1381 }
1382
its_send_invdb(struct its_node * its,struct its_vpe * vpe)1383 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1384 {
1385 struct its_cmd_desc desc;
1386
1387 desc.its_invdb_cmd.vpe = vpe;
1388 its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1389 }
1390
1391 /*
1392 * irqchip functions - assumes MSI, mostly.
1393 */
lpi_write_config(struct irq_data * d,u8 clr,u8 set)1394 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1395 {
1396 struct its_vlpi_map *map = get_vlpi_map(d);
1397 irq_hw_number_t hwirq;
1398 void *va;
1399 u8 *cfg;
1400
1401 if (map) {
1402 va = page_address(map->vm->vprop_page);
1403 hwirq = map->vintid;
1404
1405 /* Remember the updated property */
1406 map->properties &= ~clr;
1407 map->properties |= set | LPI_PROP_GROUP1;
1408 } else {
1409 va = gic_rdists->prop_table_va;
1410 hwirq = d->hwirq;
1411 }
1412
1413 cfg = va + hwirq - 8192;
1414 *cfg &= ~clr;
1415 *cfg |= set | LPI_PROP_GROUP1;
1416
1417 /*
1418 * Make the above write visible to the redistributors.
1419 * And yes, we're flushing exactly: One. Single. Byte.
1420 * Humpf...
1421 */
1422 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1423 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1424 else
1425 dsb(ishst);
1426 }
1427
wait_for_syncr(void __iomem * rdbase)1428 static void wait_for_syncr(void __iomem *rdbase)
1429 {
1430 while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1431 cpu_relax();
1432 }
1433
direct_lpi_inv(struct irq_data * d)1434 static void direct_lpi_inv(struct irq_data *d)
1435 {
1436 struct its_vlpi_map *map = get_vlpi_map(d);
1437 void __iomem *rdbase;
1438 unsigned long flags;
1439 u64 val;
1440 int cpu;
1441
1442 if (map) {
1443 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1444
1445 WARN_ON(!is_v4_1(its_dev->its));
1446
1447 val = GICR_INVLPIR_V;
1448 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1449 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1450 } else {
1451 val = d->hwirq;
1452 }
1453
1454 /* Target the redistributor this LPI is currently routed to */
1455 cpu = irq_to_cpuid_lock(d, &flags);
1456 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1457 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1458 gic_write_lpir(val, rdbase + GICR_INVLPIR);
1459
1460 wait_for_syncr(rdbase);
1461 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1462 irq_to_cpuid_unlock(d, flags);
1463 }
1464
lpi_update_config(struct irq_data * d,u8 clr,u8 set)1465 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1466 {
1467 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1468
1469 lpi_write_config(d, clr, set);
1470 if (gic_rdists->has_direct_lpi &&
1471 (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1472 direct_lpi_inv(d);
1473 else if (!irqd_is_forwarded_to_vcpu(d))
1474 its_send_inv(its_dev, its_get_event_id(d));
1475 else
1476 its_send_vinv(its_dev, its_get_event_id(d));
1477 }
1478
its_vlpi_set_doorbell(struct irq_data * d,bool enable)1479 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1480 {
1481 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1482 u32 event = its_get_event_id(d);
1483 struct its_vlpi_map *map;
1484
1485 /*
1486 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1487 * here.
1488 */
1489 if (is_v4_1(its_dev->its))
1490 return;
1491
1492 map = dev_event_to_vlpi_map(its_dev, event);
1493
1494 if (map->db_enabled == enable)
1495 return;
1496
1497 map->db_enabled = enable;
1498
1499 /*
1500 * More fun with the architecture:
1501 *
1502 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1503 * value or to 1023, depending on the enable bit. But that
1504 * would be issuing a mapping for an /existing/ DevID+EventID
1505 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1506 * to the /same/ vPE, using this opportunity to adjust the
1507 * doorbell. Mouahahahaha. We loves it, Precious.
1508 */
1509 its_send_vmovi(its_dev, event);
1510 }
1511
its_mask_irq(struct irq_data * d)1512 static void its_mask_irq(struct irq_data *d)
1513 {
1514 if (irqd_is_forwarded_to_vcpu(d))
1515 its_vlpi_set_doorbell(d, false);
1516
1517 lpi_update_config(d, LPI_PROP_ENABLED, 0);
1518 }
1519
its_unmask_irq(struct irq_data * d)1520 static void its_unmask_irq(struct irq_data *d)
1521 {
1522 if (irqd_is_forwarded_to_vcpu(d))
1523 its_vlpi_set_doorbell(d, true);
1524
1525 lpi_update_config(d, 0, LPI_PROP_ENABLED);
1526 }
1527
its_read_lpi_count(struct irq_data * d,int cpu)1528 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1529 {
1530 if (irqd_affinity_is_managed(d))
1531 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1532
1533 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1534 }
1535
its_inc_lpi_count(struct irq_data * d,int cpu)1536 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1537 {
1538 if (irqd_affinity_is_managed(d))
1539 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1540 else
1541 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1542 }
1543
its_dec_lpi_count(struct irq_data * d,int cpu)1544 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1545 {
1546 if (irqd_affinity_is_managed(d))
1547 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1548 else
1549 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1550 }
1551
cpumask_pick_least_loaded(struct irq_data * d,const struct cpumask * cpu_mask)1552 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1553 const struct cpumask *cpu_mask)
1554 {
1555 unsigned int cpu = nr_cpu_ids, tmp;
1556 int count = S32_MAX;
1557
1558 for_each_cpu(tmp, cpu_mask) {
1559 int this_count = its_read_lpi_count(d, tmp);
1560 if (this_count < count) {
1561 cpu = tmp;
1562 count = this_count;
1563 }
1564 }
1565
1566 return cpu;
1567 }
1568
1569 /*
1570 * As suggested by Thomas Gleixner in:
1571 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1572 */
its_select_cpu(struct irq_data * d,const struct cpumask * aff_mask)1573 static int its_select_cpu(struct irq_data *d,
1574 const struct cpumask *aff_mask)
1575 {
1576 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1577 static DEFINE_RAW_SPINLOCK(tmpmask_lock);
1578 static struct cpumask __tmpmask;
1579 struct cpumask *tmpmask;
1580 unsigned long flags;
1581 int cpu, node;
1582 node = its_dev->its->numa_node;
1583 tmpmask = &__tmpmask;
1584
1585 raw_spin_lock_irqsave(&tmpmask_lock, flags);
1586
1587 if (!irqd_affinity_is_managed(d)) {
1588 /* First try the NUMA node */
1589 if (node != NUMA_NO_NODE) {
1590 /*
1591 * Try the intersection of the affinity mask and the
1592 * node mask (and the online mask, just to be safe).
1593 */
1594 cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1595 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1596
1597 /*
1598 * Ideally, we would check if the mask is empty, and
1599 * try again on the full node here.
1600 *
1601 * But it turns out that the way ACPI describes the
1602 * affinity for ITSs only deals about memory, and
1603 * not target CPUs, so it cannot describe a single
1604 * ITS placed next to two NUMA nodes.
1605 *
1606 * Instead, just fallback on the online mask. This
1607 * diverges from Thomas' suggestion above.
1608 */
1609 cpu = cpumask_pick_least_loaded(d, tmpmask);
1610 if (cpu < nr_cpu_ids)
1611 goto out;
1612
1613 /* If we can't cross sockets, give up */
1614 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1615 goto out;
1616
1617 /* If the above failed, expand the search */
1618 }
1619
1620 /* Try the intersection of the affinity and online masks */
1621 cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1622
1623 /* If that doesn't fly, the online mask is the last resort */
1624 if (cpumask_empty(tmpmask))
1625 cpumask_copy(tmpmask, cpu_online_mask);
1626
1627 cpu = cpumask_pick_least_loaded(d, tmpmask);
1628 } else {
1629 cpumask_copy(tmpmask, aff_mask);
1630
1631 /* If we cannot cross sockets, limit the search to that node */
1632 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1633 node != NUMA_NO_NODE)
1634 cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1635
1636 cpu = cpumask_pick_least_loaded(d, tmpmask);
1637 }
1638 out:
1639 raw_spin_unlock_irqrestore(&tmpmask_lock, flags);
1640
1641 pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1642 return cpu;
1643 }
1644
its_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)1645 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1646 bool force)
1647 {
1648 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1649 struct its_collection *target_col;
1650 u32 id = its_get_event_id(d);
1651 int cpu, prev_cpu;
1652
1653 /* A forwarded interrupt should use irq_set_vcpu_affinity */
1654 if (irqd_is_forwarded_to_vcpu(d))
1655 return -EINVAL;
1656
1657 prev_cpu = its_dev->event_map.col_map[id];
1658 its_dec_lpi_count(d, prev_cpu);
1659
1660 if (!force)
1661 cpu = its_select_cpu(d, mask_val);
1662 else
1663 cpu = cpumask_pick_least_loaded(d, mask_val);
1664
1665 if (cpu < 0 || cpu >= nr_cpu_ids)
1666 goto err;
1667
1668 /* don't set the affinity when the target cpu is same as current one */
1669 if (cpu != prev_cpu) {
1670 target_col = &its_dev->its->collections[cpu];
1671 its_send_movi(its_dev, target_col, id);
1672 its_dev->event_map.col_map[id] = cpu;
1673 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1674 }
1675
1676 its_inc_lpi_count(d, cpu);
1677
1678 return IRQ_SET_MASK_OK_DONE;
1679
1680 err:
1681 its_inc_lpi_count(d, prev_cpu);
1682 return -EINVAL;
1683 }
1684
its_irq_get_msi_base(struct its_device * its_dev)1685 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1686 {
1687 struct its_node *its = its_dev->its;
1688
1689 return its->phys_base + GITS_TRANSLATER;
1690 }
1691
its_irq_compose_msi_msg(struct irq_data * d,struct msi_msg * msg)1692 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1693 {
1694 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1695 struct its_node *its;
1696 u64 addr;
1697
1698 its = its_dev->its;
1699 addr = its->get_msi_base(its_dev);
1700
1701 msg->address_lo = lower_32_bits(addr);
1702 msg->address_hi = upper_32_bits(addr);
1703 msg->data = its_get_event_id(d);
1704
1705 iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1706 }
1707
its_irq_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)1708 static int its_irq_set_irqchip_state(struct irq_data *d,
1709 enum irqchip_irq_state which,
1710 bool state)
1711 {
1712 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1713 u32 event = its_get_event_id(d);
1714
1715 if (which != IRQCHIP_STATE_PENDING)
1716 return -EINVAL;
1717
1718 if (irqd_is_forwarded_to_vcpu(d)) {
1719 if (state)
1720 its_send_vint(its_dev, event);
1721 else
1722 its_send_vclear(its_dev, event);
1723 } else {
1724 if (state)
1725 its_send_int(its_dev, event);
1726 else
1727 its_send_clear(its_dev, event);
1728 }
1729
1730 return 0;
1731 }
1732
its_irq_retrigger(struct irq_data * d)1733 static int its_irq_retrigger(struct irq_data *d)
1734 {
1735 return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1736 }
1737
1738 /*
1739 * Two favourable cases:
1740 *
1741 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1742 * for vSGI delivery
1743 *
1744 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1745 * and we're better off mapping all VPEs always
1746 *
1747 * If neither (a) nor (b) is true, then we map vPEs on demand.
1748 *
1749 */
gic_requires_eager_mapping(void)1750 static bool gic_requires_eager_mapping(void)
1751 {
1752 if (!its_list_map || gic_rdists->has_rvpeid)
1753 return true;
1754
1755 return false;
1756 }
1757
its_map_vm(struct its_node * its,struct its_vm * vm)1758 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1759 {
1760 unsigned long flags;
1761
1762 if (gic_requires_eager_mapping())
1763 return;
1764
1765 raw_spin_lock_irqsave(&vmovp_lock, flags);
1766
1767 /*
1768 * If the VM wasn't mapped yet, iterate over the vpes and get
1769 * them mapped now.
1770 */
1771 vm->vlpi_count[its->list_nr]++;
1772
1773 if (vm->vlpi_count[its->list_nr] == 1) {
1774 int i;
1775
1776 for (i = 0; i < vm->nr_vpes; i++) {
1777 struct its_vpe *vpe = vm->vpes[i];
1778 struct irq_data *d = irq_get_irq_data(vpe->irq);
1779
1780 /* Map the VPE to the first possible CPU */
1781 vpe->col_idx = cpumask_first(cpu_online_mask);
1782 its_send_vmapp(its, vpe, true);
1783 its_send_vinvall(its, vpe);
1784 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1785 }
1786 }
1787
1788 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1789 }
1790
its_unmap_vm(struct its_node * its,struct its_vm * vm)1791 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1792 {
1793 unsigned long flags;
1794
1795 /* Not using the ITS list? Everything is always mapped. */
1796 if (gic_requires_eager_mapping())
1797 return;
1798
1799 raw_spin_lock_irqsave(&vmovp_lock, flags);
1800
1801 if (!--vm->vlpi_count[its->list_nr]) {
1802 int i;
1803
1804 for (i = 0; i < vm->nr_vpes; i++)
1805 its_send_vmapp(its, vm->vpes[i], false);
1806 }
1807
1808 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1809 }
1810
its_vlpi_map(struct irq_data * d,struct its_cmd_info * info)1811 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1812 {
1813 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1814 u32 event = its_get_event_id(d);
1815 int ret = 0;
1816
1817 if (!info->map)
1818 return -EINVAL;
1819
1820 raw_spin_lock(&its_dev->event_map.vlpi_lock);
1821
1822 if (!its_dev->event_map.vm) {
1823 struct its_vlpi_map *maps;
1824
1825 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1826 GFP_ATOMIC);
1827 if (!maps) {
1828 ret = -ENOMEM;
1829 goto out;
1830 }
1831
1832 its_dev->event_map.vm = info->map->vm;
1833 its_dev->event_map.vlpi_maps = maps;
1834 } else if (its_dev->event_map.vm != info->map->vm) {
1835 ret = -EINVAL;
1836 goto out;
1837 }
1838
1839 /* Get our private copy of the mapping information */
1840 its_dev->event_map.vlpi_maps[event] = *info->map;
1841
1842 if (irqd_is_forwarded_to_vcpu(d)) {
1843 /* Already mapped, move it around */
1844 its_send_vmovi(its_dev, event);
1845 } else {
1846 /* Ensure all the VPEs are mapped on this ITS */
1847 its_map_vm(its_dev->its, info->map->vm);
1848
1849 /*
1850 * Flag the interrupt as forwarded so that we can
1851 * start poking the virtual property table.
1852 */
1853 irqd_set_forwarded_to_vcpu(d);
1854
1855 /* Write out the property to the prop table */
1856 lpi_write_config(d, 0xff, info->map->properties);
1857
1858 /* Drop the physical mapping */
1859 its_send_discard(its_dev, event);
1860
1861 /* and install the virtual one */
1862 its_send_vmapti(its_dev, event);
1863
1864 /* Increment the number of VLPIs */
1865 its_dev->event_map.nr_vlpis++;
1866 }
1867
1868 out:
1869 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1870 return ret;
1871 }
1872
its_vlpi_get(struct irq_data * d,struct its_cmd_info * info)1873 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1874 {
1875 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1876 struct its_vlpi_map *map;
1877 int ret = 0;
1878
1879 raw_spin_lock(&its_dev->event_map.vlpi_lock);
1880
1881 map = get_vlpi_map(d);
1882
1883 if (!its_dev->event_map.vm || !map) {
1884 ret = -EINVAL;
1885 goto out;
1886 }
1887
1888 /* Copy our mapping information to the incoming request */
1889 *info->map = *map;
1890
1891 out:
1892 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1893 return ret;
1894 }
1895
its_vlpi_unmap(struct irq_data * d)1896 static int its_vlpi_unmap(struct irq_data *d)
1897 {
1898 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1899 u32 event = its_get_event_id(d);
1900 int ret = 0;
1901
1902 raw_spin_lock(&its_dev->event_map.vlpi_lock);
1903
1904 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1905 ret = -EINVAL;
1906 goto out;
1907 }
1908
1909 /* Drop the virtual mapping */
1910 its_send_discard(its_dev, event);
1911
1912 /* and restore the physical one */
1913 irqd_clr_forwarded_to_vcpu(d);
1914 its_send_mapti(its_dev, d->hwirq, event);
1915 lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1916 LPI_PROP_ENABLED |
1917 LPI_PROP_GROUP1));
1918
1919 /* Potentially unmap the VM from this ITS */
1920 its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1921
1922 /*
1923 * Drop the refcount and make the device available again if
1924 * this was the last VLPI.
1925 */
1926 if (!--its_dev->event_map.nr_vlpis) {
1927 its_dev->event_map.vm = NULL;
1928 kfree(its_dev->event_map.vlpi_maps);
1929 }
1930
1931 out:
1932 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1933 return ret;
1934 }
1935
its_vlpi_prop_update(struct irq_data * d,struct its_cmd_info * info)1936 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1937 {
1938 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1939
1940 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1941 return -EINVAL;
1942
1943 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1944 lpi_update_config(d, 0xff, info->config);
1945 else
1946 lpi_write_config(d, 0xff, info->config);
1947 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1948
1949 return 0;
1950 }
1951
its_irq_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)1952 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1953 {
1954 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1955 struct its_cmd_info *info = vcpu_info;
1956
1957 /* Need a v4 ITS */
1958 if (!is_v4(its_dev->its))
1959 return -EINVAL;
1960
1961 /* Unmap request? */
1962 if (!info)
1963 return its_vlpi_unmap(d);
1964
1965 switch (info->cmd_type) {
1966 case MAP_VLPI:
1967 return its_vlpi_map(d, info);
1968
1969 case GET_VLPI:
1970 return its_vlpi_get(d, info);
1971
1972 case PROP_UPDATE_VLPI:
1973 case PROP_UPDATE_AND_INV_VLPI:
1974 return its_vlpi_prop_update(d, info);
1975
1976 default:
1977 return -EINVAL;
1978 }
1979 }
1980
1981 static struct irq_chip its_irq_chip = {
1982 .name = "ITS",
1983 .irq_mask = its_mask_irq,
1984 .irq_unmask = its_unmask_irq,
1985 .irq_eoi = irq_chip_eoi_parent,
1986 .irq_set_affinity = its_set_affinity,
1987 .irq_compose_msi_msg = its_irq_compose_msi_msg,
1988 .irq_set_irqchip_state = its_irq_set_irqchip_state,
1989 .irq_retrigger = its_irq_retrigger,
1990 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity,
1991 };
1992
1993
1994 /*
1995 * How we allocate LPIs:
1996 *
1997 * lpi_range_list contains ranges of LPIs that are to available to
1998 * allocate from. To allocate LPIs, just pick the first range that
1999 * fits the required allocation, and reduce it by the required
2000 * amount. Once empty, remove the range from the list.
2001 *
2002 * To free a range of LPIs, add a free range to the list, sort it and
2003 * merge the result if the new range happens to be adjacent to an
2004 * already free block.
2005 *
2006 * The consequence of the above is that allocation is cost is low, but
2007 * freeing is expensive. We assumes that freeing rarely occurs.
2008 */
2009 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */
2010
2011 static DEFINE_MUTEX(lpi_range_lock);
2012 static LIST_HEAD(lpi_range_list);
2013
2014 struct lpi_range {
2015 struct list_head entry;
2016 u32 base_id;
2017 u32 span;
2018 };
2019
mk_lpi_range(u32 base,u32 span)2020 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2021 {
2022 struct lpi_range *range;
2023
2024 range = kmalloc(sizeof(*range), GFP_KERNEL);
2025 if (range) {
2026 range->base_id = base;
2027 range->span = span;
2028 }
2029
2030 return range;
2031 }
2032
alloc_lpi_range(u32 nr_lpis,u32 * base)2033 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2034 {
2035 struct lpi_range *range, *tmp;
2036 int err = -ENOSPC;
2037
2038 mutex_lock(&lpi_range_lock);
2039
2040 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2041 if (range->span >= nr_lpis) {
2042 *base = range->base_id;
2043 range->base_id += nr_lpis;
2044 range->span -= nr_lpis;
2045
2046 if (range->span == 0) {
2047 list_del(&range->entry);
2048 kfree(range);
2049 }
2050
2051 err = 0;
2052 break;
2053 }
2054 }
2055
2056 mutex_unlock(&lpi_range_lock);
2057
2058 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2059 return err;
2060 }
2061
merge_lpi_ranges(struct lpi_range * a,struct lpi_range * b)2062 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2063 {
2064 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2065 return;
2066 if (a->base_id + a->span != b->base_id)
2067 return;
2068 b->base_id = a->base_id;
2069 b->span += a->span;
2070 list_del(&a->entry);
2071 kfree(a);
2072 }
2073
free_lpi_range(u32 base,u32 nr_lpis)2074 static int free_lpi_range(u32 base, u32 nr_lpis)
2075 {
2076 struct lpi_range *new, *old;
2077
2078 new = mk_lpi_range(base, nr_lpis);
2079 if (!new)
2080 return -ENOMEM;
2081
2082 mutex_lock(&lpi_range_lock);
2083
2084 list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2085 if (old->base_id < base)
2086 break;
2087 }
2088 /*
2089 * old is the last element with ->base_id smaller than base,
2090 * so new goes right after it. If there are no elements with
2091 * ->base_id smaller than base, &old->entry ends up pointing
2092 * at the head of the list, and inserting new it the start of
2093 * the list is the right thing to do in that case as well.
2094 */
2095 list_add(&new->entry, &old->entry);
2096 /*
2097 * Now check if we can merge with the preceding and/or
2098 * following ranges.
2099 */
2100 merge_lpi_ranges(old, new);
2101 merge_lpi_ranges(new, list_next_entry(new, entry));
2102
2103 mutex_unlock(&lpi_range_lock);
2104 return 0;
2105 }
2106
its_lpi_init(u32 id_bits)2107 static int __init its_lpi_init(u32 id_bits)
2108 {
2109 u32 lpis = (1UL << id_bits) - 8192;
2110 u32 numlpis;
2111 int err;
2112
2113 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2114
2115 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2116 lpis = numlpis;
2117 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2118 lpis);
2119 }
2120
2121 /*
2122 * Initializing the allocator is just the same as freeing the
2123 * full range of LPIs.
2124 */
2125 err = free_lpi_range(8192, lpis);
2126 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2127 return err;
2128 }
2129
its_lpi_alloc(int nr_irqs,u32 * base,int * nr_ids)2130 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2131 {
2132 unsigned long *bitmap = NULL;
2133 int err = 0;
2134
2135 do {
2136 err = alloc_lpi_range(nr_irqs, base);
2137 if (!err)
2138 break;
2139
2140 nr_irqs /= 2;
2141 } while (nr_irqs > 0);
2142
2143 if (!nr_irqs)
2144 err = -ENOSPC;
2145
2146 if (err)
2147 goto out;
2148
2149 bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
2150 if (!bitmap)
2151 goto out;
2152
2153 *nr_ids = nr_irqs;
2154
2155 out:
2156 if (!bitmap)
2157 *base = *nr_ids = 0;
2158
2159 return bitmap;
2160 }
2161
its_lpi_free(unsigned long * bitmap,u32 base,u32 nr_ids)2162 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2163 {
2164 WARN_ON(free_lpi_range(base, nr_ids));
2165 bitmap_free(bitmap);
2166 }
2167
gic_reset_prop_table(void * va)2168 static void gic_reset_prop_table(void *va)
2169 {
2170 /* Priority 0xa0, Group-1, disabled */
2171 memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2172
2173 /* Make sure the GIC will observe the written configuration */
2174 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2175 }
2176
its_allocate_prop_table(gfp_t gfp_flags)2177 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2178 {
2179 struct page *prop_page;
2180
2181 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2182 if (!prop_page)
2183 return NULL;
2184
2185 gic_reset_prop_table(page_address(prop_page));
2186
2187 return prop_page;
2188 }
2189
its_free_prop_table(struct page * prop_page)2190 static void its_free_prop_table(struct page *prop_page)
2191 {
2192 free_pages((unsigned long)page_address(prop_page),
2193 get_order(LPI_PROPBASE_SZ));
2194 }
2195
gic_check_reserved_range(phys_addr_t addr,unsigned long size)2196 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2197 {
2198 phys_addr_t start, end, addr_end;
2199 u64 i;
2200
2201 /*
2202 * We don't bother checking for a kdump kernel as by
2203 * construction, the LPI tables are out of this kernel's
2204 * memory map.
2205 */
2206 if (is_kdump_kernel())
2207 return true;
2208
2209 addr_end = addr + size - 1;
2210
2211 for_each_reserved_mem_range(i, &start, &end) {
2212 if (addr >= start && addr_end <= end)
2213 return true;
2214 }
2215
2216 /* Not found, not a good sign... */
2217 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2218 &addr, &addr_end);
2219 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2220 return false;
2221 }
2222
gic_reserve_range(phys_addr_t addr,unsigned long size)2223 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2224 {
2225 if (efi_enabled(EFI_CONFIG_TABLES))
2226 return efi_mem_reserve_persistent(addr, size);
2227
2228 return 0;
2229 }
2230
its_setup_lpi_prop_table(void)2231 static int __init its_setup_lpi_prop_table(void)
2232 {
2233 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2234 u64 val;
2235
2236 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2237 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2238
2239 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2240 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2241 LPI_PROPBASE_SZ,
2242 MEMREMAP_WB);
2243 gic_reset_prop_table(gic_rdists->prop_table_va);
2244 } else {
2245 struct page *page;
2246
2247 lpi_id_bits = min_t(u32,
2248 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2249 ITS_MAX_LPI_NRBITS);
2250 page = its_allocate_prop_table(GFP_NOWAIT);
2251 if (!page) {
2252 pr_err("Failed to allocate PROPBASE\n");
2253 return -ENOMEM;
2254 }
2255
2256 gic_rdists->prop_table_pa = page_to_phys(page);
2257 gic_rdists->prop_table_va = page_address(page);
2258 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2259 LPI_PROPBASE_SZ));
2260 }
2261
2262 pr_info("GICv3: using LPI property table @%pa\n",
2263 &gic_rdists->prop_table_pa);
2264
2265 return its_lpi_init(lpi_id_bits);
2266 }
2267
2268 static const char *its_base_type_string[] = {
2269 [GITS_BASER_TYPE_DEVICE] = "Devices",
2270 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs",
2271 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)",
2272 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections",
2273 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)",
2274 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)",
2275 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)",
2276 };
2277
its_read_baser(struct its_node * its,struct its_baser * baser)2278 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2279 {
2280 u32 idx = baser - its->tables;
2281
2282 return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2283 }
2284
its_write_baser(struct its_node * its,struct its_baser * baser,u64 val)2285 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2286 u64 val)
2287 {
2288 u32 idx = baser - its->tables;
2289
2290 gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2291 baser->val = its_read_baser(its, baser);
2292 }
2293
its_setup_baser(struct its_node * its,struct its_baser * baser,u64 cache,u64 shr,u32 order,bool indirect)2294 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2295 u64 cache, u64 shr, u32 order, bool indirect)
2296 {
2297 u64 val = its_read_baser(its, baser);
2298 u64 esz = GITS_BASER_ENTRY_SIZE(val);
2299 u64 type = GITS_BASER_TYPE(val);
2300 u64 baser_phys, tmp;
2301 u32 alloc_pages, psz;
2302 struct page *page;
2303 void *base;
2304
2305 psz = baser->psz;
2306 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2307 if (alloc_pages > GITS_BASER_PAGES_MAX) {
2308 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2309 &its->phys_base, its_base_type_string[type],
2310 alloc_pages, GITS_BASER_PAGES_MAX);
2311 alloc_pages = GITS_BASER_PAGES_MAX;
2312 order = get_order(GITS_BASER_PAGES_MAX * psz);
2313 }
2314
2315 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2316 if (!page)
2317 return -ENOMEM;
2318
2319 base = (void *)page_address(page);
2320 baser_phys = virt_to_phys(base);
2321
2322 /* Check if the physical address of the memory is above 48bits */
2323 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2324
2325 /* 52bit PA is supported only when PageSize=64K */
2326 if (psz != SZ_64K) {
2327 pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2328 free_pages((unsigned long)base, order);
2329 return -ENXIO;
2330 }
2331
2332 /* Convert 52bit PA to 48bit field */
2333 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2334 }
2335
2336 retry_baser:
2337 val = (baser_phys |
2338 (type << GITS_BASER_TYPE_SHIFT) |
2339 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
2340 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) |
2341 cache |
2342 shr |
2343 GITS_BASER_VALID);
2344
2345 val |= indirect ? GITS_BASER_INDIRECT : 0x0;
2346
2347 switch (psz) {
2348 case SZ_4K:
2349 val |= GITS_BASER_PAGE_SIZE_4K;
2350 break;
2351 case SZ_16K:
2352 val |= GITS_BASER_PAGE_SIZE_16K;
2353 break;
2354 case SZ_64K:
2355 val |= GITS_BASER_PAGE_SIZE_64K;
2356 break;
2357 }
2358
2359 its_write_baser(its, baser, val);
2360 tmp = baser->val;
2361
2362 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2363 /*
2364 * Shareability didn't stick. Just use
2365 * whatever the read reported, which is likely
2366 * to be the only thing this redistributor
2367 * supports. If that's zero, make it
2368 * non-cacheable as well.
2369 */
2370 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2371 if (!shr) {
2372 cache = GITS_BASER_nC;
2373 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2374 }
2375 goto retry_baser;
2376 }
2377
2378 if (val != tmp) {
2379 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2380 &its->phys_base, its_base_type_string[type],
2381 val, tmp);
2382 free_pages((unsigned long)base, order);
2383 return -ENXIO;
2384 }
2385
2386 baser->order = order;
2387 baser->base = base;
2388 baser->psz = psz;
2389 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2390
2391 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2392 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2393 its_base_type_string[type],
2394 (unsigned long)virt_to_phys(base),
2395 indirect ? "indirect" : "flat", (int)esz,
2396 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2397
2398 return 0;
2399 }
2400
its_parse_indirect_baser(struct its_node * its,struct its_baser * baser,u32 * order,u32 ids)2401 static bool its_parse_indirect_baser(struct its_node *its,
2402 struct its_baser *baser,
2403 u32 *order, u32 ids)
2404 {
2405 u64 tmp = its_read_baser(its, baser);
2406 u64 type = GITS_BASER_TYPE(tmp);
2407 u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2408 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2409 u32 new_order = *order;
2410 u32 psz = baser->psz;
2411 bool indirect = false;
2412
2413 /* No need to enable Indirection if memory requirement < (psz*2)bytes */
2414 if ((esz << ids) > (psz * 2)) {
2415 /*
2416 * Find out whether hw supports a single or two-level table by
2417 * table by reading bit at offset '62' after writing '1' to it.
2418 */
2419 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2420 indirect = !!(baser->val & GITS_BASER_INDIRECT);
2421
2422 if (indirect) {
2423 /*
2424 * The size of the lvl2 table is equal to ITS page size
2425 * which is 'psz'. For computing lvl1 table size,
2426 * subtract ID bits that sparse lvl2 table from 'ids'
2427 * which is reported by ITS hardware times lvl1 table
2428 * entry size.
2429 */
2430 ids -= ilog2(psz / (int)esz);
2431 esz = GITS_LVL1_ENTRY_SIZE;
2432 }
2433 }
2434
2435 /*
2436 * Allocate as many entries as required to fit the
2437 * range of device IDs that the ITS can grok... The ID
2438 * space being incredibly sparse, this results in a
2439 * massive waste of memory if two-level device table
2440 * feature is not supported by hardware.
2441 */
2442 new_order = max_t(u32, get_order(esz << ids), new_order);
2443 if (new_order >= MAX_ORDER) {
2444 new_order = MAX_ORDER - 1;
2445 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2446 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2447 &its->phys_base, its_base_type_string[type],
2448 device_ids(its), ids);
2449 }
2450
2451 *order = new_order;
2452
2453 return indirect;
2454 }
2455
compute_common_aff(u64 val)2456 static u32 compute_common_aff(u64 val)
2457 {
2458 u32 aff, clpiaff;
2459
2460 aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2461 clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2462
2463 return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2464 }
2465
compute_its_aff(struct its_node * its)2466 static u32 compute_its_aff(struct its_node *its)
2467 {
2468 u64 val;
2469 u32 svpet;
2470
2471 /*
2472 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2473 * the resulting affinity. We then use that to see if this match
2474 * our own affinity.
2475 */
2476 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2477 val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2478 val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2479 return compute_common_aff(val);
2480 }
2481
find_sibling_its(struct its_node * cur_its)2482 static struct its_node *find_sibling_its(struct its_node *cur_its)
2483 {
2484 struct its_node *its;
2485 u32 aff;
2486
2487 if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2488 return NULL;
2489
2490 aff = compute_its_aff(cur_its);
2491
2492 list_for_each_entry(its, &its_nodes, entry) {
2493 u64 baser;
2494
2495 if (!is_v4_1(its) || its == cur_its)
2496 continue;
2497
2498 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2499 continue;
2500
2501 if (aff != compute_its_aff(its))
2502 continue;
2503
2504 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2505 baser = its->tables[2].val;
2506 if (!(baser & GITS_BASER_VALID))
2507 continue;
2508
2509 return its;
2510 }
2511
2512 return NULL;
2513 }
2514
its_free_tables(struct its_node * its)2515 static void its_free_tables(struct its_node *its)
2516 {
2517 int i;
2518
2519 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2520 if (its->tables[i].base) {
2521 free_pages((unsigned long)its->tables[i].base,
2522 its->tables[i].order);
2523 its->tables[i].base = NULL;
2524 }
2525 }
2526 }
2527
its_probe_baser_psz(struct its_node * its,struct its_baser * baser)2528 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2529 {
2530 u64 psz = SZ_64K;
2531
2532 while (psz) {
2533 u64 val, gpsz;
2534
2535 val = its_read_baser(its, baser);
2536 val &= ~GITS_BASER_PAGE_SIZE_MASK;
2537
2538 switch (psz) {
2539 case SZ_64K:
2540 gpsz = GITS_BASER_PAGE_SIZE_64K;
2541 break;
2542 case SZ_16K:
2543 gpsz = GITS_BASER_PAGE_SIZE_16K;
2544 break;
2545 case SZ_4K:
2546 default:
2547 gpsz = GITS_BASER_PAGE_SIZE_4K;
2548 break;
2549 }
2550
2551 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2552
2553 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2554 its_write_baser(its, baser, val);
2555
2556 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2557 break;
2558
2559 switch (psz) {
2560 case SZ_64K:
2561 psz = SZ_16K;
2562 break;
2563 case SZ_16K:
2564 psz = SZ_4K;
2565 break;
2566 case SZ_4K:
2567 default:
2568 return -1;
2569 }
2570 }
2571
2572 baser->psz = psz;
2573 return 0;
2574 }
2575
its_alloc_tables(struct its_node * its)2576 static int its_alloc_tables(struct its_node *its)
2577 {
2578 u64 shr = GITS_BASER_InnerShareable;
2579 u64 cache = GITS_BASER_RaWaWb;
2580 int err, i;
2581
2582 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2583 /* erratum 24313: ignore memory access type */
2584 cache = GITS_BASER_nCnB;
2585
2586 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2587 struct its_baser *baser = its->tables + i;
2588 u64 val = its_read_baser(its, baser);
2589 u64 type = GITS_BASER_TYPE(val);
2590 bool indirect = false;
2591 u32 order;
2592
2593 if (type == GITS_BASER_TYPE_NONE)
2594 continue;
2595
2596 if (its_probe_baser_psz(its, baser)) {
2597 its_free_tables(its);
2598 return -ENXIO;
2599 }
2600
2601 order = get_order(baser->psz);
2602
2603 switch (type) {
2604 case GITS_BASER_TYPE_DEVICE:
2605 indirect = its_parse_indirect_baser(its, baser, &order,
2606 device_ids(its));
2607 break;
2608
2609 case GITS_BASER_TYPE_VCPU:
2610 if (is_v4_1(its)) {
2611 struct its_node *sibling;
2612
2613 WARN_ON(i != 2);
2614 if ((sibling = find_sibling_its(its))) {
2615 *baser = sibling->tables[2];
2616 its_write_baser(its, baser, baser->val);
2617 continue;
2618 }
2619 }
2620
2621 indirect = its_parse_indirect_baser(its, baser, &order,
2622 ITS_MAX_VPEID_BITS);
2623 break;
2624 }
2625
2626 err = its_setup_baser(its, baser, cache, shr, order, indirect);
2627 if (err < 0) {
2628 its_free_tables(its);
2629 return err;
2630 }
2631
2632 /* Update settings which will be used for next BASERn */
2633 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2634 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2635 }
2636
2637 return 0;
2638 }
2639
inherit_vpe_l1_table_from_its(void)2640 static u64 inherit_vpe_l1_table_from_its(void)
2641 {
2642 struct its_node *its;
2643 u64 val;
2644 u32 aff;
2645
2646 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2647 aff = compute_common_aff(val);
2648
2649 list_for_each_entry(its, &its_nodes, entry) {
2650 u64 baser, addr;
2651
2652 if (!is_v4_1(its))
2653 continue;
2654
2655 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2656 continue;
2657
2658 if (aff != compute_its_aff(its))
2659 continue;
2660
2661 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2662 baser = its->tables[2].val;
2663 if (!(baser & GITS_BASER_VALID))
2664 continue;
2665
2666 /* We have a winner! */
2667 gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2668
2669 val = GICR_VPROPBASER_4_1_VALID;
2670 if (baser & GITS_BASER_INDIRECT)
2671 val |= GICR_VPROPBASER_4_1_INDIRECT;
2672 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2673 FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2674 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2675 case GIC_PAGE_SIZE_64K:
2676 addr = GITS_BASER_ADDR_48_to_52(baser);
2677 break;
2678 default:
2679 addr = baser & GENMASK_ULL(47, 12);
2680 break;
2681 }
2682 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2683 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2684 FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2685 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2686 FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2687 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2688
2689 return val;
2690 }
2691
2692 return 0;
2693 }
2694
inherit_vpe_l1_table_from_rd(cpumask_t ** mask)2695 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2696 {
2697 u32 aff;
2698 u64 val;
2699 int cpu;
2700
2701 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2702 aff = compute_common_aff(val);
2703
2704 for_each_possible_cpu(cpu) {
2705 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2706
2707 if (!base || cpu == smp_processor_id())
2708 continue;
2709
2710 val = gic_read_typer(base + GICR_TYPER);
2711 if (aff != compute_common_aff(val))
2712 continue;
2713
2714 /*
2715 * At this point, we have a victim. This particular CPU
2716 * has already booted, and has an affinity that matches
2717 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2718 * Make sure we don't write the Z bit in that case.
2719 */
2720 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2721 val &= ~GICR_VPROPBASER_4_1_Z;
2722
2723 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2724 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2725
2726 return val;
2727 }
2728
2729 return 0;
2730 }
2731
allocate_vpe_l2_table(int cpu,u32 id)2732 static bool allocate_vpe_l2_table(int cpu, u32 id)
2733 {
2734 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2735 unsigned int psz, esz, idx, npg, gpsz;
2736 u64 val;
2737 struct page *page;
2738 __le64 *table;
2739
2740 if (!gic_rdists->has_rvpeid)
2741 return true;
2742
2743 /* Skip non-present CPUs */
2744 if (!base)
2745 return true;
2746
2747 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2748
2749 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2750 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2751 npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2752
2753 switch (gpsz) {
2754 default:
2755 WARN_ON(1);
2756 fallthrough;
2757 case GIC_PAGE_SIZE_4K:
2758 psz = SZ_4K;
2759 break;
2760 case GIC_PAGE_SIZE_16K:
2761 psz = SZ_16K;
2762 break;
2763 case GIC_PAGE_SIZE_64K:
2764 psz = SZ_64K;
2765 break;
2766 }
2767
2768 /* Don't allow vpe_id that exceeds single, flat table limit */
2769 if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2770 return (id < (npg * psz / (esz * SZ_8)));
2771
2772 /* Compute 1st level table index & check if that exceeds table limit */
2773 idx = id >> ilog2(psz / (esz * SZ_8));
2774 if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2775 return false;
2776
2777 table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2778
2779 /* Allocate memory for 2nd level table */
2780 if (!table[idx]) {
2781 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2782 if (!page)
2783 return false;
2784
2785 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2786 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2787 gic_flush_dcache_to_poc(page_address(page), psz);
2788
2789 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2790
2791 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2792 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2793 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2794
2795 /* Ensure updated table contents are visible to RD hardware */
2796 dsb(sy);
2797 }
2798
2799 return true;
2800 }
2801
allocate_vpe_l1_table(void)2802 static int allocate_vpe_l1_table(void)
2803 {
2804 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2805 u64 val, gpsz, npg, pa;
2806 unsigned int psz = SZ_64K;
2807 unsigned int np, epp, esz;
2808 struct page *page;
2809
2810 if (!gic_rdists->has_rvpeid)
2811 return 0;
2812
2813 /*
2814 * if VPENDBASER.Valid is set, disable any previously programmed
2815 * VPE by setting PendingLast while clearing Valid. This has the
2816 * effect of making sure no doorbell will be generated and we can
2817 * then safely clear VPROPBASER.Valid.
2818 */
2819 if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2820 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2821 vlpi_base + GICR_VPENDBASER);
2822
2823 /*
2824 * If we can inherit the configuration from another RD, let's do
2825 * so. Otherwise, we have to go through the allocation process. We
2826 * assume that all RDs have the exact same requirements, as
2827 * nothing will work otherwise.
2828 */
2829 val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2830 if (val & GICR_VPROPBASER_4_1_VALID)
2831 goto out;
2832
2833 gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2834 if (!gic_data_rdist()->vpe_table_mask)
2835 return -ENOMEM;
2836
2837 val = inherit_vpe_l1_table_from_its();
2838 if (val & GICR_VPROPBASER_4_1_VALID)
2839 goto out;
2840
2841 /* First probe the page size */
2842 val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2843 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2844 val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2845 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2846 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2847
2848 switch (gpsz) {
2849 default:
2850 gpsz = GIC_PAGE_SIZE_4K;
2851 fallthrough;
2852 case GIC_PAGE_SIZE_4K:
2853 psz = SZ_4K;
2854 break;
2855 case GIC_PAGE_SIZE_16K:
2856 psz = SZ_16K;
2857 break;
2858 case GIC_PAGE_SIZE_64K:
2859 psz = SZ_64K;
2860 break;
2861 }
2862
2863 /*
2864 * Start populating the register from scratch, including RO fields
2865 * (which we want to print in debug cases...)
2866 */
2867 val = 0;
2868 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2869 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2870
2871 /* How many entries per GIC page? */
2872 esz++;
2873 epp = psz / (esz * SZ_8);
2874
2875 /*
2876 * If we need more than just a single L1 page, flag the table
2877 * as indirect and compute the number of required L1 pages.
2878 */
2879 if (epp < ITS_MAX_VPEID) {
2880 int nl2;
2881
2882 val |= GICR_VPROPBASER_4_1_INDIRECT;
2883
2884 /* Number of L2 pages required to cover the VPEID space */
2885 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2886
2887 /* Number of L1 pages to point to the L2 pages */
2888 npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2889 } else {
2890 npg = 1;
2891 }
2892
2893 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2894
2895 /* Right, that's the number of CPU pages we need for L1 */
2896 np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2897
2898 pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2899 np, npg, psz, epp, esz);
2900 page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2901 if (!page)
2902 return -ENOMEM;
2903
2904 gic_data_rdist()->vpe_l1_base = page_address(page);
2905 pa = virt_to_phys(page_address(page));
2906 WARN_ON(!IS_ALIGNED(pa, psz));
2907
2908 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2909 val |= GICR_VPROPBASER_RaWb;
2910 val |= GICR_VPROPBASER_InnerShareable;
2911 val |= GICR_VPROPBASER_4_1_Z;
2912 val |= GICR_VPROPBASER_4_1_VALID;
2913
2914 out:
2915 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2916 cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2917
2918 pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2919 smp_processor_id(), val,
2920 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2921
2922 return 0;
2923 }
2924
its_alloc_collections(struct its_node * its)2925 static int its_alloc_collections(struct its_node *its)
2926 {
2927 int i;
2928
2929 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2930 GFP_KERNEL);
2931 if (!its->collections)
2932 return -ENOMEM;
2933
2934 for (i = 0; i < nr_cpu_ids; i++)
2935 its->collections[i].target_address = ~0ULL;
2936
2937 return 0;
2938 }
2939
its_allocate_pending_table(gfp_t gfp_flags)2940 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2941 {
2942 struct page *pend_page;
2943
2944 pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2945 get_order(LPI_PENDBASE_SZ));
2946 if (!pend_page)
2947 return NULL;
2948
2949 /* Make sure the GIC will observe the zero-ed page */
2950 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2951
2952 return pend_page;
2953 }
2954
its_free_pending_table(struct page * pt)2955 static void its_free_pending_table(struct page *pt)
2956 {
2957 free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2958 }
2959
2960 /*
2961 * Booting with kdump and LPIs enabled is generally fine. Any other
2962 * case is wrong in the absence of firmware/EFI support.
2963 */
enabled_lpis_allowed(void)2964 static bool enabled_lpis_allowed(void)
2965 {
2966 phys_addr_t addr;
2967 u64 val;
2968
2969 /* Check whether the property table is in a reserved region */
2970 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2971 addr = val & GENMASK_ULL(51, 12);
2972
2973 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2974 }
2975
allocate_lpi_tables(void)2976 static int __init allocate_lpi_tables(void)
2977 {
2978 u64 val;
2979 int err, cpu;
2980
2981 /*
2982 * If LPIs are enabled while we run this from the boot CPU,
2983 * flag the RD tables as pre-allocated if the stars do align.
2984 */
2985 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
2986 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
2987 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
2988 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
2989 pr_info("GICv3: Using preallocated redistributor tables\n");
2990 }
2991
2992 err = its_setup_lpi_prop_table();
2993 if (err)
2994 return err;
2995
2996 /*
2997 * We allocate all the pending tables anyway, as we may have a
2998 * mix of RDs that have had LPIs enabled, and some that
2999 * don't. We'll free the unused ones as each CPU comes online.
3000 */
3001 for_each_possible_cpu(cpu) {
3002 struct page *pend_page;
3003
3004 pend_page = its_allocate_pending_table(GFP_NOWAIT);
3005 if (!pend_page) {
3006 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3007 return -ENOMEM;
3008 }
3009
3010 gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3011 }
3012
3013 return 0;
3014 }
3015
read_vpend_dirty_clear(void __iomem * vlpi_base)3016 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
3017 {
3018 u32 count = 1000000; /* 1s! */
3019 bool clean;
3020 u64 val;
3021
3022 do {
3023 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3024 clean = !(val & GICR_VPENDBASER_Dirty);
3025 if (!clean) {
3026 count--;
3027 cpu_relax();
3028 udelay(1);
3029 }
3030 } while (!clean && count);
3031
3032 if (unlikely(!clean))
3033 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3034
3035 return val;
3036 }
3037
its_clear_vpend_valid(void __iomem * vlpi_base,u64 clr,u64 set)3038 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3039 {
3040 u64 val;
3041
3042 /* Make sure we wait until the RD is done with the initial scan */
3043 val = read_vpend_dirty_clear(vlpi_base);
3044 val &= ~GICR_VPENDBASER_Valid;
3045 val &= ~clr;
3046 val |= set;
3047 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3048
3049 val = read_vpend_dirty_clear(vlpi_base);
3050 if (unlikely(val & GICR_VPENDBASER_Dirty))
3051 val |= GICR_VPENDBASER_PendingLast;
3052
3053 return val;
3054 }
3055
its_cpu_init_lpis(void)3056 static void its_cpu_init_lpis(void)
3057 {
3058 void __iomem *rbase = gic_data_rdist_rd_base();
3059 struct page *pend_page;
3060 phys_addr_t paddr;
3061 u64 val, tmp;
3062
3063 if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED)
3064 return;
3065
3066 val = readl_relaxed(rbase + GICR_CTLR);
3067 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3068 (val & GICR_CTLR_ENABLE_LPIS)) {
3069 /*
3070 * Check that we get the same property table on all
3071 * RDs. If we don't, this is hopeless.
3072 */
3073 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3074 paddr &= GENMASK_ULL(51, 12);
3075 if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3076 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3077
3078 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3079 paddr &= GENMASK_ULL(51, 16);
3080
3081 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3082 gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED;
3083
3084 goto out;
3085 }
3086
3087 pend_page = gic_data_rdist()->pend_page;
3088 paddr = page_to_phys(pend_page);
3089
3090 /* set PROPBASE */
3091 val = (gic_rdists->prop_table_pa |
3092 GICR_PROPBASER_InnerShareable |
3093 GICR_PROPBASER_RaWaWb |
3094 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3095
3096 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3097 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3098
3099 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3100 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3101 /*
3102 * The HW reports non-shareable, we must
3103 * remove the cacheability attributes as
3104 * well.
3105 */
3106 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3107 GICR_PROPBASER_CACHEABILITY_MASK);
3108 val |= GICR_PROPBASER_nC;
3109 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3110 }
3111 pr_info_once("GIC: using cache flushing for LPI property table\n");
3112 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3113 }
3114
3115 /* set PENDBASE */
3116 val = (page_to_phys(pend_page) |
3117 GICR_PENDBASER_InnerShareable |
3118 GICR_PENDBASER_RaWaWb);
3119
3120 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3121 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3122
3123 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3124 /*
3125 * The HW reports non-shareable, we must remove the
3126 * cacheability attributes as well.
3127 */
3128 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3129 GICR_PENDBASER_CACHEABILITY_MASK);
3130 val |= GICR_PENDBASER_nC;
3131 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3132 }
3133
3134 /* Enable LPIs */
3135 val = readl_relaxed(rbase + GICR_CTLR);
3136 val |= GICR_CTLR_ENABLE_LPIS;
3137 writel_relaxed(val, rbase + GICR_CTLR);
3138
3139 if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3140 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3141
3142 /*
3143 * It's possible for CPU to receive VLPIs before it is
3144 * scheduled as a vPE, especially for the first CPU, and the
3145 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3146 * as out of range and dropped by GIC.
3147 * So we initialize IDbits to known value to avoid VLPI drop.
3148 */
3149 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3150 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3151 smp_processor_id(), val);
3152 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3153
3154 /*
3155 * Also clear Valid bit of GICR_VPENDBASER, in case some
3156 * ancient programming gets left in and has possibility of
3157 * corrupting memory.
3158 */
3159 val = its_clear_vpend_valid(vlpi_base, 0, 0);
3160 }
3161
3162 if (allocate_vpe_l1_table()) {
3163 /*
3164 * If the allocation has failed, we're in massive trouble.
3165 * Disable direct injection, and pray that no VM was
3166 * already running...
3167 */
3168 gic_rdists->has_rvpeid = false;
3169 gic_rdists->has_vlpis = false;
3170 }
3171
3172 /* Make sure the GIC has seen the above */
3173 dsb(sy);
3174 out:
3175 gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED;
3176 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3177 smp_processor_id(),
3178 gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ?
3179 "reserved" : "allocated",
3180 &paddr);
3181 }
3182
its_cpu_init_collection(struct its_node * its)3183 static void its_cpu_init_collection(struct its_node *its)
3184 {
3185 int cpu = smp_processor_id();
3186 u64 target;
3187
3188 /* avoid cross node collections and its mapping */
3189 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3190 struct device_node *cpu_node;
3191
3192 cpu_node = of_get_cpu_node(cpu, NULL);
3193 if (its->numa_node != NUMA_NO_NODE &&
3194 its->numa_node != of_node_to_nid(cpu_node))
3195 return;
3196 }
3197
3198 /*
3199 * We now have to bind each collection to its target
3200 * redistributor.
3201 */
3202 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3203 /*
3204 * This ITS wants the physical address of the
3205 * redistributor.
3206 */
3207 target = gic_data_rdist()->phys_base;
3208 } else {
3209 /* This ITS wants a linear CPU number. */
3210 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3211 target = GICR_TYPER_CPU_NUMBER(target) << 16;
3212 }
3213
3214 /* Perform collection mapping */
3215 its->collections[cpu].target_address = target;
3216 its->collections[cpu].col_id = cpu;
3217
3218 its_send_mapc(its, &its->collections[cpu], 1);
3219 its_send_invall(its, &its->collections[cpu]);
3220 }
3221
its_cpu_init_collections(void)3222 static void its_cpu_init_collections(void)
3223 {
3224 struct its_node *its;
3225
3226 raw_spin_lock(&its_lock);
3227
3228 list_for_each_entry(its, &its_nodes, entry)
3229 its_cpu_init_collection(its);
3230
3231 raw_spin_unlock(&its_lock);
3232 }
3233
its_find_device(struct its_node * its,u32 dev_id)3234 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3235 {
3236 struct its_device *its_dev = NULL, *tmp;
3237 unsigned long flags;
3238
3239 raw_spin_lock_irqsave(&its->lock, flags);
3240
3241 list_for_each_entry(tmp, &its->its_device_list, entry) {
3242 if (tmp->device_id == dev_id) {
3243 its_dev = tmp;
3244 break;
3245 }
3246 }
3247
3248 raw_spin_unlock_irqrestore(&its->lock, flags);
3249
3250 return its_dev;
3251 }
3252
its_get_baser(struct its_node * its,u32 type)3253 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3254 {
3255 int i;
3256
3257 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3258 if (GITS_BASER_TYPE(its->tables[i].val) == type)
3259 return &its->tables[i];
3260 }
3261
3262 return NULL;
3263 }
3264
its_alloc_table_entry(struct its_node * its,struct its_baser * baser,u32 id)3265 static bool its_alloc_table_entry(struct its_node *its,
3266 struct its_baser *baser, u32 id)
3267 {
3268 struct page *page;
3269 u32 esz, idx;
3270 __le64 *table;
3271
3272 /* Don't allow device id that exceeds single, flat table limit */
3273 esz = GITS_BASER_ENTRY_SIZE(baser->val);
3274 if (!(baser->val & GITS_BASER_INDIRECT))
3275 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3276
3277 /* Compute 1st level table index & check if that exceeds table limit */
3278 idx = id >> ilog2(baser->psz / esz);
3279 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3280 return false;
3281
3282 table = baser->base;
3283
3284 /* Allocate memory for 2nd level table */
3285 if (!table[idx]) {
3286 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3287 get_order(baser->psz));
3288 if (!page)
3289 return false;
3290
3291 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
3292 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3293 gic_flush_dcache_to_poc(page_address(page), baser->psz);
3294
3295 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3296
3297 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3298 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3299 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3300
3301 /* Ensure updated table contents are visible to ITS hardware */
3302 dsb(sy);
3303 }
3304
3305 return true;
3306 }
3307
its_alloc_device_table(struct its_node * its,u32 dev_id)3308 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3309 {
3310 struct its_baser *baser;
3311
3312 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3313
3314 /* Don't allow device id that exceeds ITS hardware limit */
3315 if (!baser)
3316 return (ilog2(dev_id) < device_ids(its));
3317
3318 return its_alloc_table_entry(its, baser, dev_id);
3319 }
3320
its_alloc_vpe_table(u32 vpe_id)3321 static bool its_alloc_vpe_table(u32 vpe_id)
3322 {
3323 struct its_node *its;
3324 int cpu;
3325
3326 /*
3327 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3328 * could try and only do it on ITSs corresponding to devices
3329 * that have interrupts targeted at this VPE, but the
3330 * complexity becomes crazy (and you have tons of memory
3331 * anyway, right?).
3332 */
3333 list_for_each_entry(its, &its_nodes, entry) {
3334 struct its_baser *baser;
3335
3336 if (!is_v4(its))
3337 continue;
3338
3339 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3340 if (!baser)
3341 return false;
3342
3343 if (!its_alloc_table_entry(its, baser, vpe_id))
3344 return false;
3345 }
3346
3347 /* Non v4.1? No need to iterate RDs and go back early. */
3348 if (!gic_rdists->has_rvpeid)
3349 return true;
3350
3351 /*
3352 * Make sure the L2 tables are allocated for all copies of
3353 * the L1 table on *all* v4.1 RDs.
3354 */
3355 for_each_possible_cpu(cpu) {
3356 if (!allocate_vpe_l2_table(cpu, vpe_id))
3357 return false;
3358 }
3359
3360 return true;
3361 }
3362
its_create_device(struct its_node * its,u32 dev_id,int nvecs,bool alloc_lpis)3363 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3364 int nvecs, bool alloc_lpis)
3365 {
3366 struct its_device *dev;
3367 unsigned long *lpi_map = NULL;
3368 unsigned long flags;
3369 u16 *col_map = NULL;
3370 void *itt;
3371 int lpi_base;
3372 int nr_lpis;
3373 int nr_ites;
3374 int sz;
3375
3376 if (!its_alloc_device_table(its, dev_id))
3377 return NULL;
3378
3379 if (WARN_ON(!is_power_of_2(nvecs)))
3380 nvecs = roundup_pow_of_two(nvecs);
3381
3382 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3383 /*
3384 * Even if the device wants a single LPI, the ITT must be
3385 * sized as a power of two (and you need at least one bit...).
3386 */
3387 nr_ites = max(2, nvecs);
3388 sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3389 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3390 itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3391 if (alloc_lpis) {
3392 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3393 if (lpi_map)
3394 col_map = kcalloc(nr_lpis, sizeof(*col_map),
3395 GFP_KERNEL);
3396 } else {
3397 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3398 nr_lpis = 0;
3399 lpi_base = 0;
3400 }
3401
3402 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) {
3403 kfree(dev);
3404 kfree(itt);
3405 bitmap_free(lpi_map);
3406 kfree(col_map);
3407 return NULL;
3408 }
3409
3410 gic_flush_dcache_to_poc(itt, sz);
3411
3412 dev->its = its;
3413 dev->itt = itt;
3414 dev->nr_ites = nr_ites;
3415 dev->event_map.lpi_map = lpi_map;
3416 dev->event_map.col_map = col_map;
3417 dev->event_map.lpi_base = lpi_base;
3418 dev->event_map.nr_lpis = nr_lpis;
3419 raw_spin_lock_init(&dev->event_map.vlpi_lock);
3420 dev->device_id = dev_id;
3421 INIT_LIST_HEAD(&dev->entry);
3422
3423 raw_spin_lock_irqsave(&its->lock, flags);
3424 list_add(&dev->entry, &its->its_device_list);
3425 raw_spin_unlock_irqrestore(&its->lock, flags);
3426
3427 /* Map device to its ITT */
3428 its_send_mapd(dev, 1);
3429
3430 return dev;
3431 }
3432
its_free_device(struct its_device * its_dev)3433 static void its_free_device(struct its_device *its_dev)
3434 {
3435 unsigned long flags;
3436
3437 raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3438 list_del(&its_dev->entry);
3439 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3440 kfree(its_dev->event_map.col_map);
3441 kfree(its_dev->itt);
3442 kfree(its_dev);
3443 }
3444
its_alloc_device_irq(struct its_device * dev,int nvecs,irq_hw_number_t * hwirq)3445 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3446 {
3447 int idx;
3448
3449 /* Find a free LPI region in lpi_map and allocate them. */
3450 idx = bitmap_find_free_region(dev->event_map.lpi_map,
3451 dev->event_map.nr_lpis,
3452 get_count_order(nvecs));
3453 if (idx < 0)
3454 return -ENOSPC;
3455
3456 *hwirq = dev->event_map.lpi_base + idx;
3457
3458 return 0;
3459 }
3460
its_msi_prepare(struct irq_domain * domain,struct device * dev,int nvec,msi_alloc_info_t * info)3461 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3462 int nvec, msi_alloc_info_t *info)
3463 {
3464 struct its_node *its;
3465 struct its_device *its_dev;
3466 struct msi_domain_info *msi_info;
3467 u32 dev_id;
3468 int err = 0;
3469
3470 /*
3471 * We ignore "dev" entirely, and rely on the dev_id that has
3472 * been passed via the scratchpad. This limits this domain's
3473 * usefulness to upper layers that definitely know that they
3474 * are built on top of the ITS.
3475 */
3476 dev_id = info->scratchpad[0].ul;
3477
3478 msi_info = msi_get_domain_info(domain);
3479 its = msi_info->data;
3480
3481 if (!gic_rdists->has_direct_lpi &&
3482 vpe_proxy.dev &&
3483 vpe_proxy.dev->its == its &&
3484 dev_id == vpe_proxy.dev->device_id) {
3485 /* Bad luck. Get yourself a better implementation */
3486 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3487 dev_id);
3488 return -EINVAL;
3489 }
3490
3491 mutex_lock(&its->dev_alloc_lock);
3492 its_dev = its_find_device(its, dev_id);
3493 if (its_dev) {
3494 /*
3495 * We already have seen this ID, probably through
3496 * another alias (PCI bridge of some sort). No need to
3497 * create the device.
3498 */
3499 its_dev->shared = true;
3500 pr_debug("Reusing ITT for devID %x\n", dev_id);
3501 goto out;
3502 }
3503
3504 its_dev = its_create_device(its, dev_id, nvec, true);
3505 if (!its_dev) {
3506 err = -ENOMEM;
3507 goto out;
3508 }
3509
3510 if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3511 its_dev->shared = true;
3512
3513 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3514 out:
3515 mutex_unlock(&its->dev_alloc_lock);
3516 info->scratchpad[0].ptr = its_dev;
3517 return err;
3518 }
3519
3520 static struct msi_domain_ops its_msi_domain_ops = {
3521 .msi_prepare = its_msi_prepare,
3522 };
3523
its_irq_gic_domain_alloc(struct irq_domain * domain,unsigned int virq,irq_hw_number_t hwirq)3524 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3525 unsigned int virq,
3526 irq_hw_number_t hwirq)
3527 {
3528 struct irq_fwspec fwspec;
3529
3530 if (irq_domain_get_of_node(domain->parent)) {
3531 fwspec.fwnode = domain->parent->fwnode;
3532 fwspec.param_count = 3;
3533 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3534 fwspec.param[1] = hwirq;
3535 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3536 } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3537 fwspec.fwnode = domain->parent->fwnode;
3538 fwspec.param_count = 2;
3539 fwspec.param[0] = hwirq;
3540 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3541 } else {
3542 return -EINVAL;
3543 }
3544
3545 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3546 }
3547
its_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)3548 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3549 unsigned int nr_irqs, void *args)
3550 {
3551 msi_alloc_info_t *info = args;
3552 struct its_device *its_dev = info->scratchpad[0].ptr;
3553 struct its_node *its = its_dev->its;
3554 struct irq_data *irqd;
3555 irq_hw_number_t hwirq;
3556 int err;
3557 int i;
3558
3559 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3560 if (err)
3561 return err;
3562
3563 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3564 if (err)
3565 return err;
3566
3567 for (i = 0; i < nr_irqs; i++) {
3568 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3569 if (err)
3570 return err;
3571
3572 irq_domain_set_hwirq_and_chip(domain, virq + i,
3573 hwirq + i, &its_irq_chip, its_dev);
3574 irqd = irq_get_irq_data(virq + i);
3575 irqd_set_single_target(irqd);
3576 irqd_set_affinity_on_activate(irqd);
3577 pr_debug("ID:%d pID:%d vID:%d\n",
3578 (int)(hwirq + i - its_dev->event_map.lpi_base),
3579 (int)(hwirq + i), virq + i);
3580 }
3581
3582 return 0;
3583 }
3584
its_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)3585 static int its_irq_domain_activate(struct irq_domain *domain,
3586 struct irq_data *d, bool reserve)
3587 {
3588 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3589 u32 event = its_get_event_id(d);
3590 int cpu;
3591
3592 cpu = its_select_cpu(d, cpu_online_mask);
3593 if (cpu < 0 || cpu >= nr_cpu_ids)
3594 return -EINVAL;
3595
3596 its_inc_lpi_count(d, cpu);
3597 its_dev->event_map.col_map[event] = cpu;
3598 irq_data_update_effective_affinity(d, cpumask_of(cpu));
3599
3600 /* Map the GIC IRQ and event to the device */
3601 its_send_mapti(its_dev, d->hwirq, event);
3602 return 0;
3603 }
3604
its_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)3605 static void its_irq_domain_deactivate(struct irq_domain *domain,
3606 struct irq_data *d)
3607 {
3608 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3609 u32 event = its_get_event_id(d);
3610
3611 its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3612 /* Stop the delivery of interrupts */
3613 its_send_discard(its_dev, event);
3614 }
3615
its_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)3616 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3617 unsigned int nr_irqs)
3618 {
3619 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3620 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3621 struct its_node *its = its_dev->its;
3622 int i;
3623
3624 bitmap_release_region(its_dev->event_map.lpi_map,
3625 its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3626 get_count_order(nr_irqs));
3627
3628 for (i = 0; i < nr_irqs; i++) {
3629 struct irq_data *data = irq_domain_get_irq_data(domain,
3630 virq + i);
3631 /* Nuke the entry in the domain */
3632 irq_domain_reset_irq_data(data);
3633 }
3634
3635 mutex_lock(&its->dev_alloc_lock);
3636
3637 /*
3638 * If all interrupts have been freed, start mopping the
3639 * floor. This is conditioned on the device not being shared.
3640 */
3641 if (!its_dev->shared &&
3642 bitmap_empty(its_dev->event_map.lpi_map,
3643 its_dev->event_map.nr_lpis)) {
3644 its_lpi_free(its_dev->event_map.lpi_map,
3645 its_dev->event_map.lpi_base,
3646 its_dev->event_map.nr_lpis);
3647
3648 /* Unmap device/itt */
3649 its_send_mapd(its_dev, 0);
3650 its_free_device(its_dev);
3651 }
3652
3653 mutex_unlock(&its->dev_alloc_lock);
3654
3655 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3656 }
3657
3658 static const struct irq_domain_ops its_domain_ops = {
3659 .alloc = its_irq_domain_alloc,
3660 .free = its_irq_domain_free,
3661 .activate = its_irq_domain_activate,
3662 .deactivate = its_irq_domain_deactivate,
3663 };
3664
3665 /*
3666 * This is insane.
3667 *
3668 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3669 * likely), the only way to perform an invalidate is to use a fake
3670 * device to issue an INV command, implying that the LPI has first
3671 * been mapped to some event on that device. Since this is not exactly
3672 * cheap, we try to keep that mapping around as long as possible, and
3673 * only issue an UNMAP if we're short on available slots.
3674 *
3675 * Broken by design(tm).
3676 *
3677 * GICv4.1, on the other hand, mandates that we're able to invalidate
3678 * by writing to a MMIO register. It doesn't implement the whole of
3679 * DirectLPI, but that's good enough. And most of the time, we don't
3680 * even have to invalidate anything, as the redistributor can be told
3681 * whether to generate a doorbell or not (we thus leave it enabled,
3682 * always).
3683 */
its_vpe_db_proxy_unmap_locked(struct its_vpe * vpe)3684 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3685 {
3686 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3687 if (gic_rdists->has_rvpeid)
3688 return;
3689
3690 /* Already unmapped? */
3691 if (vpe->vpe_proxy_event == -1)
3692 return;
3693
3694 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3695 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3696
3697 /*
3698 * We don't track empty slots at all, so let's move the
3699 * next_victim pointer if we can quickly reuse that slot
3700 * instead of nuking an existing entry. Not clear that this is
3701 * always a win though, and this might just generate a ripple
3702 * effect... Let's just hope VPEs don't migrate too often.
3703 */
3704 if (vpe_proxy.vpes[vpe_proxy.next_victim])
3705 vpe_proxy.next_victim = vpe->vpe_proxy_event;
3706
3707 vpe->vpe_proxy_event = -1;
3708 }
3709
its_vpe_db_proxy_unmap(struct its_vpe * vpe)3710 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3711 {
3712 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3713 if (gic_rdists->has_rvpeid)
3714 return;
3715
3716 if (!gic_rdists->has_direct_lpi) {
3717 unsigned long flags;
3718
3719 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3720 its_vpe_db_proxy_unmap_locked(vpe);
3721 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3722 }
3723 }
3724
its_vpe_db_proxy_map_locked(struct its_vpe * vpe)3725 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3726 {
3727 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3728 if (gic_rdists->has_rvpeid)
3729 return;
3730
3731 /* Already mapped? */
3732 if (vpe->vpe_proxy_event != -1)
3733 return;
3734
3735 /* This slot was already allocated. Kick the other VPE out. */
3736 if (vpe_proxy.vpes[vpe_proxy.next_victim])
3737 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3738
3739 /* Map the new VPE instead */
3740 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3741 vpe->vpe_proxy_event = vpe_proxy.next_victim;
3742 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3743
3744 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3745 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3746 }
3747
its_vpe_db_proxy_move(struct its_vpe * vpe,int from,int to)3748 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3749 {
3750 unsigned long flags;
3751 struct its_collection *target_col;
3752
3753 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3754 if (gic_rdists->has_rvpeid)
3755 return;
3756
3757 if (gic_rdists->has_direct_lpi) {
3758 void __iomem *rdbase;
3759
3760 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3761 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3762 wait_for_syncr(rdbase);
3763
3764 return;
3765 }
3766
3767 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3768
3769 its_vpe_db_proxy_map_locked(vpe);
3770
3771 target_col = &vpe_proxy.dev->its->collections[to];
3772 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3773 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3774
3775 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3776 }
3777
its_vpe_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)3778 static int its_vpe_set_affinity(struct irq_data *d,
3779 const struct cpumask *mask_val,
3780 bool force)
3781 {
3782 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3783 int from, cpu = cpumask_first(mask_val);
3784 unsigned long flags;
3785
3786 /*
3787 * Changing affinity is mega expensive, so let's be as lazy as
3788 * we can and only do it if we really have to. Also, if mapped
3789 * into the proxy device, we need to move the doorbell
3790 * interrupt to its new location.
3791 *
3792 * Another thing is that changing the affinity of a vPE affects
3793 * *other interrupts* such as all the vLPIs that are routed to
3794 * this vPE. This means that the irq_desc lock is not enough to
3795 * protect us, and that we must ensure nobody samples vpe->col_idx
3796 * during the update, hence the lock below which must also be
3797 * taken on any vLPI handling path that evaluates vpe->col_idx.
3798 */
3799 from = vpe_to_cpuid_lock(vpe, &flags);
3800 if (from == cpu)
3801 goto out;
3802
3803 vpe->col_idx = cpu;
3804
3805 /*
3806 * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD
3807 * is sharing its VPE table with the current one.
3808 */
3809 if (gic_data_rdist_cpu(cpu)->vpe_table_mask &&
3810 cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask))
3811 goto out;
3812
3813 its_send_vmovp(vpe);
3814 its_vpe_db_proxy_move(vpe, from, cpu);
3815
3816 out:
3817 irq_data_update_effective_affinity(d, cpumask_of(cpu));
3818 vpe_to_cpuid_unlock(vpe, flags);
3819
3820 return IRQ_SET_MASK_OK_DONE;
3821 }
3822
its_wait_vpt_parse_complete(void)3823 static void its_wait_vpt_parse_complete(void)
3824 {
3825 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3826 u64 val;
3827
3828 if (!gic_rdists->has_vpend_valid_dirty)
3829 return;
3830
3831 WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3832 val,
3833 !(val & GICR_VPENDBASER_Dirty),
3834 1, 500));
3835 }
3836
its_vpe_schedule(struct its_vpe * vpe)3837 static void its_vpe_schedule(struct its_vpe *vpe)
3838 {
3839 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3840 u64 val;
3841
3842 /* Schedule the VPE */
3843 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3844 GENMASK_ULL(51, 12);
3845 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3846 val |= GICR_VPROPBASER_RaWb;
3847 val |= GICR_VPROPBASER_InnerShareable;
3848 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3849
3850 val = virt_to_phys(page_address(vpe->vpt_page)) &
3851 GENMASK_ULL(51, 16);
3852 val |= GICR_VPENDBASER_RaWaWb;
3853 val |= GICR_VPENDBASER_InnerShareable;
3854 /*
3855 * There is no good way of finding out if the pending table is
3856 * empty as we can race against the doorbell interrupt very
3857 * easily. So in the end, vpe->pending_last is only an
3858 * indication that the vcpu has something pending, not one
3859 * that the pending table is empty. A good implementation
3860 * would be able to read its coarse map pretty quickly anyway,
3861 * making this a tolerable issue.
3862 */
3863 val |= GICR_VPENDBASER_PendingLast;
3864 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3865 val |= GICR_VPENDBASER_Valid;
3866 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3867 }
3868
its_vpe_deschedule(struct its_vpe * vpe)3869 static void its_vpe_deschedule(struct its_vpe *vpe)
3870 {
3871 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3872 u64 val;
3873
3874 val = its_clear_vpend_valid(vlpi_base, 0, 0);
3875
3876 vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3877 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3878 }
3879
its_vpe_invall(struct its_vpe * vpe)3880 static void its_vpe_invall(struct its_vpe *vpe)
3881 {
3882 struct its_node *its;
3883
3884 list_for_each_entry(its, &its_nodes, entry) {
3885 if (!is_v4(its))
3886 continue;
3887
3888 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3889 continue;
3890
3891 /*
3892 * Sending a VINVALL to a single ITS is enough, as all
3893 * we need is to reach the redistributors.
3894 */
3895 its_send_vinvall(its, vpe);
3896 return;
3897 }
3898 }
3899
its_vpe_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)3900 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3901 {
3902 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3903 struct its_cmd_info *info = vcpu_info;
3904
3905 switch (info->cmd_type) {
3906 case SCHEDULE_VPE:
3907 its_vpe_schedule(vpe);
3908 return 0;
3909
3910 case DESCHEDULE_VPE:
3911 its_vpe_deschedule(vpe);
3912 return 0;
3913
3914 case COMMIT_VPE:
3915 its_wait_vpt_parse_complete();
3916 return 0;
3917
3918 case INVALL_VPE:
3919 its_vpe_invall(vpe);
3920 return 0;
3921
3922 default:
3923 return -EINVAL;
3924 }
3925 }
3926
its_vpe_send_cmd(struct its_vpe * vpe,void (* cmd)(struct its_device *,u32))3927 static void its_vpe_send_cmd(struct its_vpe *vpe,
3928 void (*cmd)(struct its_device *, u32))
3929 {
3930 unsigned long flags;
3931
3932 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3933
3934 its_vpe_db_proxy_map_locked(vpe);
3935 cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3936
3937 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3938 }
3939
its_vpe_send_inv(struct irq_data * d)3940 static void its_vpe_send_inv(struct irq_data *d)
3941 {
3942 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3943
3944 if (gic_rdists->has_direct_lpi) {
3945 void __iomem *rdbase;
3946
3947 /* Target the redistributor this VPE is currently known on */
3948 raw_spin_lock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3949 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3950 gic_write_lpir(d->parent_data->hwirq, rdbase + GICR_INVLPIR);
3951 wait_for_syncr(rdbase);
3952 raw_spin_unlock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3953 } else {
3954 its_vpe_send_cmd(vpe, its_send_inv);
3955 }
3956 }
3957
its_vpe_mask_irq(struct irq_data * d)3958 static void its_vpe_mask_irq(struct irq_data *d)
3959 {
3960 /*
3961 * We need to unmask the LPI, which is described by the parent
3962 * irq_data. Instead of calling into the parent (which won't
3963 * exactly do the right thing, let's simply use the
3964 * parent_data pointer. Yes, I'm naughty.
3965 */
3966 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
3967 its_vpe_send_inv(d);
3968 }
3969
its_vpe_unmask_irq(struct irq_data * d)3970 static void its_vpe_unmask_irq(struct irq_data *d)
3971 {
3972 /* Same hack as above... */
3973 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
3974 its_vpe_send_inv(d);
3975 }
3976
its_vpe_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)3977 static int its_vpe_set_irqchip_state(struct irq_data *d,
3978 enum irqchip_irq_state which,
3979 bool state)
3980 {
3981 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3982
3983 if (which != IRQCHIP_STATE_PENDING)
3984 return -EINVAL;
3985
3986 if (gic_rdists->has_direct_lpi) {
3987 void __iomem *rdbase;
3988
3989 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3990 if (state) {
3991 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
3992 } else {
3993 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3994 wait_for_syncr(rdbase);
3995 }
3996 } else {
3997 if (state)
3998 its_vpe_send_cmd(vpe, its_send_int);
3999 else
4000 its_vpe_send_cmd(vpe, its_send_clear);
4001 }
4002
4003 return 0;
4004 }
4005
its_vpe_retrigger(struct irq_data * d)4006 static int its_vpe_retrigger(struct irq_data *d)
4007 {
4008 return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4009 }
4010
4011 static struct irq_chip its_vpe_irq_chip = {
4012 .name = "GICv4-vpe",
4013 .irq_mask = its_vpe_mask_irq,
4014 .irq_unmask = its_vpe_unmask_irq,
4015 .irq_eoi = irq_chip_eoi_parent,
4016 .irq_set_affinity = its_vpe_set_affinity,
4017 .irq_retrigger = its_vpe_retrigger,
4018 .irq_set_irqchip_state = its_vpe_set_irqchip_state,
4019 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity,
4020 };
4021
find_4_1_its(void)4022 static struct its_node *find_4_1_its(void)
4023 {
4024 static struct its_node *its = NULL;
4025
4026 if (!its) {
4027 list_for_each_entry(its, &its_nodes, entry) {
4028 if (is_v4_1(its))
4029 return its;
4030 }
4031
4032 /* Oops? */
4033 its = NULL;
4034 }
4035
4036 return its;
4037 }
4038
its_vpe_4_1_send_inv(struct irq_data * d)4039 static void its_vpe_4_1_send_inv(struct irq_data *d)
4040 {
4041 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4042 struct its_node *its;
4043
4044 /*
4045 * GICv4.1 wants doorbells to be invalidated using the
4046 * INVDB command in order to be broadcast to all RDs. Send
4047 * it to the first valid ITS, and let the HW do its magic.
4048 */
4049 its = find_4_1_its();
4050 if (its)
4051 its_send_invdb(its, vpe);
4052 }
4053
its_vpe_4_1_mask_irq(struct irq_data * d)4054 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4055 {
4056 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4057 its_vpe_4_1_send_inv(d);
4058 }
4059
its_vpe_4_1_unmask_irq(struct irq_data * d)4060 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4061 {
4062 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4063 its_vpe_4_1_send_inv(d);
4064 }
4065
its_vpe_4_1_schedule(struct its_vpe * vpe,struct its_cmd_info * info)4066 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4067 struct its_cmd_info *info)
4068 {
4069 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4070 u64 val = 0;
4071
4072 /* Schedule the VPE */
4073 val |= GICR_VPENDBASER_Valid;
4074 val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4075 val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4076 val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4077
4078 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4079 }
4080
its_vpe_4_1_deschedule(struct its_vpe * vpe,struct its_cmd_info * info)4081 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4082 struct its_cmd_info *info)
4083 {
4084 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4085 u64 val;
4086
4087 if (info->req_db) {
4088 unsigned long flags;
4089
4090 /*
4091 * vPE is going to block: make the vPE non-resident with
4092 * PendingLast clear and DB set. The GIC guarantees that if
4093 * we read-back PendingLast clear, then a doorbell will be
4094 * delivered when an interrupt comes.
4095 *
4096 * Note the locking to deal with the concurrent update of
4097 * pending_last from the doorbell interrupt handler that can
4098 * run concurrently.
4099 */
4100 raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4101 val = its_clear_vpend_valid(vlpi_base,
4102 GICR_VPENDBASER_PendingLast,
4103 GICR_VPENDBASER_4_1_DB);
4104 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4105 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4106 } else {
4107 /*
4108 * We're not blocking, so just make the vPE non-resident
4109 * with PendingLast set, indicating that we'll be back.
4110 */
4111 val = its_clear_vpend_valid(vlpi_base,
4112 0,
4113 GICR_VPENDBASER_PendingLast);
4114 vpe->pending_last = true;
4115 }
4116 }
4117
its_vpe_4_1_invall(struct its_vpe * vpe)4118 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4119 {
4120 void __iomem *rdbase;
4121 unsigned long flags;
4122 u64 val;
4123 int cpu;
4124
4125 val = GICR_INVALLR_V;
4126 val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4127
4128 /* Target the redistributor this vPE is currently known on */
4129 cpu = vpe_to_cpuid_lock(vpe, &flags);
4130 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4131 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4132 gic_write_lpir(val, rdbase + GICR_INVALLR);
4133
4134 wait_for_syncr(rdbase);
4135 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4136 vpe_to_cpuid_unlock(vpe, flags);
4137 }
4138
its_vpe_4_1_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)4139 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4140 {
4141 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4142 struct its_cmd_info *info = vcpu_info;
4143
4144 switch (info->cmd_type) {
4145 case SCHEDULE_VPE:
4146 its_vpe_4_1_schedule(vpe, info);
4147 return 0;
4148
4149 case DESCHEDULE_VPE:
4150 its_vpe_4_1_deschedule(vpe, info);
4151 return 0;
4152
4153 case COMMIT_VPE:
4154 its_wait_vpt_parse_complete();
4155 return 0;
4156
4157 case INVALL_VPE:
4158 its_vpe_4_1_invall(vpe);
4159 return 0;
4160
4161 default:
4162 return -EINVAL;
4163 }
4164 }
4165
4166 static struct irq_chip its_vpe_4_1_irq_chip = {
4167 .name = "GICv4.1-vpe",
4168 .irq_mask = its_vpe_4_1_mask_irq,
4169 .irq_unmask = its_vpe_4_1_unmask_irq,
4170 .irq_eoi = irq_chip_eoi_parent,
4171 .irq_set_affinity = its_vpe_set_affinity,
4172 .irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity,
4173 };
4174
its_configure_sgi(struct irq_data * d,bool clear)4175 static void its_configure_sgi(struct irq_data *d, bool clear)
4176 {
4177 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4178 struct its_cmd_desc desc;
4179
4180 desc.its_vsgi_cmd.vpe = vpe;
4181 desc.its_vsgi_cmd.sgi = d->hwirq;
4182 desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4183 desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4184 desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4185 desc.its_vsgi_cmd.clear = clear;
4186
4187 /*
4188 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4189 * destination VPE is mapped there. Since we map them eagerly at
4190 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4191 */
4192 its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4193 }
4194
its_sgi_mask_irq(struct irq_data * d)4195 static void its_sgi_mask_irq(struct irq_data *d)
4196 {
4197 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4198
4199 vpe->sgi_config[d->hwirq].enabled = false;
4200 its_configure_sgi(d, false);
4201 }
4202
its_sgi_unmask_irq(struct irq_data * d)4203 static void its_sgi_unmask_irq(struct irq_data *d)
4204 {
4205 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4206
4207 vpe->sgi_config[d->hwirq].enabled = true;
4208 its_configure_sgi(d, false);
4209 }
4210
its_sgi_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)4211 static int its_sgi_set_affinity(struct irq_data *d,
4212 const struct cpumask *mask_val,
4213 bool force)
4214 {
4215 /*
4216 * There is no notion of affinity for virtual SGIs, at least
4217 * not on the host (since they can only be targeting a vPE).
4218 * Tell the kernel we've done whatever it asked for.
4219 */
4220 irq_data_update_effective_affinity(d, mask_val);
4221 return IRQ_SET_MASK_OK;
4222 }
4223
its_sgi_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)4224 static int its_sgi_set_irqchip_state(struct irq_data *d,
4225 enum irqchip_irq_state which,
4226 bool state)
4227 {
4228 if (which != IRQCHIP_STATE_PENDING)
4229 return -EINVAL;
4230
4231 if (state) {
4232 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4233 struct its_node *its = find_4_1_its();
4234 u64 val;
4235
4236 val = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4237 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4238 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4239 } else {
4240 its_configure_sgi(d, true);
4241 }
4242
4243 return 0;
4244 }
4245
its_sgi_get_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool * val)4246 static int its_sgi_get_irqchip_state(struct irq_data *d,
4247 enum irqchip_irq_state which, bool *val)
4248 {
4249 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4250 void __iomem *base;
4251 unsigned long flags;
4252 u32 count = 1000000; /* 1s! */
4253 u32 status;
4254 int cpu;
4255
4256 if (which != IRQCHIP_STATE_PENDING)
4257 return -EINVAL;
4258
4259 /*
4260 * Locking galore! We can race against two different events:
4261 *
4262 * - Concurrent vPE affinity change: we must make sure it cannot
4263 * happen, or we'll talk to the wrong redistributor. This is
4264 * identical to what happens with vLPIs.
4265 *
4266 * - Concurrent VSGIPENDR access: As it involves accessing two
4267 * MMIO registers, this must be made atomic one way or another.
4268 */
4269 cpu = vpe_to_cpuid_lock(vpe, &flags);
4270 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4271 base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4272 writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4273 do {
4274 status = readl_relaxed(base + GICR_VSGIPENDR);
4275 if (!(status & GICR_VSGIPENDR_BUSY))
4276 goto out;
4277
4278 count--;
4279 if (!count) {
4280 pr_err_ratelimited("Unable to get SGI status\n");
4281 goto out;
4282 }
4283 cpu_relax();
4284 udelay(1);
4285 } while (count);
4286
4287 out:
4288 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4289 vpe_to_cpuid_unlock(vpe, flags);
4290
4291 if (!count)
4292 return -ENXIO;
4293
4294 *val = !!(status & (1 << d->hwirq));
4295
4296 return 0;
4297 }
4298
its_sgi_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)4299 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4300 {
4301 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4302 struct its_cmd_info *info = vcpu_info;
4303
4304 switch (info->cmd_type) {
4305 case PROP_UPDATE_VSGI:
4306 vpe->sgi_config[d->hwirq].priority = info->priority;
4307 vpe->sgi_config[d->hwirq].group = info->group;
4308 its_configure_sgi(d, false);
4309 return 0;
4310
4311 default:
4312 return -EINVAL;
4313 }
4314 }
4315
4316 static struct irq_chip its_sgi_irq_chip = {
4317 .name = "GICv4.1-sgi",
4318 .irq_mask = its_sgi_mask_irq,
4319 .irq_unmask = its_sgi_unmask_irq,
4320 .irq_set_affinity = its_sgi_set_affinity,
4321 .irq_set_irqchip_state = its_sgi_set_irqchip_state,
4322 .irq_get_irqchip_state = its_sgi_get_irqchip_state,
4323 .irq_set_vcpu_affinity = its_sgi_set_vcpu_affinity,
4324 };
4325
its_sgi_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)4326 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4327 unsigned int virq, unsigned int nr_irqs,
4328 void *args)
4329 {
4330 struct its_vpe *vpe = args;
4331 int i;
4332
4333 /* Yes, we do want 16 SGIs */
4334 WARN_ON(nr_irqs != 16);
4335
4336 for (i = 0; i < 16; i++) {
4337 vpe->sgi_config[i].priority = 0;
4338 vpe->sgi_config[i].enabled = false;
4339 vpe->sgi_config[i].group = false;
4340
4341 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4342 &its_sgi_irq_chip, vpe);
4343 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4344 }
4345
4346 return 0;
4347 }
4348
its_sgi_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)4349 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4350 unsigned int virq,
4351 unsigned int nr_irqs)
4352 {
4353 /* Nothing to do */
4354 }
4355
its_sgi_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)4356 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4357 struct irq_data *d, bool reserve)
4358 {
4359 /* Write out the initial SGI configuration */
4360 its_configure_sgi(d, false);
4361 return 0;
4362 }
4363
its_sgi_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)4364 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4365 struct irq_data *d)
4366 {
4367 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4368
4369 /*
4370 * The VSGI command is awkward:
4371 *
4372 * - To change the configuration, CLEAR must be set to false,
4373 * leaving the pending bit unchanged.
4374 * - To clear the pending bit, CLEAR must be set to true, leaving
4375 * the configuration unchanged.
4376 *
4377 * You just can't do both at once, hence the two commands below.
4378 */
4379 vpe->sgi_config[d->hwirq].enabled = false;
4380 its_configure_sgi(d, false);
4381 its_configure_sgi(d, true);
4382 }
4383
4384 static const struct irq_domain_ops its_sgi_domain_ops = {
4385 .alloc = its_sgi_irq_domain_alloc,
4386 .free = its_sgi_irq_domain_free,
4387 .activate = its_sgi_irq_domain_activate,
4388 .deactivate = its_sgi_irq_domain_deactivate,
4389 };
4390
its_vpe_id_alloc(void)4391 static int its_vpe_id_alloc(void)
4392 {
4393 return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
4394 }
4395
its_vpe_id_free(u16 id)4396 static void its_vpe_id_free(u16 id)
4397 {
4398 ida_simple_remove(&its_vpeid_ida, id);
4399 }
4400
its_vpe_init(struct its_vpe * vpe)4401 static int its_vpe_init(struct its_vpe *vpe)
4402 {
4403 struct page *vpt_page;
4404 int vpe_id;
4405
4406 /* Allocate vpe_id */
4407 vpe_id = its_vpe_id_alloc();
4408 if (vpe_id < 0)
4409 return vpe_id;
4410
4411 /* Allocate VPT */
4412 vpt_page = its_allocate_pending_table(GFP_KERNEL);
4413 if (!vpt_page) {
4414 its_vpe_id_free(vpe_id);
4415 return -ENOMEM;
4416 }
4417
4418 if (!its_alloc_vpe_table(vpe_id)) {
4419 its_vpe_id_free(vpe_id);
4420 its_free_pending_table(vpt_page);
4421 return -ENOMEM;
4422 }
4423
4424 raw_spin_lock_init(&vpe->vpe_lock);
4425 vpe->vpe_id = vpe_id;
4426 vpe->vpt_page = vpt_page;
4427 if (gic_rdists->has_rvpeid)
4428 atomic_set(&vpe->vmapp_count, 0);
4429 else
4430 vpe->vpe_proxy_event = -1;
4431
4432 return 0;
4433 }
4434
its_vpe_teardown(struct its_vpe * vpe)4435 static void its_vpe_teardown(struct its_vpe *vpe)
4436 {
4437 its_vpe_db_proxy_unmap(vpe);
4438 its_vpe_id_free(vpe->vpe_id);
4439 its_free_pending_table(vpe->vpt_page);
4440 }
4441
its_vpe_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)4442 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4443 unsigned int virq,
4444 unsigned int nr_irqs)
4445 {
4446 struct its_vm *vm = domain->host_data;
4447 int i;
4448
4449 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4450
4451 for (i = 0; i < nr_irqs; i++) {
4452 struct irq_data *data = irq_domain_get_irq_data(domain,
4453 virq + i);
4454 struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4455
4456 BUG_ON(vm != vpe->its_vm);
4457
4458 clear_bit(data->hwirq, vm->db_bitmap);
4459 its_vpe_teardown(vpe);
4460 irq_domain_reset_irq_data(data);
4461 }
4462
4463 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4464 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4465 its_free_prop_table(vm->vprop_page);
4466 }
4467 }
4468
its_vpe_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)4469 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4470 unsigned int nr_irqs, void *args)
4471 {
4472 struct irq_chip *irqchip = &its_vpe_irq_chip;
4473 struct its_vm *vm = args;
4474 unsigned long *bitmap;
4475 struct page *vprop_page;
4476 int base, nr_ids, i, err = 0;
4477
4478 BUG_ON(!vm);
4479
4480 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4481 if (!bitmap)
4482 return -ENOMEM;
4483
4484 if (nr_ids < nr_irqs) {
4485 its_lpi_free(bitmap, base, nr_ids);
4486 return -ENOMEM;
4487 }
4488
4489 vprop_page = its_allocate_prop_table(GFP_KERNEL);
4490 if (!vprop_page) {
4491 its_lpi_free(bitmap, base, nr_ids);
4492 return -ENOMEM;
4493 }
4494
4495 vm->db_bitmap = bitmap;
4496 vm->db_lpi_base = base;
4497 vm->nr_db_lpis = nr_ids;
4498 vm->vprop_page = vprop_page;
4499
4500 if (gic_rdists->has_rvpeid)
4501 irqchip = &its_vpe_4_1_irq_chip;
4502
4503 for (i = 0; i < nr_irqs; i++) {
4504 vm->vpes[i]->vpe_db_lpi = base + i;
4505 err = its_vpe_init(vm->vpes[i]);
4506 if (err)
4507 break;
4508 err = its_irq_gic_domain_alloc(domain, virq + i,
4509 vm->vpes[i]->vpe_db_lpi);
4510 if (err)
4511 break;
4512 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4513 irqchip, vm->vpes[i]);
4514 set_bit(i, bitmap);
4515 }
4516
4517 if (err) {
4518 if (i > 0)
4519 its_vpe_irq_domain_free(domain, virq, i);
4520
4521 its_lpi_free(bitmap, base, nr_ids);
4522 its_free_prop_table(vprop_page);
4523 }
4524
4525 return err;
4526 }
4527
its_vpe_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)4528 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4529 struct irq_data *d, bool reserve)
4530 {
4531 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4532 struct its_node *its;
4533
4534 /*
4535 * If we use the list map, we issue VMAPP on demand... Unless
4536 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4537 * so that VSGIs can work.
4538 */
4539 if (!gic_requires_eager_mapping())
4540 return 0;
4541
4542 /* Map the VPE to the first possible CPU */
4543 vpe->col_idx = cpumask_first(cpu_online_mask);
4544
4545 list_for_each_entry(its, &its_nodes, entry) {
4546 if (!is_v4(its))
4547 continue;
4548
4549 its_send_vmapp(its, vpe, true);
4550 its_send_vinvall(its, vpe);
4551 }
4552
4553 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4554
4555 return 0;
4556 }
4557
its_vpe_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)4558 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4559 struct irq_data *d)
4560 {
4561 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4562 struct its_node *its;
4563
4564 /*
4565 * If we use the list map on GICv4.0, we unmap the VPE once no
4566 * VLPIs are associated with the VM.
4567 */
4568 if (!gic_requires_eager_mapping())
4569 return;
4570
4571 list_for_each_entry(its, &its_nodes, entry) {
4572 if (!is_v4(its))
4573 continue;
4574
4575 its_send_vmapp(its, vpe, false);
4576 }
4577
4578 /*
4579 * There may be a direct read to the VPT after unmapping the
4580 * vPE, to guarantee the validity of this, we make the VPT
4581 * memory coherent with the CPU caches here.
4582 */
4583 if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4584 gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4585 LPI_PENDBASE_SZ);
4586 }
4587
4588 static const struct irq_domain_ops its_vpe_domain_ops = {
4589 .alloc = its_vpe_irq_domain_alloc,
4590 .free = its_vpe_irq_domain_free,
4591 .activate = its_vpe_irq_domain_activate,
4592 .deactivate = its_vpe_irq_domain_deactivate,
4593 };
4594
its_force_quiescent(void __iomem * base)4595 static int its_force_quiescent(void __iomem *base)
4596 {
4597 u32 count = 1000000; /* 1s */
4598 u32 val;
4599
4600 val = readl_relaxed(base + GITS_CTLR);
4601 /*
4602 * GIC architecture specification requires the ITS to be both
4603 * disabled and quiescent for writes to GITS_BASER<n> or
4604 * GITS_CBASER to not have UNPREDICTABLE results.
4605 */
4606 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4607 return 0;
4608
4609 /* Disable the generation of all interrupts to this ITS */
4610 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4611 writel_relaxed(val, base + GITS_CTLR);
4612
4613 /* Poll GITS_CTLR and wait until ITS becomes quiescent */
4614 while (1) {
4615 val = readl_relaxed(base + GITS_CTLR);
4616 if (val & GITS_CTLR_QUIESCENT)
4617 return 0;
4618
4619 count--;
4620 if (!count)
4621 return -EBUSY;
4622
4623 cpu_relax();
4624 udelay(1);
4625 }
4626 }
4627
its_enable_quirk_cavium_22375(void * data)4628 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4629 {
4630 struct its_node *its = data;
4631
4632 /* erratum 22375: only alloc 8MB table size (20 bits) */
4633 its->typer &= ~GITS_TYPER_DEVBITS;
4634 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4635 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4636
4637 return true;
4638 }
4639
its_enable_quirk_cavium_23144(void * data)4640 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4641 {
4642 struct its_node *its = data;
4643
4644 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4645
4646 return true;
4647 }
4648
its_enable_quirk_qdf2400_e0065(void * data)4649 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4650 {
4651 struct its_node *its = data;
4652
4653 /* On QDF2400, the size of the ITE is 16Bytes */
4654 its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4655 its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4656
4657 return true;
4658 }
4659
its_irq_get_msi_base_pre_its(struct its_device * its_dev)4660 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4661 {
4662 struct its_node *its = its_dev->its;
4663
4664 /*
4665 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4666 * which maps 32-bit writes targeted at a separate window of
4667 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4668 * with device ID taken from bits [device_id_bits + 1:2] of
4669 * the window offset.
4670 */
4671 return its->pre_its_base + (its_dev->device_id << 2);
4672 }
4673
its_enable_quirk_socionext_synquacer(void * data)4674 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4675 {
4676 struct its_node *its = data;
4677 u32 pre_its_window[2];
4678 u32 ids;
4679
4680 if (!fwnode_property_read_u32_array(its->fwnode_handle,
4681 "socionext,synquacer-pre-its",
4682 pre_its_window,
4683 ARRAY_SIZE(pre_its_window))) {
4684
4685 its->pre_its_base = pre_its_window[0];
4686 its->get_msi_base = its_irq_get_msi_base_pre_its;
4687
4688 ids = ilog2(pre_its_window[1]) - 2;
4689 if (device_ids(its) > ids) {
4690 its->typer &= ~GITS_TYPER_DEVBITS;
4691 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4692 }
4693
4694 /* the pre-ITS breaks isolation, so disable MSI remapping */
4695 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
4696 return true;
4697 }
4698 return false;
4699 }
4700
its_enable_quirk_hip07_161600802(void * data)4701 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4702 {
4703 struct its_node *its = data;
4704
4705 /*
4706 * Hip07 insists on using the wrong address for the VLPI
4707 * page. Trick it into doing the right thing...
4708 */
4709 its->vlpi_redist_offset = SZ_128K;
4710 return true;
4711 }
4712
4713 static const struct gic_quirk its_quirks[] = {
4714 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4715 {
4716 .desc = "ITS: Cavium errata 22375, 24313",
4717 .iidr = 0xa100034c, /* ThunderX pass 1.x */
4718 .mask = 0xffff0fff,
4719 .init = its_enable_quirk_cavium_22375,
4720 },
4721 #endif
4722 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4723 {
4724 .desc = "ITS: Cavium erratum 23144",
4725 .iidr = 0xa100034c, /* ThunderX pass 1.x */
4726 .mask = 0xffff0fff,
4727 .init = its_enable_quirk_cavium_23144,
4728 },
4729 #endif
4730 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4731 {
4732 .desc = "ITS: QDF2400 erratum 0065",
4733 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */
4734 .mask = 0xffffffff,
4735 .init = its_enable_quirk_qdf2400_e0065,
4736 },
4737 #endif
4738 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4739 {
4740 /*
4741 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4742 * implementation, but with a 'pre-ITS' added that requires
4743 * special handling in software.
4744 */
4745 .desc = "ITS: Socionext Synquacer pre-ITS",
4746 .iidr = 0x0001143b,
4747 .mask = 0xffffffff,
4748 .init = its_enable_quirk_socionext_synquacer,
4749 },
4750 #endif
4751 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4752 {
4753 .desc = "ITS: Hip07 erratum 161600802",
4754 .iidr = 0x00000004,
4755 .mask = 0xffffffff,
4756 .init = its_enable_quirk_hip07_161600802,
4757 },
4758 #endif
4759 {
4760 }
4761 };
4762
its_enable_quirks(struct its_node * its)4763 static void its_enable_quirks(struct its_node *its)
4764 {
4765 u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4766
4767 gic_enable_quirks(iidr, its_quirks, its);
4768 }
4769
its_save_disable(void)4770 static int its_save_disable(void)
4771 {
4772 struct its_node *its;
4773 int err = 0;
4774
4775 raw_spin_lock(&its_lock);
4776 list_for_each_entry(its, &its_nodes, entry) {
4777 void __iomem *base;
4778
4779 base = its->base;
4780 its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4781 err = its_force_quiescent(base);
4782 if (err) {
4783 pr_err("ITS@%pa: failed to quiesce: %d\n",
4784 &its->phys_base, err);
4785 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4786 goto err;
4787 }
4788
4789 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4790 }
4791
4792 err:
4793 if (err) {
4794 list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4795 void __iomem *base;
4796
4797 base = its->base;
4798 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4799 }
4800 }
4801 raw_spin_unlock(&its_lock);
4802
4803 return err;
4804 }
4805
its_restore_enable(void)4806 static void its_restore_enable(void)
4807 {
4808 struct its_node *its;
4809 int ret;
4810
4811 raw_spin_lock(&its_lock);
4812 list_for_each_entry(its, &its_nodes, entry) {
4813 void __iomem *base;
4814 int i;
4815
4816 base = its->base;
4817
4818 /*
4819 * Make sure that the ITS is disabled. If it fails to quiesce,
4820 * don't restore it since writing to CBASER or BASER<n>
4821 * registers is undefined according to the GIC v3 ITS
4822 * Specification.
4823 *
4824 * Firmware resuming with the ITS enabled is terminally broken.
4825 */
4826 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
4827 ret = its_force_quiescent(base);
4828 if (ret) {
4829 pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4830 &its->phys_base, ret);
4831 continue;
4832 }
4833
4834 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4835
4836 /*
4837 * Writing CBASER resets CREADR to 0, so make CWRITER and
4838 * cmd_write line up with it.
4839 */
4840 its->cmd_write = its->cmd_base;
4841 gits_write_cwriter(0, base + GITS_CWRITER);
4842
4843 /* Restore GITS_BASER from the value cache. */
4844 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4845 struct its_baser *baser = &its->tables[i];
4846
4847 if (!(baser->val & GITS_BASER_VALID))
4848 continue;
4849
4850 its_write_baser(its, baser, baser->val);
4851 }
4852 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4853
4854 /*
4855 * Reinit the collection if it's stored in the ITS. This is
4856 * indicated by the col_id being less than the HCC field.
4857 * CID < HCC as specified in the GIC v3 Documentation.
4858 */
4859 if (its->collections[smp_processor_id()].col_id <
4860 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4861 its_cpu_init_collection(its);
4862 }
4863 raw_spin_unlock(&its_lock);
4864 }
4865
4866 static struct syscore_ops its_syscore_ops = {
4867 .suspend = its_save_disable,
4868 .resume = its_restore_enable,
4869 };
4870
its_map_one(struct resource * res,int * err)4871 static void __init __iomem *its_map_one(struct resource *res, int *err)
4872 {
4873 void __iomem *its_base;
4874 u32 val;
4875
4876 its_base = ioremap(res->start, SZ_64K);
4877 if (!its_base) {
4878 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4879 *err = -ENOMEM;
4880 return NULL;
4881 }
4882
4883 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4884 if (val != 0x30 && val != 0x40) {
4885 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4886 *err = -ENODEV;
4887 goto out_unmap;
4888 }
4889
4890 *err = its_force_quiescent(its_base);
4891 if (*err) {
4892 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4893 goto out_unmap;
4894 }
4895
4896 return its_base;
4897
4898 out_unmap:
4899 iounmap(its_base);
4900 return NULL;
4901 }
4902
its_init_domain(struct fwnode_handle * handle,struct its_node * its)4903 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
4904 {
4905 struct irq_domain *inner_domain;
4906 struct msi_domain_info *info;
4907
4908 info = kzalloc(sizeof(*info), GFP_KERNEL);
4909 if (!info)
4910 return -ENOMEM;
4911
4912 inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
4913 if (!inner_domain) {
4914 kfree(info);
4915 return -ENOMEM;
4916 }
4917
4918 inner_domain->parent = its_parent;
4919 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
4920 inner_domain->flags |= its->msi_domain_flags;
4921 info->ops = &its_msi_domain_ops;
4922 info->data = its;
4923 inner_domain->host_data = info;
4924
4925 return 0;
4926 }
4927
its_init_vpe_domain(void)4928 static int its_init_vpe_domain(void)
4929 {
4930 struct its_node *its;
4931 u32 devid;
4932 int entries;
4933
4934 if (gic_rdists->has_direct_lpi) {
4935 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
4936 return 0;
4937 }
4938
4939 /* Any ITS will do, even if not v4 */
4940 its = list_first_entry(&its_nodes, struct its_node, entry);
4941
4942 entries = roundup_pow_of_two(nr_cpu_ids);
4943 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
4944 GFP_KERNEL);
4945 if (!vpe_proxy.vpes)
4946 return -ENOMEM;
4947
4948 /* Use the last possible DevID */
4949 devid = GENMASK(device_ids(its) - 1, 0);
4950 vpe_proxy.dev = its_create_device(its, devid, entries, false);
4951 if (!vpe_proxy.dev) {
4952 kfree(vpe_proxy.vpes);
4953 pr_err("ITS: Can't allocate GICv4 proxy device\n");
4954 return -ENOMEM;
4955 }
4956
4957 BUG_ON(entries > vpe_proxy.dev->nr_ites);
4958
4959 raw_spin_lock_init(&vpe_proxy.lock);
4960 vpe_proxy.next_victim = 0;
4961 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
4962 devid, vpe_proxy.dev->nr_ites);
4963
4964 return 0;
4965 }
4966
its_compute_its_list_map(struct resource * res,void __iomem * its_base)4967 static int __init its_compute_its_list_map(struct resource *res,
4968 void __iomem *its_base)
4969 {
4970 int its_number;
4971 u32 ctlr;
4972
4973 /*
4974 * This is assumed to be done early enough that we're
4975 * guaranteed to be single-threaded, hence no
4976 * locking. Should this change, we should address
4977 * this.
4978 */
4979 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
4980 if (its_number >= GICv4_ITS_LIST_MAX) {
4981 pr_err("ITS@%pa: No ITSList entry available!\n",
4982 &res->start);
4983 return -EINVAL;
4984 }
4985
4986 ctlr = readl_relaxed(its_base + GITS_CTLR);
4987 ctlr &= ~GITS_CTLR_ITS_NUMBER;
4988 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
4989 writel_relaxed(ctlr, its_base + GITS_CTLR);
4990 ctlr = readl_relaxed(its_base + GITS_CTLR);
4991 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
4992 its_number = ctlr & GITS_CTLR_ITS_NUMBER;
4993 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
4994 }
4995
4996 if (test_and_set_bit(its_number, &its_list_map)) {
4997 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
4998 &res->start, its_number);
4999 return -EINVAL;
5000 }
5001
5002 return its_number;
5003 }
5004
its_probe_one(struct resource * res,struct fwnode_handle * handle,int numa_node)5005 static int __init its_probe_one(struct resource *res,
5006 struct fwnode_handle *handle, int numa_node)
5007 {
5008 struct its_node *its;
5009 void __iomem *its_base;
5010 u64 baser, tmp, typer;
5011 struct page *page;
5012 u32 ctlr;
5013 int err;
5014
5015 its_base = its_map_one(res, &err);
5016 if (!its_base)
5017 return err;
5018
5019 pr_info("ITS %pR\n", res);
5020
5021 its = kzalloc(sizeof(*its), GFP_KERNEL);
5022 if (!its) {
5023 err = -ENOMEM;
5024 goto out_unmap;
5025 }
5026
5027 raw_spin_lock_init(&its->lock);
5028 mutex_init(&its->dev_alloc_lock);
5029 INIT_LIST_HEAD(&its->entry);
5030 INIT_LIST_HEAD(&its->its_device_list);
5031 typer = gic_read_typer(its_base + GITS_TYPER);
5032 its->typer = typer;
5033 its->base = its_base;
5034 its->phys_base = res->start;
5035 if (is_v4(its)) {
5036 if (!(typer & GITS_TYPER_VMOVP)) {
5037 err = its_compute_its_list_map(res, its_base);
5038 if (err < 0)
5039 goto out_free_its;
5040
5041 its->list_nr = err;
5042
5043 pr_info("ITS@%pa: Using ITS number %d\n",
5044 &res->start, err);
5045 } else {
5046 pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
5047 }
5048
5049 if (is_v4_1(its)) {
5050 u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer);
5051
5052 its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K);
5053 if (!its->sgir_base) {
5054 err = -ENOMEM;
5055 goto out_free_its;
5056 }
5057
5058 its->mpidr = readl_relaxed(its_base + GITS_MPIDR);
5059
5060 pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5061 &res->start, its->mpidr, svpet);
5062 }
5063 }
5064
5065 its->numa_node = numa_node;
5066
5067 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5068 get_order(ITS_CMD_QUEUE_SZ));
5069 if (!page) {
5070 err = -ENOMEM;
5071 goto out_unmap_sgir;
5072 }
5073 its->cmd_base = (void *)page_address(page);
5074 its->cmd_write = its->cmd_base;
5075 its->fwnode_handle = handle;
5076 its->get_msi_base = its_irq_get_msi_base;
5077 its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
5078
5079 its_enable_quirks(its);
5080
5081 err = its_alloc_tables(its);
5082 if (err)
5083 goto out_free_cmd;
5084
5085 err = its_alloc_collections(its);
5086 if (err)
5087 goto out_free_tables;
5088
5089 baser = (virt_to_phys(its->cmd_base) |
5090 GITS_CBASER_RaWaWb |
5091 GITS_CBASER_InnerShareable |
5092 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
5093 GITS_CBASER_VALID);
5094
5095 gits_write_cbaser(baser, its->base + GITS_CBASER);
5096 tmp = gits_read_cbaser(its->base + GITS_CBASER);
5097
5098 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5099 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5100 /*
5101 * The HW reports non-shareable, we must
5102 * remove the cacheability attributes as
5103 * well.
5104 */
5105 baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5106 GITS_CBASER_CACHEABILITY_MASK);
5107 baser |= GITS_CBASER_nC;
5108 gits_write_cbaser(baser, its->base + GITS_CBASER);
5109 }
5110 pr_info("ITS: using cache flushing for cmd queue\n");
5111 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5112 }
5113
5114 gits_write_cwriter(0, its->base + GITS_CWRITER);
5115 ctlr = readl_relaxed(its->base + GITS_CTLR);
5116 ctlr |= GITS_CTLR_ENABLE;
5117 if (is_v4(its))
5118 ctlr |= GITS_CTLR_ImDe;
5119 writel_relaxed(ctlr, its->base + GITS_CTLR);
5120
5121 err = its_init_domain(handle, its);
5122 if (err)
5123 goto out_free_tables;
5124
5125 raw_spin_lock(&its_lock);
5126 list_add(&its->entry, &its_nodes);
5127 raw_spin_unlock(&its_lock);
5128
5129 return 0;
5130
5131 out_free_tables:
5132 its_free_tables(its);
5133 out_free_cmd:
5134 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5135 out_unmap_sgir:
5136 if (its->sgir_base)
5137 iounmap(its->sgir_base);
5138 out_free_its:
5139 kfree(its);
5140 out_unmap:
5141 iounmap(its_base);
5142 pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
5143 return err;
5144 }
5145
gic_rdists_supports_plpis(void)5146 static bool gic_rdists_supports_plpis(void)
5147 {
5148 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5149 }
5150
redist_disable_lpis(void)5151 static int redist_disable_lpis(void)
5152 {
5153 void __iomem *rbase = gic_data_rdist_rd_base();
5154 u64 timeout = USEC_PER_SEC;
5155 u64 val;
5156
5157 if (!gic_rdists_supports_plpis()) {
5158 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5159 return -ENXIO;
5160 }
5161
5162 val = readl_relaxed(rbase + GICR_CTLR);
5163 if (!(val & GICR_CTLR_ENABLE_LPIS))
5164 return 0;
5165
5166 /*
5167 * If coming via a CPU hotplug event, we don't need to disable
5168 * LPIs before trying to re-enable them. They are already
5169 * configured and all is well in the world.
5170 *
5171 * If running with preallocated tables, there is nothing to do.
5172 */
5173 if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) ||
5174 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5175 return 0;
5176
5177 /*
5178 * From that point on, we only try to do some damage control.
5179 */
5180 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5181 smp_processor_id());
5182 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5183
5184 /* Disable LPIs */
5185 val &= ~GICR_CTLR_ENABLE_LPIS;
5186 writel_relaxed(val, rbase + GICR_CTLR);
5187
5188 /* Make sure any change to GICR_CTLR is observable by the GIC */
5189 dsb(sy);
5190
5191 /*
5192 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5193 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5194 * Error out if we time out waiting for RWP to clear.
5195 */
5196 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5197 if (!timeout) {
5198 pr_err("CPU%d: Timeout while disabling LPIs\n",
5199 smp_processor_id());
5200 return -ETIMEDOUT;
5201 }
5202 udelay(1);
5203 timeout--;
5204 }
5205
5206 /*
5207 * After it has been written to 1, it is IMPLEMENTATION
5208 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5209 * cleared to 0. Error out if clearing the bit failed.
5210 */
5211 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5212 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5213 return -EBUSY;
5214 }
5215
5216 return 0;
5217 }
5218
its_cpu_init(void)5219 int its_cpu_init(void)
5220 {
5221 if (!list_empty(&its_nodes)) {
5222 int ret;
5223
5224 ret = redist_disable_lpis();
5225 if (ret)
5226 return ret;
5227
5228 its_cpu_init_lpis();
5229 its_cpu_init_collections();
5230 }
5231
5232 return 0;
5233 }
5234
rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct * work)5235 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work)
5236 {
5237 cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state);
5238 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5239 }
5240
5241 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work,
5242 rdist_memreserve_cpuhp_cleanup_workfn);
5243
its_cpu_memreserve_lpi(unsigned int cpu)5244 static int its_cpu_memreserve_lpi(unsigned int cpu)
5245 {
5246 struct page *pend_page;
5247 int ret = 0;
5248
5249 /* This gets to run exactly once per CPU */
5250 if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE)
5251 return 0;
5252
5253 pend_page = gic_data_rdist()->pend_page;
5254 if (WARN_ON(!pend_page)) {
5255 ret = -ENOMEM;
5256 goto out;
5257 }
5258 /*
5259 * If the pending table was pre-programmed, free the memory we
5260 * preemptively allocated. Otherwise, reserve that memory for
5261 * later kexecs.
5262 */
5263 if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) {
5264 its_free_pending_table(pend_page);
5265 gic_data_rdist()->pend_page = NULL;
5266 } else {
5267 phys_addr_t paddr = page_to_phys(pend_page);
5268 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
5269 }
5270
5271 out:
5272 /* Last CPU being brought up gets to issue the cleanup */
5273 if (!IS_ENABLED(CONFIG_SMP) ||
5274 cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask))
5275 schedule_work(&rdist_memreserve_cpuhp_cleanup_work);
5276
5277 gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE;
5278 return ret;
5279 }
5280
5281 /* Mark all the BASER registers as invalid before they get reprogrammed */
its_reset_one(struct resource * res)5282 static int __init its_reset_one(struct resource *res)
5283 {
5284 void __iomem *its_base;
5285 int err, i;
5286
5287 its_base = its_map_one(res, &err);
5288 if (!its_base)
5289 return err;
5290
5291 for (i = 0; i < GITS_BASER_NR_REGS; i++)
5292 gits_write_baser(0, its_base + GITS_BASER + (i << 3));
5293
5294 iounmap(its_base);
5295 return 0;
5296 }
5297
5298 static const struct of_device_id its_device_id[] = {
5299 { .compatible = "arm,gic-v3-its", },
5300 {},
5301 };
5302
its_of_probe(struct device_node * node)5303 static int __init its_of_probe(struct device_node *node)
5304 {
5305 struct device_node *np;
5306 struct resource res;
5307
5308 /*
5309 * Make sure *all* the ITS are reset before we probe any, as
5310 * they may be sharing memory. If any of the ITS fails to
5311 * reset, don't even try to go any further, as this could
5312 * result in something even worse.
5313 */
5314 for (np = of_find_matching_node(node, its_device_id); np;
5315 np = of_find_matching_node(np, its_device_id)) {
5316 int err;
5317
5318 if (!of_device_is_available(np) ||
5319 !of_property_read_bool(np, "msi-controller") ||
5320 of_address_to_resource(np, 0, &res))
5321 continue;
5322
5323 err = its_reset_one(&res);
5324 if (err)
5325 return err;
5326 }
5327
5328 for (np = of_find_matching_node(node, its_device_id); np;
5329 np = of_find_matching_node(np, its_device_id)) {
5330 if (!of_device_is_available(np))
5331 continue;
5332 if (!of_property_read_bool(np, "msi-controller")) {
5333 pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5334 np);
5335 continue;
5336 }
5337
5338 if (of_address_to_resource(np, 0, &res)) {
5339 pr_warn("%pOF: no regs?\n", np);
5340 continue;
5341 }
5342
5343 its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
5344 }
5345 return 0;
5346 }
5347
5348 #ifdef CONFIG_ACPI
5349
5350 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5351
5352 #ifdef CONFIG_ACPI_NUMA
5353 struct its_srat_map {
5354 /* numa node id */
5355 u32 numa_node;
5356 /* GIC ITS ID */
5357 u32 its_id;
5358 };
5359
5360 static struct its_srat_map *its_srat_maps __initdata;
5361 static int its_in_srat __initdata;
5362
acpi_get_its_numa_node(u32 its_id)5363 static int __init acpi_get_its_numa_node(u32 its_id)
5364 {
5365 int i;
5366
5367 for (i = 0; i < its_in_srat; i++) {
5368 if (its_id == its_srat_maps[i].its_id)
5369 return its_srat_maps[i].numa_node;
5370 }
5371 return NUMA_NO_NODE;
5372 }
5373
gic_acpi_match_srat_its(union acpi_subtable_headers * header,const unsigned long end)5374 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5375 const unsigned long end)
5376 {
5377 return 0;
5378 }
5379
gic_acpi_parse_srat_its(union acpi_subtable_headers * header,const unsigned long end)5380 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5381 const unsigned long end)
5382 {
5383 int node;
5384 struct acpi_srat_gic_its_affinity *its_affinity;
5385
5386 its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5387 if (!its_affinity)
5388 return -EINVAL;
5389
5390 if (its_affinity->header.length < sizeof(*its_affinity)) {
5391 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5392 its_affinity->header.length);
5393 return -EINVAL;
5394 }
5395
5396 /*
5397 * Note that in theory a new proximity node could be created by this
5398 * entry as it is an SRAT resource allocation structure.
5399 * We do not currently support doing so.
5400 */
5401 node = pxm_to_node(its_affinity->proximity_domain);
5402
5403 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5404 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5405 return 0;
5406 }
5407
5408 its_srat_maps[its_in_srat].numa_node = node;
5409 its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5410 its_in_srat++;
5411 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5412 its_affinity->proximity_domain, its_affinity->its_id, node);
5413
5414 return 0;
5415 }
5416
acpi_table_parse_srat_its(void)5417 static void __init acpi_table_parse_srat_its(void)
5418 {
5419 int count;
5420
5421 count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5422 sizeof(struct acpi_table_srat),
5423 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5424 gic_acpi_match_srat_its, 0);
5425 if (count <= 0)
5426 return;
5427
5428 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5429 GFP_KERNEL);
5430 if (!its_srat_maps)
5431 return;
5432
5433 acpi_table_parse_entries(ACPI_SIG_SRAT,
5434 sizeof(struct acpi_table_srat),
5435 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5436 gic_acpi_parse_srat_its, 0);
5437 }
5438
5439 /* free the its_srat_maps after ITS probing */
acpi_its_srat_maps_free(void)5440 static void __init acpi_its_srat_maps_free(void)
5441 {
5442 kfree(its_srat_maps);
5443 }
5444 #else
acpi_table_parse_srat_its(void)5445 static void __init acpi_table_parse_srat_its(void) { }
acpi_get_its_numa_node(u32 its_id)5446 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
acpi_its_srat_maps_free(void)5447 static void __init acpi_its_srat_maps_free(void) { }
5448 #endif
5449
gic_acpi_parse_madt_its(union acpi_subtable_headers * header,const unsigned long end)5450 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5451 const unsigned long end)
5452 {
5453 struct acpi_madt_generic_translator *its_entry;
5454 struct fwnode_handle *dom_handle;
5455 struct resource res;
5456 int err;
5457
5458 its_entry = (struct acpi_madt_generic_translator *)header;
5459 memset(&res, 0, sizeof(res));
5460 res.start = its_entry->base_address;
5461 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5462 res.flags = IORESOURCE_MEM;
5463
5464 dom_handle = irq_domain_alloc_fwnode(&res.start);
5465 if (!dom_handle) {
5466 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5467 &res.start);
5468 return -ENOMEM;
5469 }
5470
5471 err = iort_register_domain_token(its_entry->translation_id, res.start,
5472 dom_handle);
5473 if (err) {
5474 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5475 &res.start, its_entry->translation_id);
5476 goto dom_err;
5477 }
5478
5479 err = its_probe_one(&res, dom_handle,
5480 acpi_get_its_numa_node(its_entry->translation_id));
5481 if (!err)
5482 return 0;
5483
5484 iort_deregister_domain_token(its_entry->translation_id);
5485 dom_err:
5486 irq_domain_free_fwnode(dom_handle);
5487 return err;
5488 }
5489
its_acpi_reset(union acpi_subtable_headers * header,const unsigned long end)5490 static int __init its_acpi_reset(union acpi_subtable_headers *header,
5491 const unsigned long end)
5492 {
5493 struct acpi_madt_generic_translator *its_entry;
5494 struct resource res;
5495
5496 its_entry = (struct acpi_madt_generic_translator *)header;
5497 res = (struct resource) {
5498 .start = its_entry->base_address,
5499 .end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1,
5500 .flags = IORESOURCE_MEM,
5501 };
5502
5503 return its_reset_one(&res);
5504 }
5505
its_acpi_probe(void)5506 static void __init its_acpi_probe(void)
5507 {
5508 acpi_table_parse_srat_its();
5509 /*
5510 * Make sure *all* the ITS are reset before we probe any, as
5511 * they may be sharing memory. If any of the ITS fails to
5512 * reset, don't even try to go any further, as this could
5513 * result in something even worse.
5514 */
5515 if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5516 its_acpi_reset, 0) > 0)
5517 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5518 gic_acpi_parse_madt_its, 0);
5519 acpi_its_srat_maps_free();
5520 }
5521 #else
its_acpi_probe(void)5522 static void __init its_acpi_probe(void) { }
5523 #endif
5524
its_lpi_memreserve_init(void)5525 int __init its_lpi_memreserve_init(void)
5526 {
5527 int state;
5528
5529 if (!efi_enabled(EFI_CONFIG_TABLES))
5530 return 0;
5531
5532 if (list_empty(&its_nodes))
5533 return 0;
5534
5535 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5536 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
5537 "irqchip/arm/gicv3/memreserve:online",
5538 its_cpu_memreserve_lpi,
5539 NULL);
5540 if (state < 0)
5541 return state;
5542
5543 gic_rdists->cpuhp_memreserve_state = state;
5544
5545 return 0;
5546 }
5547
its_init(struct fwnode_handle * handle,struct rdists * rdists,struct irq_domain * parent_domain)5548 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5549 struct irq_domain *parent_domain)
5550 {
5551 struct device_node *of_node;
5552 struct its_node *its;
5553 bool has_v4 = false;
5554 bool has_v4_1 = false;
5555 int err;
5556
5557 gic_rdists = rdists;
5558
5559 its_parent = parent_domain;
5560 of_node = to_of_node(handle);
5561 if (of_node)
5562 its_of_probe(of_node);
5563 else
5564 its_acpi_probe();
5565
5566 if (list_empty(&its_nodes)) {
5567 pr_warn("ITS: No ITS available, not enabling LPIs\n");
5568 return -ENXIO;
5569 }
5570
5571 err = allocate_lpi_tables();
5572 if (err)
5573 return err;
5574
5575 list_for_each_entry(its, &its_nodes, entry) {
5576 has_v4 |= is_v4(its);
5577 has_v4_1 |= is_v4_1(its);
5578 }
5579
5580 /* Don't bother with inconsistent systems */
5581 if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5582 rdists->has_rvpeid = false;
5583
5584 if (has_v4 & rdists->has_vlpis) {
5585 const struct irq_domain_ops *sgi_ops;
5586
5587 if (has_v4_1)
5588 sgi_ops = &its_sgi_domain_ops;
5589 else
5590 sgi_ops = NULL;
5591
5592 if (its_init_vpe_domain() ||
5593 its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5594 rdists->has_vlpis = false;
5595 pr_err("ITS: Disabling GICv4 support\n");
5596 }
5597 }
5598
5599 register_syscore_ops(&its_syscore_ops);
5600
5601 return 0;
5602 }
5603