1 // SPDX-License-Identifier: GPL-2.0-only
2 /* The industrial I/O core
3 *
4 * Copyright (c) 2008 Jonathan Cameron
5 *
6 * Based on elements of hwmon and input subsystems.
7 */
8
9 #define pr_fmt(fmt) "iio-core: " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/idr.h>
14 #include <linux/kdev_t.h>
15 #include <linux/err.h>
16 #include <linux/device.h>
17 #include <linux/fs.h>
18 #include <linux/poll.h>
19 #include <linux/property.h>
20 #include <linux/sched.h>
21 #include <linux/wait.h>
22 #include <linux/cdev.h>
23 #include <linux/slab.h>
24 #include <linux/anon_inodes.h>
25 #include <linux/debugfs.h>
26 #include <linux/mutex.h>
27 #include <linux/iio/iio.h>
28 #include <linux/iio/iio-opaque.h>
29 #include "iio_core.h"
30 #include "iio_core_trigger.h"
31 #include <linux/iio/sysfs.h>
32 #include <linux/iio/events.h>
33 #include <linux/iio/buffer.h>
34 #include <linux/iio/buffer_impl.h>
35
36 /* IDA to assign each registered device a unique id */
37 static DEFINE_IDA(iio_ida);
38
39 static dev_t iio_devt;
40
41 #define IIO_DEV_MAX 256
42 struct bus_type iio_bus_type = {
43 .name = "iio",
44 };
45 EXPORT_SYMBOL(iio_bus_type);
46
47 static struct dentry *iio_debugfs_dentry;
48
49 static const char * const iio_direction[] = {
50 [0] = "in",
51 [1] = "out",
52 };
53
54 static const char * const iio_chan_type_name_spec[] = {
55 [IIO_VOLTAGE] = "voltage",
56 [IIO_CURRENT] = "current",
57 [IIO_POWER] = "power",
58 [IIO_ACCEL] = "accel",
59 [IIO_ANGL_VEL] = "anglvel",
60 [IIO_MAGN] = "magn",
61 [IIO_LIGHT] = "illuminance",
62 [IIO_INTENSITY] = "intensity",
63 [IIO_PROXIMITY] = "proximity",
64 [IIO_TEMP] = "temp",
65 [IIO_INCLI] = "incli",
66 [IIO_ROT] = "rot",
67 [IIO_ANGL] = "angl",
68 [IIO_TIMESTAMP] = "timestamp",
69 [IIO_CAPACITANCE] = "capacitance",
70 [IIO_ALTVOLTAGE] = "altvoltage",
71 [IIO_CCT] = "cct",
72 [IIO_PRESSURE] = "pressure",
73 [IIO_HUMIDITYRELATIVE] = "humidityrelative",
74 [IIO_ACTIVITY] = "activity",
75 [IIO_STEPS] = "steps",
76 [IIO_ENERGY] = "energy",
77 [IIO_DISTANCE] = "distance",
78 [IIO_VELOCITY] = "velocity",
79 [IIO_CONCENTRATION] = "concentration",
80 [IIO_RESISTANCE] = "resistance",
81 [IIO_PH] = "ph",
82 [IIO_UVINDEX] = "uvindex",
83 [IIO_ELECTRICALCONDUCTIVITY] = "electricalconductivity",
84 [IIO_COUNT] = "count",
85 [IIO_INDEX] = "index",
86 [IIO_GRAVITY] = "gravity",
87 [IIO_POSITIONRELATIVE] = "positionrelative",
88 [IIO_PHASE] = "phase",
89 [IIO_MASSCONCENTRATION] = "massconcentration",
90 };
91
92 static const char * const iio_modifier_names[] = {
93 [IIO_MOD_X] = "x",
94 [IIO_MOD_Y] = "y",
95 [IIO_MOD_Z] = "z",
96 [IIO_MOD_X_AND_Y] = "x&y",
97 [IIO_MOD_X_AND_Z] = "x&z",
98 [IIO_MOD_Y_AND_Z] = "y&z",
99 [IIO_MOD_X_AND_Y_AND_Z] = "x&y&z",
100 [IIO_MOD_X_OR_Y] = "x|y",
101 [IIO_MOD_X_OR_Z] = "x|z",
102 [IIO_MOD_Y_OR_Z] = "y|z",
103 [IIO_MOD_X_OR_Y_OR_Z] = "x|y|z",
104 [IIO_MOD_ROOT_SUM_SQUARED_X_Y] = "sqrt(x^2+y^2)",
105 [IIO_MOD_SUM_SQUARED_X_Y_Z] = "x^2+y^2+z^2",
106 [IIO_MOD_LIGHT_BOTH] = "both",
107 [IIO_MOD_LIGHT_IR] = "ir",
108 [IIO_MOD_LIGHT_CLEAR] = "clear",
109 [IIO_MOD_LIGHT_RED] = "red",
110 [IIO_MOD_LIGHT_GREEN] = "green",
111 [IIO_MOD_LIGHT_BLUE] = "blue",
112 [IIO_MOD_LIGHT_UV] = "uv",
113 [IIO_MOD_LIGHT_DUV] = "duv",
114 [IIO_MOD_QUATERNION] = "quaternion",
115 [IIO_MOD_TEMP_AMBIENT] = "ambient",
116 [IIO_MOD_TEMP_OBJECT] = "object",
117 [IIO_MOD_NORTH_MAGN] = "from_north_magnetic",
118 [IIO_MOD_NORTH_TRUE] = "from_north_true",
119 [IIO_MOD_NORTH_MAGN_TILT_COMP] = "from_north_magnetic_tilt_comp",
120 [IIO_MOD_NORTH_TRUE_TILT_COMP] = "from_north_true_tilt_comp",
121 [IIO_MOD_RUNNING] = "running",
122 [IIO_MOD_JOGGING] = "jogging",
123 [IIO_MOD_WALKING] = "walking",
124 [IIO_MOD_STILL] = "still",
125 [IIO_MOD_ROOT_SUM_SQUARED_X_Y_Z] = "sqrt(x^2+y^2+z^2)",
126 [IIO_MOD_I] = "i",
127 [IIO_MOD_Q] = "q",
128 [IIO_MOD_CO2] = "co2",
129 [IIO_MOD_VOC] = "voc",
130 [IIO_MOD_PM1] = "pm1",
131 [IIO_MOD_PM2P5] = "pm2p5",
132 [IIO_MOD_PM4] = "pm4",
133 [IIO_MOD_PM10] = "pm10",
134 [IIO_MOD_ETHANOL] = "ethanol",
135 [IIO_MOD_H2] = "h2",
136 [IIO_MOD_O2] = "o2",
137 [IIO_MOD_LINEAR_X] = "linear_x",
138 [IIO_MOD_LINEAR_Y] = "linear_y",
139 [IIO_MOD_LINEAR_Z] = "linear_z",
140 [IIO_MOD_PITCH] = "pitch",
141 [IIO_MOD_YAW] = "yaw",
142 [IIO_MOD_ROLL] = "roll",
143 };
144
145 /* relies on pairs of these shared then separate */
146 static const char * const iio_chan_info_postfix[] = {
147 [IIO_CHAN_INFO_RAW] = "raw",
148 [IIO_CHAN_INFO_PROCESSED] = "input",
149 [IIO_CHAN_INFO_SCALE] = "scale",
150 [IIO_CHAN_INFO_OFFSET] = "offset",
151 [IIO_CHAN_INFO_CALIBSCALE] = "calibscale",
152 [IIO_CHAN_INFO_CALIBBIAS] = "calibbias",
153 [IIO_CHAN_INFO_PEAK] = "peak_raw",
154 [IIO_CHAN_INFO_PEAK_SCALE] = "peak_scale",
155 [IIO_CHAN_INFO_QUADRATURE_CORRECTION_RAW] = "quadrature_correction_raw",
156 [IIO_CHAN_INFO_AVERAGE_RAW] = "mean_raw",
157 [IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY]
158 = "filter_low_pass_3db_frequency",
159 [IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY]
160 = "filter_high_pass_3db_frequency",
161 [IIO_CHAN_INFO_SAMP_FREQ] = "sampling_frequency",
162 [IIO_CHAN_INFO_FREQUENCY] = "frequency",
163 [IIO_CHAN_INFO_PHASE] = "phase",
164 [IIO_CHAN_INFO_HARDWAREGAIN] = "hardwaregain",
165 [IIO_CHAN_INFO_HYSTERESIS] = "hysteresis",
166 [IIO_CHAN_INFO_HYSTERESIS_RELATIVE] = "hysteresis_relative",
167 [IIO_CHAN_INFO_INT_TIME] = "integration_time",
168 [IIO_CHAN_INFO_ENABLE] = "en",
169 [IIO_CHAN_INFO_CALIBHEIGHT] = "calibheight",
170 [IIO_CHAN_INFO_CALIBWEIGHT] = "calibweight",
171 [IIO_CHAN_INFO_DEBOUNCE_COUNT] = "debounce_count",
172 [IIO_CHAN_INFO_DEBOUNCE_TIME] = "debounce_time",
173 [IIO_CHAN_INFO_CALIBEMISSIVITY] = "calibemissivity",
174 [IIO_CHAN_INFO_OVERSAMPLING_RATIO] = "oversampling_ratio",
175 [IIO_CHAN_INFO_THERMOCOUPLE_TYPE] = "thermocouple_type",
176 [IIO_CHAN_INFO_CALIBAMBIENT] = "calibambient",
177 [IIO_CHAN_INFO_ZEROPOINT] = "zeropoint",
178 };
179 /**
180 * iio_device_id() - query the unique ID for the device
181 * @indio_dev: Device structure whose ID is being queried
182 *
183 * The IIO device ID is a unique index used for example for the naming
184 * of the character device /dev/iio\:device[ID]
185 */
iio_device_id(struct iio_dev * indio_dev)186 int iio_device_id(struct iio_dev *indio_dev)
187 {
188 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
189
190 return iio_dev_opaque->id;
191 }
192 EXPORT_SYMBOL_GPL(iio_device_id);
193
194 /**
195 * iio_buffer_enabled() - helper function to test if the buffer is enabled
196 * @indio_dev: IIO device structure for device
197 */
iio_buffer_enabled(struct iio_dev * indio_dev)198 bool iio_buffer_enabled(struct iio_dev *indio_dev)
199 {
200 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
201
202 return iio_dev_opaque->currentmode
203 & (INDIO_BUFFER_TRIGGERED | INDIO_BUFFER_HARDWARE |
204 INDIO_BUFFER_SOFTWARE);
205 }
206 EXPORT_SYMBOL_GPL(iio_buffer_enabled);
207
208 /**
209 * iio_sysfs_match_string_with_gaps - matches given string in an array with gaps
210 * @array: array of strings
211 * @n: number of strings in the array
212 * @str: string to match with
213 *
214 * Returns index of @str in the @array or -EINVAL, similar to match_string().
215 * Uses sysfs_streq instead of strcmp for matching.
216 *
217 * This routine will look for a string in an array of strings.
218 * The search will continue until the element is found or the n-th element
219 * is reached, regardless of any NULL elements in the array.
220 */
iio_sysfs_match_string_with_gaps(const char * const * array,size_t n,const char * str)221 static int iio_sysfs_match_string_with_gaps(const char * const *array, size_t n,
222 const char *str)
223 {
224 const char *item;
225 int index;
226
227 for (index = 0; index < n; index++) {
228 item = array[index];
229 if (!item)
230 continue;
231 if (sysfs_streq(item, str))
232 return index;
233 }
234
235 return -EINVAL;
236 }
237
238 #if defined(CONFIG_DEBUG_FS)
239 /*
240 * There's also a CONFIG_DEBUG_FS guard in include/linux/iio/iio.h for
241 * iio_get_debugfs_dentry() to make it inline if CONFIG_DEBUG_FS is undefined
242 */
iio_get_debugfs_dentry(struct iio_dev * indio_dev)243 struct dentry *iio_get_debugfs_dentry(struct iio_dev *indio_dev)
244 {
245 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
246
247 return iio_dev_opaque->debugfs_dentry;
248 }
249 EXPORT_SYMBOL_GPL(iio_get_debugfs_dentry);
250 #endif
251
252 /**
253 * iio_find_channel_from_si() - get channel from its scan index
254 * @indio_dev: device
255 * @si: scan index to match
256 */
257 const struct iio_chan_spec
iio_find_channel_from_si(struct iio_dev * indio_dev,int si)258 *iio_find_channel_from_si(struct iio_dev *indio_dev, int si)
259 {
260 int i;
261
262 for (i = 0; i < indio_dev->num_channels; i++)
263 if (indio_dev->channels[i].scan_index == si)
264 return &indio_dev->channels[i];
265 return NULL;
266 }
267
268 /* This turns up an awful lot */
iio_read_const_attr(struct device * dev,struct device_attribute * attr,char * buf)269 ssize_t iio_read_const_attr(struct device *dev,
270 struct device_attribute *attr,
271 char *buf)
272 {
273 return sysfs_emit(buf, "%s\n", to_iio_const_attr(attr)->string);
274 }
275 EXPORT_SYMBOL(iio_read_const_attr);
276
277 /**
278 * iio_device_set_clock() - Set current timestamping clock for the device
279 * @indio_dev: IIO device structure containing the device
280 * @clock_id: timestamping clock posix identifier to set.
281 */
iio_device_set_clock(struct iio_dev * indio_dev,clockid_t clock_id)282 int iio_device_set_clock(struct iio_dev *indio_dev, clockid_t clock_id)
283 {
284 int ret;
285 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
286 const struct iio_event_interface *ev_int = iio_dev_opaque->event_interface;
287
288 ret = mutex_lock_interruptible(&indio_dev->mlock);
289 if (ret)
290 return ret;
291 if ((ev_int && iio_event_enabled(ev_int)) ||
292 iio_buffer_enabled(indio_dev)) {
293 mutex_unlock(&indio_dev->mlock);
294 return -EBUSY;
295 }
296 iio_dev_opaque->clock_id = clock_id;
297 mutex_unlock(&indio_dev->mlock);
298
299 return 0;
300 }
301 EXPORT_SYMBOL(iio_device_set_clock);
302
303 /**
304 * iio_device_get_clock() - Retrieve current timestamping clock for the device
305 * @indio_dev: IIO device structure containing the device
306 */
iio_device_get_clock(const struct iio_dev * indio_dev)307 clockid_t iio_device_get_clock(const struct iio_dev *indio_dev)
308 {
309 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
310
311 return iio_dev_opaque->clock_id;
312 }
313 EXPORT_SYMBOL(iio_device_get_clock);
314
315 /**
316 * iio_get_time_ns() - utility function to get a time stamp for events etc
317 * @indio_dev: device
318 */
iio_get_time_ns(const struct iio_dev * indio_dev)319 s64 iio_get_time_ns(const struct iio_dev *indio_dev)
320 {
321 struct timespec64 tp;
322
323 switch (iio_device_get_clock(indio_dev)) {
324 case CLOCK_REALTIME:
325 return ktime_get_real_ns();
326 case CLOCK_MONOTONIC:
327 return ktime_get_ns();
328 case CLOCK_MONOTONIC_RAW:
329 return ktime_get_raw_ns();
330 case CLOCK_REALTIME_COARSE:
331 return ktime_to_ns(ktime_get_coarse_real());
332 case CLOCK_MONOTONIC_COARSE:
333 ktime_get_coarse_ts64(&tp);
334 return timespec64_to_ns(&tp);
335 case CLOCK_BOOTTIME:
336 return ktime_get_boottime_ns();
337 case CLOCK_TAI:
338 return ktime_get_clocktai_ns();
339 default:
340 BUG();
341 }
342 }
343 EXPORT_SYMBOL(iio_get_time_ns);
344
iio_init(void)345 static int __init iio_init(void)
346 {
347 int ret;
348
349 /* Register sysfs bus */
350 ret = bus_register(&iio_bus_type);
351 if (ret < 0) {
352 pr_err("could not register bus type\n");
353 goto error_nothing;
354 }
355
356 ret = alloc_chrdev_region(&iio_devt, 0, IIO_DEV_MAX, "iio");
357 if (ret < 0) {
358 pr_err("failed to allocate char dev region\n");
359 goto error_unregister_bus_type;
360 }
361
362 iio_debugfs_dentry = debugfs_create_dir("iio", NULL);
363
364 return 0;
365
366 error_unregister_bus_type:
367 bus_unregister(&iio_bus_type);
368 error_nothing:
369 return ret;
370 }
371
iio_exit(void)372 static void __exit iio_exit(void)
373 {
374 if (iio_devt)
375 unregister_chrdev_region(iio_devt, IIO_DEV_MAX);
376 bus_unregister(&iio_bus_type);
377 debugfs_remove(iio_debugfs_dentry);
378 }
379
380 #if defined(CONFIG_DEBUG_FS)
iio_debugfs_read_reg(struct file * file,char __user * userbuf,size_t count,loff_t * ppos)381 static ssize_t iio_debugfs_read_reg(struct file *file, char __user *userbuf,
382 size_t count, loff_t *ppos)
383 {
384 struct iio_dev *indio_dev = file->private_data;
385 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
386 unsigned int val = 0;
387 int ret;
388
389 if (*ppos > 0)
390 return simple_read_from_buffer(userbuf, count, ppos,
391 iio_dev_opaque->read_buf,
392 iio_dev_opaque->read_buf_len);
393
394 ret = indio_dev->info->debugfs_reg_access(indio_dev,
395 iio_dev_opaque->cached_reg_addr,
396 0, &val);
397 if (ret) {
398 dev_err(indio_dev->dev.parent, "%s: read failed\n", __func__);
399 return ret;
400 }
401
402 iio_dev_opaque->read_buf_len = snprintf(iio_dev_opaque->read_buf,
403 sizeof(iio_dev_opaque->read_buf),
404 "0x%X\n", val);
405
406 return simple_read_from_buffer(userbuf, count, ppos,
407 iio_dev_opaque->read_buf,
408 iio_dev_opaque->read_buf_len);
409 }
410
iio_debugfs_write_reg(struct file * file,const char __user * userbuf,size_t count,loff_t * ppos)411 static ssize_t iio_debugfs_write_reg(struct file *file,
412 const char __user *userbuf, size_t count, loff_t *ppos)
413 {
414 struct iio_dev *indio_dev = file->private_data;
415 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
416 unsigned int reg, val;
417 char buf[80];
418 int ret;
419
420 count = min_t(size_t, count, (sizeof(buf)-1));
421 if (copy_from_user(buf, userbuf, count))
422 return -EFAULT;
423
424 buf[count] = 0;
425
426 ret = sscanf(buf, "%i %i", ®, &val);
427
428 switch (ret) {
429 case 1:
430 iio_dev_opaque->cached_reg_addr = reg;
431 break;
432 case 2:
433 iio_dev_opaque->cached_reg_addr = reg;
434 ret = indio_dev->info->debugfs_reg_access(indio_dev, reg,
435 val, NULL);
436 if (ret) {
437 dev_err(indio_dev->dev.parent, "%s: write failed\n",
438 __func__);
439 return ret;
440 }
441 break;
442 default:
443 return -EINVAL;
444 }
445
446 return count;
447 }
448
449 static const struct file_operations iio_debugfs_reg_fops = {
450 .open = simple_open,
451 .read = iio_debugfs_read_reg,
452 .write = iio_debugfs_write_reg,
453 };
454
iio_device_unregister_debugfs(struct iio_dev * indio_dev)455 static void iio_device_unregister_debugfs(struct iio_dev *indio_dev)
456 {
457 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
458
459 debugfs_remove_recursive(iio_dev_opaque->debugfs_dentry);
460 }
461
iio_device_register_debugfs(struct iio_dev * indio_dev)462 static void iio_device_register_debugfs(struct iio_dev *indio_dev)
463 {
464 struct iio_dev_opaque *iio_dev_opaque;
465
466 if (indio_dev->info->debugfs_reg_access == NULL)
467 return;
468
469 if (!iio_debugfs_dentry)
470 return;
471
472 iio_dev_opaque = to_iio_dev_opaque(indio_dev);
473
474 iio_dev_opaque->debugfs_dentry =
475 debugfs_create_dir(dev_name(&indio_dev->dev),
476 iio_debugfs_dentry);
477
478 debugfs_create_file("direct_reg_access", 0644,
479 iio_dev_opaque->debugfs_dentry, indio_dev,
480 &iio_debugfs_reg_fops);
481 }
482 #else
iio_device_register_debugfs(struct iio_dev * indio_dev)483 static void iio_device_register_debugfs(struct iio_dev *indio_dev)
484 {
485 }
486
iio_device_unregister_debugfs(struct iio_dev * indio_dev)487 static void iio_device_unregister_debugfs(struct iio_dev *indio_dev)
488 {
489 }
490 #endif /* CONFIG_DEBUG_FS */
491
iio_read_channel_ext_info(struct device * dev,struct device_attribute * attr,char * buf)492 static ssize_t iio_read_channel_ext_info(struct device *dev,
493 struct device_attribute *attr,
494 char *buf)
495 {
496 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
497 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
498 const struct iio_chan_spec_ext_info *ext_info;
499
500 ext_info = &this_attr->c->ext_info[this_attr->address];
501
502 return ext_info->read(indio_dev, ext_info->private, this_attr->c, buf);
503 }
504
iio_write_channel_ext_info(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)505 static ssize_t iio_write_channel_ext_info(struct device *dev,
506 struct device_attribute *attr,
507 const char *buf,
508 size_t len)
509 {
510 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
511 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
512 const struct iio_chan_spec_ext_info *ext_info;
513
514 ext_info = &this_attr->c->ext_info[this_attr->address];
515
516 return ext_info->write(indio_dev, ext_info->private,
517 this_attr->c, buf, len);
518 }
519
iio_enum_available_read(struct iio_dev * indio_dev,uintptr_t priv,const struct iio_chan_spec * chan,char * buf)520 ssize_t iio_enum_available_read(struct iio_dev *indio_dev,
521 uintptr_t priv, const struct iio_chan_spec *chan, char *buf)
522 {
523 const struct iio_enum *e = (const struct iio_enum *)priv;
524 unsigned int i;
525 size_t len = 0;
526
527 if (!e->num_items)
528 return 0;
529
530 for (i = 0; i < e->num_items; ++i) {
531 if (!e->items[i])
532 continue;
533 len += sysfs_emit_at(buf, len, "%s ", e->items[i]);
534 }
535
536 /* replace last space with a newline */
537 buf[len - 1] = '\n';
538
539 return len;
540 }
541 EXPORT_SYMBOL_GPL(iio_enum_available_read);
542
iio_enum_read(struct iio_dev * indio_dev,uintptr_t priv,const struct iio_chan_spec * chan,char * buf)543 ssize_t iio_enum_read(struct iio_dev *indio_dev,
544 uintptr_t priv, const struct iio_chan_spec *chan, char *buf)
545 {
546 const struct iio_enum *e = (const struct iio_enum *)priv;
547 int i;
548
549 if (!e->get)
550 return -EINVAL;
551
552 i = e->get(indio_dev, chan);
553 if (i < 0)
554 return i;
555 else if (i >= e->num_items || !e->items[i])
556 return -EINVAL;
557
558 return sysfs_emit(buf, "%s\n", e->items[i]);
559 }
560 EXPORT_SYMBOL_GPL(iio_enum_read);
561
iio_enum_write(struct iio_dev * indio_dev,uintptr_t priv,const struct iio_chan_spec * chan,const char * buf,size_t len)562 ssize_t iio_enum_write(struct iio_dev *indio_dev,
563 uintptr_t priv, const struct iio_chan_spec *chan, const char *buf,
564 size_t len)
565 {
566 const struct iio_enum *e = (const struct iio_enum *)priv;
567 int ret;
568
569 if (!e->set)
570 return -EINVAL;
571
572 ret = iio_sysfs_match_string_with_gaps(e->items, e->num_items, buf);
573 if (ret < 0)
574 return ret;
575
576 ret = e->set(indio_dev, chan, ret);
577 return ret ? ret : len;
578 }
579 EXPORT_SYMBOL_GPL(iio_enum_write);
580
581 static const struct iio_mount_matrix iio_mount_idmatrix = {
582 .rotation = {
583 "1", "0", "0",
584 "0", "1", "0",
585 "0", "0", "1"
586 }
587 };
588
iio_setup_mount_idmatrix(const struct device * dev,struct iio_mount_matrix * matrix)589 static int iio_setup_mount_idmatrix(const struct device *dev,
590 struct iio_mount_matrix *matrix)
591 {
592 *matrix = iio_mount_idmatrix;
593 dev_info(dev, "mounting matrix not found: using identity...\n");
594 return 0;
595 }
596
iio_show_mount_matrix(struct iio_dev * indio_dev,uintptr_t priv,const struct iio_chan_spec * chan,char * buf)597 ssize_t iio_show_mount_matrix(struct iio_dev *indio_dev, uintptr_t priv,
598 const struct iio_chan_spec *chan, char *buf)
599 {
600 const struct iio_mount_matrix *mtx = ((iio_get_mount_matrix_t *)
601 priv)(indio_dev, chan);
602
603 if (IS_ERR(mtx))
604 return PTR_ERR(mtx);
605
606 if (!mtx)
607 mtx = &iio_mount_idmatrix;
608
609 return sysfs_emit(buf, "%s, %s, %s; %s, %s, %s; %s, %s, %s\n",
610 mtx->rotation[0], mtx->rotation[1], mtx->rotation[2],
611 mtx->rotation[3], mtx->rotation[4], mtx->rotation[5],
612 mtx->rotation[6], mtx->rotation[7], mtx->rotation[8]);
613 }
614 EXPORT_SYMBOL_GPL(iio_show_mount_matrix);
615
616 /**
617 * iio_read_mount_matrix() - retrieve iio device mounting matrix from
618 * device "mount-matrix" property
619 * @dev: device the mounting matrix property is assigned to
620 * @matrix: where to store retrieved matrix
621 *
622 * If device is assigned no mounting matrix property, a default 3x3 identity
623 * matrix will be filled in.
624 *
625 * Return: 0 if success, or a negative error code on failure.
626 */
iio_read_mount_matrix(struct device * dev,struct iio_mount_matrix * matrix)627 int iio_read_mount_matrix(struct device *dev, struct iio_mount_matrix *matrix)
628 {
629 size_t len = ARRAY_SIZE(iio_mount_idmatrix.rotation);
630 int err;
631
632 err = device_property_read_string_array(dev, "mount-matrix", matrix->rotation, len);
633 if (err == len)
634 return 0;
635
636 if (err >= 0)
637 /* Invalid number of matrix entries. */
638 return -EINVAL;
639
640 if (err != -EINVAL)
641 /* Invalid matrix declaration format. */
642 return err;
643
644 /* Matrix was not declared at all: fallback to identity. */
645 return iio_setup_mount_idmatrix(dev, matrix);
646 }
647 EXPORT_SYMBOL(iio_read_mount_matrix);
648
__iio_format_value(char * buf,size_t offset,unsigned int type,int size,const int * vals)649 static ssize_t __iio_format_value(char *buf, size_t offset, unsigned int type,
650 int size, const int *vals)
651 {
652 int tmp0, tmp1;
653 s64 tmp2;
654 bool scale_db = false;
655
656 switch (type) {
657 case IIO_VAL_INT:
658 return sysfs_emit_at(buf, offset, "%d", vals[0]);
659 case IIO_VAL_INT_PLUS_MICRO_DB:
660 scale_db = true;
661 fallthrough;
662 case IIO_VAL_INT_PLUS_MICRO:
663 if (vals[1] < 0)
664 return sysfs_emit_at(buf, offset, "-%d.%06u%s",
665 abs(vals[0]), -vals[1],
666 scale_db ? " dB" : "");
667 else
668 return sysfs_emit_at(buf, offset, "%d.%06u%s", vals[0],
669 vals[1], scale_db ? " dB" : "");
670 case IIO_VAL_INT_PLUS_NANO:
671 if (vals[1] < 0)
672 return sysfs_emit_at(buf, offset, "-%d.%09u",
673 abs(vals[0]), -vals[1]);
674 else
675 return sysfs_emit_at(buf, offset, "%d.%09u", vals[0],
676 vals[1]);
677 case IIO_VAL_FRACTIONAL:
678 tmp2 = div_s64((s64)vals[0] * 1000000000LL, vals[1]);
679 tmp1 = vals[1];
680 tmp0 = (int)div_s64_rem(tmp2, 1000000000, &tmp1);
681 if ((tmp2 < 0) && (tmp0 == 0))
682 return sysfs_emit_at(buf, offset, "-0.%09u", abs(tmp1));
683 else
684 return sysfs_emit_at(buf, offset, "%d.%09u", tmp0,
685 abs(tmp1));
686 case IIO_VAL_FRACTIONAL_LOG2:
687 tmp2 = shift_right((s64)vals[0] * 1000000000LL, vals[1]);
688 tmp0 = (int)div_s64_rem(tmp2, 1000000000LL, &tmp1);
689 if (tmp0 == 0 && tmp2 < 0)
690 return sysfs_emit_at(buf, offset, "-0.%09u", abs(tmp1));
691 else
692 return sysfs_emit_at(buf, offset, "%d.%09u", tmp0,
693 abs(tmp1));
694 case IIO_VAL_INT_MULTIPLE:
695 {
696 int i;
697 int l = 0;
698
699 for (i = 0; i < size; ++i)
700 l += sysfs_emit_at(buf, offset + l, "%d ", vals[i]);
701 return l;
702 }
703 case IIO_VAL_CHAR:
704 return sysfs_emit_at(buf, offset, "%c", (char)vals[0]);
705 case IIO_VAL_INT_64:
706 tmp2 = (s64)((((u64)vals[1]) << 32) | (u32)vals[0]);
707 return sysfs_emit_at(buf, offset, "%lld", tmp2);
708 default:
709 return 0;
710 }
711 }
712
713 /**
714 * iio_format_value() - Formats a IIO value into its string representation
715 * @buf: The buffer to which the formatted value gets written
716 * which is assumed to be big enough (i.e. PAGE_SIZE).
717 * @type: One of the IIO_VAL_* constants. This decides how the val
718 * and val2 parameters are formatted.
719 * @size: Number of IIO value entries contained in vals
720 * @vals: Pointer to the values, exact meaning depends on the
721 * type parameter.
722 *
723 * Return: 0 by default, a negative number on failure or the
724 * total number of characters written for a type that belongs
725 * to the IIO_VAL_* constant.
726 */
iio_format_value(char * buf,unsigned int type,int size,int * vals)727 ssize_t iio_format_value(char *buf, unsigned int type, int size, int *vals)
728 {
729 ssize_t len;
730
731 len = __iio_format_value(buf, 0, type, size, vals);
732 if (len >= PAGE_SIZE - 1)
733 return -EFBIG;
734
735 return len + sysfs_emit_at(buf, len, "\n");
736 }
737 EXPORT_SYMBOL_GPL(iio_format_value);
738
iio_read_channel_label(struct device * dev,struct device_attribute * attr,char * buf)739 static ssize_t iio_read_channel_label(struct device *dev,
740 struct device_attribute *attr,
741 char *buf)
742 {
743 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
744 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
745
746 if (indio_dev->info->read_label)
747 return indio_dev->info->read_label(indio_dev, this_attr->c, buf);
748
749 if (this_attr->c->extend_name)
750 return sysfs_emit(buf, "%s\n", this_attr->c->extend_name);
751
752 return -EINVAL;
753 }
754
iio_read_channel_info(struct device * dev,struct device_attribute * attr,char * buf)755 static ssize_t iio_read_channel_info(struct device *dev,
756 struct device_attribute *attr,
757 char *buf)
758 {
759 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
760 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
761 int vals[INDIO_MAX_RAW_ELEMENTS];
762 int ret;
763 int val_len = 2;
764
765 if (indio_dev->info->read_raw_multi)
766 ret = indio_dev->info->read_raw_multi(indio_dev, this_attr->c,
767 INDIO_MAX_RAW_ELEMENTS,
768 vals, &val_len,
769 this_attr->address);
770 else
771 ret = indio_dev->info->read_raw(indio_dev, this_attr->c,
772 &vals[0], &vals[1], this_attr->address);
773
774 if (ret < 0)
775 return ret;
776
777 return iio_format_value(buf, ret, val_len, vals);
778 }
779
iio_format_list(char * buf,const int * vals,int type,int length,const char * prefix,const char * suffix)780 static ssize_t iio_format_list(char *buf, const int *vals, int type, int length,
781 const char *prefix, const char *suffix)
782 {
783 ssize_t len;
784 int stride;
785 int i;
786
787 switch (type) {
788 case IIO_VAL_INT:
789 stride = 1;
790 break;
791 default:
792 stride = 2;
793 break;
794 }
795
796 len = sysfs_emit(buf, prefix);
797
798 for (i = 0; i <= length - stride; i += stride) {
799 if (i != 0) {
800 len += sysfs_emit_at(buf, len, " ");
801 if (len >= PAGE_SIZE)
802 return -EFBIG;
803 }
804
805 len += __iio_format_value(buf, len, type, stride, &vals[i]);
806 if (len >= PAGE_SIZE)
807 return -EFBIG;
808 }
809
810 len += sysfs_emit_at(buf, len, "%s\n", suffix);
811
812 return len;
813 }
814
iio_format_avail_list(char * buf,const int * vals,int type,int length)815 static ssize_t iio_format_avail_list(char *buf, const int *vals,
816 int type, int length)
817 {
818
819 return iio_format_list(buf, vals, type, length, "", "");
820 }
821
iio_format_avail_range(char * buf,const int * vals,int type)822 static ssize_t iio_format_avail_range(char *buf, const int *vals, int type)
823 {
824 int length;
825
826 /*
827 * length refers to the array size , not the number of elements.
828 * The purpose is to print the range [min , step ,max] so length should
829 * be 3 in case of int, and 6 for other types.
830 */
831 switch (type) {
832 case IIO_VAL_INT:
833 length = 3;
834 break;
835 default:
836 length = 6;
837 break;
838 }
839
840 return iio_format_list(buf, vals, type, length, "[", "]");
841 }
842
iio_read_channel_info_avail(struct device * dev,struct device_attribute * attr,char * buf)843 static ssize_t iio_read_channel_info_avail(struct device *dev,
844 struct device_attribute *attr,
845 char *buf)
846 {
847 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
848 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
849 const int *vals;
850 int ret;
851 int length;
852 int type;
853
854 ret = indio_dev->info->read_avail(indio_dev, this_attr->c,
855 &vals, &type, &length,
856 this_attr->address);
857
858 if (ret < 0)
859 return ret;
860 switch (ret) {
861 case IIO_AVAIL_LIST:
862 return iio_format_avail_list(buf, vals, type, length);
863 case IIO_AVAIL_RANGE:
864 return iio_format_avail_range(buf, vals, type);
865 default:
866 return -EINVAL;
867 }
868 }
869
870 /**
871 * __iio_str_to_fixpoint() - Parse a fixed-point number from a string
872 * @str: The string to parse
873 * @fract_mult: Multiplier for the first decimal place, should be a power of 10
874 * @integer: The integer part of the number
875 * @fract: The fractional part of the number
876 * @scale_db: True if this should parse as dB
877 *
878 * Returns 0 on success, or a negative error code if the string could not be
879 * parsed.
880 */
__iio_str_to_fixpoint(const char * str,int fract_mult,int * integer,int * fract,bool scale_db)881 static int __iio_str_to_fixpoint(const char *str, int fract_mult,
882 int *integer, int *fract, bool scale_db)
883 {
884 int i = 0, f = 0;
885 bool integer_part = true, negative = false;
886
887 if (fract_mult == 0) {
888 *fract = 0;
889
890 return kstrtoint(str, 0, integer);
891 }
892
893 if (str[0] == '-') {
894 negative = true;
895 str++;
896 } else if (str[0] == '+') {
897 str++;
898 }
899
900 while (*str) {
901 if ('0' <= *str && *str <= '9') {
902 if (integer_part) {
903 i = i * 10 + *str - '0';
904 } else {
905 f += fract_mult * (*str - '0');
906 fract_mult /= 10;
907 }
908 } else if (*str == '\n') {
909 if (*(str + 1) == '\0')
910 break;
911 return -EINVAL;
912 } else if (!strncmp(str, " dB", sizeof(" dB") - 1) && scale_db) {
913 /* Ignore the dB suffix */
914 str += sizeof(" dB") - 1;
915 continue;
916 } else if (!strncmp(str, "dB", sizeof("dB") - 1) && scale_db) {
917 /* Ignore the dB suffix */
918 str += sizeof("dB") - 1;
919 continue;
920 } else if (*str == '.' && integer_part) {
921 integer_part = false;
922 } else {
923 return -EINVAL;
924 }
925 str++;
926 }
927
928 if (negative) {
929 if (i)
930 i = -i;
931 else
932 f = -f;
933 }
934
935 *integer = i;
936 *fract = f;
937
938 return 0;
939 }
940
941 /**
942 * iio_str_to_fixpoint() - Parse a fixed-point number from a string
943 * @str: The string to parse
944 * @fract_mult: Multiplier for the first decimal place, should be a power of 10
945 * @integer: The integer part of the number
946 * @fract: The fractional part of the number
947 *
948 * Returns 0 on success, or a negative error code if the string could not be
949 * parsed.
950 */
iio_str_to_fixpoint(const char * str,int fract_mult,int * integer,int * fract)951 int iio_str_to_fixpoint(const char *str, int fract_mult,
952 int *integer, int *fract)
953 {
954 return __iio_str_to_fixpoint(str, fract_mult, integer, fract, false);
955 }
956 EXPORT_SYMBOL_GPL(iio_str_to_fixpoint);
957
iio_write_channel_info(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)958 static ssize_t iio_write_channel_info(struct device *dev,
959 struct device_attribute *attr,
960 const char *buf,
961 size_t len)
962 {
963 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
964 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
965 int ret, fract_mult = 100000;
966 int integer, fract = 0;
967 bool is_char = false;
968 bool scale_db = false;
969
970 /* Assumes decimal - precision based on number of digits */
971 if (!indio_dev->info->write_raw)
972 return -EINVAL;
973
974 if (indio_dev->info->write_raw_get_fmt)
975 switch (indio_dev->info->write_raw_get_fmt(indio_dev,
976 this_attr->c, this_attr->address)) {
977 case IIO_VAL_INT:
978 fract_mult = 0;
979 break;
980 case IIO_VAL_INT_PLUS_MICRO_DB:
981 scale_db = true;
982 fallthrough;
983 case IIO_VAL_INT_PLUS_MICRO:
984 fract_mult = 100000;
985 break;
986 case IIO_VAL_INT_PLUS_NANO:
987 fract_mult = 100000000;
988 break;
989 case IIO_VAL_CHAR:
990 is_char = true;
991 break;
992 default:
993 return -EINVAL;
994 }
995
996 if (is_char) {
997 char ch;
998
999 if (sscanf(buf, "%c", &ch) != 1)
1000 return -EINVAL;
1001 integer = ch;
1002 } else {
1003 ret = __iio_str_to_fixpoint(buf, fract_mult, &integer, &fract,
1004 scale_db);
1005 if (ret)
1006 return ret;
1007 }
1008
1009 ret = indio_dev->info->write_raw(indio_dev, this_attr->c,
1010 integer, fract, this_attr->address);
1011 if (ret)
1012 return ret;
1013
1014 return len;
1015 }
1016
1017 static
__iio_device_attr_init(struct device_attribute * dev_attr,const char * postfix,struct iio_chan_spec const * chan,ssize_t (* readfunc)(struct device * dev,struct device_attribute * attr,char * buf),ssize_t (* writefunc)(struct device * dev,struct device_attribute * attr,const char * buf,size_t len),enum iio_shared_by shared_by)1018 int __iio_device_attr_init(struct device_attribute *dev_attr,
1019 const char *postfix,
1020 struct iio_chan_spec const *chan,
1021 ssize_t (*readfunc)(struct device *dev,
1022 struct device_attribute *attr,
1023 char *buf),
1024 ssize_t (*writefunc)(struct device *dev,
1025 struct device_attribute *attr,
1026 const char *buf,
1027 size_t len),
1028 enum iio_shared_by shared_by)
1029 {
1030 int ret = 0;
1031 char *name = NULL;
1032 char *full_postfix;
1033
1034 sysfs_attr_init(&dev_attr->attr);
1035
1036 /* Build up postfix of <extend_name>_<modifier>_postfix */
1037 if (chan->modified && (shared_by == IIO_SEPARATE)) {
1038 if (chan->extend_name)
1039 full_postfix = kasprintf(GFP_KERNEL, "%s_%s_%s",
1040 iio_modifier_names[chan
1041 ->channel2],
1042 chan->extend_name,
1043 postfix);
1044 else
1045 full_postfix = kasprintf(GFP_KERNEL, "%s_%s",
1046 iio_modifier_names[chan
1047 ->channel2],
1048 postfix);
1049 } else {
1050 if (chan->extend_name == NULL || shared_by != IIO_SEPARATE)
1051 full_postfix = kstrdup(postfix, GFP_KERNEL);
1052 else
1053 full_postfix = kasprintf(GFP_KERNEL,
1054 "%s_%s",
1055 chan->extend_name,
1056 postfix);
1057 }
1058 if (full_postfix == NULL)
1059 return -ENOMEM;
1060
1061 if (chan->differential) { /* Differential can not have modifier */
1062 switch (shared_by) {
1063 case IIO_SHARED_BY_ALL:
1064 name = kasprintf(GFP_KERNEL, "%s", full_postfix);
1065 break;
1066 case IIO_SHARED_BY_DIR:
1067 name = kasprintf(GFP_KERNEL, "%s_%s",
1068 iio_direction[chan->output],
1069 full_postfix);
1070 break;
1071 case IIO_SHARED_BY_TYPE:
1072 name = kasprintf(GFP_KERNEL, "%s_%s-%s_%s",
1073 iio_direction[chan->output],
1074 iio_chan_type_name_spec[chan->type],
1075 iio_chan_type_name_spec[chan->type],
1076 full_postfix);
1077 break;
1078 case IIO_SEPARATE:
1079 if (!chan->indexed) {
1080 WARN(1, "Differential channels must be indexed\n");
1081 ret = -EINVAL;
1082 goto error_free_full_postfix;
1083 }
1084 name = kasprintf(GFP_KERNEL,
1085 "%s_%s%d-%s%d_%s",
1086 iio_direction[chan->output],
1087 iio_chan_type_name_spec[chan->type],
1088 chan->channel,
1089 iio_chan_type_name_spec[chan->type],
1090 chan->channel2,
1091 full_postfix);
1092 break;
1093 }
1094 } else { /* Single ended */
1095 switch (shared_by) {
1096 case IIO_SHARED_BY_ALL:
1097 name = kasprintf(GFP_KERNEL, "%s", full_postfix);
1098 break;
1099 case IIO_SHARED_BY_DIR:
1100 name = kasprintf(GFP_KERNEL, "%s_%s",
1101 iio_direction[chan->output],
1102 full_postfix);
1103 break;
1104 case IIO_SHARED_BY_TYPE:
1105 name = kasprintf(GFP_KERNEL, "%s_%s_%s",
1106 iio_direction[chan->output],
1107 iio_chan_type_name_spec[chan->type],
1108 full_postfix);
1109 break;
1110
1111 case IIO_SEPARATE:
1112 if (chan->indexed)
1113 name = kasprintf(GFP_KERNEL, "%s_%s%d_%s",
1114 iio_direction[chan->output],
1115 iio_chan_type_name_spec[chan->type],
1116 chan->channel,
1117 full_postfix);
1118 else
1119 name = kasprintf(GFP_KERNEL, "%s_%s_%s",
1120 iio_direction[chan->output],
1121 iio_chan_type_name_spec[chan->type],
1122 full_postfix);
1123 break;
1124 }
1125 }
1126 if (name == NULL) {
1127 ret = -ENOMEM;
1128 goto error_free_full_postfix;
1129 }
1130 dev_attr->attr.name = name;
1131
1132 if (readfunc) {
1133 dev_attr->attr.mode |= 0444;
1134 dev_attr->show = readfunc;
1135 }
1136
1137 if (writefunc) {
1138 dev_attr->attr.mode |= 0200;
1139 dev_attr->store = writefunc;
1140 }
1141
1142 error_free_full_postfix:
1143 kfree(full_postfix);
1144
1145 return ret;
1146 }
1147
__iio_device_attr_deinit(struct device_attribute * dev_attr)1148 static void __iio_device_attr_deinit(struct device_attribute *dev_attr)
1149 {
1150 kfree(dev_attr->attr.name);
1151 }
1152
__iio_add_chan_devattr(const char * postfix,struct iio_chan_spec const * chan,ssize_t (* readfunc)(struct device * dev,struct device_attribute * attr,char * buf),ssize_t (* writefunc)(struct device * dev,struct device_attribute * attr,const char * buf,size_t len),u64 mask,enum iio_shared_by shared_by,struct device * dev,struct iio_buffer * buffer,struct list_head * attr_list)1153 int __iio_add_chan_devattr(const char *postfix,
1154 struct iio_chan_spec const *chan,
1155 ssize_t (*readfunc)(struct device *dev,
1156 struct device_attribute *attr,
1157 char *buf),
1158 ssize_t (*writefunc)(struct device *dev,
1159 struct device_attribute *attr,
1160 const char *buf,
1161 size_t len),
1162 u64 mask,
1163 enum iio_shared_by shared_by,
1164 struct device *dev,
1165 struct iio_buffer *buffer,
1166 struct list_head *attr_list)
1167 {
1168 int ret;
1169 struct iio_dev_attr *iio_attr, *t;
1170
1171 iio_attr = kzalloc(sizeof(*iio_attr), GFP_KERNEL);
1172 if (iio_attr == NULL)
1173 return -ENOMEM;
1174 ret = __iio_device_attr_init(&iio_attr->dev_attr,
1175 postfix, chan,
1176 readfunc, writefunc, shared_by);
1177 if (ret)
1178 goto error_iio_dev_attr_free;
1179 iio_attr->c = chan;
1180 iio_attr->address = mask;
1181 iio_attr->buffer = buffer;
1182 list_for_each_entry(t, attr_list, l)
1183 if (strcmp(t->dev_attr.attr.name,
1184 iio_attr->dev_attr.attr.name) == 0) {
1185 if (shared_by == IIO_SEPARATE)
1186 dev_err(dev, "tried to double register : %s\n",
1187 t->dev_attr.attr.name);
1188 ret = -EBUSY;
1189 goto error_device_attr_deinit;
1190 }
1191 list_add(&iio_attr->l, attr_list);
1192
1193 return 0;
1194
1195 error_device_attr_deinit:
1196 __iio_device_attr_deinit(&iio_attr->dev_attr);
1197 error_iio_dev_attr_free:
1198 kfree(iio_attr);
1199 return ret;
1200 }
1201
iio_device_add_channel_label(struct iio_dev * indio_dev,struct iio_chan_spec const * chan)1202 static int iio_device_add_channel_label(struct iio_dev *indio_dev,
1203 struct iio_chan_spec const *chan)
1204 {
1205 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1206 int ret;
1207
1208 if (!indio_dev->info->read_label && !chan->extend_name)
1209 return 0;
1210
1211 ret = __iio_add_chan_devattr("label",
1212 chan,
1213 &iio_read_channel_label,
1214 NULL,
1215 0,
1216 IIO_SEPARATE,
1217 &indio_dev->dev,
1218 NULL,
1219 &iio_dev_opaque->channel_attr_list);
1220 if (ret < 0)
1221 return ret;
1222
1223 return 1;
1224 }
1225
iio_device_add_info_mask_type(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,enum iio_shared_by shared_by,const long * infomask)1226 static int iio_device_add_info_mask_type(struct iio_dev *indio_dev,
1227 struct iio_chan_spec const *chan,
1228 enum iio_shared_by shared_by,
1229 const long *infomask)
1230 {
1231 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1232 int i, ret, attrcount = 0;
1233
1234 for_each_set_bit(i, infomask, sizeof(*infomask)*8) {
1235 if (i >= ARRAY_SIZE(iio_chan_info_postfix))
1236 return -EINVAL;
1237 ret = __iio_add_chan_devattr(iio_chan_info_postfix[i],
1238 chan,
1239 &iio_read_channel_info,
1240 &iio_write_channel_info,
1241 i,
1242 shared_by,
1243 &indio_dev->dev,
1244 NULL,
1245 &iio_dev_opaque->channel_attr_list);
1246 if ((ret == -EBUSY) && (shared_by != IIO_SEPARATE))
1247 continue;
1248 else if (ret < 0)
1249 return ret;
1250 attrcount++;
1251 }
1252
1253 return attrcount;
1254 }
1255
iio_device_add_info_mask_type_avail(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,enum iio_shared_by shared_by,const long * infomask)1256 static int iio_device_add_info_mask_type_avail(struct iio_dev *indio_dev,
1257 struct iio_chan_spec const *chan,
1258 enum iio_shared_by shared_by,
1259 const long *infomask)
1260 {
1261 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1262 int i, ret, attrcount = 0;
1263 char *avail_postfix;
1264
1265 for_each_set_bit(i, infomask, sizeof(*infomask) * 8) {
1266 if (i >= ARRAY_SIZE(iio_chan_info_postfix))
1267 return -EINVAL;
1268 avail_postfix = kasprintf(GFP_KERNEL,
1269 "%s_available",
1270 iio_chan_info_postfix[i]);
1271 if (!avail_postfix)
1272 return -ENOMEM;
1273
1274 ret = __iio_add_chan_devattr(avail_postfix,
1275 chan,
1276 &iio_read_channel_info_avail,
1277 NULL,
1278 i,
1279 shared_by,
1280 &indio_dev->dev,
1281 NULL,
1282 &iio_dev_opaque->channel_attr_list);
1283 kfree(avail_postfix);
1284 if ((ret == -EBUSY) && (shared_by != IIO_SEPARATE))
1285 continue;
1286 else if (ret < 0)
1287 return ret;
1288 attrcount++;
1289 }
1290
1291 return attrcount;
1292 }
1293
iio_device_add_channel_sysfs(struct iio_dev * indio_dev,struct iio_chan_spec const * chan)1294 static int iio_device_add_channel_sysfs(struct iio_dev *indio_dev,
1295 struct iio_chan_spec const *chan)
1296 {
1297 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1298 int ret, attrcount = 0;
1299 const struct iio_chan_spec_ext_info *ext_info;
1300
1301 if (chan->channel < 0)
1302 return 0;
1303 ret = iio_device_add_info_mask_type(indio_dev, chan,
1304 IIO_SEPARATE,
1305 &chan->info_mask_separate);
1306 if (ret < 0)
1307 return ret;
1308 attrcount += ret;
1309
1310 ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1311 IIO_SEPARATE,
1312 &chan->info_mask_separate_available);
1313 if (ret < 0)
1314 return ret;
1315 attrcount += ret;
1316
1317 ret = iio_device_add_info_mask_type(indio_dev, chan,
1318 IIO_SHARED_BY_TYPE,
1319 &chan->info_mask_shared_by_type);
1320 if (ret < 0)
1321 return ret;
1322 attrcount += ret;
1323
1324 ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1325 IIO_SHARED_BY_TYPE,
1326 &chan->info_mask_shared_by_type_available);
1327 if (ret < 0)
1328 return ret;
1329 attrcount += ret;
1330
1331 ret = iio_device_add_info_mask_type(indio_dev, chan,
1332 IIO_SHARED_BY_DIR,
1333 &chan->info_mask_shared_by_dir);
1334 if (ret < 0)
1335 return ret;
1336 attrcount += ret;
1337
1338 ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1339 IIO_SHARED_BY_DIR,
1340 &chan->info_mask_shared_by_dir_available);
1341 if (ret < 0)
1342 return ret;
1343 attrcount += ret;
1344
1345 ret = iio_device_add_info_mask_type(indio_dev, chan,
1346 IIO_SHARED_BY_ALL,
1347 &chan->info_mask_shared_by_all);
1348 if (ret < 0)
1349 return ret;
1350 attrcount += ret;
1351
1352 ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1353 IIO_SHARED_BY_ALL,
1354 &chan->info_mask_shared_by_all_available);
1355 if (ret < 0)
1356 return ret;
1357 attrcount += ret;
1358
1359 ret = iio_device_add_channel_label(indio_dev, chan);
1360 if (ret < 0)
1361 return ret;
1362 attrcount += ret;
1363
1364 if (chan->ext_info) {
1365 unsigned int i = 0;
1366
1367 for (ext_info = chan->ext_info; ext_info->name; ext_info++) {
1368 ret = __iio_add_chan_devattr(ext_info->name,
1369 chan,
1370 ext_info->read ?
1371 &iio_read_channel_ext_info : NULL,
1372 ext_info->write ?
1373 &iio_write_channel_ext_info : NULL,
1374 i,
1375 ext_info->shared,
1376 &indio_dev->dev,
1377 NULL,
1378 &iio_dev_opaque->channel_attr_list);
1379 i++;
1380 if (ret == -EBUSY && ext_info->shared)
1381 continue;
1382
1383 if (ret)
1384 return ret;
1385
1386 attrcount++;
1387 }
1388 }
1389
1390 return attrcount;
1391 }
1392
1393 /**
1394 * iio_free_chan_devattr_list() - Free a list of IIO device attributes
1395 * @attr_list: List of IIO device attributes
1396 *
1397 * This function frees the memory allocated for each of the IIO device
1398 * attributes in the list.
1399 */
iio_free_chan_devattr_list(struct list_head * attr_list)1400 void iio_free_chan_devattr_list(struct list_head *attr_list)
1401 {
1402 struct iio_dev_attr *p, *n;
1403
1404 list_for_each_entry_safe(p, n, attr_list, l) {
1405 kfree_const(p->dev_attr.attr.name);
1406 list_del(&p->l);
1407 kfree(p);
1408 }
1409 }
1410
name_show(struct device * dev,struct device_attribute * attr,char * buf)1411 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
1412 char *buf)
1413 {
1414 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1415
1416 return sysfs_emit(buf, "%s\n", indio_dev->name);
1417 }
1418
1419 static DEVICE_ATTR_RO(name);
1420
label_show(struct device * dev,struct device_attribute * attr,char * buf)1421 static ssize_t label_show(struct device *dev, struct device_attribute *attr,
1422 char *buf)
1423 {
1424 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1425
1426 return sysfs_emit(buf, "%s\n", indio_dev->label);
1427 }
1428
1429 static DEVICE_ATTR_RO(label);
1430
current_timestamp_clock_show(struct device * dev,struct device_attribute * attr,char * buf)1431 static ssize_t current_timestamp_clock_show(struct device *dev,
1432 struct device_attribute *attr,
1433 char *buf)
1434 {
1435 const struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1436 const clockid_t clk = iio_device_get_clock(indio_dev);
1437 const char *name;
1438 ssize_t sz;
1439
1440 switch (clk) {
1441 case CLOCK_REALTIME:
1442 name = "realtime\n";
1443 sz = sizeof("realtime\n");
1444 break;
1445 case CLOCK_MONOTONIC:
1446 name = "monotonic\n";
1447 sz = sizeof("monotonic\n");
1448 break;
1449 case CLOCK_MONOTONIC_RAW:
1450 name = "monotonic_raw\n";
1451 sz = sizeof("monotonic_raw\n");
1452 break;
1453 case CLOCK_REALTIME_COARSE:
1454 name = "realtime_coarse\n";
1455 sz = sizeof("realtime_coarse\n");
1456 break;
1457 case CLOCK_MONOTONIC_COARSE:
1458 name = "monotonic_coarse\n";
1459 sz = sizeof("monotonic_coarse\n");
1460 break;
1461 case CLOCK_BOOTTIME:
1462 name = "boottime\n";
1463 sz = sizeof("boottime\n");
1464 break;
1465 case CLOCK_TAI:
1466 name = "tai\n";
1467 sz = sizeof("tai\n");
1468 break;
1469 default:
1470 BUG();
1471 }
1472
1473 memcpy(buf, name, sz);
1474 return sz;
1475 }
1476
current_timestamp_clock_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1477 static ssize_t current_timestamp_clock_store(struct device *dev,
1478 struct device_attribute *attr,
1479 const char *buf, size_t len)
1480 {
1481 clockid_t clk;
1482 int ret;
1483
1484 if (sysfs_streq(buf, "realtime"))
1485 clk = CLOCK_REALTIME;
1486 else if (sysfs_streq(buf, "monotonic"))
1487 clk = CLOCK_MONOTONIC;
1488 else if (sysfs_streq(buf, "monotonic_raw"))
1489 clk = CLOCK_MONOTONIC_RAW;
1490 else if (sysfs_streq(buf, "realtime_coarse"))
1491 clk = CLOCK_REALTIME_COARSE;
1492 else if (sysfs_streq(buf, "monotonic_coarse"))
1493 clk = CLOCK_MONOTONIC_COARSE;
1494 else if (sysfs_streq(buf, "boottime"))
1495 clk = CLOCK_BOOTTIME;
1496 else if (sysfs_streq(buf, "tai"))
1497 clk = CLOCK_TAI;
1498 else
1499 return -EINVAL;
1500
1501 ret = iio_device_set_clock(dev_to_iio_dev(dev), clk);
1502 if (ret)
1503 return ret;
1504
1505 return len;
1506 }
1507
iio_device_register_sysfs_group(struct iio_dev * indio_dev,const struct attribute_group * group)1508 int iio_device_register_sysfs_group(struct iio_dev *indio_dev,
1509 const struct attribute_group *group)
1510 {
1511 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1512 const struct attribute_group **new, **old = iio_dev_opaque->groups;
1513 unsigned int cnt = iio_dev_opaque->groupcounter;
1514
1515 new = krealloc(old, sizeof(*new) * (cnt + 2), GFP_KERNEL);
1516 if (!new)
1517 return -ENOMEM;
1518
1519 new[iio_dev_opaque->groupcounter++] = group;
1520 new[iio_dev_opaque->groupcounter] = NULL;
1521
1522 iio_dev_opaque->groups = new;
1523
1524 return 0;
1525 }
1526
1527 static DEVICE_ATTR_RW(current_timestamp_clock);
1528
iio_device_register_sysfs(struct iio_dev * indio_dev)1529 static int iio_device_register_sysfs(struct iio_dev *indio_dev)
1530 {
1531 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1532 int i, ret = 0, attrcount, attrn, attrcount_orig = 0;
1533 struct iio_dev_attr *p;
1534 struct attribute **attr, *clk = NULL;
1535
1536 /* First count elements in any existing group */
1537 if (indio_dev->info->attrs) {
1538 attr = indio_dev->info->attrs->attrs;
1539 while (*attr++ != NULL)
1540 attrcount_orig++;
1541 }
1542 attrcount = attrcount_orig;
1543 /*
1544 * New channel registration method - relies on the fact a group does
1545 * not need to be initialized if its name is NULL.
1546 */
1547 if (indio_dev->channels)
1548 for (i = 0; i < indio_dev->num_channels; i++) {
1549 const struct iio_chan_spec *chan =
1550 &indio_dev->channels[i];
1551
1552 if (chan->type == IIO_TIMESTAMP)
1553 clk = &dev_attr_current_timestamp_clock.attr;
1554
1555 ret = iio_device_add_channel_sysfs(indio_dev, chan);
1556 if (ret < 0)
1557 goto error_clear_attrs;
1558 attrcount += ret;
1559 }
1560
1561 if (iio_dev_opaque->event_interface)
1562 clk = &dev_attr_current_timestamp_clock.attr;
1563
1564 if (indio_dev->name)
1565 attrcount++;
1566 if (indio_dev->label)
1567 attrcount++;
1568 if (clk)
1569 attrcount++;
1570
1571 iio_dev_opaque->chan_attr_group.attrs =
1572 kcalloc(attrcount + 1,
1573 sizeof(iio_dev_opaque->chan_attr_group.attrs[0]),
1574 GFP_KERNEL);
1575 if (iio_dev_opaque->chan_attr_group.attrs == NULL) {
1576 ret = -ENOMEM;
1577 goto error_clear_attrs;
1578 }
1579 /* Copy across original attributes, and point to original binary attributes */
1580 if (indio_dev->info->attrs) {
1581 memcpy(iio_dev_opaque->chan_attr_group.attrs,
1582 indio_dev->info->attrs->attrs,
1583 sizeof(iio_dev_opaque->chan_attr_group.attrs[0])
1584 *attrcount_orig);
1585 iio_dev_opaque->chan_attr_group.is_visible =
1586 indio_dev->info->attrs->is_visible;
1587 iio_dev_opaque->chan_attr_group.bin_attrs =
1588 indio_dev->info->attrs->bin_attrs;
1589 }
1590 attrn = attrcount_orig;
1591 /* Add all elements from the list. */
1592 list_for_each_entry(p, &iio_dev_opaque->channel_attr_list, l)
1593 iio_dev_opaque->chan_attr_group.attrs[attrn++] = &p->dev_attr.attr;
1594 if (indio_dev->name)
1595 iio_dev_opaque->chan_attr_group.attrs[attrn++] = &dev_attr_name.attr;
1596 if (indio_dev->label)
1597 iio_dev_opaque->chan_attr_group.attrs[attrn++] = &dev_attr_label.attr;
1598 if (clk)
1599 iio_dev_opaque->chan_attr_group.attrs[attrn++] = clk;
1600
1601 ret = iio_device_register_sysfs_group(indio_dev,
1602 &iio_dev_opaque->chan_attr_group);
1603 if (ret)
1604 goto error_clear_attrs;
1605
1606 return 0;
1607
1608 error_clear_attrs:
1609 iio_free_chan_devattr_list(&iio_dev_opaque->channel_attr_list);
1610
1611 return ret;
1612 }
1613
iio_device_unregister_sysfs(struct iio_dev * indio_dev)1614 static void iio_device_unregister_sysfs(struct iio_dev *indio_dev)
1615 {
1616 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1617
1618 iio_free_chan_devattr_list(&iio_dev_opaque->channel_attr_list);
1619 kfree(iio_dev_opaque->chan_attr_group.attrs);
1620 iio_dev_opaque->chan_attr_group.attrs = NULL;
1621 kfree(iio_dev_opaque->groups);
1622 iio_dev_opaque->groups = NULL;
1623 }
1624
iio_dev_release(struct device * device)1625 static void iio_dev_release(struct device *device)
1626 {
1627 struct iio_dev *indio_dev = dev_to_iio_dev(device);
1628 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1629
1630 if (indio_dev->modes & INDIO_ALL_TRIGGERED_MODES)
1631 iio_device_unregister_trigger_consumer(indio_dev);
1632 iio_device_unregister_eventset(indio_dev);
1633 iio_device_unregister_sysfs(indio_dev);
1634
1635 iio_device_detach_buffers(indio_dev);
1636
1637 lockdep_unregister_key(&iio_dev_opaque->mlock_key);
1638
1639 ida_free(&iio_ida, iio_dev_opaque->id);
1640 kfree(iio_dev_opaque);
1641 }
1642
1643 const struct device_type iio_device_type = {
1644 .name = "iio_device",
1645 .release = iio_dev_release,
1646 };
1647
1648 /**
1649 * iio_device_alloc() - allocate an iio_dev from a driver
1650 * @parent: Parent device.
1651 * @sizeof_priv: Space to allocate for private structure.
1652 **/
iio_device_alloc(struct device * parent,int sizeof_priv)1653 struct iio_dev *iio_device_alloc(struct device *parent, int sizeof_priv)
1654 {
1655 struct iio_dev_opaque *iio_dev_opaque;
1656 struct iio_dev *indio_dev;
1657 size_t alloc_size;
1658
1659 alloc_size = sizeof(struct iio_dev_opaque);
1660 if (sizeof_priv) {
1661 alloc_size = ALIGN(alloc_size, IIO_DMA_MINALIGN);
1662 alloc_size += sizeof_priv;
1663 }
1664
1665 iio_dev_opaque = kzalloc(alloc_size, GFP_KERNEL);
1666 if (!iio_dev_opaque)
1667 return NULL;
1668
1669 indio_dev = &iio_dev_opaque->indio_dev;
1670 indio_dev->priv = (char *)iio_dev_opaque +
1671 ALIGN(sizeof(struct iio_dev_opaque), IIO_DMA_MINALIGN);
1672
1673 indio_dev->dev.parent = parent;
1674 indio_dev->dev.type = &iio_device_type;
1675 indio_dev->dev.bus = &iio_bus_type;
1676 device_initialize(&indio_dev->dev);
1677 mutex_init(&indio_dev->mlock);
1678 mutex_init(&iio_dev_opaque->info_exist_lock);
1679 INIT_LIST_HEAD(&iio_dev_opaque->channel_attr_list);
1680
1681 iio_dev_opaque->id = ida_alloc(&iio_ida, GFP_KERNEL);
1682 if (iio_dev_opaque->id < 0) {
1683 /* cannot use a dev_err as the name isn't available */
1684 pr_err("failed to get device id\n");
1685 kfree(iio_dev_opaque);
1686 return NULL;
1687 }
1688
1689 if (dev_set_name(&indio_dev->dev, "iio:device%d", iio_dev_opaque->id)) {
1690 ida_free(&iio_ida, iio_dev_opaque->id);
1691 kfree(iio_dev_opaque);
1692 return NULL;
1693 }
1694
1695 INIT_LIST_HEAD(&iio_dev_opaque->buffer_list);
1696 INIT_LIST_HEAD(&iio_dev_opaque->ioctl_handlers);
1697
1698 lockdep_register_key(&iio_dev_opaque->mlock_key);
1699 lockdep_set_class(&indio_dev->mlock, &iio_dev_opaque->mlock_key);
1700
1701 return indio_dev;
1702 }
1703 EXPORT_SYMBOL(iio_device_alloc);
1704
1705 /**
1706 * iio_device_free() - free an iio_dev from a driver
1707 * @dev: the iio_dev associated with the device
1708 **/
iio_device_free(struct iio_dev * dev)1709 void iio_device_free(struct iio_dev *dev)
1710 {
1711 if (dev)
1712 put_device(&dev->dev);
1713 }
1714 EXPORT_SYMBOL(iio_device_free);
1715
devm_iio_device_release(void * iio_dev)1716 static void devm_iio_device_release(void *iio_dev)
1717 {
1718 iio_device_free(iio_dev);
1719 }
1720
1721 /**
1722 * devm_iio_device_alloc - Resource-managed iio_device_alloc()
1723 * @parent: Device to allocate iio_dev for, and parent for this IIO device
1724 * @sizeof_priv: Space to allocate for private structure.
1725 *
1726 * Managed iio_device_alloc. iio_dev allocated with this function is
1727 * automatically freed on driver detach.
1728 *
1729 * RETURNS:
1730 * Pointer to allocated iio_dev on success, NULL on failure.
1731 */
devm_iio_device_alloc(struct device * parent,int sizeof_priv)1732 struct iio_dev *devm_iio_device_alloc(struct device *parent, int sizeof_priv)
1733 {
1734 struct iio_dev *iio_dev;
1735 int ret;
1736
1737 iio_dev = iio_device_alloc(parent, sizeof_priv);
1738 if (!iio_dev)
1739 return NULL;
1740
1741 ret = devm_add_action_or_reset(parent, devm_iio_device_release,
1742 iio_dev);
1743 if (ret)
1744 return NULL;
1745
1746 return iio_dev;
1747 }
1748 EXPORT_SYMBOL_GPL(devm_iio_device_alloc);
1749
1750 /**
1751 * iio_chrdev_open() - chrdev file open for buffer access and ioctls
1752 * @inode: Inode structure for identifying the device in the file system
1753 * @filp: File structure for iio device used to keep and later access
1754 * private data
1755 *
1756 * Return: 0 on success or -EBUSY if the device is already opened
1757 **/
iio_chrdev_open(struct inode * inode,struct file * filp)1758 static int iio_chrdev_open(struct inode *inode, struct file *filp)
1759 {
1760 struct iio_dev_opaque *iio_dev_opaque =
1761 container_of(inode->i_cdev, struct iio_dev_opaque, chrdev);
1762 struct iio_dev *indio_dev = &iio_dev_opaque->indio_dev;
1763 struct iio_dev_buffer_pair *ib;
1764
1765 if (test_and_set_bit(IIO_BUSY_BIT_POS, &iio_dev_opaque->flags))
1766 return -EBUSY;
1767
1768 iio_device_get(indio_dev);
1769
1770 ib = kmalloc(sizeof(*ib), GFP_KERNEL);
1771 if (!ib) {
1772 iio_device_put(indio_dev);
1773 clear_bit(IIO_BUSY_BIT_POS, &iio_dev_opaque->flags);
1774 return -ENOMEM;
1775 }
1776
1777 ib->indio_dev = indio_dev;
1778 ib->buffer = indio_dev->buffer;
1779
1780 filp->private_data = ib;
1781
1782 return 0;
1783 }
1784
1785 /**
1786 * iio_chrdev_release() - chrdev file close buffer access and ioctls
1787 * @inode: Inode structure pointer for the char device
1788 * @filp: File structure pointer for the char device
1789 *
1790 * Return: 0 for successful release
1791 */
iio_chrdev_release(struct inode * inode,struct file * filp)1792 static int iio_chrdev_release(struct inode *inode, struct file *filp)
1793 {
1794 struct iio_dev_buffer_pair *ib = filp->private_data;
1795 struct iio_dev_opaque *iio_dev_opaque =
1796 container_of(inode->i_cdev, struct iio_dev_opaque, chrdev);
1797 struct iio_dev *indio_dev = &iio_dev_opaque->indio_dev;
1798
1799 kfree(ib);
1800 clear_bit(IIO_BUSY_BIT_POS, &iio_dev_opaque->flags);
1801 iio_device_put(indio_dev);
1802
1803 return 0;
1804 }
1805
iio_device_ioctl_handler_register(struct iio_dev * indio_dev,struct iio_ioctl_handler * h)1806 void iio_device_ioctl_handler_register(struct iio_dev *indio_dev,
1807 struct iio_ioctl_handler *h)
1808 {
1809 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1810
1811 list_add_tail(&h->entry, &iio_dev_opaque->ioctl_handlers);
1812 }
1813
iio_device_ioctl_handler_unregister(struct iio_ioctl_handler * h)1814 void iio_device_ioctl_handler_unregister(struct iio_ioctl_handler *h)
1815 {
1816 list_del(&h->entry);
1817 }
1818
iio_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)1819 static long iio_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1820 {
1821 struct iio_dev_buffer_pair *ib = filp->private_data;
1822 struct iio_dev *indio_dev = ib->indio_dev;
1823 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1824 struct iio_ioctl_handler *h;
1825 int ret = -ENODEV;
1826
1827 mutex_lock(&iio_dev_opaque->info_exist_lock);
1828
1829 /**
1830 * The NULL check here is required to prevent crashing when a device
1831 * is being removed while userspace would still have open file handles
1832 * to try to access this device.
1833 */
1834 if (!indio_dev->info)
1835 goto out_unlock;
1836
1837 list_for_each_entry(h, &iio_dev_opaque->ioctl_handlers, entry) {
1838 ret = h->ioctl(indio_dev, filp, cmd, arg);
1839 if (ret != IIO_IOCTL_UNHANDLED)
1840 break;
1841 }
1842
1843 if (ret == IIO_IOCTL_UNHANDLED)
1844 ret = -ENODEV;
1845
1846 out_unlock:
1847 mutex_unlock(&iio_dev_opaque->info_exist_lock);
1848
1849 return ret;
1850 }
1851
1852 static const struct file_operations iio_buffer_fileops = {
1853 .owner = THIS_MODULE,
1854 .llseek = noop_llseek,
1855 .read = iio_buffer_read_outer_addr,
1856 .write = iio_buffer_write_outer_addr,
1857 .poll = iio_buffer_poll_addr,
1858 .unlocked_ioctl = iio_ioctl,
1859 .compat_ioctl = compat_ptr_ioctl,
1860 .open = iio_chrdev_open,
1861 .release = iio_chrdev_release,
1862 };
1863
1864 static const struct file_operations iio_event_fileops = {
1865 .owner = THIS_MODULE,
1866 .llseek = noop_llseek,
1867 .unlocked_ioctl = iio_ioctl,
1868 .compat_ioctl = compat_ptr_ioctl,
1869 .open = iio_chrdev_open,
1870 .release = iio_chrdev_release,
1871 };
1872
iio_check_unique_scan_index(struct iio_dev * indio_dev)1873 static int iio_check_unique_scan_index(struct iio_dev *indio_dev)
1874 {
1875 int i, j;
1876 const struct iio_chan_spec *channels = indio_dev->channels;
1877
1878 if (!(indio_dev->modes & INDIO_ALL_BUFFER_MODES))
1879 return 0;
1880
1881 for (i = 0; i < indio_dev->num_channels - 1; i++) {
1882 if (channels[i].scan_index < 0)
1883 continue;
1884 for (j = i + 1; j < indio_dev->num_channels; j++)
1885 if (channels[i].scan_index == channels[j].scan_index) {
1886 dev_err(&indio_dev->dev,
1887 "Duplicate scan index %d\n",
1888 channels[i].scan_index);
1889 return -EINVAL;
1890 }
1891 }
1892
1893 return 0;
1894 }
1895
iio_check_extended_name(const struct iio_dev * indio_dev)1896 static int iio_check_extended_name(const struct iio_dev *indio_dev)
1897 {
1898 unsigned int i;
1899
1900 if (!indio_dev->info->read_label)
1901 return 0;
1902
1903 for (i = 0; i < indio_dev->num_channels; i++) {
1904 if (indio_dev->channels[i].extend_name) {
1905 dev_err(&indio_dev->dev,
1906 "Cannot use labels and extend_name at the same time\n");
1907 return -EINVAL;
1908 }
1909 }
1910
1911 return 0;
1912 }
1913
1914 static const struct iio_buffer_setup_ops noop_ring_setup_ops;
1915
__iio_device_register(struct iio_dev * indio_dev,struct module * this_mod)1916 int __iio_device_register(struct iio_dev *indio_dev, struct module *this_mod)
1917 {
1918 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1919 struct fwnode_handle *fwnode;
1920 int ret;
1921
1922 if (!indio_dev->info)
1923 return -EINVAL;
1924
1925 iio_dev_opaque->driver_module = this_mod;
1926
1927 /* If the calling driver did not initialize firmware node, do it here */
1928 if (dev_fwnode(&indio_dev->dev))
1929 fwnode = dev_fwnode(&indio_dev->dev);
1930 else
1931 fwnode = dev_fwnode(indio_dev->dev.parent);
1932 device_set_node(&indio_dev->dev, fwnode);
1933
1934 fwnode_property_read_string(fwnode, "label", &indio_dev->label);
1935
1936 ret = iio_check_unique_scan_index(indio_dev);
1937 if (ret < 0)
1938 return ret;
1939
1940 ret = iio_check_extended_name(indio_dev);
1941 if (ret < 0)
1942 return ret;
1943
1944 iio_device_register_debugfs(indio_dev);
1945
1946 ret = iio_buffers_alloc_sysfs_and_mask(indio_dev);
1947 if (ret) {
1948 dev_err(indio_dev->dev.parent,
1949 "Failed to create buffer sysfs interfaces\n");
1950 goto error_unreg_debugfs;
1951 }
1952
1953 ret = iio_device_register_sysfs(indio_dev);
1954 if (ret) {
1955 dev_err(indio_dev->dev.parent,
1956 "Failed to register sysfs interfaces\n");
1957 goto error_buffer_free_sysfs;
1958 }
1959 ret = iio_device_register_eventset(indio_dev);
1960 if (ret) {
1961 dev_err(indio_dev->dev.parent,
1962 "Failed to register event set\n");
1963 goto error_free_sysfs;
1964 }
1965 if (indio_dev->modes & INDIO_ALL_TRIGGERED_MODES)
1966 iio_device_register_trigger_consumer(indio_dev);
1967
1968 if ((indio_dev->modes & INDIO_ALL_BUFFER_MODES) &&
1969 indio_dev->setup_ops == NULL)
1970 indio_dev->setup_ops = &noop_ring_setup_ops;
1971
1972 if (iio_dev_opaque->attached_buffers_cnt)
1973 cdev_init(&iio_dev_opaque->chrdev, &iio_buffer_fileops);
1974 else if (iio_dev_opaque->event_interface)
1975 cdev_init(&iio_dev_opaque->chrdev, &iio_event_fileops);
1976
1977 if (iio_dev_opaque->attached_buffers_cnt || iio_dev_opaque->event_interface) {
1978 indio_dev->dev.devt = MKDEV(MAJOR(iio_devt), iio_dev_opaque->id);
1979 iio_dev_opaque->chrdev.owner = this_mod;
1980 }
1981
1982 /* assign device groups now; they should be all registered now */
1983 indio_dev->dev.groups = iio_dev_opaque->groups;
1984
1985 ret = cdev_device_add(&iio_dev_opaque->chrdev, &indio_dev->dev);
1986 if (ret < 0)
1987 goto error_unreg_eventset;
1988
1989 return 0;
1990
1991 error_unreg_eventset:
1992 iio_device_unregister_eventset(indio_dev);
1993 error_free_sysfs:
1994 iio_device_unregister_sysfs(indio_dev);
1995 error_buffer_free_sysfs:
1996 iio_buffers_free_sysfs_and_mask(indio_dev);
1997 error_unreg_debugfs:
1998 iio_device_unregister_debugfs(indio_dev);
1999 return ret;
2000 }
2001 EXPORT_SYMBOL(__iio_device_register);
2002
2003 /**
2004 * iio_device_unregister() - unregister a device from the IIO subsystem
2005 * @indio_dev: Device structure representing the device.
2006 **/
iio_device_unregister(struct iio_dev * indio_dev)2007 void iio_device_unregister(struct iio_dev *indio_dev)
2008 {
2009 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2010
2011 cdev_device_del(&iio_dev_opaque->chrdev, &indio_dev->dev);
2012
2013 mutex_lock(&iio_dev_opaque->info_exist_lock);
2014
2015 iio_device_unregister_debugfs(indio_dev);
2016
2017 iio_disable_all_buffers(indio_dev);
2018
2019 indio_dev->info = NULL;
2020
2021 iio_device_wakeup_eventset(indio_dev);
2022 iio_buffer_wakeup_poll(indio_dev);
2023
2024 mutex_unlock(&iio_dev_opaque->info_exist_lock);
2025
2026 iio_buffers_free_sysfs_and_mask(indio_dev);
2027 }
2028 EXPORT_SYMBOL(iio_device_unregister);
2029
devm_iio_device_unreg(void * indio_dev)2030 static void devm_iio_device_unreg(void *indio_dev)
2031 {
2032 iio_device_unregister(indio_dev);
2033 }
2034
__devm_iio_device_register(struct device * dev,struct iio_dev * indio_dev,struct module * this_mod)2035 int __devm_iio_device_register(struct device *dev, struct iio_dev *indio_dev,
2036 struct module *this_mod)
2037 {
2038 int ret;
2039
2040 ret = __iio_device_register(indio_dev, this_mod);
2041 if (ret)
2042 return ret;
2043
2044 return devm_add_action_or_reset(dev, devm_iio_device_unreg, indio_dev);
2045 }
2046 EXPORT_SYMBOL_GPL(__devm_iio_device_register);
2047
2048 /**
2049 * iio_device_claim_direct_mode - Keep device in direct mode
2050 * @indio_dev: the iio_dev associated with the device
2051 *
2052 * If the device is in direct mode it is guaranteed to stay
2053 * that way until iio_device_release_direct_mode() is called.
2054 *
2055 * Use with iio_device_release_direct_mode()
2056 *
2057 * Returns: 0 on success, -EBUSY on failure
2058 */
iio_device_claim_direct_mode(struct iio_dev * indio_dev)2059 int iio_device_claim_direct_mode(struct iio_dev *indio_dev)
2060 {
2061 mutex_lock(&indio_dev->mlock);
2062
2063 if (iio_buffer_enabled(indio_dev)) {
2064 mutex_unlock(&indio_dev->mlock);
2065 return -EBUSY;
2066 }
2067 return 0;
2068 }
2069 EXPORT_SYMBOL_GPL(iio_device_claim_direct_mode);
2070
2071 /**
2072 * iio_device_release_direct_mode - releases claim on direct mode
2073 * @indio_dev: the iio_dev associated with the device
2074 *
2075 * Release the claim. Device is no longer guaranteed to stay
2076 * in direct mode.
2077 *
2078 * Use with iio_device_claim_direct_mode()
2079 */
iio_device_release_direct_mode(struct iio_dev * indio_dev)2080 void iio_device_release_direct_mode(struct iio_dev *indio_dev)
2081 {
2082 mutex_unlock(&indio_dev->mlock);
2083 }
2084 EXPORT_SYMBOL_GPL(iio_device_release_direct_mode);
2085
2086 /**
2087 * iio_device_get_current_mode() - helper function providing read-only access to
2088 * the opaque @currentmode variable
2089 * @indio_dev: IIO device structure for device
2090 */
iio_device_get_current_mode(struct iio_dev * indio_dev)2091 int iio_device_get_current_mode(struct iio_dev *indio_dev)
2092 {
2093 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2094
2095 return iio_dev_opaque->currentmode;
2096 }
2097 EXPORT_SYMBOL_GPL(iio_device_get_current_mode);
2098
2099 subsys_initcall(iio_init);
2100 module_exit(iio_exit);
2101
2102 MODULE_AUTHOR("Jonathan Cameron <jic23@kernel.org>");
2103 MODULE_DESCRIPTION("Industrial I/O core");
2104 MODULE_LICENSE("GPL");
2105