1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2015 Broadcom
4 */
5
6 /**
7 * DOC: VC4 KMS
8 *
9 * This is the general code for implementing KMS mode setting that
10 * doesn't clearly associate with any of the other objects (plane,
11 * crtc, HDMI encoder).
12 */
13
14 #include <linux/clk.h>
15
16 #include <drm/drm_atomic.h>
17 #include <drm/drm_atomic_helper.h>
18 #include <drm/drm_crtc.h>
19 #include <drm/drm_fourcc.h>
20 #include <drm/drm_gem_framebuffer_helper.h>
21 #include <drm/drm_probe_helper.h>
22 #include <drm/drm_vblank.h>
23
24 #include "vc4_drv.h"
25 #include "vc4_regs.h"
26
27 #define HVS_NUM_CHANNELS 3
28
29 struct vc4_ctm_state {
30 struct drm_private_state base;
31 struct drm_color_ctm *ctm;
32 int fifo;
33 };
34
35 static struct vc4_ctm_state *
to_vc4_ctm_state(const struct drm_private_state * priv)36 to_vc4_ctm_state(const struct drm_private_state *priv)
37 {
38 return container_of(priv, struct vc4_ctm_state, base);
39 }
40
41 struct vc4_hvs_state {
42 struct drm_private_state base;
43 unsigned long core_clock_rate;
44
45 struct {
46 unsigned in_use: 1;
47 unsigned long fifo_load;
48 struct drm_crtc_commit *pending_commit;
49 } fifo_state[HVS_NUM_CHANNELS];
50 };
51
52 static struct vc4_hvs_state *
to_vc4_hvs_state(const struct drm_private_state * priv)53 to_vc4_hvs_state(const struct drm_private_state *priv)
54 {
55 return container_of(priv, struct vc4_hvs_state, base);
56 }
57
58 struct vc4_load_tracker_state {
59 struct drm_private_state base;
60 u64 hvs_load;
61 u64 membus_load;
62 };
63
64 static struct vc4_load_tracker_state *
to_vc4_load_tracker_state(const struct drm_private_state * priv)65 to_vc4_load_tracker_state(const struct drm_private_state *priv)
66 {
67 return container_of(priv, struct vc4_load_tracker_state, base);
68 }
69
vc4_get_ctm_state(struct drm_atomic_state * state,struct drm_private_obj * manager)70 static struct vc4_ctm_state *vc4_get_ctm_state(struct drm_atomic_state *state,
71 struct drm_private_obj *manager)
72 {
73 struct drm_device *dev = state->dev;
74 struct vc4_dev *vc4 = to_vc4_dev(dev);
75 struct drm_private_state *priv_state;
76 int ret;
77
78 ret = drm_modeset_lock(&vc4->ctm_state_lock, state->acquire_ctx);
79 if (ret)
80 return ERR_PTR(ret);
81
82 priv_state = drm_atomic_get_private_obj_state(state, manager);
83 if (IS_ERR(priv_state))
84 return ERR_CAST(priv_state);
85
86 return to_vc4_ctm_state(priv_state);
87 }
88
89 static struct drm_private_state *
vc4_ctm_duplicate_state(struct drm_private_obj * obj)90 vc4_ctm_duplicate_state(struct drm_private_obj *obj)
91 {
92 struct vc4_ctm_state *state;
93
94 state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
95 if (!state)
96 return NULL;
97
98 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
99
100 return &state->base;
101 }
102
vc4_ctm_destroy_state(struct drm_private_obj * obj,struct drm_private_state * state)103 static void vc4_ctm_destroy_state(struct drm_private_obj *obj,
104 struct drm_private_state *state)
105 {
106 struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(state);
107
108 kfree(ctm_state);
109 }
110
111 static const struct drm_private_state_funcs vc4_ctm_state_funcs = {
112 .atomic_duplicate_state = vc4_ctm_duplicate_state,
113 .atomic_destroy_state = vc4_ctm_destroy_state,
114 };
115
vc4_ctm_obj_fini(struct drm_device * dev,void * unused)116 static void vc4_ctm_obj_fini(struct drm_device *dev, void *unused)
117 {
118 struct vc4_dev *vc4 = to_vc4_dev(dev);
119
120 drm_atomic_private_obj_fini(&vc4->ctm_manager);
121 }
122
vc4_ctm_obj_init(struct vc4_dev * vc4)123 static int vc4_ctm_obj_init(struct vc4_dev *vc4)
124 {
125 struct vc4_ctm_state *ctm_state;
126
127 drm_modeset_lock_init(&vc4->ctm_state_lock);
128
129 ctm_state = kzalloc(sizeof(*ctm_state), GFP_KERNEL);
130 if (!ctm_state)
131 return -ENOMEM;
132
133 drm_atomic_private_obj_init(&vc4->base, &vc4->ctm_manager, &ctm_state->base,
134 &vc4_ctm_state_funcs);
135
136 return drmm_add_action_or_reset(&vc4->base, vc4_ctm_obj_fini, NULL);
137 }
138
139 /* Converts a DRM S31.32 value to the HW S0.9 format. */
vc4_ctm_s31_32_to_s0_9(u64 in)140 static u16 vc4_ctm_s31_32_to_s0_9(u64 in)
141 {
142 u16 r;
143
144 /* Sign bit. */
145 r = in & BIT_ULL(63) ? BIT(9) : 0;
146
147 if ((in & GENMASK_ULL(62, 32)) > 0) {
148 /* We have zero integer bits so we can only saturate here. */
149 r |= GENMASK(8, 0);
150 } else {
151 /* Otherwise take the 9 most important fractional bits. */
152 r |= (in >> 23) & GENMASK(8, 0);
153 }
154
155 return r;
156 }
157
158 static void
vc4_ctm_commit(struct vc4_dev * vc4,struct drm_atomic_state * state)159 vc4_ctm_commit(struct vc4_dev *vc4, struct drm_atomic_state *state)
160 {
161 struct vc4_hvs *hvs = vc4->hvs;
162 struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(vc4->ctm_manager.state);
163 struct drm_color_ctm *ctm = ctm_state->ctm;
164
165 if (ctm_state->fifo) {
166 HVS_WRITE(SCALER_OLEDCOEF2,
167 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[0]),
168 SCALER_OLEDCOEF2_R_TO_R) |
169 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[3]),
170 SCALER_OLEDCOEF2_R_TO_G) |
171 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[6]),
172 SCALER_OLEDCOEF2_R_TO_B));
173 HVS_WRITE(SCALER_OLEDCOEF1,
174 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[1]),
175 SCALER_OLEDCOEF1_G_TO_R) |
176 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[4]),
177 SCALER_OLEDCOEF1_G_TO_G) |
178 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[7]),
179 SCALER_OLEDCOEF1_G_TO_B));
180 HVS_WRITE(SCALER_OLEDCOEF0,
181 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[2]),
182 SCALER_OLEDCOEF0_B_TO_R) |
183 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[5]),
184 SCALER_OLEDCOEF0_B_TO_G) |
185 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[8]),
186 SCALER_OLEDCOEF0_B_TO_B));
187 }
188
189 HVS_WRITE(SCALER_OLEDOFFS,
190 VC4_SET_FIELD(ctm_state->fifo, SCALER_OLEDOFFS_DISPFIFO));
191 }
192
193 static struct vc4_hvs_state *
vc4_hvs_get_new_global_state(struct drm_atomic_state * state)194 vc4_hvs_get_new_global_state(struct drm_atomic_state *state)
195 {
196 struct vc4_dev *vc4 = to_vc4_dev(state->dev);
197 struct drm_private_state *priv_state;
198
199 priv_state = drm_atomic_get_new_private_obj_state(state, &vc4->hvs_channels);
200 if (!priv_state)
201 return ERR_PTR(-EINVAL);
202
203 return to_vc4_hvs_state(priv_state);
204 }
205
206 static struct vc4_hvs_state *
vc4_hvs_get_old_global_state(struct drm_atomic_state * state)207 vc4_hvs_get_old_global_state(struct drm_atomic_state *state)
208 {
209 struct vc4_dev *vc4 = to_vc4_dev(state->dev);
210 struct drm_private_state *priv_state;
211
212 priv_state = drm_atomic_get_old_private_obj_state(state, &vc4->hvs_channels);
213 if (!priv_state)
214 return ERR_PTR(-EINVAL);
215
216 return to_vc4_hvs_state(priv_state);
217 }
218
219 static struct vc4_hvs_state *
vc4_hvs_get_global_state(struct drm_atomic_state * state)220 vc4_hvs_get_global_state(struct drm_atomic_state *state)
221 {
222 struct vc4_dev *vc4 = to_vc4_dev(state->dev);
223 struct drm_private_state *priv_state;
224
225 priv_state = drm_atomic_get_private_obj_state(state, &vc4->hvs_channels);
226 if (IS_ERR(priv_state))
227 return ERR_CAST(priv_state);
228
229 return to_vc4_hvs_state(priv_state);
230 }
231
vc4_hvs_pv_muxing_commit(struct vc4_dev * vc4,struct drm_atomic_state * state)232 static void vc4_hvs_pv_muxing_commit(struct vc4_dev *vc4,
233 struct drm_atomic_state *state)
234 {
235 struct vc4_hvs *hvs = vc4->hvs;
236 struct drm_crtc_state *crtc_state;
237 struct drm_crtc *crtc;
238 unsigned int i;
239
240 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
241 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
242 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
243 u32 dispctrl;
244 u32 dsp3_mux;
245
246 if (!crtc_state->active)
247 continue;
248
249 if (vc4_state->assigned_channel != 2)
250 continue;
251
252 /*
253 * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
254 * FIFO X'.
255 * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
256 *
257 * DSP3 is connected to FIFO2 unless the transposer is
258 * enabled. In this case, FIFO 2 is directly accessed by the
259 * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
260 * route.
261 */
262 if (vc4_crtc->feeds_txp)
263 dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
264 else
265 dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
266
267 dispctrl = HVS_READ(SCALER_DISPCTRL) &
268 ~SCALER_DISPCTRL_DSP3_MUX_MASK;
269 HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
270 }
271 }
272
vc5_hvs_pv_muxing_commit(struct vc4_dev * vc4,struct drm_atomic_state * state)273 static void vc5_hvs_pv_muxing_commit(struct vc4_dev *vc4,
274 struct drm_atomic_state *state)
275 {
276 struct vc4_hvs *hvs = vc4->hvs;
277 struct drm_crtc_state *crtc_state;
278 struct drm_crtc *crtc;
279 unsigned char mux;
280 unsigned int i;
281 u32 reg;
282
283 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
284 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
285 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
286 unsigned int channel = vc4_state->assigned_channel;
287
288 if (!vc4_state->update_muxing)
289 continue;
290
291 switch (vc4_crtc->data->hvs_output) {
292 case 2:
293 drm_WARN_ON(&vc4->base,
294 VC4_GET_FIELD(HVS_READ(SCALER_DISPCTRL),
295 SCALER_DISPCTRL_DSP3_MUX) == channel);
296
297 mux = (channel == 2) ? 0 : 1;
298 reg = HVS_READ(SCALER_DISPECTRL);
299 HVS_WRITE(SCALER_DISPECTRL,
300 (reg & ~SCALER_DISPECTRL_DSP2_MUX_MASK) |
301 VC4_SET_FIELD(mux, SCALER_DISPECTRL_DSP2_MUX));
302 break;
303
304 case 3:
305 if (channel == VC4_HVS_CHANNEL_DISABLED)
306 mux = 3;
307 else
308 mux = channel;
309
310 reg = HVS_READ(SCALER_DISPCTRL);
311 HVS_WRITE(SCALER_DISPCTRL,
312 (reg & ~SCALER_DISPCTRL_DSP3_MUX_MASK) |
313 VC4_SET_FIELD(mux, SCALER_DISPCTRL_DSP3_MUX));
314 break;
315
316 case 4:
317 if (channel == VC4_HVS_CHANNEL_DISABLED)
318 mux = 3;
319 else
320 mux = channel;
321
322 reg = HVS_READ(SCALER_DISPEOLN);
323 HVS_WRITE(SCALER_DISPEOLN,
324 (reg & ~SCALER_DISPEOLN_DSP4_MUX_MASK) |
325 VC4_SET_FIELD(mux, SCALER_DISPEOLN_DSP4_MUX));
326
327 break;
328
329 case 5:
330 if (channel == VC4_HVS_CHANNEL_DISABLED)
331 mux = 3;
332 else
333 mux = channel;
334
335 reg = HVS_READ(SCALER_DISPDITHER);
336 HVS_WRITE(SCALER_DISPDITHER,
337 (reg & ~SCALER_DISPDITHER_DSP5_MUX_MASK) |
338 VC4_SET_FIELD(mux, SCALER_DISPDITHER_DSP5_MUX));
339 break;
340
341 default:
342 break;
343 }
344 }
345 }
346
vc4_atomic_commit_tail(struct drm_atomic_state * state)347 static void vc4_atomic_commit_tail(struct drm_atomic_state *state)
348 {
349 struct drm_device *dev = state->dev;
350 struct vc4_dev *vc4 = to_vc4_dev(dev);
351 struct vc4_hvs *hvs = vc4->hvs;
352 struct drm_crtc_state *new_crtc_state;
353 struct vc4_hvs_state *new_hvs_state;
354 struct drm_crtc *crtc;
355 struct vc4_hvs_state *old_hvs_state;
356 unsigned int channel;
357 int i;
358
359 old_hvs_state = vc4_hvs_get_old_global_state(state);
360 if (WARN_ON(IS_ERR(old_hvs_state)))
361 return;
362
363 new_hvs_state = vc4_hvs_get_new_global_state(state);
364 if (WARN_ON(IS_ERR(new_hvs_state)))
365 return;
366
367 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
368 struct vc4_crtc_state *vc4_crtc_state;
369
370 if (!new_crtc_state->commit)
371 continue;
372
373 vc4_crtc_state = to_vc4_crtc_state(new_crtc_state);
374 vc4_hvs_mask_underrun(hvs, vc4_crtc_state->assigned_channel);
375 }
376
377 for (channel = 0; channel < HVS_NUM_CHANNELS; channel++) {
378 struct drm_crtc_commit *commit;
379 int ret;
380
381 if (!old_hvs_state->fifo_state[channel].in_use)
382 continue;
383
384 commit = old_hvs_state->fifo_state[channel].pending_commit;
385 if (!commit)
386 continue;
387
388 ret = drm_crtc_commit_wait(commit);
389 if (ret)
390 drm_err(dev, "Timed out waiting for commit\n");
391
392 drm_crtc_commit_put(commit);
393 old_hvs_state->fifo_state[channel].pending_commit = NULL;
394 }
395
396 if (vc4->is_vc5) {
397 unsigned long state_rate = max(old_hvs_state->core_clock_rate,
398 new_hvs_state->core_clock_rate);
399 unsigned long core_rate = max_t(unsigned long,
400 500000000, state_rate);
401
402 drm_dbg(dev, "Raising the core clock at %lu Hz\n", core_rate);
403
404 /*
405 * Do a temporary request on the core clock during the
406 * modeset.
407 */
408 WARN_ON(clk_set_min_rate(hvs->core_clk, core_rate));
409 }
410
411 drm_atomic_helper_commit_modeset_disables(dev, state);
412
413 vc4_ctm_commit(vc4, state);
414
415 if (vc4->is_vc5)
416 vc5_hvs_pv_muxing_commit(vc4, state);
417 else
418 vc4_hvs_pv_muxing_commit(vc4, state);
419
420 drm_atomic_helper_commit_planes(dev, state,
421 DRM_PLANE_COMMIT_ACTIVE_ONLY);
422
423 drm_atomic_helper_commit_modeset_enables(dev, state);
424
425 drm_atomic_helper_fake_vblank(state);
426
427 drm_atomic_helper_commit_hw_done(state);
428
429 drm_atomic_helper_wait_for_flip_done(dev, state);
430
431 drm_atomic_helper_cleanup_planes(dev, state);
432
433 if (vc4->is_vc5) {
434 drm_dbg(dev, "Running the core clock at %lu Hz\n",
435 new_hvs_state->core_clock_rate);
436
437 /*
438 * Request a clock rate based on the current HVS
439 * requirements.
440 */
441 WARN_ON(clk_set_min_rate(hvs->core_clk, new_hvs_state->core_clock_rate));
442
443 drm_dbg(dev, "Core clock actual rate: %lu Hz\n",
444 clk_get_rate(hvs->core_clk));
445 }
446 }
447
vc4_atomic_commit_setup(struct drm_atomic_state * state)448 static int vc4_atomic_commit_setup(struct drm_atomic_state *state)
449 {
450 struct drm_crtc_state *crtc_state;
451 struct vc4_hvs_state *hvs_state;
452 struct drm_crtc *crtc;
453 unsigned int i;
454
455 hvs_state = vc4_hvs_get_new_global_state(state);
456 if (WARN_ON(IS_ERR(hvs_state)))
457 return PTR_ERR(hvs_state);
458
459 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
460 struct vc4_crtc_state *vc4_crtc_state =
461 to_vc4_crtc_state(crtc_state);
462 unsigned int channel =
463 vc4_crtc_state->assigned_channel;
464
465 if (channel == VC4_HVS_CHANNEL_DISABLED)
466 continue;
467
468 if (!hvs_state->fifo_state[channel].in_use)
469 continue;
470
471 hvs_state->fifo_state[channel].pending_commit =
472 drm_crtc_commit_get(crtc_state->commit);
473 }
474
475 return 0;
476 }
477
vc4_fb_create(struct drm_device * dev,struct drm_file * file_priv,const struct drm_mode_fb_cmd2 * mode_cmd)478 static struct drm_framebuffer *vc4_fb_create(struct drm_device *dev,
479 struct drm_file *file_priv,
480 const struct drm_mode_fb_cmd2 *mode_cmd)
481 {
482 struct vc4_dev *vc4 = to_vc4_dev(dev);
483 struct drm_mode_fb_cmd2 mode_cmd_local;
484
485 if (WARN_ON_ONCE(vc4->is_vc5))
486 return ERR_PTR(-ENODEV);
487
488 /* If the user didn't specify a modifier, use the
489 * vc4_set_tiling_ioctl() state for the BO.
490 */
491 if (!(mode_cmd->flags & DRM_MODE_FB_MODIFIERS)) {
492 struct drm_gem_object *gem_obj;
493 struct vc4_bo *bo;
494
495 gem_obj = drm_gem_object_lookup(file_priv,
496 mode_cmd->handles[0]);
497 if (!gem_obj) {
498 DRM_DEBUG("Failed to look up GEM BO %d\n",
499 mode_cmd->handles[0]);
500 return ERR_PTR(-ENOENT);
501 }
502 bo = to_vc4_bo(gem_obj);
503
504 mode_cmd_local = *mode_cmd;
505
506 if (bo->t_format) {
507 mode_cmd_local.modifier[0] =
508 DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED;
509 } else {
510 mode_cmd_local.modifier[0] = DRM_FORMAT_MOD_NONE;
511 }
512
513 drm_gem_object_put(gem_obj);
514
515 mode_cmd = &mode_cmd_local;
516 }
517
518 return drm_gem_fb_create(dev, file_priv, mode_cmd);
519 }
520
521 /* Our CTM has some peculiar limitations: we can only enable it for one CRTC
522 * at a time and the HW only supports S0.9 scalars. To account for the latter,
523 * we don't allow userland to set a CTM that we have no hope of approximating.
524 */
525 static int
vc4_ctm_atomic_check(struct drm_device * dev,struct drm_atomic_state * state)526 vc4_ctm_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
527 {
528 struct vc4_dev *vc4 = to_vc4_dev(dev);
529 struct vc4_ctm_state *ctm_state = NULL;
530 struct drm_crtc *crtc;
531 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
532 struct drm_color_ctm *ctm;
533 int i;
534
535 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
536 /* CTM is being disabled. */
537 if (!new_crtc_state->ctm && old_crtc_state->ctm) {
538 ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
539 if (IS_ERR(ctm_state))
540 return PTR_ERR(ctm_state);
541 ctm_state->fifo = 0;
542 }
543 }
544
545 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
546 if (new_crtc_state->ctm == old_crtc_state->ctm)
547 continue;
548
549 if (!ctm_state) {
550 ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
551 if (IS_ERR(ctm_state))
552 return PTR_ERR(ctm_state);
553 }
554
555 /* CTM is being enabled or the matrix changed. */
556 if (new_crtc_state->ctm) {
557 struct vc4_crtc_state *vc4_crtc_state =
558 to_vc4_crtc_state(new_crtc_state);
559
560 /* fifo is 1-based since 0 disables CTM. */
561 int fifo = vc4_crtc_state->assigned_channel + 1;
562
563 /* Check userland isn't trying to turn on CTM for more
564 * than one CRTC at a time.
565 */
566 if (ctm_state->fifo && ctm_state->fifo != fifo) {
567 DRM_DEBUG_DRIVER("Too many CTM configured\n");
568 return -EINVAL;
569 }
570
571 /* Check we can approximate the specified CTM.
572 * We disallow scalars |c| > 1.0 since the HW has
573 * no integer bits.
574 */
575 ctm = new_crtc_state->ctm->data;
576 for (i = 0; i < ARRAY_SIZE(ctm->matrix); i++) {
577 u64 val = ctm->matrix[i];
578
579 val &= ~BIT_ULL(63);
580 if (val > BIT_ULL(32))
581 return -EINVAL;
582 }
583
584 ctm_state->fifo = fifo;
585 ctm_state->ctm = ctm;
586 }
587 }
588
589 return 0;
590 }
591
vc4_load_tracker_atomic_check(struct drm_atomic_state * state)592 static int vc4_load_tracker_atomic_check(struct drm_atomic_state *state)
593 {
594 struct drm_plane_state *old_plane_state, *new_plane_state;
595 struct vc4_dev *vc4 = to_vc4_dev(state->dev);
596 struct vc4_load_tracker_state *load_state;
597 struct drm_private_state *priv_state;
598 struct drm_plane *plane;
599 int i;
600
601 priv_state = drm_atomic_get_private_obj_state(state,
602 &vc4->load_tracker);
603 if (IS_ERR(priv_state))
604 return PTR_ERR(priv_state);
605
606 load_state = to_vc4_load_tracker_state(priv_state);
607 for_each_oldnew_plane_in_state(state, plane, old_plane_state,
608 new_plane_state, i) {
609 struct vc4_plane_state *vc4_plane_state;
610
611 if (old_plane_state->fb && old_plane_state->crtc) {
612 vc4_plane_state = to_vc4_plane_state(old_plane_state);
613 load_state->membus_load -= vc4_plane_state->membus_load;
614 load_state->hvs_load -= vc4_plane_state->hvs_load;
615 }
616
617 if (new_plane_state->fb && new_plane_state->crtc) {
618 vc4_plane_state = to_vc4_plane_state(new_plane_state);
619 load_state->membus_load += vc4_plane_state->membus_load;
620 load_state->hvs_load += vc4_plane_state->hvs_load;
621 }
622 }
623
624 /* Don't check the load when the tracker is disabled. */
625 if (!vc4->load_tracker_enabled)
626 return 0;
627
628 /* The absolute limit is 2Gbyte/sec, but let's take a margin to let
629 * the system work when other blocks are accessing the memory.
630 */
631 if (load_state->membus_load > SZ_1G + SZ_512M)
632 return -ENOSPC;
633
634 /* HVS clock is supposed to run @ 250Mhz, let's take a margin and
635 * consider the maximum number of cycles is 240M.
636 */
637 if (load_state->hvs_load > 240000000ULL)
638 return -ENOSPC;
639
640 return 0;
641 }
642
643 static struct drm_private_state *
vc4_load_tracker_duplicate_state(struct drm_private_obj * obj)644 vc4_load_tracker_duplicate_state(struct drm_private_obj *obj)
645 {
646 struct vc4_load_tracker_state *state;
647
648 state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
649 if (!state)
650 return NULL;
651
652 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
653
654 return &state->base;
655 }
656
vc4_load_tracker_destroy_state(struct drm_private_obj * obj,struct drm_private_state * state)657 static void vc4_load_tracker_destroy_state(struct drm_private_obj *obj,
658 struct drm_private_state *state)
659 {
660 struct vc4_load_tracker_state *load_state;
661
662 load_state = to_vc4_load_tracker_state(state);
663 kfree(load_state);
664 }
665
666 static const struct drm_private_state_funcs vc4_load_tracker_state_funcs = {
667 .atomic_duplicate_state = vc4_load_tracker_duplicate_state,
668 .atomic_destroy_state = vc4_load_tracker_destroy_state,
669 };
670
vc4_load_tracker_obj_fini(struct drm_device * dev,void * unused)671 static void vc4_load_tracker_obj_fini(struct drm_device *dev, void *unused)
672 {
673 struct vc4_dev *vc4 = to_vc4_dev(dev);
674
675 drm_atomic_private_obj_fini(&vc4->load_tracker);
676 }
677
vc4_load_tracker_obj_init(struct vc4_dev * vc4)678 static int vc4_load_tracker_obj_init(struct vc4_dev *vc4)
679 {
680 struct vc4_load_tracker_state *load_state;
681
682 load_state = kzalloc(sizeof(*load_state), GFP_KERNEL);
683 if (!load_state)
684 return -ENOMEM;
685
686 drm_atomic_private_obj_init(&vc4->base, &vc4->load_tracker,
687 &load_state->base,
688 &vc4_load_tracker_state_funcs);
689
690 return drmm_add_action_or_reset(&vc4->base, vc4_load_tracker_obj_fini, NULL);
691 }
692
693 static struct drm_private_state *
vc4_hvs_channels_duplicate_state(struct drm_private_obj * obj)694 vc4_hvs_channels_duplicate_state(struct drm_private_obj *obj)
695 {
696 struct vc4_hvs_state *old_state = to_vc4_hvs_state(obj->state);
697 struct vc4_hvs_state *state;
698 unsigned int i;
699
700 state = kzalloc(sizeof(*state), GFP_KERNEL);
701 if (!state)
702 return NULL;
703
704 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
705
706 for (i = 0; i < HVS_NUM_CHANNELS; i++) {
707 state->fifo_state[i].in_use = old_state->fifo_state[i].in_use;
708 state->fifo_state[i].fifo_load = old_state->fifo_state[i].fifo_load;
709 }
710
711 state->core_clock_rate = old_state->core_clock_rate;
712
713 return &state->base;
714 }
715
vc4_hvs_channels_destroy_state(struct drm_private_obj * obj,struct drm_private_state * state)716 static void vc4_hvs_channels_destroy_state(struct drm_private_obj *obj,
717 struct drm_private_state *state)
718 {
719 struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state);
720 unsigned int i;
721
722 for (i = 0; i < HVS_NUM_CHANNELS; i++) {
723 if (!hvs_state->fifo_state[i].pending_commit)
724 continue;
725
726 drm_crtc_commit_put(hvs_state->fifo_state[i].pending_commit);
727 }
728
729 kfree(hvs_state);
730 }
731
vc4_hvs_channels_print_state(struct drm_printer * p,const struct drm_private_state * state)732 static void vc4_hvs_channels_print_state(struct drm_printer *p,
733 const struct drm_private_state *state)
734 {
735 struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state);
736 unsigned int i;
737
738 drm_printf(p, "HVS State\n");
739 drm_printf(p, "\tCore Clock Rate: %lu\n", hvs_state->core_clock_rate);
740
741 for (i = 0; i < HVS_NUM_CHANNELS; i++) {
742 drm_printf(p, "\tChannel %d\n", i);
743 drm_printf(p, "\t\tin use=%d\n", hvs_state->fifo_state[i].in_use);
744 drm_printf(p, "\t\tload=%lu\n", hvs_state->fifo_state[i].fifo_load);
745 }
746 }
747
748 static const struct drm_private_state_funcs vc4_hvs_state_funcs = {
749 .atomic_duplicate_state = vc4_hvs_channels_duplicate_state,
750 .atomic_destroy_state = vc4_hvs_channels_destroy_state,
751 .atomic_print_state = vc4_hvs_channels_print_state,
752 };
753
vc4_hvs_channels_obj_fini(struct drm_device * dev,void * unused)754 static void vc4_hvs_channels_obj_fini(struct drm_device *dev, void *unused)
755 {
756 struct vc4_dev *vc4 = to_vc4_dev(dev);
757
758 drm_atomic_private_obj_fini(&vc4->hvs_channels);
759 }
760
vc4_hvs_channels_obj_init(struct vc4_dev * vc4)761 static int vc4_hvs_channels_obj_init(struct vc4_dev *vc4)
762 {
763 struct vc4_hvs_state *state;
764
765 state = kzalloc(sizeof(*state), GFP_KERNEL);
766 if (!state)
767 return -ENOMEM;
768
769 drm_atomic_private_obj_init(&vc4->base, &vc4->hvs_channels,
770 &state->base,
771 &vc4_hvs_state_funcs);
772
773 return drmm_add_action_or_reset(&vc4->base, vc4_hvs_channels_obj_fini, NULL);
774 }
775
776 /*
777 * The BCM2711 HVS has up to 7 outputs connected to the pixelvalves and
778 * the TXP (and therefore all the CRTCs found on that platform).
779 *
780 * The naive (and our initial) implementation would just iterate over
781 * all the active CRTCs, try to find a suitable FIFO, and then remove it
782 * from the pool of available FIFOs. However, there are a few corner
783 * cases that need to be considered:
784 *
785 * - When running in a dual-display setup (so with two CRTCs involved),
786 * we can update the state of a single CRTC (for example by changing
787 * its mode using xrandr under X11) without affecting the other. In
788 * this case, the other CRTC wouldn't be in the state at all, so we
789 * need to consider all the running CRTCs in the DRM device to assign
790 * a FIFO, not just the one in the state.
791 *
792 * - To fix the above, we can't use drm_atomic_get_crtc_state on all
793 * enabled CRTCs to pull their CRTC state into the global state, since
794 * a page flip would start considering their vblank to complete. Since
795 * we don't have a guarantee that they are actually active, that
796 * vblank might never happen, and shouldn't even be considered if we
797 * want to do a page flip on a single CRTC. That can be tested by
798 * doing a modetest -v first on HDMI1 and then on HDMI0.
799 *
800 * - Since we need the pixelvalve to be disabled and enabled back when
801 * the FIFO is changed, we should keep the FIFO assigned for as long
802 * as the CRTC is enabled, only considering it free again once that
803 * CRTC has been disabled. This can be tested by booting X11 on a
804 * single display, and changing the resolution down and then back up.
805 */
vc4_pv_muxing_atomic_check(struct drm_device * dev,struct drm_atomic_state * state)806 static int vc4_pv_muxing_atomic_check(struct drm_device *dev,
807 struct drm_atomic_state *state)
808 {
809 struct vc4_hvs_state *hvs_new_state;
810 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
811 struct drm_crtc *crtc;
812 unsigned int unassigned_channels = 0;
813 unsigned int i;
814
815 hvs_new_state = vc4_hvs_get_global_state(state);
816 if (IS_ERR(hvs_new_state))
817 return PTR_ERR(hvs_new_state);
818
819 for (i = 0; i < ARRAY_SIZE(hvs_new_state->fifo_state); i++)
820 if (!hvs_new_state->fifo_state[i].in_use)
821 unassigned_channels |= BIT(i);
822
823 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
824 struct vc4_crtc_state *old_vc4_crtc_state =
825 to_vc4_crtc_state(old_crtc_state);
826 struct vc4_crtc_state *new_vc4_crtc_state =
827 to_vc4_crtc_state(new_crtc_state);
828 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
829 unsigned int matching_channels;
830 unsigned int channel;
831
832 drm_dbg(dev, "%s: Trying to find a channel.\n", crtc->name);
833
834 /* Nothing to do here, let's skip it */
835 if (old_crtc_state->enable == new_crtc_state->enable) {
836 if (new_crtc_state->enable)
837 drm_dbg(dev, "%s: Already enabled, reusing channel %d.\n",
838 crtc->name, new_vc4_crtc_state->assigned_channel);
839 else
840 drm_dbg(dev, "%s: Disabled, ignoring.\n", crtc->name);
841
842 continue;
843 }
844
845 /* Muxing will need to be modified, mark it as such */
846 new_vc4_crtc_state->update_muxing = true;
847
848 /* If we're disabling our CRTC, we put back our channel */
849 if (!new_crtc_state->enable) {
850 channel = old_vc4_crtc_state->assigned_channel;
851
852 drm_dbg(dev, "%s: Disabling, Freeing channel %d\n",
853 crtc->name, channel);
854
855 hvs_new_state->fifo_state[channel].in_use = false;
856 new_vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
857 continue;
858 }
859
860 /*
861 * The problem we have to solve here is that we have
862 * up to 7 encoders, connected to up to 6 CRTCs.
863 *
864 * Those CRTCs, depending on the instance, can be
865 * routed to 1, 2 or 3 HVS FIFOs, and we need to set
866 * the change the muxing between FIFOs and outputs in
867 * the HVS accordingly.
868 *
869 * It would be pretty hard to come up with an
870 * algorithm that would generically solve
871 * this. However, the current routing trees we support
872 * allow us to simplify a bit the problem.
873 *
874 * Indeed, with the current supported layouts, if we
875 * try to assign in the ascending crtc index order the
876 * FIFOs, we can't fall into the situation where an
877 * earlier CRTC that had multiple routes is assigned
878 * one that was the only option for a later CRTC.
879 *
880 * If the layout changes and doesn't give us that in
881 * the future, we will need to have something smarter,
882 * but it works so far.
883 */
884 matching_channels = unassigned_channels & vc4_crtc->data->hvs_available_channels;
885 if (!matching_channels)
886 return -EINVAL;
887
888 channel = ffs(matching_channels) - 1;
889
890 drm_dbg(dev, "Assigned HVS channel %d to CRTC %s\n", channel, crtc->name);
891 new_vc4_crtc_state->assigned_channel = channel;
892 unassigned_channels &= ~BIT(channel);
893 hvs_new_state->fifo_state[channel].in_use = true;
894 }
895
896 return 0;
897 }
898
899 static int
vc4_core_clock_atomic_check(struct drm_atomic_state * state)900 vc4_core_clock_atomic_check(struct drm_atomic_state *state)
901 {
902 struct vc4_dev *vc4 = to_vc4_dev(state->dev);
903 struct drm_private_state *priv_state;
904 struct vc4_hvs_state *hvs_new_state;
905 struct vc4_load_tracker_state *load_state;
906 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
907 struct drm_crtc *crtc;
908 unsigned int num_outputs;
909 unsigned long pixel_rate;
910 unsigned long cob_rate;
911 unsigned int i;
912
913 priv_state = drm_atomic_get_private_obj_state(state,
914 &vc4->load_tracker);
915 if (IS_ERR(priv_state))
916 return PTR_ERR(priv_state);
917
918 load_state = to_vc4_load_tracker_state(priv_state);
919
920 hvs_new_state = vc4_hvs_get_global_state(state);
921 if (IS_ERR(hvs_new_state))
922 return PTR_ERR(hvs_new_state);
923
924 for_each_oldnew_crtc_in_state(state, crtc,
925 old_crtc_state,
926 new_crtc_state,
927 i) {
928 if (old_crtc_state->active) {
929 struct vc4_crtc_state *old_vc4_state =
930 to_vc4_crtc_state(old_crtc_state);
931 unsigned int channel = old_vc4_state->assigned_channel;
932
933 hvs_new_state->fifo_state[channel].fifo_load = 0;
934 }
935
936 if (new_crtc_state->active) {
937 struct vc4_crtc_state *new_vc4_state =
938 to_vc4_crtc_state(new_crtc_state);
939 unsigned int channel = new_vc4_state->assigned_channel;
940
941 hvs_new_state->fifo_state[channel].fifo_load =
942 new_vc4_state->hvs_load;
943 }
944 }
945
946 cob_rate = 0;
947 num_outputs = 0;
948 for (i = 0; i < HVS_NUM_CHANNELS; i++) {
949 if (!hvs_new_state->fifo_state[i].in_use)
950 continue;
951
952 num_outputs++;
953 cob_rate = max_t(unsigned long,
954 hvs_new_state->fifo_state[i].fifo_load,
955 cob_rate);
956 }
957
958 pixel_rate = load_state->hvs_load;
959 if (num_outputs > 1) {
960 pixel_rate = (pixel_rate * 40) / 100;
961 } else {
962 pixel_rate = (pixel_rate * 60) / 100;
963 }
964
965 hvs_new_state->core_clock_rate = max(cob_rate, pixel_rate);
966
967 return 0;
968 }
969
970
971 static int
vc4_atomic_check(struct drm_device * dev,struct drm_atomic_state * state)972 vc4_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
973 {
974 int ret;
975
976 ret = vc4_pv_muxing_atomic_check(dev, state);
977 if (ret)
978 return ret;
979
980 ret = vc4_ctm_atomic_check(dev, state);
981 if (ret < 0)
982 return ret;
983
984 ret = drm_atomic_helper_check(dev, state);
985 if (ret)
986 return ret;
987
988 ret = vc4_load_tracker_atomic_check(state);
989 if (ret)
990 return ret;
991
992 return vc4_core_clock_atomic_check(state);
993 }
994
995 static struct drm_mode_config_helper_funcs vc4_mode_config_helpers = {
996 .atomic_commit_setup = vc4_atomic_commit_setup,
997 .atomic_commit_tail = vc4_atomic_commit_tail,
998 };
999
1000 static const struct drm_mode_config_funcs vc4_mode_funcs = {
1001 .atomic_check = vc4_atomic_check,
1002 .atomic_commit = drm_atomic_helper_commit,
1003 .fb_create = vc4_fb_create,
1004 };
1005
1006 static const struct drm_mode_config_funcs vc5_mode_funcs = {
1007 .atomic_check = vc4_atomic_check,
1008 .atomic_commit = drm_atomic_helper_commit,
1009 .fb_create = drm_gem_fb_create,
1010 };
1011
vc4_kms_load(struct drm_device * dev)1012 int vc4_kms_load(struct drm_device *dev)
1013 {
1014 struct vc4_dev *vc4 = to_vc4_dev(dev);
1015 int ret;
1016
1017 /*
1018 * The limits enforced by the load tracker aren't relevant for
1019 * the BCM2711, but the load tracker computations are used for
1020 * the core clock rate calculation.
1021 */
1022 if (!vc4->is_vc5) {
1023 /* Start with the load tracker enabled. Can be
1024 * disabled through the debugfs load_tracker file.
1025 */
1026 vc4->load_tracker_enabled = true;
1027 }
1028
1029 /* Set support for vblank irq fast disable, before drm_vblank_init() */
1030 dev->vblank_disable_immediate = true;
1031
1032 ret = drm_vblank_init(dev, dev->mode_config.num_crtc);
1033 if (ret < 0) {
1034 dev_err(dev->dev, "failed to initialize vblank\n");
1035 return ret;
1036 }
1037
1038 if (vc4->is_vc5) {
1039 dev->mode_config.max_width = 7680;
1040 dev->mode_config.max_height = 7680;
1041 } else {
1042 dev->mode_config.max_width = 2048;
1043 dev->mode_config.max_height = 2048;
1044 }
1045
1046 dev->mode_config.funcs = vc4->is_vc5 ? &vc5_mode_funcs : &vc4_mode_funcs;
1047 dev->mode_config.helper_private = &vc4_mode_config_helpers;
1048 dev->mode_config.preferred_depth = 24;
1049 dev->mode_config.async_page_flip = true;
1050
1051 ret = vc4_ctm_obj_init(vc4);
1052 if (ret)
1053 return ret;
1054
1055 ret = vc4_load_tracker_obj_init(vc4);
1056 if (ret)
1057 return ret;
1058
1059 ret = vc4_hvs_channels_obj_init(vc4);
1060 if (ret)
1061 return ret;
1062
1063 drm_mode_config_reset(dev);
1064
1065 drm_kms_helper_poll_init(dev);
1066
1067 return 0;
1068 }
1069