1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2009 Nokia Corporation
4 * Author: Tomi Valkeinen <tomi.valkeinen@ti.com>
5 *
6 * Some code and ideas taken from drivers/video/omap/ driver
7 * by Imre Deak.
8 */
9
10 #define DSS_SUBSYS_NAME "DISPC"
11
12 #include <linux/kernel.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/vmalloc.h>
15 #include <linux/export.h>
16 #include <linux/clk.h>
17 #include <linux/io.h>
18 #include <linux/jiffies.h>
19 #include <linux/seq_file.h>
20 #include <linux/delay.h>
21 #include <linux/workqueue.h>
22 #include <linux/hardirq.h>
23 #include <linux/platform_device.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/sizes.h>
26 #include <linux/mfd/syscon.h>
27 #include <linux/regmap.h>
28 #include <linux/of.h>
29 #include <linux/of_device.h>
30 #include <linux/component.h>
31 #include <linux/sys_soc.h>
32 #include <drm/drm_fourcc.h>
33 #include <drm/drm_blend.h>
34
35 #include "omapdss.h"
36 #include "dss.h"
37 #include "dispc.h"
38
39 struct dispc_device;
40
41 /* DISPC */
42 #define DISPC_SZ_REGS SZ_4K
43
44 enum omap_burst_size {
45 BURST_SIZE_X2 = 0,
46 BURST_SIZE_X4 = 1,
47 BURST_SIZE_X8 = 2,
48 };
49
50 #define REG_GET(dispc, idx, start, end) \
51 FLD_GET(dispc_read_reg(dispc, idx), start, end)
52
53 #define REG_FLD_MOD(dispc, idx, val, start, end) \
54 dispc_write_reg(dispc, idx, \
55 FLD_MOD(dispc_read_reg(dispc, idx), val, start, end))
56
57 /* DISPC has feature id */
58 enum dispc_feature_id {
59 FEAT_LCDENABLEPOL,
60 FEAT_LCDENABLESIGNAL,
61 FEAT_PCKFREEENABLE,
62 FEAT_FUNCGATED,
63 FEAT_MGR_LCD2,
64 FEAT_MGR_LCD3,
65 FEAT_LINEBUFFERSPLIT,
66 FEAT_ROWREPEATENABLE,
67 FEAT_RESIZECONF,
68 /* Independent core clk divider */
69 FEAT_CORE_CLK_DIV,
70 FEAT_HANDLE_UV_SEPARATE,
71 FEAT_ATTR2,
72 FEAT_CPR,
73 FEAT_PRELOAD,
74 FEAT_FIR_COEF_V,
75 FEAT_ALPHA_FIXED_ZORDER,
76 FEAT_ALPHA_FREE_ZORDER,
77 FEAT_FIFO_MERGE,
78 /* An unknown HW bug causing the normal FIFO thresholds not to work */
79 FEAT_OMAP3_DSI_FIFO_BUG,
80 FEAT_BURST_2D,
81 FEAT_MFLAG,
82 };
83
84 struct dispc_features {
85 u8 sw_start;
86 u8 fp_start;
87 u8 bp_start;
88 u16 sw_max;
89 u16 vp_max;
90 u16 hp_max;
91 u8 mgr_width_start;
92 u8 mgr_height_start;
93 u16 mgr_width_max;
94 u16 mgr_height_max;
95 u16 ovl_width_max;
96 u16 ovl_height_max;
97 unsigned long max_lcd_pclk;
98 unsigned long max_tv_pclk;
99 unsigned int max_downscale;
100 unsigned int max_line_width;
101 unsigned int min_pcd;
102 int (*calc_scaling)(struct dispc_device *dispc,
103 unsigned long pclk, unsigned long lclk,
104 const struct videomode *vm,
105 u16 width, u16 height, u16 out_width, u16 out_height,
106 u32 fourcc, bool *five_taps,
107 int *x_predecim, int *y_predecim, int *decim_x, int *decim_y,
108 u16 pos_x, unsigned long *core_clk, bool mem_to_mem);
109 unsigned long (*calc_core_clk) (unsigned long pclk,
110 u16 width, u16 height, u16 out_width, u16 out_height,
111 bool mem_to_mem);
112 u8 num_fifos;
113 const enum dispc_feature_id *features;
114 unsigned int num_features;
115 const struct dss_reg_field *reg_fields;
116 const unsigned int num_reg_fields;
117 const enum omap_overlay_caps *overlay_caps;
118 const u32 **supported_color_modes;
119 const u32 *supported_scaler_color_modes;
120 unsigned int num_mgrs;
121 unsigned int num_ovls;
122 unsigned int buffer_size_unit;
123 unsigned int burst_size_unit;
124
125 /* swap GFX & WB fifos */
126 bool gfx_fifo_workaround:1;
127
128 /* no DISPC_IRQ_FRAMEDONETV on this SoC */
129 bool no_framedone_tv:1;
130
131 /* revert to the OMAP4 mechanism of DISPC Smart Standby operation */
132 bool mstandby_workaround:1;
133
134 bool set_max_preload:1;
135
136 /* PIXEL_INC is not added to the last pixel of a line */
137 bool last_pixel_inc_missing:1;
138
139 /* POL_FREQ has ALIGN bit */
140 bool supports_sync_align:1;
141
142 bool has_writeback:1;
143
144 bool supports_double_pixel:1;
145
146 /*
147 * Field order for VENC is different than HDMI. We should handle this in
148 * some intelligent manner, but as the SoCs have either HDMI or VENC,
149 * never both, we can just use this flag for now.
150 */
151 bool reverse_ilace_field_order:1;
152
153 bool has_gamma_table:1;
154
155 bool has_gamma_i734_bug:1;
156 };
157
158 #define DISPC_MAX_NR_FIFOS 5
159 #define DISPC_MAX_CHANNEL_GAMMA 4
160
161 struct dispc_device {
162 struct platform_device *pdev;
163 void __iomem *base;
164 struct dss_device *dss;
165
166 struct dss_debugfs_entry *debugfs;
167
168 int irq;
169 irq_handler_t user_handler;
170 void *user_data;
171
172 unsigned long core_clk_rate;
173 unsigned long tv_pclk_rate;
174
175 u32 fifo_size[DISPC_MAX_NR_FIFOS];
176 /* maps which plane is using a fifo. fifo-id -> plane-id */
177 int fifo_assignment[DISPC_MAX_NR_FIFOS];
178
179 bool ctx_valid;
180 u32 ctx[DISPC_SZ_REGS / sizeof(u32)];
181
182 u32 *gamma_table[DISPC_MAX_CHANNEL_GAMMA];
183
184 const struct dispc_features *feat;
185
186 bool is_enabled;
187
188 struct regmap *syscon_pol;
189 u32 syscon_pol_offset;
190 };
191
192 enum omap_color_component {
193 /* used for all color formats for OMAP3 and earlier
194 * and for RGB and Y color component on OMAP4
195 */
196 DISPC_COLOR_COMPONENT_RGB_Y = 1 << 0,
197 /* used for UV component for
198 * DRM_FORMAT_YUYV, DRM_FORMAT_UYVY, DRM_FORMAT_NV12
199 * color formats on OMAP4
200 */
201 DISPC_COLOR_COMPONENT_UV = 1 << 1,
202 };
203
204 enum mgr_reg_fields {
205 DISPC_MGR_FLD_ENABLE,
206 DISPC_MGR_FLD_STNTFT,
207 DISPC_MGR_FLD_GO,
208 DISPC_MGR_FLD_TFTDATALINES,
209 DISPC_MGR_FLD_STALLMODE,
210 DISPC_MGR_FLD_TCKENABLE,
211 DISPC_MGR_FLD_TCKSELECTION,
212 DISPC_MGR_FLD_CPR,
213 DISPC_MGR_FLD_FIFOHANDCHECK,
214 /* used to maintain a count of the above fields */
215 DISPC_MGR_FLD_NUM,
216 };
217
218 /* DISPC register field id */
219 enum dispc_feat_reg_field {
220 FEAT_REG_FIRHINC,
221 FEAT_REG_FIRVINC,
222 FEAT_REG_FIFOHIGHTHRESHOLD,
223 FEAT_REG_FIFOLOWTHRESHOLD,
224 FEAT_REG_FIFOSIZE,
225 FEAT_REG_HORIZONTALACCU,
226 FEAT_REG_VERTICALACCU,
227 };
228
229 struct dispc_reg_field {
230 u16 reg;
231 u8 high;
232 u8 low;
233 };
234
235 struct dispc_gamma_desc {
236 u32 len;
237 u32 bits;
238 u16 reg;
239 bool has_index;
240 };
241
242 static const struct {
243 const char *name;
244 u32 vsync_irq;
245 u32 framedone_irq;
246 u32 sync_lost_irq;
247 struct dispc_gamma_desc gamma;
248 struct dispc_reg_field reg_desc[DISPC_MGR_FLD_NUM];
249 } mgr_desc[] = {
250 [OMAP_DSS_CHANNEL_LCD] = {
251 .name = "LCD",
252 .vsync_irq = DISPC_IRQ_VSYNC,
253 .framedone_irq = DISPC_IRQ_FRAMEDONE,
254 .sync_lost_irq = DISPC_IRQ_SYNC_LOST,
255 .gamma = {
256 .len = 256,
257 .bits = 8,
258 .reg = DISPC_GAMMA_TABLE0,
259 .has_index = true,
260 },
261 .reg_desc = {
262 [DISPC_MGR_FLD_ENABLE] = { DISPC_CONTROL, 0, 0 },
263 [DISPC_MGR_FLD_STNTFT] = { DISPC_CONTROL, 3, 3 },
264 [DISPC_MGR_FLD_GO] = { DISPC_CONTROL, 5, 5 },
265 [DISPC_MGR_FLD_TFTDATALINES] = { DISPC_CONTROL, 9, 8 },
266 [DISPC_MGR_FLD_STALLMODE] = { DISPC_CONTROL, 11, 11 },
267 [DISPC_MGR_FLD_TCKENABLE] = { DISPC_CONFIG, 10, 10 },
268 [DISPC_MGR_FLD_TCKSELECTION] = { DISPC_CONFIG, 11, 11 },
269 [DISPC_MGR_FLD_CPR] = { DISPC_CONFIG, 15, 15 },
270 [DISPC_MGR_FLD_FIFOHANDCHECK] = { DISPC_CONFIG, 16, 16 },
271 },
272 },
273 [OMAP_DSS_CHANNEL_DIGIT] = {
274 .name = "DIGIT",
275 .vsync_irq = DISPC_IRQ_EVSYNC_ODD | DISPC_IRQ_EVSYNC_EVEN,
276 .framedone_irq = DISPC_IRQ_FRAMEDONETV,
277 .sync_lost_irq = DISPC_IRQ_SYNC_LOST_DIGIT,
278 .gamma = {
279 .len = 1024,
280 .bits = 10,
281 .reg = DISPC_GAMMA_TABLE2,
282 .has_index = false,
283 },
284 .reg_desc = {
285 [DISPC_MGR_FLD_ENABLE] = { DISPC_CONTROL, 1, 1 },
286 [DISPC_MGR_FLD_STNTFT] = { },
287 [DISPC_MGR_FLD_GO] = { DISPC_CONTROL, 6, 6 },
288 [DISPC_MGR_FLD_TFTDATALINES] = { },
289 [DISPC_MGR_FLD_STALLMODE] = { },
290 [DISPC_MGR_FLD_TCKENABLE] = { DISPC_CONFIG, 12, 12 },
291 [DISPC_MGR_FLD_TCKSELECTION] = { DISPC_CONFIG, 13, 13 },
292 [DISPC_MGR_FLD_CPR] = { },
293 [DISPC_MGR_FLD_FIFOHANDCHECK] = { DISPC_CONFIG, 16, 16 },
294 },
295 },
296 [OMAP_DSS_CHANNEL_LCD2] = {
297 .name = "LCD2",
298 .vsync_irq = DISPC_IRQ_VSYNC2,
299 .framedone_irq = DISPC_IRQ_FRAMEDONE2,
300 .sync_lost_irq = DISPC_IRQ_SYNC_LOST2,
301 .gamma = {
302 .len = 256,
303 .bits = 8,
304 .reg = DISPC_GAMMA_TABLE1,
305 .has_index = true,
306 },
307 .reg_desc = {
308 [DISPC_MGR_FLD_ENABLE] = { DISPC_CONTROL2, 0, 0 },
309 [DISPC_MGR_FLD_STNTFT] = { DISPC_CONTROL2, 3, 3 },
310 [DISPC_MGR_FLD_GO] = { DISPC_CONTROL2, 5, 5 },
311 [DISPC_MGR_FLD_TFTDATALINES] = { DISPC_CONTROL2, 9, 8 },
312 [DISPC_MGR_FLD_STALLMODE] = { DISPC_CONTROL2, 11, 11 },
313 [DISPC_MGR_FLD_TCKENABLE] = { DISPC_CONFIG2, 10, 10 },
314 [DISPC_MGR_FLD_TCKSELECTION] = { DISPC_CONFIG2, 11, 11 },
315 [DISPC_MGR_FLD_CPR] = { DISPC_CONFIG2, 15, 15 },
316 [DISPC_MGR_FLD_FIFOHANDCHECK] = { DISPC_CONFIG2, 16, 16 },
317 },
318 },
319 [OMAP_DSS_CHANNEL_LCD3] = {
320 .name = "LCD3",
321 .vsync_irq = DISPC_IRQ_VSYNC3,
322 .framedone_irq = DISPC_IRQ_FRAMEDONE3,
323 .sync_lost_irq = DISPC_IRQ_SYNC_LOST3,
324 .gamma = {
325 .len = 256,
326 .bits = 8,
327 .reg = DISPC_GAMMA_TABLE3,
328 .has_index = true,
329 },
330 .reg_desc = {
331 [DISPC_MGR_FLD_ENABLE] = { DISPC_CONTROL3, 0, 0 },
332 [DISPC_MGR_FLD_STNTFT] = { DISPC_CONTROL3, 3, 3 },
333 [DISPC_MGR_FLD_GO] = { DISPC_CONTROL3, 5, 5 },
334 [DISPC_MGR_FLD_TFTDATALINES] = { DISPC_CONTROL3, 9, 8 },
335 [DISPC_MGR_FLD_STALLMODE] = { DISPC_CONTROL3, 11, 11 },
336 [DISPC_MGR_FLD_TCKENABLE] = { DISPC_CONFIG3, 10, 10 },
337 [DISPC_MGR_FLD_TCKSELECTION] = { DISPC_CONFIG3, 11, 11 },
338 [DISPC_MGR_FLD_CPR] = { DISPC_CONFIG3, 15, 15 },
339 [DISPC_MGR_FLD_FIFOHANDCHECK] = { DISPC_CONFIG3, 16, 16 },
340 },
341 },
342 };
343
344 static unsigned long dispc_fclk_rate(struct dispc_device *dispc);
345 static unsigned long dispc_core_clk_rate(struct dispc_device *dispc);
346 static unsigned long dispc_mgr_lclk_rate(struct dispc_device *dispc,
347 enum omap_channel channel);
348 static unsigned long dispc_mgr_pclk_rate(struct dispc_device *dispc,
349 enum omap_channel channel);
350
351 static unsigned long dispc_plane_pclk_rate(struct dispc_device *dispc,
352 enum omap_plane_id plane);
353 static unsigned long dispc_plane_lclk_rate(struct dispc_device *dispc,
354 enum omap_plane_id plane);
355
dispc_write_reg(struct dispc_device * dispc,u16 idx,u32 val)356 static inline void dispc_write_reg(struct dispc_device *dispc, u16 idx, u32 val)
357 {
358 __raw_writel(val, dispc->base + idx);
359 }
360
dispc_read_reg(struct dispc_device * dispc,u16 idx)361 static inline u32 dispc_read_reg(struct dispc_device *dispc, u16 idx)
362 {
363 return __raw_readl(dispc->base + idx);
364 }
365
mgr_fld_read(struct dispc_device * dispc,enum omap_channel channel,enum mgr_reg_fields regfld)366 static u32 mgr_fld_read(struct dispc_device *dispc, enum omap_channel channel,
367 enum mgr_reg_fields regfld)
368 {
369 const struct dispc_reg_field *rfld = &mgr_desc[channel].reg_desc[regfld];
370
371 return REG_GET(dispc, rfld->reg, rfld->high, rfld->low);
372 }
373
mgr_fld_write(struct dispc_device * dispc,enum omap_channel channel,enum mgr_reg_fields regfld,int val)374 static void mgr_fld_write(struct dispc_device *dispc, enum omap_channel channel,
375 enum mgr_reg_fields regfld, int val)
376 {
377 const struct dispc_reg_field *rfld = &mgr_desc[channel].reg_desc[regfld];
378
379 REG_FLD_MOD(dispc, rfld->reg, val, rfld->high, rfld->low);
380 }
381
dispc_get_num_ovls(struct dispc_device * dispc)382 int dispc_get_num_ovls(struct dispc_device *dispc)
383 {
384 return dispc->feat->num_ovls;
385 }
386
dispc_get_num_mgrs(struct dispc_device * dispc)387 int dispc_get_num_mgrs(struct dispc_device *dispc)
388 {
389 return dispc->feat->num_mgrs;
390 }
391
dispc_get_reg_field(struct dispc_device * dispc,enum dispc_feat_reg_field id,u8 * start,u8 * end)392 static void dispc_get_reg_field(struct dispc_device *dispc,
393 enum dispc_feat_reg_field id,
394 u8 *start, u8 *end)
395 {
396 BUG_ON(id >= dispc->feat->num_reg_fields);
397
398 *start = dispc->feat->reg_fields[id].start;
399 *end = dispc->feat->reg_fields[id].end;
400 }
401
dispc_has_feature(struct dispc_device * dispc,enum dispc_feature_id id)402 static bool dispc_has_feature(struct dispc_device *dispc,
403 enum dispc_feature_id id)
404 {
405 unsigned int i;
406
407 for (i = 0; i < dispc->feat->num_features; i++) {
408 if (dispc->feat->features[i] == id)
409 return true;
410 }
411
412 return false;
413 }
414
415 #define SR(dispc, reg) \
416 dispc->ctx[DISPC_##reg / sizeof(u32)] = dispc_read_reg(dispc, DISPC_##reg)
417 #define RR(dispc, reg) \
418 dispc_write_reg(dispc, DISPC_##reg, dispc->ctx[DISPC_##reg / sizeof(u32)])
419
dispc_save_context(struct dispc_device * dispc)420 static void dispc_save_context(struct dispc_device *dispc)
421 {
422 int i, j;
423
424 DSSDBG("dispc_save_context\n");
425
426 SR(dispc, IRQENABLE);
427 SR(dispc, CONTROL);
428 SR(dispc, CONFIG);
429 SR(dispc, LINE_NUMBER);
430 if (dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER) ||
431 dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER))
432 SR(dispc, GLOBAL_ALPHA);
433 if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) {
434 SR(dispc, CONTROL2);
435 SR(dispc, CONFIG2);
436 }
437 if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) {
438 SR(dispc, CONTROL3);
439 SR(dispc, CONFIG3);
440 }
441
442 for (i = 0; i < dispc_get_num_mgrs(dispc); i++) {
443 SR(dispc, DEFAULT_COLOR(i));
444 SR(dispc, TRANS_COLOR(i));
445 SR(dispc, SIZE_MGR(i));
446 if (i == OMAP_DSS_CHANNEL_DIGIT)
447 continue;
448 SR(dispc, TIMING_H(i));
449 SR(dispc, TIMING_V(i));
450 SR(dispc, POL_FREQ(i));
451 SR(dispc, DIVISORo(i));
452
453 SR(dispc, DATA_CYCLE1(i));
454 SR(dispc, DATA_CYCLE2(i));
455 SR(dispc, DATA_CYCLE3(i));
456
457 if (dispc_has_feature(dispc, FEAT_CPR)) {
458 SR(dispc, CPR_COEF_R(i));
459 SR(dispc, CPR_COEF_G(i));
460 SR(dispc, CPR_COEF_B(i));
461 }
462 }
463
464 for (i = 0; i < dispc_get_num_ovls(dispc); i++) {
465 SR(dispc, OVL_BA0(i));
466 SR(dispc, OVL_BA1(i));
467 SR(dispc, OVL_POSITION(i));
468 SR(dispc, OVL_SIZE(i));
469 SR(dispc, OVL_ATTRIBUTES(i));
470 SR(dispc, OVL_FIFO_THRESHOLD(i));
471 SR(dispc, OVL_ROW_INC(i));
472 SR(dispc, OVL_PIXEL_INC(i));
473 if (dispc_has_feature(dispc, FEAT_PRELOAD))
474 SR(dispc, OVL_PRELOAD(i));
475 if (i == OMAP_DSS_GFX) {
476 SR(dispc, OVL_WINDOW_SKIP(i));
477 SR(dispc, OVL_TABLE_BA(i));
478 continue;
479 }
480 SR(dispc, OVL_FIR(i));
481 SR(dispc, OVL_PICTURE_SIZE(i));
482 SR(dispc, OVL_ACCU0(i));
483 SR(dispc, OVL_ACCU1(i));
484
485 for (j = 0; j < 8; j++)
486 SR(dispc, OVL_FIR_COEF_H(i, j));
487
488 for (j = 0; j < 8; j++)
489 SR(dispc, OVL_FIR_COEF_HV(i, j));
490
491 for (j = 0; j < 5; j++)
492 SR(dispc, OVL_CONV_COEF(i, j));
493
494 if (dispc_has_feature(dispc, FEAT_FIR_COEF_V)) {
495 for (j = 0; j < 8; j++)
496 SR(dispc, OVL_FIR_COEF_V(i, j));
497 }
498
499 if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
500 SR(dispc, OVL_BA0_UV(i));
501 SR(dispc, OVL_BA1_UV(i));
502 SR(dispc, OVL_FIR2(i));
503 SR(dispc, OVL_ACCU2_0(i));
504 SR(dispc, OVL_ACCU2_1(i));
505
506 for (j = 0; j < 8; j++)
507 SR(dispc, OVL_FIR_COEF_H2(i, j));
508
509 for (j = 0; j < 8; j++)
510 SR(dispc, OVL_FIR_COEF_HV2(i, j));
511
512 for (j = 0; j < 8; j++)
513 SR(dispc, OVL_FIR_COEF_V2(i, j));
514 }
515 if (dispc_has_feature(dispc, FEAT_ATTR2))
516 SR(dispc, OVL_ATTRIBUTES2(i));
517 }
518
519 if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV))
520 SR(dispc, DIVISOR);
521
522 dispc->ctx_valid = true;
523
524 DSSDBG("context saved\n");
525 }
526
dispc_restore_context(struct dispc_device * dispc)527 static void dispc_restore_context(struct dispc_device *dispc)
528 {
529 int i, j;
530
531 DSSDBG("dispc_restore_context\n");
532
533 if (!dispc->ctx_valid)
534 return;
535
536 /*RR(dispc, IRQENABLE);*/
537 /*RR(dispc, CONTROL);*/
538 RR(dispc, CONFIG);
539 RR(dispc, LINE_NUMBER);
540 if (dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER) ||
541 dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER))
542 RR(dispc, GLOBAL_ALPHA);
543 if (dispc_has_feature(dispc, FEAT_MGR_LCD2))
544 RR(dispc, CONFIG2);
545 if (dispc_has_feature(dispc, FEAT_MGR_LCD3))
546 RR(dispc, CONFIG3);
547
548 for (i = 0; i < dispc_get_num_mgrs(dispc); i++) {
549 RR(dispc, DEFAULT_COLOR(i));
550 RR(dispc, TRANS_COLOR(i));
551 RR(dispc, SIZE_MGR(i));
552 if (i == OMAP_DSS_CHANNEL_DIGIT)
553 continue;
554 RR(dispc, TIMING_H(i));
555 RR(dispc, TIMING_V(i));
556 RR(dispc, POL_FREQ(i));
557 RR(dispc, DIVISORo(i));
558
559 RR(dispc, DATA_CYCLE1(i));
560 RR(dispc, DATA_CYCLE2(i));
561 RR(dispc, DATA_CYCLE3(i));
562
563 if (dispc_has_feature(dispc, FEAT_CPR)) {
564 RR(dispc, CPR_COEF_R(i));
565 RR(dispc, CPR_COEF_G(i));
566 RR(dispc, CPR_COEF_B(i));
567 }
568 }
569
570 for (i = 0; i < dispc_get_num_ovls(dispc); i++) {
571 RR(dispc, OVL_BA0(i));
572 RR(dispc, OVL_BA1(i));
573 RR(dispc, OVL_POSITION(i));
574 RR(dispc, OVL_SIZE(i));
575 RR(dispc, OVL_ATTRIBUTES(i));
576 RR(dispc, OVL_FIFO_THRESHOLD(i));
577 RR(dispc, OVL_ROW_INC(i));
578 RR(dispc, OVL_PIXEL_INC(i));
579 if (dispc_has_feature(dispc, FEAT_PRELOAD))
580 RR(dispc, OVL_PRELOAD(i));
581 if (i == OMAP_DSS_GFX) {
582 RR(dispc, OVL_WINDOW_SKIP(i));
583 RR(dispc, OVL_TABLE_BA(i));
584 continue;
585 }
586 RR(dispc, OVL_FIR(i));
587 RR(dispc, OVL_PICTURE_SIZE(i));
588 RR(dispc, OVL_ACCU0(i));
589 RR(dispc, OVL_ACCU1(i));
590
591 for (j = 0; j < 8; j++)
592 RR(dispc, OVL_FIR_COEF_H(i, j));
593
594 for (j = 0; j < 8; j++)
595 RR(dispc, OVL_FIR_COEF_HV(i, j));
596
597 for (j = 0; j < 5; j++)
598 RR(dispc, OVL_CONV_COEF(i, j));
599
600 if (dispc_has_feature(dispc, FEAT_FIR_COEF_V)) {
601 for (j = 0; j < 8; j++)
602 RR(dispc, OVL_FIR_COEF_V(i, j));
603 }
604
605 if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
606 RR(dispc, OVL_BA0_UV(i));
607 RR(dispc, OVL_BA1_UV(i));
608 RR(dispc, OVL_FIR2(i));
609 RR(dispc, OVL_ACCU2_0(i));
610 RR(dispc, OVL_ACCU2_1(i));
611
612 for (j = 0; j < 8; j++)
613 RR(dispc, OVL_FIR_COEF_H2(i, j));
614
615 for (j = 0; j < 8; j++)
616 RR(dispc, OVL_FIR_COEF_HV2(i, j));
617
618 for (j = 0; j < 8; j++)
619 RR(dispc, OVL_FIR_COEF_V2(i, j));
620 }
621 if (dispc_has_feature(dispc, FEAT_ATTR2))
622 RR(dispc, OVL_ATTRIBUTES2(i));
623 }
624
625 if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV))
626 RR(dispc, DIVISOR);
627
628 /* enable last, because LCD & DIGIT enable are here */
629 RR(dispc, CONTROL);
630 if (dispc_has_feature(dispc, FEAT_MGR_LCD2))
631 RR(dispc, CONTROL2);
632 if (dispc_has_feature(dispc, FEAT_MGR_LCD3))
633 RR(dispc, CONTROL3);
634 /* clear spurious SYNC_LOST_DIGIT interrupts */
635 dispc_clear_irqstatus(dispc, DISPC_IRQ_SYNC_LOST_DIGIT);
636
637 /*
638 * enable last so IRQs won't trigger before
639 * the context is fully restored
640 */
641 RR(dispc, IRQENABLE);
642
643 DSSDBG("context restored\n");
644 }
645
646 #undef SR
647 #undef RR
648
dispc_runtime_get(struct dispc_device * dispc)649 int dispc_runtime_get(struct dispc_device *dispc)
650 {
651 int r;
652
653 DSSDBG("dispc_runtime_get\n");
654
655 r = pm_runtime_get_sync(&dispc->pdev->dev);
656 if (WARN_ON(r < 0)) {
657 pm_runtime_put_noidle(&dispc->pdev->dev);
658 return r;
659 }
660 return 0;
661 }
662
dispc_runtime_put(struct dispc_device * dispc)663 void dispc_runtime_put(struct dispc_device *dispc)
664 {
665 int r;
666
667 DSSDBG("dispc_runtime_put\n");
668
669 r = pm_runtime_put_sync(&dispc->pdev->dev);
670 WARN_ON(r < 0 && r != -ENOSYS);
671 }
672
dispc_mgr_get_vsync_irq(struct dispc_device * dispc,enum omap_channel channel)673 u32 dispc_mgr_get_vsync_irq(struct dispc_device *dispc,
674 enum omap_channel channel)
675 {
676 return mgr_desc[channel].vsync_irq;
677 }
678
dispc_mgr_get_framedone_irq(struct dispc_device * dispc,enum omap_channel channel)679 u32 dispc_mgr_get_framedone_irq(struct dispc_device *dispc,
680 enum omap_channel channel)
681 {
682 if (channel == OMAP_DSS_CHANNEL_DIGIT && dispc->feat->no_framedone_tv)
683 return 0;
684
685 return mgr_desc[channel].framedone_irq;
686 }
687
dispc_mgr_get_sync_lost_irq(struct dispc_device * dispc,enum omap_channel channel)688 u32 dispc_mgr_get_sync_lost_irq(struct dispc_device *dispc,
689 enum omap_channel channel)
690 {
691 return mgr_desc[channel].sync_lost_irq;
692 }
693
dispc_wb_get_framedone_irq(struct dispc_device * dispc)694 u32 dispc_wb_get_framedone_irq(struct dispc_device *dispc)
695 {
696 return DISPC_IRQ_FRAMEDONEWB;
697 }
698
dispc_mgr_enable(struct dispc_device * dispc,enum omap_channel channel,bool enable)699 void dispc_mgr_enable(struct dispc_device *dispc,
700 enum omap_channel channel, bool enable)
701 {
702 mgr_fld_write(dispc, channel, DISPC_MGR_FLD_ENABLE, enable);
703 /* flush posted write */
704 mgr_fld_read(dispc, channel, DISPC_MGR_FLD_ENABLE);
705 }
706
dispc_mgr_is_enabled(struct dispc_device * dispc,enum omap_channel channel)707 static bool dispc_mgr_is_enabled(struct dispc_device *dispc,
708 enum omap_channel channel)
709 {
710 return !!mgr_fld_read(dispc, channel, DISPC_MGR_FLD_ENABLE);
711 }
712
dispc_mgr_go_busy(struct dispc_device * dispc,enum omap_channel channel)713 bool dispc_mgr_go_busy(struct dispc_device *dispc,
714 enum omap_channel channel)
715 {
716 return mgr_fld_read(dispc, channel, DISPC_MGR_FLD_GO) == 1;
717 }
718
dispc_mgr_go(struct dispc_device * dispc,enum omap_channel channel)719 void dispc_mgr_go(struct dispc_device *dispc, enum omap_channel channel)
720 {
721 WARN_ON(!dispc_mgr_is_enabled(dispc, channel));
722 WARN_ON(dispc_mgr_go_busy(dispc, channel));
723
724 DSSDBG("GO %s\n", mgr_desc[channel].name);
725
726 mgr_fld_write(dispc, channel, DISPC_MGR_FLD_GO, 1);
727 }
728
dispc_wb_go_busy(struct dispc_device * dispc)729 bool dispc_wb_go_busy(struct dispc_device *dispc)
730 {
731 return REG_GET(dispc, DISPC_CONTROL2, 6, 6) == 1;
732 }
733
dispc_wb_go(struct dispc_device * dispc)734 void dispc_wb_go(struct dispc_device *dispc)
735 {
736 enum omap_plane_id plane = OMAP_DSS_WB;
737 bool enable, go;
738
739 enable = REG_GET(dispc, DISPC_OVL_ATTRIBUTES(plane), 0, 0) == 1;
740
741 if (!enable)
742 return;
743
744 go = REG_GET(dispc, DISPC_CONTROL2, 6, 6) == 1;
745 if (go) {
746 DSSERR("GO bit not down for WB\n");
747 return;
748 }
749
750 REG_FLD_MOD(dispc, DISPC_CONTROL2, 1, 6, 6);
751 }
752
dispc_ovl_write_firh_reg(struct dispc_device * dispc,enum omap_plane_id plane,int reg,u32 value)753 static void dispc_ovl_write_firh_reg(struct dispc_device *dispc,
754 enum omap_plane_id plane, int reg,
755 u32 value)
756 {
757 dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_H(plane, reg), value);
758 }
759
dispc_ovl_write_firhv_reg(struct dispc_device * dispc,enum omap_plane_id plane,int reg,u32 value)760 static void dispc_ovl_write_firhv_reg(struct dispc_device *dispc,
761 enum omap_plane_id plane, int reg,
762 u32 value)
763 {
764 dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_HV(plane, reg), value);
765 }
766
dispc_ovl_write_firv_reg(struct dispc_device * dispc,enum omap_plane_id plane,int reg,u32 value)767 static void dispc_ovl_write_firv_reg(struct dispc_device *dispc,
768 enum omap_plane_id plane, int reg,
769 u32 value)
770 {
771 dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_V(plane, reg), value);
772 }
773
dispc_ovl_write_firh2_reg(struct dispc_device * dispc,enum omap_plane_id plane,int reg,u32 value)774 static void dispc_ovl_write_firh2_reg(struct dispc_device *dispc,
775 enum omap_plane_id plane, int reg,
776 u32 value)
777 {
778 BUG_ON(plane == OMAP_DSS_GFX);
779
780 dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_H2(plane, reg), value);
781 }
782
dispc_ovl_write_firhv2_reg(struct dispc_device * dispc,enum omap_plane_id plane,int reg,u32 value)783 static void dispc_ovl_write_firhv2_reg(struct dispc_device *dispc,
784 enum omap_plane_id plane, int reg,
785 u32 value)
786 {
787 BUG_ON(plane == OMAP_DSS_GFX);
788
789 dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_HV2(plane, reg), value);
790 }
791
dispc_ovl_write_firv2_reg(struct dispc_device * dispc,enum omap_plane_id plane,int reg,u32 value)792 static void dispc_ovl_write_firv2_reg(struct dispc_device *dispc,
793 enum omap_plane_id plane, int reg,
794 u32 value)
795 {
796 BUG_ON(plane == OMAP_DSS_GFX);
797
798 dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_V2(plane, reg), value);
799 }
800
dispc_ovl_set_scale_coef(struct dispc_device * dispc,enum omap_plane_id plane,int fir_hinc,int fir_vinc,int five_taps,enum omap_color_component color_comp)801 static void dispc_ovl_set_scale_coef(struct dispc_device *dispc,
802 enum omap_plane_id plane, int fir_hinc,
803 int fir_vinc, int five_taps,
804 enum omap_color_component color_comp)
805 {
806 const struct dispc_coef *h_coef, *v_coef;
807 int i;
808
809 h_coef = dispc_ovl_get_scale_coef(fir_hinc, true);
810 v_coef = dispc_ovl_get_scale_coef(fir_vinc, five_taps);
811
812 if (!h_coef || !v_coef) {
813 dev_err(&dispc->pdev->dev, "%s: failed to find scale coefs\n",
814 __func__);
815 return;
816 }
817
818 for (i = 0; i < 8; i++) {
819 u32 h, hv;
820
821 h = FLD_VAL(h_coef[i].hc0_vc00, 7, 0)
822 | FLD_VAL(h_coef[i].hc1_vc0, 15, 8)
823 | FLD_VAL(h_coef[i].hc2_vc1, 23, 16)
824 | FLD_VAL(h_coef[i].hc3_vc2, 31, 24);
825 hv = FLD_VAL(h_coef[i].hc4_vc22, 7, 0)
826 | FLD_VAL(v_coef[i].hc1_vc0, 15, 8)
827 | FLD_VAL(v_coef[i].hc2_vc1, 23, 16)
828 | FLD_VAL(v_coef[i].hc3_vc2, 31, 24);
829
830 if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y) {
831 dispc_ovl_write_firh_reg(dispc, plane, i, h);
832 dispc_ovl_write_firhv_reg(dispc, plane, i, hv);
833 } else {
834 dispc_ovl_write_firh2_reg(dispc, plane, i, h);
835 dispc_ovl_write_firhv2_reg(dispc, plane, i, hv);
836 }
837
838 }
839
840 if (five_taps) {
841 for (i = 0; i < 8; i++) {
842 u32 v;
843 v = FLD_VAL(v_coef[i].hc0_vc00, 7, 0)
844 | FLD_VAL(v_coef[i].hc4_vc22, 15, 8);
845 if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y)
846 dispc_ovl_write_firv_reg(dispc, plane, i, v);
847 else
848 dispc_ovl_write_firv2_reg(dispc, plane, i, v);
849 }
850 }
851 }
852
853 struct csc_coef_yuv2rgb {
854 int ry, rcb, rcr, gy, gcb, gcr, by, bcb, bcr;
855 bool full_range;
856 };
857
858 struct csc_coef_rgb2yuv {
859 int yr, yg, yb, cbr, cbg, cbb, crr, crg, crb;
860 bool full_range;
861 };
862
dispc_ovl_write_color_conv_coef(struct dispc_device * dispc,enum omap_plane_id plane,const struct csc_coef_yuv2rgb * ct)863 static void dispc_ovl_write_color_conv_coef(struct dispc_device *dispc,
864 enum omap_plane_id plane,
865 const struct csc_coef_yuv2rgb *ct)
866 {
867 #define CVAL(x, y) (FLD_VAL(x, 26, 16) | FLD_VAL(y, 10, 0))
868
869 dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 0), CVAL(ct->rcr, ct->ry));
870 dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 1), CVAL(ct->gy, ct->rcb));
871 dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 2), CVAL(ct->gcb, ct->gcr));
872 dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 3), CVAL(ct->bcr, ct->by));
873 dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 4), CVAL(0, ct->bcb));
874
875 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), ct->full_range, 11, 11);
876
877 #undef CVAL
878 }
879
880 /* YUV -> RGB, ITU-R BT.601, full range */
881 static const struct csc_coef_yuv2rgb coefs_yuv2rgb_bt601_full = {
882 256, 0, 358, /* ry, rcb, rcr |1.000 0.000 1.402|*/
883 256, -88, -182, /* gy, gcb, gcr |1.000 -0.344 -0.714|*/
884 256, 452, 0, /* by, bcb, bcr |1.000 1.772 0.000|*/
885 true, /* full range */
886 };
887
888 /* YUV -> RGB, ITU-R BT.601, limited range */
889 static const struct csc_coef_yuv2rgb coefs_yuv2rgb_bt601_lim = {
890 298, 0, 409, /* ry, rcb, rcr |1.164 0.000 1.596|*/
891 298, -100, -208, /* gy, gcb, gcr |1.164 -0.392 -0.813|*/
892 298, 516, 0, /* by, bcb, bcr |1.164 2.017 0.000|*/
893 false, /* limited range */
894 };
895
896 /* YUV -> RGB, ITU-R BT.709, full range */
897 static const struct csc_coef_yuv2rgb coefs_yuv2rgb_bt709_full = {
898 256, 0, 402, /* ry, rcb, rcr |1.000 0.000 1.570|*/
899 256, -48, -120, /* gy, gcb, gcr |1.000 -0.187 -0.467|*/
900 256, 475, 0, /* by, bcb, bcr |1.000 1.856 0.000|*/
901 true, /* full range */
902 };
903
904 /* YUV -> RGB, ITU-R BT.709, limited range */
905 static const struct csc_coef_yuv2rgb coefs_yuv2rgb_bt709_lim = {
906 298, 0, 459, /* ry, rcb, rcr |1.164 0.000 1.793|*/
907 298, -55, -136, /* gy, gcb, gcr |1.164 -0.213 -0.533|*/
908 298, 541, 0, /* by, bcb, bcr |1.164 2.112 0.000|*/
909 false, /* limited range */
910 };
911
dispc_ovl_set_csc(struct dispc_device * dispc,enum omap_plane_id plane,enum drm_color_encoding color_encoding,enum drm_color_range color_range)912 static void dispc_ovl_set_csc(struct dispc_device *dispc,
913 enum omap_plane_id plane,
914 enum drm_color_encoding color_encoding,
915 enum drm_color_range color_range)
916 {
917 const struct csc_coef_yuv2rgb *csc;
918
919 switch (color_encoding) {
920 default:
921 case DRM_COLOR_YCBCR_BT601:
922 if (color_range == DRM_COLOR_YCBCR_FULL_RANGE)
923 csc = &coefs_yuv2rgb_bt601_full;
924 else
925 csc = &coefs_yuv2rgb_bt601_lim;
926 break;
927 case DRM_COLOR_YCBCR_BT709:
928 if (color_range == DRM_COLOR_YCBCR_FULL_RANGE)
929 csc = &coefs_yuv2rgb_bt709_full;
930 else
931 csc = &coefs_yuv2rgb_bt709_lim;
932 break;
933 }
934
935 dispc_ovl_write_color_conv_coef(dispc, plane, csc);
936 }
937
dispc_ovl_set_ba0(struct dispc_device * dispc,enum omap_plane_id plane,u32 paddr)938 static void dispc_ovl_set_ba0(struct dispc_device *dispc,
939 enum omap_plane_id plane, u32 paddr)
940 {
941 dispc_write_reg(dispc, DISPC_OVL_BA0(plane), paddr);
942 }
943
dispc_ovl_set_ba1(struct dispc_device * dispc,enum omap_plane_id plane,u32 paddr)944 static void dispc_ovl_set_ba1(struct dispc_device *dispc,
945 enum omap_plane_id plane, u32 paddr)
946 {
947 dispc_write_reg(dispc, DISPC_OVL_BA1(plane), paddr);
948 }
949
dispc_ovl_set_ba0_uv(struct dispc_device * dispc,enum omap_plane_id plane,u32 paddr)950 static void dispc_ovl_set_ba0_uv(struct dispc_device *dispc,
951 enum omap_plane_id plane, u32 paddr)
952 {
953 dispc_write_reg(dispc, DISPC_OVL_BA0_UV(plane), paddr);
954 }
955
dispc_ovl_set_ba1_uv(struct dispc_device * dispc,enum omap_plane_id plane,u32 paddr)956 static void dispc_ovl_set_ba1_uv(struct dispc_device *dispc,
957 enum omap_plane_id plane, u32 paddr)
958 {
959 dispc_write_reg(dispc, DISPC_OVL_BA1_UV(plane), paddr);
960 }
961
dispc_ovl_set_pos(struct dispc_device * dispc,enum omap_plane_id plane,enum omap_overlay_caps caps,int x,int y)962 static void dispc_ovl_set_pos(struct dispc_device *dispc,
963 enum omap_plane_id plane,
964 enum omap_overlay_caps caps, int x, int y)
965 {
966 u32 val;
967
968 if ((caps & OMAP_DSS_OVL_CAP_POS) == 0)
969 return;
970
971 val = FLD_VAL(y, 26, 16) | FLD_VAL(x, 10, 0);
972
973 dispc_write_reg(dispc, DISPC_OVL_POSITION(plane), val);
974 }
975
dispc_ovl_set_input_size(struct dispc_device * dispc,enum omap_plane_id plane,int width,int height)976 static void dispc_ovl_set_input_size(struct dispc_device *dispc,
977 enum omap_plane_id plane, int width,
978 int height)
979 {
980 u32 val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
981
982 if (plane == OMAP_DSS_GFX || plane == OMAP_DSS_WB)
983 dispc_write_reg(dispc, DISPC_OVL_SIZE(plane), val);
984 else
985 dispc_write_reg(dispc, DISPC_OVL_PICTURE_SIZE(plane), val);
986 }
987
dispc_ovl_set_output_size(struct dispc_device * dispc,enum omap_plane_id plane,int width,int height)988 static void dispc_ovl_set_output_size(struct dispc_device *dispc,
989 enum omap_plane_id plane, int width,
990 int height)
991 {
992 u32 val;
993
994 BUG_ON(plane == OMAP_DSS_GFX);
995
996 val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
997
998 if (plane == OMAP_DSS_WB)
999 dispc_write_reg(dispc, DISPC_OVL_PICTURE_SIZE(plane), val);
1000 else
1001 dispc_write_reg(dispc, DISPC_OVL_SIZE(plane), val);
1002 }
1003
dispc_ovl_set_zorder(struct dispc_device * dispc,enum omap_plane_id plane,enum omap_overlay_caps caps,u8 zorder)1004 static void dispc_ovl_set_zorder(struct dispc_device *dispc,
1005 enum omap_plane_id plane,
1006 enum omap_overlay_caps caps, u8 zorder)
1007 {
1008 if ((caps & OMAP_DSS_OVL_CAP_ZORDER) == 0)
1009 return;
1010
1011 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), zorder, 27, 26);
1012 }
1013
dispc_ovl_enable_zorder_planes(struct dispc_device * dispc)1014 static void dispc_ovl_enable_zorder_planes(struct dispc_device *dispc)
1015 {
1016 int i;
1017
1018 if (!dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER))
1019 return;
1020
1021 for (i = 0; i < dispc_get_num_ovls(dispc); i++)
1022 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(i), 1, 25, 25);
1023 }
1024
dispc_ovl_set_pre_mult_alpha(struct dispc_device * dispc,enum omap_plane_id plane,enum omap_overlay_caps caps,bool enable)1025 static void dispc_ovl_set_pre_mult_alpha(struct dispc_device *dispc,
1026 enum omap_plane_id plane,
1027 enum omap_overlay_caps caps,
1028 bool enable)
1029 {
1030 if ((caps & OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA) == 0)
1031 return;
1032
1033 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable ? 1 : 0, 28, 28);
1034 }
1035
dispc_ovl_setup_global_alpha(struct dispc_device * dispc,enum omap_plane_id plane,enum omap_overlay_caps caps,u8 global_alpha)1036 static void dispc_ovl_setup_global_alpha(struct dispc_device *dispc,
1037 enum omap_plane_id plane,
1038 enum omap_overlay_caps caps,
1039 u8 global_alpha)
1040 {
1041 static const unsigned int shifts[] = { 0, 8, 16, 24, };
1042 int shift;
1043
1044 if ((caps & OMAP_DSS_OVL_CAP_GLOBAL_ALPHA) == 0)
1045 return;
1046
1047 shift = shifts[plane];
1048 REG_FLD_MOD(dispc, DISPC_GLOBAL_ALPHA, global_alpha, shift + 7, shift);
1049 }
1050
dispc_ovl_set_pix_inc(struct dispc_device * dispc,enum omap_plane_id plane,s32 inc)1051 static void dispc_ovl_set_pix_inc(struct dispc_device *dispc,
1052 enum omap_plane_id plane, s32 inc)
1053 {
1054 dispc_write_reg(dispc, DISPC_OVL_PIXEL_INC(plane), inc);
1055 }
1056
dispc_ovl_set_row_inc(struct dispc_device * dispc,enum omap_plane_id plane,s32 inc)1057 static void dispc_ovl_set_row_inc(struct dispc_device *dispc,
1058 enum omap_plane_id plane, s32 inc)
1059 {
1060 dispc_write_reg(dispc, DISPC_OVL_ROW_INC(plane), inc);
1061 }
1062
dispc_ovl_set_color_mode(struct dispc_device * dispc,enum omap_plane_id plane,u32 fourcc)1063 static void dispc_ovl_set_color_mode(struct dispc_device *dispc,
1064 enum omap_plane_id plane, u32 fourcc)
1065 {
1066 u32 m = 0;
1067 if (plane != OMAP_DSS_GFX) {
1068 switch (fourcc) {
1069 case DRM_FORMAT_NV12:
1070 m = 0x0; break;
1071 case DRM_FORMAT_XRGB4444:
1072 m = 0x1; break;
1073 case DRM_FORMAT_RGBA4444:
1074 m = 0x2; break;
1075 case DRM_FORMAT_RGBX4444:
1076 m = 0x4; break;
1077 case DRM_FORMAT_ARGB4444:
1078 m = 0x5; break;
1079 case DRM_FORMAT_RGB565:
1080 m = 0x6; break;
1081 case DRM_FORMAT_ARGB1555:
1082 m = 0x7; break;
1083 case DRM_FORMAT_XRGB8888:
1084 m = 0x8; break;
1085 case DRM_FORMAT_RGB888:
1086 m = 0x9; break;
1087 case DRM_FORMAT_YUYV:
1088 m = 0xa; break;
1089 case DRM_FORMAT_UYVY:
1090 m = 0xb; break;
1091 case DRM_FORMAT_ARGB8888:
1092 m = 0xc; break;
1093 case DRM_FORMAT_RGBA8888:
1094 m = 0xd; break;
1095 case DRM_FORMAT_RGBX8888:
1096 m = 0xe; break;
1097 case DRM_FORMAT_XRGB1555:
1098 m = 0xf; break;
1099 default:
1100 BUG(); return;
1101 }
1102 } else {
1103 switch (fourcc) {
1104 case DRM_FORMAT_RGBX4444:
1105 m = 0x4; break;
1106 case DRM_FORMAT_ARGB4444:
1107 m = 0x5; break;
1108 case DRM_FORMAT_RGB565:
1109 m = 0x6; break;
1110 case DRM_FORMAT_ARGB1555:
1111 m = 0x7; break;
1112 case DRM_FORMAT_XRGB8888:
1113 m = 0x8; break;
1114 case DRM_FORMAT_RGB888:
1115 m = 0x9; break;
1116 case DRM_FORMAT_XRGB4444:
1117 m = 0xa; break;
1118 case DRM_FORMAT_RGBA4444:
1119 m = 0xb; break;
1120 case DRM_FORMAT_ARGB8888:
1121 m = 0xc; break;
1122 case DRM_FORMAT_RGBA8888:
1123 m = 0xd; break;
1124 case DRM_FORMAT_RGBX8888:
1125 m = 0xe; break;
1126 case DRM_FORMAT_XRGB1555:
1127 m = 0xf; break;
1128 default:
1129 BUG(); return;
1130 }
1131 }
1132
1133 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), m, 4, 1);
1134 }
1135
dispc_ovl_configure_burst_type(struct dispc_device * dispc,enum omap_plane_id plane,enum omap_dss_rotation_type rotation)1136 static void dispc_ovl_configure_burst_type(struct dispc_device *dispc,
1137 enum omap_plane_id plane,
1138 enum omap_dss_rotation_type rotation)
1139 {
1140 if (dispc_has_feature(dispc, FEAT_BURST_2D) == 0)
1141 return;
1142
1143 if (rotation == OMAP_DSS_ROT_TILER)
1144 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), 1, 29, 29);
1145 else
1146 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), 0, 29, 29);
1147 }
1148
dispc_ovl_set_channel_out(struct dispc_device * dispc,enum omap_plane_id plane,enum omap_channel channel)1149 static void dispc_ovl_set_channel_out(struct dispc_device *dispc,
1150 enum omap_plane_id plane,
1151 enum omap_channel channel)
1152 {
1153 int shift;
1154 u32 val;
1155 int chan = 0, chan2 = 0;
1156
1157 switch (plane) {
1158 case OMAP_DSS_GFX:
1159 shift = 8;
1160 break;
1161 case OMAP_DSS_VIDEO1:
1162 case OMAP_DSS_VIDEO2:
1163 case OMAP_DSS_VIDEO3:
1164 shift = 16;
1165 break;
1166 default:
1167 BUG();
1168 return;
1169 }
1170
1171 val = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
1172 if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) {
1173 switch (channel) {
1174 case OMAP_DSS_CHANNEL_LCD:
1175 chan = 0;
1176 chan2 = 0;
1177 break;
1178 case OMAP_DSS_CHANNEL_DIGIT:
1179 chan = 1;
1180 chan2 = 0;
1181 break;
1182 case OMAP_DSS_CHANNEL_LCD2:
1183 chan = 0;
1184 chan2 = 1;
1185 break;
1186 case OMAP_DSS_CHANNEL_LCD3:
1187 if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) {
1188 chan = 0;
1189 chan2 = 2;
1190 } else {
1191 BUG();
1192 return;
1193 }
1194 break;
1195 case OMAP_DSS_CHANNEL_WB:
1196 chan = 0;
1197 chan2 = 3;
1198 break;
1199 default:
1200 BUG();
1201 return;
1202 }
1203
1204 val = FLD_MOD(val, chan, shift, shift);
1205 val = FLD_MOD(val, chan2, 31, 30);
1206 } else {
1207 val = FLD_MOD(val, channel, shift, shift);
1208 }
1209 dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), val);
1210 }
1211
dispc_ovl_get_channel_out(struct dispc_device * dispc,enum omap_plane_id plane)1212 static enum omap_channel dispc_ovl_get_channel_out(struct dispc_device *dispc,
1213 enum omap_plane_id plane)
1214 {
1215 int shift;
1216 u32 val;
1217
1218 switch (plane) {
1219 case OMAP_DSS_GFX:
1220 shift = 8;
1221 break;
1222 case OMAP_DSS_VIDEO1:
1223 case OMAP_DSS_VIDEO2:
1224 case OMAP_DSS_VIDEO3:
1225 shift = 16;
1226 break;
1227 default:
1228 BUG();
1229 return 0;
1230 }
1231
1232 val = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
1233
1234 if (FLD_GET(val, shift, shift) == 1)
1235 return OMAP_DSS_CHANNEL_DIGIT;
1236
1237 if (!dispc_has_feature(dispc, FEAT_MGR_LCD2))
1238 return OMAP_DSS_CHANNEL_LCD;
1239
1240 switch (FLD_GET(val, 31, 30)) {
1241 case 0:
1242 default:
1243 return OMAP_DSS_CHANNEL_LCD;
1244 case 1:
1245 return OMAP_DSS_CHANNEL_LCD2;
1246 case 2:
1247 return OMAP_DSS_CHANNEL_LCD3;
1248 case 3:
1249 return OMAP_DSS_CHANNEL_WB;
1250 }
1251 }
1252
dispc_ovl_set_burst_size(struct dispc_device * dispc,enum omap_plane_id plane,enum omap_burst_size burst_size)1253 static void dispc_ovl_set_burst_size(struct dispc_device *dispc,
1254 enum omap_plane_id plane,
1255 enum omap_burst_size burst_size)
1256 {
1257 static const unsigned int shifts[] = { 6, 14, 14, 14, 14, };
1258 int shift;
1259
1260 shift = shifts[plane];
1261 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), burst_size,
1262 shift + 1, shift);
1263 }
1264
dispc_configure_burst_sizes(struct dispc_device * dispc)1265 static void dispc_configure_burst_sizes(struct dispc_device *dispc)
1266 {
1267 int i;
1268 const int burst_size = BURST_SIZE_X8;
1269
1270 /* Configure burst size always to maximum size */
1271 for (i = 0; i < dispc_get_num_ovls(dispc); ++i)
1272 dispc_ovl_set_burst_size(dispc, i, burst_size);
1273 if (dispc->feat->has_writeback)
1274 dispc_ovl_set_burst_size(dispc, OMAP_DSS_WB, burst_size);
1275 }
1276
dispc_ovl_get_burst_size(struct dispc_device * dispc,enum omap_plane_id plane)1277 static u32 dispc_ovl_get_burst_size(struct dispc_device *dispc,
1278 enum omap_plane_id plane)
1279 {
1280 /* burst multiplier is always x8 (see dispc_configure_burst_sizes()) */
1281 return dispc->feat->burst_size_unit * 8;
1282 }
1283
dispc_ovl_color_mode_supported(struct dispc_device * dispc,enum omap_plane_id plane,u32 fourcc)1284 bool dispc_ovl_color_mode_supported(struct dispc_device *dispc,
1285 enum omap_plane_id plane, u32 fourcc)
1286 {
1287 const u32 *modes;
1288 unsigned int i;
1289
1290 modes = dispc->feat->supported_color_modes[plane];
1291
1292 for (i = 0; modes[i]; ++i) {
1293 if (modes[i] == fourcc)
1294 return true;
1295 }
1296
1297 return false;
1298 }
1299
dispc_ovl_get_color_modes(struct dispc_device * dispc,enum omap_plane_id plane)1300 const u32 *dispc_ovl_get_color_modes(struct dispc_device *dispc,
1301 enum omap_plane_id plane)
1302 {
1303 return dispc->feat->supported_color_modes[plane];
1304 }
1305
dispc_mgr_enable_cpr(struct dispc_device * dispc,enum omap_channel channel,bool enable)1306 static void dispc_mgr_enable_cpr(struct dispc_device *dispc,
1307 enum omap_channel channel, bool enable)
1308 {
1309 if (channel == OMAP_DSS_CHANNEL_DIGIT)
1310 return;
1311
1312 mgr_fld_write(dispc, channel, DISPC_MGR_FLD_CPR, enable);
1313 }
1314
dispc_mgr_set_cpr_coef(struct dispc_device * dispc,enum omap_channel channel,const struct omap_dss_cpr_coefs * coefs)1315 static void dispc_mgr_set_cpr_coef(struct dispc_device *dispc,
1316 enum omap_channel channel,
1317 const struct omap_dss_cpr_coefs *coefs)
1318 {
1319 u32 coef_r, coef_g, coef_b;
1320
1321 if (!dss_mgr_is_lcd(channel))
1322 return;
1323
1324 coef_r = FLD_VAL(coefs->rr, 31, 22) | FLD_VAL(coefs->rg, 20, 11) |
1325 FLD_VAL(coefs->rb, 9, 0);
1326 coef_g = FLD_VAL(coefs->gr, 31, 22) | FLD_VAL(coefs->gg, 20, 11) |
1327 FLD_VAL(coefs->gb, 9, 0);
1328 coef_b = FLD_VAL(coefs->br, 31, 22) | FLD_VAL(coefs->bg, 20, 11) |
1329 FLD_VAL(coefs->bb, 9, 0);
1330
1331 dispc_write_reg(dispc, DISPC_CPR_COEF_R(channel), coef_r);
1332 dispc_write_reg(dispc, DISPC_CPR_COEF_G(channel), coef_g);
1333 dispc_write_reg(dispc, DISPC_CPR_COEF_B(channel), coef_b);
1334 }
1335
dispc_ovl_set_vid_color_conv(struct dispc_device * dispc,enum omap_plane_id plane,bool enable)1336 static void dispc_ovl_set_vid_color_conv(struct dispc_device *dispc,
1337 enum omap_plane_id plane, bool enable)
1338 {
1339 u32 val;
1340
1341 BUG_ON(plane == OMAP_DSS_GFX);
1342
1343 val = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
1344 val = FLD_MOD(val, enable, 9, 9);
1345 dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), val);
1346 }
1347
dispc_ovl_enable_replication(struct dispc_device * dispc,enum omap_plane_id plane,enum omap_overlay_caps caps,bool enable)1348 static void dispc_ovl_enable_replication(struct dispc_device *dispc,
1349 enum omap_plane_id plane,
1350 enum omap_overlay_caps caps,
1351 bool enable)
1352 {
1353 static const unsigned int shifts[] = { 5, 10, 10, 10 };
1354 int shift;
1355
1356 if ((caps & OMAP_DSS_OVL_CAP_REPLICATION) == 0)
1357 return;
1358
1359 shift = shifts[plane];
1360 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable, shift, shift);
1361 }
1362
dispc_mgr_set_size(struct dispc_device * dispc,enum omap_channel channel,u16 width,u16 height)1363 static void dispc_mgr_set_size(struct dispc_device *dispc,
1364 enum omap_channel channel, u16 width, u16 height)
1365 {
1366 u32 val;
1367
1368 val = FLD_VAL(height - 1, dispc->feat->mgr_height_start, 16) |
1369 FLD_VAL(width - 1, dispc->feat->mgr_width_start, 0);
1370
1371 dispc_write_reg(dispc, DISPC_SIZE_MGR(channel), val);
1372 }
1373
dispc_init_fifos(struct dispc_device * dispc)1374 static void dispc_init_fifos(struct dispc_device *dispc)
1375 {
1376 u32 size;
1377 int fifo;
1378 u8 start, end;
1379 u32 unit;
1380 int i;
1381
1382 unit = dispc->feat->buffer_size_unit;
1383
1384 dispc_get_reg_field(dispc, FEAT_REG_FIFOSIZE, &start, &end);
1385
1386 for (fifo = 0; fifo < dispc->feat->num_fifos; ++fifo) {
1387 size = REG_GET(dispc, DISPC_OVL_FIFO_SIZE_STATUS(fifo),
1388 start, end);
1389 size *= unit;
1390 dispc->fifo_size[fifo] = size;
1391
1392 /*
1393 * By default fifos are mapped directly to overlays, fifo 0 to
1394 * ovl 0, fifo 1 to ovl 1, etc.
1395 */
1396 dispc->fifo_assignment[fifo] = fifo;
1397 }
1398
1399 /*
1400 * The GFX fifo on OMAP4 is smaller than the other fifos. The small fifo
1401 * causes problems with certain use cases, like using the tiler in 2D
1402 * mode. The below hack swaps the fifos of GFX and WB planes, thus
1403 * giving GFX plane a larger fifo. WB but should work fine with a
1404 * smaller fifo.
1405 */
1406 if (dispc->feat->gfx_fifo_workaround) {
1407 u32 v;
1408
1409 v = dispc_read_reg(dispc, DISPC_GLOBAL_BUFFER);
1410
1411 v = FLD_MOD(v, 4, 2, 0); /* GFX BUF top to WB */
1412 v = FLD_MOD(v, 4, 5, 3); /* GFX BUF bottom to WB */
1413 v = FLD_MOD(v, 0, 26, 24); /* WB BUF top to GFX */
1414 v = FLD_MOD(v, 0, 29, 27); /* WB BUF bottom to GFX */
1415
1416 dispc_write_reg(dispc, DISPC_GLOBAL_BUFFER, v);
1417
1418 dispc->fifo_assignment[OMAP_DSS_GFX] = OMAP_DSS_WB;
1419 dispc->fifo_assignment[OMAP_DSS_WB] = OMAP_DSS_GFX;
1420 }
1421
1422 /*
1423 * Setup default fifo thresholds.
1424 */
1425 for (i = 0; i < dispc_get_num_ovls(dispc); ++i) {
1426 u32 low, high;
1427 const bool use_fifomerge = false;
1428 const bool manual_update = false;
1429
1430 dispc_ovl_compute_fifo_thresholds(dispc, i, &low, &high,
1431 use_fifomerge, manual_update);
1432
1433 dispc_ovl_set_fifo_threshold(dispc, i, low, high);
1434 }
1435
1436 if (dispc->feat->has_writeback) {
1437 u32 low, high;
1438 const bool use_fifomerge = false;
1439 const bool manual_update = false;
1440
1441 dispc_ovl_compute_fifo_thresholds(dispc, OMAP_DSS_WB,
1442 &low, &high, use_fifomerge,
1443 manual_update);
1444
1445 dispc_ovl_set_fifo_threshold(dispc, OMAP_DSS_WB, low, high);
1446 }
1447 }
1448
dispc_ovl_get_fifo_size(struct dispc_device * dispc,enum omap_plane_id plane)1449 static u32 dispc_ovl_get_fifo_size(struct dispc_device *dispc,
1450 enum omap_plane_id plane)
1451 {
1452 int fifo;
1453 u32 size = 0;
1454
1455 for (fifo = 0; fifo < dispc->feat->num_fifos; ++fifo) {
1456 if (dispc->fifo_assignment[fifo] == plane)
1457 size += dispc->fifo_size[fifo];
1458 }
1459
1460 return size;
1461 }
1462
dispc_ovl_set_fifo_threshold(struct dispc_device * dispc,enum omap_plane_id plane,u32 low,u32 high)1463 void dispc_ovl_set_fifo_threshold(struct dispc_device *dispc,
1464 enum omap_plane_id plane,
1465 u32 low, u32 high)
1466 {
1467 u8 hi_start, hi_end, lo_start, lo_end;
1468 u32 unit;
1469
1470 unit = dispc->feat->buffer_size_unit;
1471
1472 WARN_ON(low % unit != 0);
1473 WARN_ON(high % unit != 0);
1474
1475 low /= unit;
1476 high /= unit;
1477
1478 dispc_get_reg_field(dispc, FEAT_REG_FIFOHIGHTHRESHOLD,
1479 &hi_start, &hi_end);
1480 dispc_get_reg_field(dispc, FEAT_REG_FIFOLOWTHRESHOLD,
1481 &lo_start, &lo_end);
1482
1483 DSSDBG("fifo(%d) threshold (bytes), old %u/%u, new %u/%u\n",
1484 plane,
1485 REG_GET(dispc, DISPC_OVL_FIFO_THRESHOLD(plane),
1486 lo_start, lo_end) * unit,
1487 REG_GET(dispc, DISPC_OVL_FIFO_THRESHOLD(plane),
1488 hi_start, hi_end) * unit,
1489 low * unit, high * unit);
1490
1491 dispc_write_reg(dispc, DISPC_OVL_FIFO_THRESHOLD(plane),
1492 FLD_VAL(high, hi_start, hi_end) |
1493 FLD_VAL(low, lo_start, lo_end));
1494
1495 /*
1496 * configure the preload to the pipeline's high threhold, if HT it's too
1497 * large for the preload field, set the threshold to the maximum value
1498 * that can be held by the preload register
1499 */
1500 if (dispc_has_feature(dispc, FEAT_PRELOAD) &&
1501 dispc->feat->set_max_preload && plane != OMAP_DSS_WB)
1502 dispc_write_reg(dispc, DISPC_OVL_PRELOAD(plane),
1503 min(high, 0xfffu));
1504 }
1505
dispc_enable_fifomerge(struct dispc_device * dispc,bool enable)1506 void dispc_enable_fifomerge(struct dispc_device *dispc, bool enable)
1507 {
1508 if (!dispc_has_feature(dispc, FEAT_FIFO_MERGE)) {
1509 WARN_ON(enable);
1510 return;
1511 }
1512
1513 DSSDBG("FIFO merge %s\n", enable ? "enabled" : "disabled");
1514 REG_FLD_MOD(dispc, DISPC_CONFIG, enable ? 1 : 0, 14, 14);
1515 }
1516
dispc_ovl_compute_fifo_thresholds(struct dispc_device * dispc,enum omap_plane_id plane,u32 * fifo_low,u32 * fifo_high,bool use_fifomerge,bool manual_update)1517 void dispc_ovl_compute_fifo_thresholds(struct dispc_device *dispc,
1518 enum omap_plane_id plane,
1519 u32 *fifo_low, u32 *fifo_high,
1520 bool use_fifomerge, bool manual_update)
1521 {
1522 /*
1523 * All sizes are in bytes. Both the buffer and burst are made of
1524 * buffer_units, and the fifo thresholds must be buffer_unit aligned.
1525 */
1526 unsigned int buf_unit = dispc->feat->buffer_size_unit;
1527 unsigned int ovl_fifo_size, total_fifo_size, burst_size;
1528 int i;
1529
1530 burst_size = dispc_ovl_get_burst_size(dispc, plane);
1531 ovl_fifo_size = dispc_ovl_get_fifo_size(dispc, plane);
1532
1533 if (use_fifomerge) {
1534 total_fifo_size = 0;
1535 for (i = 0; i < dispc_get_num_ovls(dispc); ++i)
1536 total_fifo_size += dispc_ovl_get_fifo_size(dispc, i);
1537 } else {
1538 total_fifo_size = ovl_fifo_size;
1539 }
1540
1541 /*
1542 * We use the same low threshold for both fifomerge and non-fifomerge
1543 * cases, but for fifomerge we calculate the high threshold using the
1544 * combined fifo size
1545 */
1546
1547 if (manual_update && dispc_has_feature(dispc, FEAT_OMAP3_DSI_FIFO_BUG)) {
1548 *fifo_low = ovl_fifo_size - burst_size * 2;
1549 *fifo_high = total_fifo_size - burst_size;
1550 } else if (plane == OMAP_DSS_WB) {
1551 /*
1552 * Most optimal configuration for writeback is to push out data
1553 * to the interconnect the moment writeback pushes enough pixels
1554 * in the FIFO to form a burst
1555 */
1556 *fifo_low = 0;
1557 *fifo_high = burst_size;
1558 } else {
1559 *fifo_low = ovl_fifo_size - burst_size;
1560 *fifo_high = total_fifo_size - buf_unit;
1561 }
1562 }
1563
dispc_ovl_set_mflag(struct dispc_device * dispc,enum omap_plane_id plane,bool enable)1564 static void dispc_ovl_set_mflag(struct dispc_device *dispc,
1565 enum omap_plane_id plane, bool enable)
1566 {
1567 int bit;
1568
1569 if (plane == OMAP_DSS_GFX)
1570 bit = 14;
1571 else
1572 bit = 23;
1573
1574 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable, bit, bit);
1575 }
1576
dispc_ovl_set_mflag_threshold(struct dispc_device * dispc,enum omap_plane_id plane,int low,int high)1577 static void dispc_ovl_set_mflag_threshold(struct dispc_device *dispc,
1578 enum omap_plane_id plane,
1579 int low, int high)
1580 {
1581 dispc_write_reg(dispc, DISPC_OVL_MFLAG_THRESHOLD(plane),
1582 FLD_VAL(high, 31, 16) | FLD_VAL(low, 15, 0));
1583 }
1584
dispc_init_mflag(struct dispc_device * dispc)1585 static void dispc_init_mflag(struct dispc_device *dispc)
1586 {
1587 int i;
1588
1589 /*
1590 * HACK: NV12 color format and MFLAG seem to have problems working
1591 * together: using two displays, and having an NV12 overlay on one of
1592 * the displays will cause underflows/synclosts when MFLAG_CTRL=2.
1593 * Changing MFLAG thresholds and PRELOAD to certain values seem to
1594 * remove the errors, but there doesn't seem to be a clear logic on
1595 * which values work and which not.
1596 *
1597 * As a work-around, set force MFLAG to always on.
1598 */
1599 dispc_write_reg(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE,
1600 (1 << 0) | /* MFLAG_CTRL = force always on */
1601 (0 << 2)); /* MFLAG_START = disable */
1602
1603 for (i = 0; i < dispc_get_num_ovls(dispc); ++i) {
1604 u32 size = dispc_ovl_get_fifo_size(dispc, i);
1605 u32 unit = dispc->feat->buffer_size_unit;
1606 u32 low, high;
1607
1608 dispc_ovl_set_mflag(dispc, i, true);
1609
1610 /*
1611 * Simulation team suggests below thesholds:
1612 * HT = fifosize * 5 / 8;
1613 * LT = fifosize * 4 / 8;
1614 */
1615
1616 low = size * 4 / 8 / unit;
1617 high = size * 5 / 8 / unit;
1618
1619 dispc_ovl_set_mflag_threshold(dispc, i, low, high);
1620 }
1621
1622 if (dispc->feat->has_writeback) {
1623 u32 size = dispc_ovl_get_fifo_size(dispc, OMAP_DSS_WB);
1624 u32 unit = dispc->feat->buffer_size_unit;
1625 u32 low, high;
1626
1627 dispc_ovl_set_mflag(dispc, OMAP_DSS_WB, true);
1628
1629 /*
1630 * Simulation team suggests below thesholds:
1631 * HT = fifosize * 5 / 8;
1632 * LT = fifosize * 4 / 8;
1633 */
1634
1635 low = size * 4 / 8 / unit;
1636 high = size * 5 / 8 / unit;
1637
1638 dispc_ovl_set_mflag_threshold(dispc, OMAP_DSS_WB, low, high);
1639 }
1640 }
1641
dispc_ovl_set_fir(struct dispc_device * dispc,enum omap_plane_id plane,int hinc,int vinc,enum omap_color_component color_comp)1642 static void dispc_ovl_set_fir(struct dispc_device *dispc,
1643 enum omap_plane_id plane,
1644 int hinc, int vinc,
1645 enum omap_color_component color_comp)
1646 {
1647 u32 val;
1648
1649 if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y) {
1650 u8 hinc_start, hinc_end, vinc_start, vinc_end;
1651
1652 dispc_get_reg_field(dispc, FEAT_REG_FIRHINC,
1653 &hinc_start, &hinc_end);
1654 dispc_get_reg_field(dispc, FEAT_REG_FIRVINC,
1655 &vinc_start, &vinc_end);
1656 val = FLD_VAL(vinc, vinc_start, vinc_end) |
1657 FLD_VAL(hinc, hinc_start, hinc_end);
1658
1659 dispc_write_reg(dispc, DISPC_OVL_FIR(plane), val);
1660 } else {
1661 val = FLD_VAL(vinc, 28, 16) | FLD_VAL(hinc, 12, 0);
1662 dispc_write_reg(dispc, DISPC_OVL_FIR2(plane), val);
1663 }
1664 }
1665
dispc_ovl_set_vid_accu0(struct dispc_device * dispc,enum omap_plane_id plane,int haccu,int vaccu)1666 static void dispc_ovl_set_vid_accu0(struct dispc_device *dispc,
1667 enum omap_plane_id plane, int haccu,
1668 int vaccu)
1669 {
1670 u32 val;
1671 u8 hor_start, hor_end, vert_start, vert_end;
1672
1673 dispc_get_reg_field(dispc, FEAT_REG_HORIZONTALACCU,
1674 &hor_start, &hor_end);
1675 dispc_get_reg_field(dispc, FEAT_REG_VERTICALACCU,
1676 &vert_start, &vert_end);
1677
1678 val = FLD_VAL(vaccu, vert_start, vert_end) |
1679 FLD_VAL(haccu, hor_start, hor_end);
1680
1681 dispc_write_reg(dispc, DISPC_OVL_ACCU0(plane), val);
1682 }
1683
dispc_ovl_set_vid_accu1(struct dispc_device * dispc,enum omap_plane_id plane,int haccu,int vaccu)1684 static void dispc_ovl_set_vid_accu1(struct dispc_device *dispc,
1685 enum omap_plane_id plane, int haccu,
1686 int vaccu)
1687 {
1688 u32 val;
1689 u8 hor_start, hor_end, vert_start, vert_end;
1690
1691 dispc_get_reg_field(dispc, FEAT_REG_HORIZONTALACCU,
1692 &hor_start, &hor_end);
1693 dispc_get_reg_field(dispc, FEAT_REG_VERTICALACCU,
1694 &vert_start, &vert_end);
1695
1696 val = FLD_VAL(vaccu, vert_start, vert_end) |
1697 FLD_VAL(haccu, hor_start, hor_end);
1698
1699 dispc_write_reg(dispc, DISPC_OVL_ACCU1(plane), val);
1700 }
1701
dispc_ovl_set_vid_accu2_0(struct dispc_device * dispc,enum omap_plane_id plane,int haccu,int vaccu)1702 static void dispc_ovl_set_vid_accu2_0(struct dispc_device *dispc,
1703 enum omap_plane_id plane, int haccu,
1704 int vaccu)
1705 {
1706 u32 val;
1707
1708 val = FLD_VAL(vaccu, 26, 16) | FLD_VAL(haccu, 10, 0);
1709 dispc_write_reg(dispc, DISPC_OVL_ACCU2_0(plane), val);
1710 }
1711
dispc_ovl_set_vid_accu2_1(struct dispc_device * dispc,enum omap_plane_id plane,int haccu,int vaccu)1712 static void dispc_ovl_set_vid_accu2_1(struct dispc_device *dispc,
1713 enum omap_plane_id plane, int haccu,
1714 int vaccu)
1715 {
1716 u32 val;
1717
1718 val = FLD_VAL(vaccu, 26, 16) | FLD_VAL(haccu, 10, 0);
1719 dispc_write_reg(dispc, DISPC_OVL_ACCU2_1(plane), val);
1720 }
1721
dispc_ovl_set_scale_param(struct dispc_device * dispc,enum omap_plane_id plane,u16 orig_width,u16 orig_height,u16 out_width,u16 out_height,bool five_taps,u8 rotation,enum omap_color_component color_comp)1722 static void dispc_ovl_set_scale_param(struct dispc_device *dispc,
1723 enum omap_plane_id plane,
1724 u16 orig_width, u16 orig_height,
1725 u16 out_width, u16 out_height,
1726 bool five_taps, u8 rotation,
1727 enum omap_color_component color_comp)
1728 {
1729 int fir_hinc, fir_vinc;
1730
1731 fir_hinc = 1024 * orig_width / out_width;
1732 fir_vinc = 1024 * orig_height / out_height;
1733
1734 dispc_ovl_set_scale_coef(dispc, plane, fir_hinc, fir_vinc, five_taps,
1735 color_comp);
1736 dispc_ovl_set_fir(dispc, plane, fir_hinc, fir_vinc, color_comp);
1737 }
1738
dispc_ovl_set_accu_uv(struct dispc_device * dispc,enum omap_plane_id plane,u16 orig_width,u16 orig_height,u16 out_width,u16 out_height,bool ilace,u32 fourcc,u8 rotation)1739 static void dispc_ovl_set_accu_uv(struct dispc_device *dispc,
1740 enum omap_plane_id plane,
1741 u16 orig_width, u16 orig_height,
1742 u16 out_width, u16 out_height,
1743 bool ilace, u32 fourcc, u8 rotation)
1744 {
1745 int h_accu2_0, h_accu2_1;
1746 int v_accu2_0, v_accu2_1;
1747 int chroma_hinc, chroma_vinc;
1748 int idx;
1749
1750 struct accu {
1751 s8 h0_m, h0_n;
1752 s8 h1_m, h1_n;
1753 s8 v0_m, v0_n;
1754 s8 v1_m, v1_n;
1755 };
1756
1757 const struct accu *accu_table;
1758 const struct accu *accu_val;
1759
1760 static const struct accu accu_nv12[4] = {
1761 { 0, 1, 0, 1 , -1, 2, 0, 1 },
1762 { 1, 2, -3, 4 , 0, 1, 0, 1 },
1763 { -1, 1, 0, 1 , -1, 2, 0, 1 },
1764 { -1, 2, -1, 2 , -1, 1, 0, 1 },
1765 };
1766
1767 static const struct accu accu_nv12_ilace[4] = {
1768 { 0, 1, 0, 1 , -3, 4, -1, 4 },
1769 { -1, 4, -3, 4 , 0, 1, 0, 1 },
1770 { -1, 1, 0, 1 , -1, 4, -3, 4 },
1771 { -3, 4, -3, 4 , -1, 1, 0, 1 },
1772 };
1773
1774 static const struct accu accu_yuv[4] = {
1775 { 0, 1, 0, 1, 0, 1, 0, 1 },
1776 { 0, 1, 0, 1, 0, 1, 0, 1 },
1777 { -1, 1, 0, 1, 0, 1, 0, 1 },
1778 { 0, 1, 0, 1, -1, 1, 0, 1 },
1779 };
1780
1781 /* Note: DSS HW rotates clockwise, DRM_MODE_ROTATE_* counter-clockwise */
1782 switch (rotation & DRM_MODE_ROTATE_MASK) {
1783 default:
1784 case DRM_MODE_ROTATE_0:
1785 idx = 0;
1786 break;
1787 case DRM_MODE_ROTATE_90:
1788 idx = 3;
1789 break;
1790 case DRM_MODE_ROTATE_180:
1791 idx = 2;
1792 break;
1793 case DRM_MODE_ROTATE_270:
1794 idx = 1;
1795 break;
1796 }
1797
1798 switch (fourcc) {
1799 case DRM_FORMAT_NV12:
1800 if (ilace)
1801 accu_table = accu_nv12_ilace;
1802 else
1803 accu_table = accu_nv12;
1804 break;
1805 case DRM_FORMAT_YUYV:
1806 case DRM_FORMAT_UYVY:
1807 accu_table = accu_yuv;
1808 break;
1809 default:
1810 BUG();
1811 return;
1812 }
1813
1814 accu_val = &accu_table[idx];
1815
1816 chroma_hinc = 1024 * orig_width / out_width;
1817 chroma_vinc = 1024 * orig_height / out_height;
1818
1819 h_accu2_0 = (accu_val->h0_m * chroma_hinc / accu_val->h0_n) % 1024;
1820 h_accu2_1 = (accu_val->h1_m * chroma_hinc / accu_val->h1_n) % 1024;
1821 v_accu2_0 = (accu_val->v0_m * chroma_vinc / accu_val->v0_n) % 1024;
1822 v_accu2_1 = (accu_val->v1_m * chroma_vinc / accu_val->v1_n) % 1024;
1823
1824 dispc_ovl_set_vid_accu2_0(dispc, plane, h_accu2_0, v_accu2_0);
1825 dispc_ovl_set_vid_accu2_1(dispc, plane, h_accu2_1, v_accu2_1);
1826 }
1827
dispc_ovl_set_scaling_common(struct dispc_device * dispc,enum omap_plane_id plane,u16 orig_width,u16 orig_height,u16 out_width,u16 out_height,bool ilace,bool five_taps,bool fieldmode,u32 fourcc,u8 rotation)1828 static void dispc_ovl_set_scaling_common(struct dispc_device *dispc,
1829 enum omap_plane_id plane,
1830 u16 orig_width, u16 orig_height,
1831 u16 out_width, u16 out_height,
1832 bool ilace, bool five_taps,
1833 bool fieldmode, u32 fourcc,
1834 u8 rotation)
1835 {
1836 int accu0 = 0;
1837 int accu1 = 0;
1838 u32 l;
1839
1840 dispc_ovl_set_scale_param(dispc, plane, orig_width, orig_height,
1841 out_width, out_height, five_taps,
1842 rotation, DISPC_COLOR_COMPONENT_RGB_Y);
1843 l = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
1844
1845 /* RESIZEENABLE and VERTICALTAPS */
1846 l &= ~((0x3 << 5) | (0x1 << 21));
1847 l |= (orig_width != out_width) ? (1 << 5) : 0;
1848 l |= (orig_height != out_height) ? (1 << 6) : 0;
1849 l |= five_taps ? (1 << 21) : 0;
1850
1851 /* VRESIZECONF and HRESIZECONF */
1852 if (dispc_has_feature(dispc, FEAT_RESIZECONF)) {
1853 l &= ~(0x3 << 7);
1854 l |= (orig_width <= out_width) ? 0 : (1 << 7);
1855 l |= (orig_height <= out_height) ? 0 : (1 << 8);
1856 }
1857
1858 /* LINEBUFFERSPLIT */
1859 if (dispc_has_feature(dispc, FEAT_LINEBUFFERSPLIT)) {
1860 l &= ~(0x1 << 22);
1861 l |= five_taps ? (1 << 22) : 0;
1862 }
1863
1864 dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), l);
1865
1866 /*
1867 * field 0 = even field = bottom field
1868 * field 1 = odd field = top field
1869 */
1870 if (ilace && !fieldmode) {
1871 accu1 = 0;
1872 accu0 = ((1024 * orig_height / out_height) / 2) & 0x3ff;
1873 if (accu0 >= 1024/2) {
1874 accu1 = 1024/2;
1875 accu0 -= accu1;
1876 }
1877 }
1878
1879 dispc_ovl_set_vid_accu0(dispc, plane, 0, accu0);
1880 dispc_ovl_set_vid_accu1(dispc, plane, 0, accu1);
1881 }
1882
dispc_ovl_set_scaling_uv(struct dispc_device * dispc,enum omap_plane_id plane,u16 orig_width,u16 orig_height,u16 out_width,u16 out_height,bool ilace,bool five_taps,bool fieldmode,u32 fourcc,u8 rotation)1883 static void dispc_ovl_set_scaling_uv(struct dispc_device *dispc,
1884 enum omap_plane_id plane,
1885 u16 orig_width, u16 orig_height,
1886 u16 out_width, u16 out_height,
1887 bool ilace, bool five_taps,
1888 bool fieldmode, u32 fourcc,
1889 u8 rotation)
1890 {
1891 int scale_x = out_width != orig_width;
1892 int scale_y = out_height != orig_height;
1893 bool chroma_upscale = plane != OMAP_DSS_WB;
1894 const struct drm_format_info *info;
1895
1896 info = drm_format_info(fourcc);
1897
1898 if (!dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE))
1899 return;
1900
1901 if (!info->is_yuv) {
1902 /* reset chroma resampling for RGB formats */
1903 if (plane != OMAP_DSS_WB)
1904 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane),
1905 0, 8, 8);
1906 return;
1907 }
1908
1909 dispc_ovl_set_accu_uv(dispc, plane, orig_width, orig_height, out_width,
1910 out_height, ilace, fourcc, rotation);
1911
1912 switch (fourcc) {
1913 case DRM_FORMAT_NV12:
1914 if (chroma_upscale) {
1915 /* UV is subsampled by 2 horizontally and vertically */
1916 orig_height >>= 1;
1917 orig_width >>= 1;
1918 } else {
1919 /* UV is downsampled by 2 horizontally and vertically */
1920 orig_height <<= 1;
1921 orig_width <<= 1;
1922 }
1923
1924 break;
1925 case DRM_FORMAT_YUYV:
1926 case DRM_FORMAT_UYVY:
1927 /* For YUV422 with 90/270 rotation, we don't upsample chroma */
1928 if (!drm_rotation_90_or_270(rotation)) {
1929 if (chroma_upscale)
1930 /* UV is subsampled by 2 horizontally */
1931 orig_width >>= 1;
1932 else
1933 /* UV is downsampled by 2 horizontally */
1934 orig_width <<= 1;
1935 }
1936
1937 /* must use FIR for YUV422 if rotated */
1938 if ((rotation & DRM_MODE_ROTATE_MASK) != DRM_MODE_ROTATE_0)
1939 scale_x = scale_y = true;
1940
1941 break;
1942 default:
1943 BUG();
1944 return;
1945 }
1946
1947 if (out_width != orig_width)
1948 scale_x = true;
1949 if (out_height != orig_height)
1950 scale_y = true;
1951
1952 dispc_ovl_set_scale_param(dispc, plane, orig_width, orig_height,
1953 out_width, out_height, five_taps,
1954 rotation, DISPC_COLOR_COMPONENT_UV);
1955
1956 if (plane != OMAP_DSS_WB)
1957 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane),
1958 (scale_x || scale_y) ? 1 : 0, 8, 8);
1959
1960 /* set H scaling */
1961 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), scale_x ? 1 : 0, 5, 5);
1962 /* set V scaling */
1963 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), scale_y ? 1 : 0, 6, 6);
1964 }
1965
dispc_ovl_set_scaling(struct dispc_device * dispc,enum omap_plane_id plane,u16 orig_width,u16 orig_height,u16 out_width,u16 out_height,bool ilace,bool five_taps,bool fieldmode,u32 fourcc,u8 rotation)1966 static void dispc_ovl_set_scaling(struct dispc_device *dispc,
1967 enum omap_plane_id plane,
1968 u16 orig_width, u16 orig_height,
1969 u16 out_width, u16 out_height,
1970 bool ilace, bool five_taps,
1971 bool fieldmode, u32 fourcc,
1972 u8 rotation)
1973 {
1974 BUG_ON(plane == OMAP_DSS_GFX);
1975
1976 dispc_ovl_set_scaling_common(dispc, plane, orig_width, orig_height,
1977 out_width, out_height, ilace, five_taps,
1978 fieldmode, fourcc, rotation);
1979
1980 dispc_ovl_set_scaling_uv(dispc, plane, orig_width, orig_height,
1981 out_width, out_height, ilace, five_taps,
1982 fieldmode, fourcc, rotation);
1983 }
1984
dispc_ovl_set_rotation_attrs(struct dispc_device * dispc,enum omap_plane_id plane,u8 rotation,enum omap_dss_rotation_type rotation_type,u32 fourcc)1985 static void dispc_ovl_set_rotation_attrs(struct dispc_device *dispc,
1986 enum omap_plane_id plane, u8 rotation,
1987 enum omap_dss_rotation_type rotation_type,
1988 u32 fourcc)
1989 {
1990 bool row_repeat = false;
1991 int vidrot = 0;
1992
1993 /* Note: DSS HW rotates clockwise, DRM_MODE_ROTATE_* counter-clockwise */
1994 if (fourcc == DRM_FORMAT_YUYV || fourcc == DRM_FORMAT_UYVY) {
1995
1996 if (rotation & DRM_MODE_REFLECT_X) {
1997 switch (rotation & DRM_MODE_ROTATE_MASK) {
1998 case DRM_MODE_ROTATE_0:
1999 vidrot = 2;
2000 break;
2001 case DRM_MODE_ROTATE_90:
2002 vidrot = 1;
2003 break;
2004 case DRM_MODE_ROTATE_180:
2005 vidrot = 0;
2006 break;
2007 case DRM_MODE_ROTATE_270:
2008 vidrot = 3;
2009 break;
2010 }
2011 } else {
2012 switch (rotation & DRM_MODE_ROTATE_MASK) {
2013 case DRM_MODE_ROTATE_0:
2014 vidrot = 0;
2015 break;
2016 case DRM_MODE_ROTATE_90:
2017 vidrot = 3;
2018 break;
2019 case DRM_MODE_ROTATE_180:
2020 vidrot = 2;
2021 break;
2022 case DRM_MODE_ROTATE_270:
2023 vidrot = 1;
2024 break;
2025 }
2026 }
2027
2028 if (drm_rotation_90_or_270(rotation))
2029 row_repeat = true;
2030 else
2031 row_repeat = false;
2032 }
2033
2034 /*
2035 * OMAP4/5 Errata i631:
2036 * NV12 in 1D mode must use ROTATION=1. Otherwise DSS will fetch extra
2037 * rows beyond the framebuffer, which may cause OCP error.
2038 */
2039 if (fourcc == DRM_FORMAT_NV12 && rotation_type != OMAP_DSS_ROT_TILER)
2040 vidrot = 1;
2041
2042 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), vidrot, 13, 12);
2043 if (dispc_has_feature(dispc, FEAT_ROWREPEATENABLE))
2044 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane),
2045 row_repeat ? 1 : 0, 18, 18);
2046
2047 if (dispc_ovl_color_mode_supported(dispc, plane, DRM_FORMAT_NV12)) {
2048 bool doublestride =
2049 fourcc == DRM_FORMAT_NV12 &&
2050 rotation_type == OMAP_DSS_ROT_TILER &&
2051 !drm_rotation_90_or_270(rotation);
2052
2053 /* DOUBLESTRIDE */
2054 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane),
2055 doublestride, 22, 22);
2056 }
2057 }
2058
color_mode_to_bpp(u32 fourcc)2059 static int color_mode_to_bpp(u32 fourcc)
2060 {
2061 switch (fourcc) {
2062 case DRM_FORMAT_NV12:
2063 return 8;
2064 case DRM_FORMAT_RGBX4444:
2065 case DRM_FORMAT_RGB565:
2066 case DRM_FORMAT_ARGB4444:
2067 case DRM_FORMAT_YUYV:
2068 case DRM_FORMAT_UYVY:
2069 case DRM_FORMAT_RGBA4444:
2070 case DRM_FORMAT_XRGB4444:
2071 case DRM_FORMAT_ARGB1555:
2072 case DRM_FORMAT_XRGB1555:
2073 return 16;
2074 case DRM_FORMAT_RGB888:
2075 return 24;
2076 case DRM_FORMAT_XRGB8888:
2077 case DRM_FORMAT_ARGB8888:
2078 case DRM_FORMAT_RGBA8888:
2079 case DRM_FORMAT_RGBX8888:
2080 return 32;
2081 default:
2082 BUG();
2083 return 0;
2084 }
2085 }
2086
pixinc(int pixels,u8 ps)2087 static s32 pixinc(int pixels, u8 ps)
2088 {
2089 if (pixels == 1)
2090 return 1;
2091 else if (pixels > 1)
2092 return 1 + (pixels - 1) * ps;
2093 else if (pixels < 0)
2094 return 1 - (-pixels + 1) * ps;
2095
2096 BUG();
2097 }
2098
calc_offset(u16 screen_width,u16 width,u32 fourcc,bool fieldmode,unsigned int field_offset,unsigned int * offset0,unsigned int * offset1,s32 * row_inc,s32 * pix_inc,int x_predecim,int y_predecim,enum omap_dss_rotation_type rotation_type,u8 rotation)2099 static void calc_offset(u16 screen_width, u16 width,
2100 u32 fourcc, bool fieldmode, unsigned int field_offset,
2101 unsigned int *offset0, unsigned int *offset1,
2102 s32 *row_inc, s32 *pix_inc, int x_predecim, int y_predecim,
2103 enum omap_dss_rotation_type rotation_type, u8 rotation)
2104 {
2105 u8 ps;
2106
2107 ps = color_mode_to_bpp(fourcc) / 8;
2108
2109 DSSDBG("scrw %d, width %d\n", screen_width, width);
2110
2111 if (rotation_type == OMAP_DSS_ROT_TILER &&
2112 (fourcc == DRM_FORMAT_UYVY || fourcc == DRM_FORMAT_YUYV) &&
2113 drm_rotation_90_or_270(rotation)) {
2114 /*
2115 * HACK: ROW_INC needs to be calculated with TILER units.
2116 * We get such 'screen_width' that multiplying it with the
2117 * YUV422 pixel size gives the correct TILER container width.
2118 * However, 'width' is in pixels and multiplying it with YUV422
2119 * pixel size gives incorrect result. We thus multiply it here
2120 * with 2 to match the 32 bit TILER unit size.
2121 */
2122 width *= 2;
2123 }
2124
2125 /*
2126 * field 0 = even field = bottom field
2127 * field 1 = odd field = top field
2128 */
2129 *offset0 = field_offset * screen_width * ps;
2130 *offset1 = 0;
2131
2132 *row_inc = pixinc(1 + (y_predecim * screen_width - width * x_predecim) +
2133 (fieldmode ? screen_width : 0), ps);
2134 if (fourcc == DRM_FORMAT_YUYV || fourcc == DRM_FORMAT_UYVY)
2135 *pix_inc = pixinc(x_predecim, 2 * ps);
2136 else
2137 *pix_inc = pixinc(x_predecim, ps);
2138 }
2139
2140 /*
2141 * This function is used to avoid synclosts in OMAP3, because of some
2142 * undocumented horizontal position and timing related limitations.
2143 */
check_horiz_timing_omap3(unsigned long pclk,unsigned long lclk,const struct videomode * vm,u16 pos_x,u16 width,u16 height,u16 out_width,u16 out_height,bool five_taps)2144 static int check_horiz_timing_omap3(unsigned long pclk, unsigned long lclk,
2145 const struct videomode *vm, u16 pos_x,
2146 u16 width, u16 height, u16 out_width, u16 out_height,
2147 bool five_taps)
2148 {
2149 const int ds = DIV_ROUND_UP(height, out_height);
2150 unsigned long nonactive;
2151 static const u8 limits[3] = { 8, 10, 20 };
2152 u64 val, blank;
2153 int i;
2154
2155 nonactive = vm->hactive + vm->hfront_porch + vm->hsync_len +
2156 vm->hback_porch - out_width;
2157
2158 i = 0;
2159 if (out_height < height)
2160 i++;
2161 if (out_width < width)
2162 i++;
2163 blank = div_u64((u64)(vm->hback_porch + vm->hsync_len + vm->hfront_porch) *
2164 lclk, pclk);
2165 DSSDBG("blanking period + ppl = %llu (limit = %u)\n", blank, limits[i]);
2166 if (blank <= limits[i])
2167 return -EINVAL;
2168
2169 /* FIXME add checks for 3-tap filter once the limitations are known */
2170 if (!five_taps)
2171 return 0;
2172
2173 /*
2174 * Pixel data should be prepared before visible display point starts.
2175 * So, atleast DS-2 lines must have already been fetched by DISPC
2176 * during nonactive - pos_x period.
2177 */
2178 val = div_u64((u64)(nonactive - pos_x) * lclk, pclk);
2179 DSSDBG("(nonactive - pos_x) * pcd = %llu max(0, DS - 2) * width = %d\n",
2180 val, max(0, ds - 2) * width);
2181 if (val < max(0, ds - 2) * width)
2182 return -EINVAL;
2183
2184 /*
2185 * All lines need to be refilled during the nonactive period of which
2186 * only one line can be loaded during the active period. So, atleast
2187 * DS - 1 lines should be loaded during nonactive period.
2188 */
2189 val = div_u64((u64)nonactive * lclk, pclk);
2190 DSSDBG("nonactive * pcd = %llu, max(0, DS - 1) * width = %d\n",
2191 val, max(0, ds - 1) * width);
2192 if (val < max(0, ds - 1) * width)
2193 return -EINVAL;
2194
2195 return 0;
2196 }
2197
calc_core_clk_five_taps(unsigned long pclk,const struct videomode * vm,u16 width,u16 height,u16 out_width,u16 out_height,u32 fourcc)2198 static unsigned long calc_core_clk_five_taps(unsigned long pclk,
2199 const struct videomode *vm, u16 width,
2200 u16 height, u16 out_width, u16 out_height,
2201 u32 fourcc)
2202 {
2203 u32 core_clk = 0;
2204 u64 tmp;
2205
2206 if (height <= out_height && width <= out_width)
2207 return (unsigned long) pclk;
2208
2209 if (height > out_height) {
2210 unsigned int ppl = vm->hactive;
2211
2212 tmp = (u64)pclk * height * out_width;
2213 do_div(tmp, 2 * out_height * ppl);
2214 core_clk = tmp;
2215
2216 if (height > 2 * out_height) {
2217 if (ppl == out_width)
2218 return 0;
2219
2220 tmp = (u64)pclk * (height - 2 * out_height) * out_width;
2221 do_div(tmp, 2 * out_height * (ppl - out_width));
2222 core_clk = max_t(u32, core_clk, tmp);
2223 }
2224 }
2225
2226 if (width > out_width) {
2227 tmp = (u64)pclk * width;
2228 do_div(tmp, out_width);
2229 core_clk = max_t(u32, core_clk, tmp);
2230
2231 if (fourcc == DRM_FORMAT_XRGB8888)
2232 core_clk <<= 1;
2233 }
2234
2235 return core_clk;
2236 }
2237
calc_core_clk_24xx(unsigned long pclk,u16 width,u16 height,u16 out_width,u16 out_height,bool mem_to_mem)2238 static unsigned long calc_core_clk_24xx(unsigned long pclk, u16 width,
2239 u16 height, u16 out_width, u16 out_height, bool mem_to_mem)
2240 {
2241 if (height > out_height && width > out_width)
2242 return pclk * 4;
2243 else
2244 return pclk * 2;
2245 }
2246
calc_core_clk_34xx(unsigned long pclk,u16 width,u16 height,u16 out_width,u16 out_height,bool mem_to_mem)2247 static unsigned long calc_core_clk_34xx(unsigned long pclk, u16 width,
2248 u16 height, u16 out_width, u16 out_height, bool mem_to_mem)
2249 {
2250 unsigned int hf, vf;
2251
2252 /*
2253 * FIXME how to determine the 'A' factor
2254 * for the no downscaling case ?
2255 */
2256
2257 if (width > 3 * out_width)
2258 hf = 4;
2259 else if (width > 2 * out_width)
2260 hf = 3;
2261 else if (width > out_width)
2262 hf = 2;
2263 else
2264 hf = 1;
2265 if (height > out_height)
2266 vf = 2;
2267 else
2268 vf = 1;
2269
2270 return pclk * vf * hf;
2271 }
2272
calc_core_clk_44xx(unsigned long pclk,u16 width,u16 height,u16 out_width,u16 out_height,bool mem_to_mem)2273 static unsigned long calc_core_clk_44xx(unsigned long pclk, u16 width,
2274 u16 height, u16 out_width, u16 out_height, bool mem_to_mem)
2275 {
2276 /*
2277 * If the overlay/writeback is in mem to mem mode, there are no
2278 * downscaling limitations with respect to pixel clock, return 1 as
2279 * required core clock to represent that we have sufficient enough
2280 * core clock to do maximum downscaling
2281 */
2282 if (mem_to_mem)
2283 return 1;
2284
2285 if (width > out_width)
2286 return DIV_ROUND_UP(pclk, out_width) * width;
2287 else
2288 return pclk;
2289 }
2290
dispc_ovl_calc_scaling_24xx(struct dispc_device * dispc,unsigned long pclk,unsigned long lclk,const struct videomode * vm,u16 width,u16 height,u16 out_width,u16 out_height,u32 fourcc,bool * five_taps,int * x_predecim,int * y_predecim,int * decim_x,int * decim_y,u16 pos_x,unsigned long * core_clk,bool mem_to_mem)2291 static int dispc_ovl_calc_scaling_24xx(struct dispc_device *dispc,
2292 unsigned long pclk, unsigned long lclk,
2293 const struct videomode *vm,
2294 u16 width, u16 height,
2295 u16 out_width, u16 out_height,
2296 u32 fourcc, bool *five_taps,
2297 int *x_predecim, int *y_predecim,
2298 int *decim_x, int *decim_y,
2299 u16 pos_x, unsigned long *core_clk,
2300 bool mem_to_mem)
2301 {
2302 int error;
2303 u16 in_width, in_height;
2304 int min_factor = min(*decim_x, *decim_y);
2305 const int maxsinglelinewidth = dispc->feat->max_line_width;
2306
2307 *five_taps = false;
2308
2309 do {
2310 in_height = height / *decim_y;
2311 in_width = width / *decim_x;
2312 *core_clk = dispc->feat->calc_core_clk(pclk, in_width,
2313 in_height, out_width, out_height, mem_to_mem);
2314 error = (in_width > maxsinglelinewidth || !*core_clk ||
2315 *core_clk > dispc_core_clk_rate(dispc));
2316 if (error) {
2317 if (*decim_x == *decim_y) {
2318 *decim_x = min_factor;
2319 ++*decim_y;
2320 } else {
2321 swap(*decim_x, *decim_y);
2322 if (*decim_x < *decim_y)
2323 ++*decim_x;
2324 }
2325 }
2326 } while (*decim_x <= *x_predecim && *decim_y <= *y_predecim && error);
2327
2328 if (error) {
2329 DSSERR("failed to find scaling settings\n");
2330 return -EINVAL;
2331 }
2332
2333 if (in_width > maxsinglelinewidth) {
2334 DSSERR("Cannot scale max input width exceeded\n");
2335 return -EINVAL;
2336 }
2337 return 0;
2338 }
2339
dispc_ovl_calc_scaling_34xx(struct dispc_device * dispc,unsigned long pclk,unsigned long lclk,const struct videomode * vm,u16 width,u16 height,u16 out_width,u16 out_height,u32 fourcc,bool * five_taps,int * x_predecim,int * y_predecim,int * decim_x,int * decim_y,u16 pos_x,unsigned long * core_clk,bool mem_to_mem)2340 static int dispc_ovl_calc_scaling_34xx(struct dispc_device *dispc,
2341 unsigned long pclk, unsigned long lclk,
2342 const struct videomode *vm,
2343 u16 width, u16 height,
2344 u16 out_width, u16 out_height,
2345 u32 fourcc, bool *five_taps,
2346 int *x_predecim, int *y_predecim,
2347 int *decim_x, int *decim_y,
2348 u16 pos_x, unsigned long *core_clk,
2349 bool mem_to_mem)
2350 {
2351 int error;
2352 u16 in_width, in_height;
2353 const int maxsinglelinewidth = dispc->feat->max_line_width;
2354
2355 do {
2356 in_height = height / *decim_y;
2357 in_width = width / *decim_x;
2358 *five_taps = in_height > out_height;
2359
2360 if (in_width > maxsinglelinewidth)
2361 if (in_height > out_height &&
2362 in_height < out_height * 2)
2363 *five_taps = false;
2364 again:
2365 if (*five_taps)
2366 *core_clk = calc_core_clk_five_taps(pclk, vm,
2367 in_width, in_height, out_width,
2368 out_height, fourcc);
2369 else
2370 *core_clk = dispc->feat->calc_core_clk(pclk, in_width,
2371 in_height, out_width, out_height,
2372 mem_to_mem);
2373
2374 error = check_horiz_timing_omap3(pclk, lclk, vm,
2375 pos_x, in_width, in_height, out_width,
2376 out_height, *five_taps);
2377 if (error && *five_taps) {
2378 *five_taps = false;
2379 goto again;
2380 }
2381
2382 error = (error || in_width > maxsinglelinewidth * 2 ||
2383 (in_width > maxsinglelinewidth && *five_taps) ||
2384 !*core_clk || *core_clk > dispc_core_clk_rate(dispc));
2385
2386 if (!error) {
2387 /* verify that we're inside the limits of scaler */
2388 if (in_width / 4 > out_width)
2389 error = 1;
2390
2391 if (*five_taps) {
2392 if (in_height / 4 > out_height)
2393 error = 1;
2394 } else {
2395 if (in_height / 2 > out_height)
2396 error = 1;
2397 }
2398 }
2399
2400 if (error)
2401 ++*decim_y;
2402 } while (*decim_x <= *x_predecim && *decim_y <= *y_predecim && error);
2403
2404 if (error) {
2405 DSSERR("failed to find scaling settings\n");
2406 return -EINVAL;
2407 }
2408
2409 if (check_horiz_timing_omap3(pclk, lclk, vm, pos_x, in_width,
2410 in_height, out_width, out_height, *five_taps)) {
2411 DSSERR("horizontal timing too tight\n");
2412 return -EINVAL;
2413 }
2414
2415 if (in_width > (maxsinglelinewidth * 2)) {
2416 DSSERR("Cannot setup scaling\n");
2417 DSSERR("width exceeds maximum width possible\n");
2418 return -EINVAL;
2419 }
2420
2421 if (in_width > maxsinglelinewidth && *five_taps) {
2422 DSSERR("cannot setup scaling with five taps\n");
2423 return -EINVAL;
2424 }
2425 return 0;
2426 }
2427
dispc_ovl_calc_scaling_44xx(struct dispc_device * dispc,unsigned long pclk,unsigned long lclk,const struct videomode * vm,u16 width,u16 height,u16 out_width,u16 out_height,u32 fourcc,bool * five_taps,int * x_predecim,int * y_predecim,int * decim_x,int * decim_y,u16 pos_x,unsigned long * core_clk,bool mem_to_mem)2428 static int dispc_ovl_calc_scaling_44xx(struct dispc_device *dispc,
2429 unsigned long pclk, unsigned long lclk,
2430 const struct videomode *vm,
2431 u16 width, u16 height,
2432 u16 out_width, u16 out_height,
2433 u32 fourcc, bool *five_taps,
2434 int *x_predecim, int *y_predecim,
2435 int *decim_x, int *decim_y,
2436 u16 pos_x, unsigned long *core_clk,
2437 bool mem_to_mem)
2438 {
2439 u16 in_width, in_width_max;
2440 int decim_x_min = *decim_x;
2441 u16 in_height = height / *decim_y;
2442 const int maxsinglelinewidth = dispc->feat->max_line_width;
2443 const int maxdownscale = dispc->feat->max_downscale;
2444
2445 if (mem_to_mem) {
2446 in_width_max = out_width * maxdownscale;
2447 } else {
2448 in_width_max = dispc_core_clk_rate(dispc)
2449 / DIV_ROUND_UP(pclk, out_width);
2450 }
2451
2452 *decim_x = DIV_ROUND_UP(width, in_width_max);
2453
2454 *decim_x = max(*decim_x, decim_x_min);
2455 if (*decim_x > *x_predecim)
2456 return -EINVAL;
2457
2458 do {
2459 in_width = width / *decim_x;
2460 } while (*decim_x <= *x_predecim &&
2461 in_width > maxsinglelinewidth && ++*decim_x);
2462
2463 if (in_width > maxsinglelinewidth) {
2464 DSSERR("Cannot scale width exceeds max line width\n");
2465 return -EINVAL;
2466 }
2467
2468 if (*decim_x > 4 && fourcc != DRM_FORMAT_NV12) {
2469 /*
2470 * Let's disable all scaling that requires horizontal
2471 * decimation with higher factor than 4, until we have
2472 * better estimates of what we can and can not
2473 * do. However, NV12 color format appears to work Ok
2474 * with all decimation factors.
2475 *
2476 * When decimating horizontally by more that 4 the dss
2477 * is not able to fetch the data in burst mode. When
2478 * this happens it is hard to tell if there enough
2479 * bandwidth. Despite what theory says this appears to
2480 * be true also for 16-bit color formats.
2481 */
2482 DSSERR("Not enough bandwidth, too much downscaling (x-decimation factor %d > 4)\n", *decim_x);
2483
2484 return -EINVAL;
2485 }
2486
2487 *core_clk = dispc->feat->calc_core_clk(pclk, in_width, in_height,
2488 out_width, out_height, mem_to_mem);
2489 return 0;
2490 }
2491
dispc_ovl_get_caps(struct dispc_device * dispc,enum omap_plane_id plane)2492 enum omap_overlay_caps dispc_ovl_get_caps(struct dispc_device *dispc, enum omap_plane_id plane)
2493 {
2494 return dispc->feat->overlay_caps[plane];
2495 }
2496
2497 #define DIV_FRAC(dividend, divisor) \
2498 ((dividend) * 100 / (divisor) - ((dividend) / (divisor) * 100))
2499
dispc_ovl_calc_scaling(struct dispc_device * dispc,enum omap_plane_id plane,unsigned long pclk,unsigned long lclk,enum omap_overlay_caps caps,const struct videomode * vm,u16 width,u16 height,u16 out_width,u16 out_height,u32 fourcc,bool * five_taps,int * x_predecim,int * y_predecim,u16 pos_x,enum omap_dss_rotation_type rotation_type,bool mem_to_mem)2500 static int dispc_ovl_calc_scaling(struct dispc_device *dispc,
2501 enum omap_plane_id plane,
2502 unsigned long pclk, unsigned long lclk,
2503 enum omap_overlay_caps caps,
2504 const struct videomode *vm,
2505 u16 width, u16 height,
2506 u16 out_width, u16 out_height,
2507 u32 fourcc, bool *five_taps,
2508 int *x_predecim, int *y_predecim, u16 pos_x,
2509 enum omap_dss_rotation_type rotation_type,
2510 bool mem_to_mem)
2511 {
2512 int maxhdownscale = dispc->feat->max_downscale;
2513 int maxvdownscale = dispc->feat->max_downscale;
2514 const int max_decim_limit = 16;
2515 unsigned long core_clk = 0;
2516 int decim_x, decim_y, ret;
2517
2518 if (width == out_width && height == out_height)
2519 return 0;
2520
2521 if (dispc->feat->supported_scaler_color_modes) {
2522 const u32 *modes = dispc->feat->supported_scaler_color_modes;
2523 unsigned int i;
2524
2525 for (i = 0; modes[i]; ++i) {
2526 if (modes[i] == fourcc)
2527 break;
2528 }
2529
2530 if (modes[i] == 0)
2531 return -EINVAL;
2532 }
2533
2534 if (plane == OMAP_DSS_WB) {
2535 switch (fourcc) {
2536 case DRM_FORMAT_NV12:
2537 maxhdownscale = maxvdownscale = 2;
2538 break;
2539 case DRM_FORMAT_YUYV:
2540 case DRM_FORMAT_UYVY:
2541 maxhdownscale = 2;
2542 maxvdownscale = 4;
2543 break;
2544 default:
2545 break;
2546 }
2547 }
2548 if (!mem_to_mem && (pclk == 0 || vm->pixelclock == 0)) {
2549 DSSERR("cannot calculate scaling settings: pclk is zero\n");
2550 return -EINVAL;
2551 }
2552
2553 if ((caps & OMAP_DSS_OVL_CAP_SCALE) == 0)
2554 return -EINVAL;
2555
2556 if (mem_to_mem) {
2557 *x_predecim = *y_predecim = 1;
2558 } else {
2559 *x_predecim = max_decim_limit;
2560 *y_predecim = (rotation_type == OMAP_DSS_ROT_TILER &&
2561 dispc_has_feature(dispc, FEAT_BURST_2D)) ?
2562 2 : max_decim_limit;
2563 }
2564
2565 decim_x = DIV_ROUND_UP(DIV_ROUND_UP(width, out_width), maxhdownscale);
2566 decim_y = DIV_ROUND_UP(DIV_ROUND_UP(height, out_height), maxvdownscale);
2567
2568 if (decim_x > *x_predecim || out_width > width * 8)
2569 return -EINVAL;
2570
2571 if (decim_y > *y_predecim || out_height > height * 8)
2572 return -EINVAL;
2573
2574 ret = dispc->feat->calc_scaling(dispc, pclk, lclk, vm, width, height,
2575 out_width, out_height, fourcc,
2576 five_taps, x_predecim, y_predecim,
2577 &decim_x, &decim_y, pos_x, &core_clk,
2578 mem_to_mem);
2579 if (ret)
2580 return ret;
2581
2582 DSSDBG("%dx%d -> %dx%d (%d.%02d x %d.%02d), decim %dx%d %dx%d (%d.%02d x %d.%02d), taps %d, req clk %lu, cur clk %lu\n",
2583 width, height,
2584 out_width, out_height,
2585 out_width / width, DIV_FRAC(out_width, width),
2586 out_height / height, DIV_FRAC(out_height, height),
2587
2588 decim_x, decim_y,
2589 width / decim_x, height / decim_y,
2590 out_width / (width / decim_x), DIV_FRAC(out_width, width / decim_x),
2591 out_height / (height / decim_y), DIV_FRAC(out_height, height / decim_y),
2592
2593 *five_taps ? 5 : 3,
2594 core_clk, dispc_core_clk_rate(dispc));
2595
2596 if (!core_clk || core_clk > dispc_core_clk_rate(dispc)) {
2597 DSSERR("failed to set up scaling, "
2598 "required core clk rate = %lu Hz, "
2599 "current core clk rate = %lu Hz\n",
2600 core_clk, dispc_core_clk_rate(dispc));
2601 return -EINVAL;
2602 }
2603
2604 *x_predecim = decim_x;
2605 *y_predecim = decim_y;
2606 return 0;
2607 }
2608
dispc_ovl_get_max_size(struct dispc_device * dispc,u16 * width,u16 * height)2609 void dispc_ovl_get_max_size(struct dispc_device *dispc, u16 *width, u16 *height)
2610 {
2611 *width = dispc->feat->ovl_width_max;
2612 *height = dispc->feat->ovl_height_max;
2613 }
2614
dispc_ovl_setup_common(struct dispc_device * dispc,enum omap_plane_id plane,enum omap_overlay_caps caps,u32 paddr,u32 p_uv_addr,u16 screen_width,int pos_x,int pos_y,u16 width,u16 height,u16 out_width,u16 out_height,u32 fourcc,u8 rotation,u8 zorder,u8 pre_mult_alpha,u8 global_alpha,enum omap_dss_rotation_type rotation_type,bool replication,const struct videomode * vm,bool mem_to_mem,enum drm_color_encoding color_encoding,enum drm_color_range color_range)2615 static int dispc_ovl_setup_common(struct dispc_device *dispc,
2616 enum omap_plane_id plane,
2617 enum omap_overlay_caps caps,
2618 u32 paddr, u32 p_uv_addr,
2619 u16 screen_width, int pos_x, int pos_y,
2620 u16 width, u16 height,
2621 u16 out_width, u16 out_height,
2622 u32 fourcc, u8 rotation, u8 zorder,
2623 u8 pre_mult_alpha, u8 global_alpha,
2624 enum omap_dss_rotation_type rotation_type,
2625 bool replication, const struct videomode *vm,
2626 bool mem_to_mem,
2627 enum drm_color_encoding color_encoding,
2628 enum drm_color_range color_range)
2629 {
2630 bool five_taps = true;
2631 bool fieldmode = false;
2632 int r, cconv = 0;
2633 unsigned int offset0, offset1;
2634 s32 row_inc;
2635 s32 pix_inc;
2636 u16 frame_width;
2637 unsigned int field_offset = 0;
2638 u16 in_height = height;
2639 u16 in_width = width;
2640 int x_predecim = 1, y_predecim = 1;
2641 bool ilace = !!(vm->flags & DISPLAY_FLAGS_INTERLACED);
2642 unsigned long pclk = dispc_plane_pclk_rate(dispc, plane);
2643 unsigned long lclk = dispc_plane_lclk_rate(dispc, plane);
2644 const struct drm_format_info *info;
2645
2646 info = drm_format_info(fourcc);
2647
2648 /* when setting up WB, dispc_plane_pclk_rate() returns 0 */
2649 if (plane == OMAP_DSS_WB)
2650 pclk = vm->pixelclock;
2651
2652 if (paddr == 0 && rotation_type != OMAP_DSS_ROT_TILER)
2653 return -EINVAL;
2654
2655 if (info->is_yuv && (in_width & 1)) {
2656 DSSERR("input width %d is not even for YUV format\n", in_width);
2657 return -EINVAL;
2658 }
2659
2660 out_width = out_width == 0 ? width : out_width;
2661 out_height = out_height == 0 ? height : out_height;
2662
2663 if (plane != OMAP_DSS_WB) {
2664 if (ilace && height == out_height)
2665 fieldmode = true;
2666
2667 if (ilace) {
2668 if (fieldmode)
2669 in_height /= 2;
2670 pos_y /= 2;
2671 out_height /= 2;
2672
2673 DSSDBG("adjusting for ilace: height %d, pos_y %d, out_height %d\n",
2674 in_height, pos_y, out_height);
2675 }
2676 }
2677
2678 if (!dispc_ovl_color_mode_supported(dispc, plane, fourcc))
2679 return -EINVAL;
2680
2681 r = dispc_ovl_calc_scaling(dispc, plane, pclk, lclk, caps, vm, in_width,
2682 in_height, out_width, out_height, fourcc,
2683 &five_taps, &x_predecim, &y_predecim, pos_x,
2684 rotation_type, mem_to_mem);
2685 if (r)
2686 return r;
2687
2688 in_width = in_width / x_predecim;
2689 in_height = in_height / y_predecim;
2690
2691 if (x_predecim > 1 || y_predecim > 1)
2692 DSSDBG("predecimation %d x %x, new input size %d x %d\n",
2693 x_predecim, y_predecim, in_width, in_height);
2694
2695 if (info->is_yuv && (in_width & 1)) {
2696 DSSDBG("predecimated input width is not even for YUV format\n");
2697 DSSDBG("adjusting input width %d -> %d\n",
2698 in_width, in_width & ~1);
2699
2700 in_width &= ~1;
2701 }
2702
2703 if (info->is_yuv)
2704 cconv = 1;
2705
2706 if (ilace && !fieldmode) {
2707 /*
2708 * when downscaling the bottom field may have to start several
2709 * source lines below the top field. Unfortunately ACCUI
2710 * registers will only hold the fractional part of the offset
2711 * so the integer part must be added to the base address of the
2712 * bottom field.
2713 */
2714 if (!in_height || in_height == out_height)
2715 field_offset = 0;
2716 else
2717 field_offset = in_height / out_height / 2;
2718 }
2719
2720 /* Fields are independent but interleaved in memory. */
2721 if (fieldmode)
2722 field_offset = 1;
2723
2724 offset0 = 0;
2725 offset1 = 0;
2726 row_inc = 0;
2727 pix_inc = 0;
2728
2729 if (plane == OMAP_DSS_WB)
2730 frame_width = out_width;
2731 else
2732 frame_width = in_width;
2733
2734 calc_offset(screen_width, frame_width,
2735 fourcc, fieldmode, field_offset,
2736 &offset0, &offset1, &row_inc, &pix_inc,
2737 x_predecim, y_predecim,
2738 rotation_type, rotation);
2739
2740 DSSDBG("offset0 %u, offset1 %u, row_inc %d, pix_inc %d\n",
2741 offset0, offset1, row_inc, pix_inc);
2742
2743 dispc_ovl_set_color_mode(dispc, plane, fourcc);
2744
2745 dispc_ovl_configure_burst_type(dispc, plane, rotation_type);
2746
2747 if (dispc->feat->reverse_ilace_field_order)
2748 swap(offset0, offset1);
2749
2750 dispc_ovl_set_ba0(dispc, plane, paddr + offset0);
2751 dispc_ovl_set_ba1(dispc, plane, paddr + offset1);
2752
2753 if (fourcc == DRM_FORMAT_NV12) {
2754 dispc_ovl_set_ba0_uv(dispc, plane, p_uv_addr + offset0);
2755 dispc_ovl_set_ba1_uv(dispc, plane, p_uv_addr + offset1);
2756 }
2757
2758 if (dispc->feat->last_pixel_inc_missing)
2759 row_inc += pix_inc - 1;
2760
2761 dispc_ovl_set_row_inc(dispc, plane, row_inc);
2762 dispc_ovl_set_pix_inc(dispc, plane, pix_inc);
2763
2764 DSSDBG("%d,%d %dx%d -> %dx%d\n", pos_x, pos_y, in_width,
2765 in_height, out_width, out_height);
2766
2767 dispc_ovl_set_pos(dispc, plane, caps, pos_x, pos_y);
2768
2769 dispc_ovl_set_input_size(dispc, plane, in_width, in_height);
2770
2771 if (caps & OMAP_DSS_OVL_CAP_SCALE) {
2772 dispc_ovl_set_scaling(dispc, plane, in_width, in_height,
2773 out_width, out_height, ilace, five_taps,
2774 fieldmode, fourcc, rotation);
2775 dispc_ovl_set_output_size(dispc, plane, out_width, out_height);
2776 dispc_ovl_set_vid_color_conv(dispc, plane, cconv);
2777
2778 if (plane != OMAP_DSS_WB)
2779 dispc_ovl_set_csc(dispc, plane, color_encoding, color_range);
2780 }
2781
2782 dispc_ovl_set_rotation_attrs(dispc, plane, rotation, rotation_type,
2783 fourcc);
2784
2785 dispc_ovl_set_zorder(dispc, plane, caps, zorder);
2786 dispc_ovl_set_pre_mult_alpha(dispc, plane, caps, pre_mult_alpha);
2787 dispc_ovl_setup_global_alpha(dispc, plane, caps, global_alpha);
2788
2789 dispc_ovl_enable_replication(dispc, plane, caps, replication);
2790
2791 return 0;
2792 }
2793
dispc_ovl_setup(struct dispc_device * dispc,enum omap_plane_id plane,const struct omap_overlay_info * oi,const struct videomode * vm,bool mem_to_mem,enum omap_channel channel)2794 int dispc_ovl_setup(struct dispc_device *dispc,
2795 enum omap_plane_id plane,
2796 const struct omap_overlay_info *oi,
2797 const struct videomode *vm, bool mem_to_mem,
2798 enum omap_channel channel)
2799 {
2800 int r;
2801 enum omap_overlay_caps caps = dispc->feat->overlay_caps[plane];
2802 const bool replication = true;
2803
2804 DSSDBG("dispc_ovl_setup %d, pa %pad, pa_uv %pad, sw %d, %d,%d, %dx%d ->"
2805 " %dx%d, cmode %x, rot %d, chan %d repl %d\n",
2806 plane, &oi->paddr, &oi->p_uv_addr, oi->screen_width, oi->pos_x,
2807 oi->pos_y, oi->width, oi->height, oi->out_width, oi->out_height,
2808 oi->fourcc, oi->rotation, channel, replication);
2809
2810 dispc_ovl_set_channel_out(dispc, plane, channel);
2811
2812 r = dispc_ovl_setup_common(dispc, plane, caps, oi->paddr, oi->p_uv_addr,
2813 oi->screen_width, oi->pos_x, oi->pos_y, oi->width, oi->height,
2814 oi->out_width, oi->out_height, oi->fourcc, oi->rotation,
2815 oi->zorder, oi->pre_mult_alpha, oi->global_alpha,
2816 oi->rotation_type, replication, vm, mem_to_mem,
2817 oi->color_encoding, oi->color_range);
2818
2819 return r;
2820 }
2821
dispc_wb_setup(struct dispc_device * dispc,const struct omap_dss_writeback_info * wi,bool mem_to_mem,const struct videomode * vm,enum dss_writeback_channel channel_in)2822 int dispc_wb_setup(struct dispc_device *dispc,
2823 const struct omap_dss_writeback_info *wi,
2824 bool mem_to_mem, const struct videomode *vm,
2825 enum dss_writeback_channel channel_in)
2826 {
2827 int r;
2828 u32 l;
2829 enum omap_plane_id plane = OMAP_DSS_WB;
2830 const int pos_x = 0, pos_y = 0;
2831 const u8 zorder = 0, global_alpha = 0;
2832 const bool replication = true;
2833 bool truncation;
2834 int in_width = vm->hactive;
2835 int in_height = vm->vactive;
2836 enum omap_overlay_caps caps =
2837 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA;
2838
2839 if (vm->flags & DISPLAY_FLAGS_INTERLACED)
2840 in_height /= 2;
2841
2842 DSSDBG("dispc_wb_setup, pa %x, pa_uv %x, %d,%d -> %dx%d, cmode %x, "
2843 "rot %d\n", wi->paddr, wi->p_uv_addr, in_width,
2844 in_height, wi->width, wi->height, wi->fourcc, wi->rotation);
2845
2846 r = dispc_ovl_setup_common(dispc, plane, caps, wi->paddr, wi->p_uv_addr,
2847 wi->buf_width, pos_x, pos_y, in_width, in_height, wi->width,
2848 wi->height, wi->fourcc, wi->rotation, zorder,
2849 wi->pre_mult_alpha, global_alpha, wi->rotation_type,
2850 replication, vm, mem_to_mem, DRM_COLOR_YCBCR_BT601,
2851 DRM_COLOR_YCBCR_LIMITED_RANGE);
2852 if (r)
2853 return r;
2854
2855 switch (wi->fourcc) {
2856 case DRM_FORMAT_RGB565:
2857 case DRM_FORMAT_RGB888:
2858 case DRM_FORMAT_ARGB4444:
2859 case DRM_FORMAT_RGBA4444:
2860 case DRM_FORMAT_RGBX4444:
2861 case DRM_FORMAT_ARGB1555:
2862 case DRM_FORMAT_XRGB1555:
2863 case DRM_FORMAT_XRGB4444:
2864 truncation = true;
2865 break;
2866 default:
2867 truncation = false;
2868 break;
2869 }
2870
2871 /* setup extra DISPC_WB_ATTRIBUTES */
2872 l = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
2873 l = FLD_MOD(l, truncation, 10, 10); /* TRUNCATIONENABLE */
2874 l = FLD_MOD(l, channel_in, 18, 16); /* CHANNELIN */
2875 l = FLD_MOD(l, mem_to_mem, 19, 19); /* WRITEBACKMODE */
2876 if (mem_to_mem)
2877 l = FLD_MOD(l, 1, 26, 24); /* CAPTUREMODE */
2878 else
2879 l = FLD_MOD(l, 0, 26, 24); /* CAPTUREMODE */
2880 dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), l);
2881
2882 if (mem_to_mem) {
2883 /* WBDELAYCOUNT */
2884 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane), 0, 7, 0);
2885 } else {
2886 u32 wbdelay;
2887
2888 if (channel_in == DSS_WB_TV_MGR)
2889 wbdelay = vm->vsync_len + vm->vback_porch;
2890 else
2891 wbdelay = vm->vfront_porch + vm->vsync_len +
2892 vm->vback_porch;
2893
2894 if (vm->flags & DISPLAY_FLAGS_INTERLACED)
2895 wbdelay /= 2;
2896
2897 wbdelay = min(wbdelay, 255u);
2898
2899 /* WBDELAYCOUNT */
2900 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane), wbdelay, 7, 0);
2901 }
2902
2903 return 0;
2904 }
2905
dispc_has_writeback(struct dispc_device * dispc)2906 bool dispc_has_writeback(struct dispc_device *dispc)
2907 {
2908 return dispc->feat->has_writeback;
2909 }
2910
dispc_ovl_enable(struct dispc_device * dispc,enum omap_plane_id plane,bool enable)2911 int dispc_ovl_enable(struct dispc_device *dispc,
2912 enum omap_plane_id plane, bool enable)
2913 {
2914 DSSDBG("dispc_enable_plane %d, %d\n", plane, enable);
2915
2916 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable ? 1 : 0, 0, 0);
2917
2918 return 0;
2919 }
2920
dispc_lcd_enable_signal_polarity(struct dispc_device * dispc,bool act_high)2921 static void dispc_lcd_enable_signal_polarity(struct dispc_device *dispc,
2922 bool act_high)
2923 {
2924 if (!dispc_has_feature(dispc, FEAT_LCDENABLEPOL))
2925 return;
2926
2927 REG_FLD_MOD(dispc, DISPC_CONTROL, act_high ? 1 : 0, 29, 29);
2928 }
2929
dispc_lcd_enable_signal(struct dispc_device * dispc,bool enable)2930 void dispc_lcd_enable_signal(struct dispc_device *dispc, bool enable)
2931 {
2932 if (!dispc_has_feature(dispc, FEAT_LCDENABLESIGNAL))
2933 return;
2934
2935 REG_FLD_MOD(dispc, DISPC_CONTROL, enable ? 1 : 0, 28, 28);
2936 }
2937
dispc_pck_free_enable(struct dispc_device * dispc,bool enable)2938 void dispc_pck_free_enable(struct dispc_device *dispc, bool enable)
2939 {
2940 if (!dispc_has_feature(dispc, FEAT_PCKFREEENABLE))
2941 return;
2942
2943 REG_FLD_MOD(dispc, DISPC_CONTROL, enable ? 1 : 0, 27, 27);
2944 }
2945
dispc_mgr_enable_fifohandcheck(struct dispc_device * dispc,enum omap_channel channel,bool enable)2946 static void dispc_mgr_enable_fifohandcheck(struct dispc_device *dispc,
2947 enum omap_channel channel,
2948 bool enable)
2949 {
2950 mgr_fld_write(dispc, channel, DISPC_MGR_FLD_FIFOHANDCHECK, enable);
2951 }
2952
2953
dispc_mgr_set_lcd_type_tft(struct dispc_device * dispc,enum omap_channel channel)2954 static void dispc_mgr_set_lcd_type_tft(struct dispc_device *dispc,
2955 enum omap_channel channel)
2956 {
2957 mgr_fld_write(dispc, channel, DISPC_MGR_FLD_STNTFT, 1);
2958 }
2959
dispc_set_loadmode(struct dispc_device * dispc,enum omap_dss_load_mode mode)2960 static void dispc_set_loadmode(struct dispc_device *dispc,
2961 enum omap_dss_load_mode mode)
2962 {
2963 REG_FLD_MOD(dispc, DISPC_CONFIG, mode, 2, 1);
2964 }
2965
2966
dispc_mgr_set_default_color(struct dispc_device * dispc,enum omap_channel channel,u32 color)2967 static void dispc_mgr_set_default_color(struct dispc_device *dispc,
2968 enum omap_channel channel, u32 color)
2969 {
2970 dispc_write_reg(dispc, DISPC_DEFAULT_COLOR(channel), color);
2971 }
2972
dispc_mgr_set_trans_key(struct dispc_device * dispc,enum omap_channel ch,enum omap_dss_trans_key_type type,u32 trans_key)2973 static void dispc_mgr_set_trans_key(struct dispc_device *dispc,
2974 enum omap_channel ch,
2975 enum omap_dss_trans_key_type type,
2976 u32 trans_key)
2977 {
2978 mgr_fld_write(dispc, ch, DISPC_MGR_FLD_TCKSELECTION, type);
2979
2980 dispc_write_reg(dispc, DISPC_TRANS_COLOR(ch), trans_key);
2981 }
2982
dispc_mgr_enable_trans_key(struct dispc_device * dispc,enum omap_channel ch,bool enable)2983 static void dispc_mgr_enable_trans_key(struct dispc_device *dispc,
2984 enum omap_channel ch, bool enable)
2985 {
2986 mgr_fld_write(dispc, ch, DISPC_MGR_FLD_TCKENABLE, enable);
2987 }
2988
dispc_mgr_enable_alpha_fixed_zorder(struct dispc_device * dispc,enum omap_channel ch,bool enable)2989 static void dispc_mgr_enable_alpha_fixed_zorder(struct dispc_device *dispc,
2990 enum omap_channel ch,
2991 bool enable)
2992 {
2993 if (!dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER))
2994 return;
2995
2996 if (ch == OMAP_DSS_CHANNEL_LCD)
2997 REG_FLD_MOD(dispc, DISPC_CONFIG, enable, 18, 18);
2998 else if (ch == OMAP_DSS_CHANNEL_DIGIT)
2999 REG_FLD_MOD(dispc, DISPC_CONFIG, enable, 19, 19);
3000 }
3001
dispc_mgr_setup(struct dispc_device * dispc,enum omap_channel channel,const struct omap_overlay_manager_info * info)3002 void dispc_mgr_setup(struct dispc_device *dispc,
3003 enum omap_channel channel,
3004 const struct omap_overlay_manager_info *info)
3005 {
3006 dispc_mgr_set_default_color(dispc, channel, info->default_color);
3007 dispc_mgr_set_trans_key(dispc, channel, info->trans_key_type,
3008 info->trans_key);
3009 dispc_mgr_enable_trans_key(dispc, channel, info->trans_enabled);
3010 dispc_mgr_enable_alpha_fixed_zorder(dispc, channel,
3011 info->partial_alpha_enabled);
3012 if (dispc_has_feature(dispc, FEAT_CPR)) {
3013 dispc_mgr_enable_cpr(dispc, channel, info->cpr_enable);
3014 dispc_mgr_set_cpr_coef(dispc, channel, &info->cpr_coefs);
3015 }
3016 }
3017
dispc_mgr_set_tft_data_lines(struct dispc_device * dispc,enum omap_channel channel,u8 data_lines)3018 static void dispc_mgr_set_tft_data_lines(struct dispc_device *dispc,
3019 enum omap_channel channel,
3020 u8 data_lines)
3021 {
3022 int code;
3023
3024 switch (data_lines) {
3025 case 12:
3026 code = 0;
3027 break;
3028 case 16:
3029 code = 1;
3030 break;
3031 case 18:
3032 code = 2;
3033 break;
3034 case 24:
3035 code = 3;
3036 break;
3037 default:
3038 BUG();
3039 return;
3040 }
3041
3042 mgr_fld_write(dispc, channel, DISPC_MGR_FLD_TFTDATALINES, code);
3043 }
3044
dispc_mgr_set_io_pad_mode(struct dispc_device * dispc,enum dss_io_pad_mode mode)3045 static void dispc_mgr_set_io_pad_mode(struct dispc_device *dispc,
3046 enum dss_io_pad_mode mode)
3047 {
3048 u32 l;
3049 int gpout0, gpout1;
3050
3051 switch (mode) {
3052 case DSS_IO_PAD_MODE_RESET:
3053 gpout0 = 0;
3054 gpout1 = 0;
3055 break;
3056 case DSS_IO_PAD_MODE_RFBI:
3057 gpout0 = 1;
3058 gpout1 = 0;
3059 break;
3060 case DSS_IO_PAD_MODE_BYPASS:
3061 gpout0 = 1;
3062 gpout1 = 1;
3063 break;
3064 default:
3065 BUG();
3066 return;
3067 }
3068
3069 l = dispc_read_reg(dispc, DISPC_CONTROL);
3070 l = FLD_MOD(l, gpout0, 15, 15);
3071 l = FLD_MOD(l, gpout1, 16, 16);
3072 dispc_write_reg(dispc, DISPC_CONTROL, l);
3073 }
3074
dispc_mgr_enable_stallmode(struct dispc_device * dispc,enum omap_channel channel,bool enable)3075 static void dispc_mgr_enable_stallmode(struct dispc_device *dispc,
3076 enum omap_channel channel, bool enable)
3077 {
3078 mgr_fld_write(dispc, channel, DISPC_MGR_FLD_STALLMODE, enable);
3079 }
3080
dispc_mgr_set_lcd_config(struct dispc_device * dispc,enum omap_channel channel,const struct dss_lcd_mgr_config * config)3081 void dispc_mgr_set_lcd_config(struct dispc_device *dispc,
3082 enum omap_channel channel,
3083 const struct dss_lcd_mgr_config *config)
3084 {
3085 dispc_mgr_set_io_pad_mode(dispc, config->io_pad_mode);
3086
3087 dispc_mgr_enable_stallmode(dispc, channel, config->stallmode);
3088 dispc_mgr_enable_fifohandcheck(dispc, channel, config->fifohandcheck);
3089
3090 dispc_mgr_set_clock_div(dispc, channel, &config->clock_info);
3091
3092 dispc_mgr_set_tft_data_lines(dispc, channel, config->video_port_width);
3093
3094 dispc_lcd_enable_signal_polarity(dispc, config->lcden_sig_polarity);
3095
3096 dispc_mgr_set_lcd_type_tft(dispc, channel);
3097 }
3098
_dispc_mgr_size_ok(struct dispc_device * dispc,u16 width,u16 height)3099 static bool _dispc_mgr_size_ok(struct dispc_device *dispc,
3100 u16 width, u16 height)
3101 {
3102 return width <= dispc->feat->mgr_width_max &&
3103 height <= dispc->feat->mgr_height_max;
3104 }
3105
_dispc_lcd_timings_ok(struct dispc_device * dispc,int hsync_len,int hfp,int hbp,int vsw,int vfp,int vbp)3106 static bool _dispc_lcd_timings_ok(struct dispc_device *dispc,
3107 int hsync_len, int hfp, int hbp,
3108 int vsw, int vfp, int vbp)
3109 {
3110 if (hsync_len < 1 || hsync_len > dispc->feat->sw_max ||
3111 hfp < 1 || hfp > dispc->feat->hp_max ||
3112 hbp < 1 || hbp > dispc->feat->hp_max ||
3113 vsw < 1 || vsw > dispc->feat->sw_max ||
3114 vfp < 0 || vfp > dispc->feat->vp_max ||
3115 vbp < 0 || vbp > dispc->feat->vp_max)
3116 return false;
3117 return true;
3118 }
3119
_dispc_mgr_pclk_ok(struct dispc_device * dispc,enum omap_channel channel,unsigned long pclk)3120 static bool _dispc_mgr_pclk_ok(struct dispc_device *dispc,
3121 enum omap_channel channel,
3122 unsigned long pclk)
3123 {
3124 if (dss_mgr_is_lcd(channel))
3125 return pclk <= dispc->feat->max_lcd_pclk;
3126 else
3127 return pclk <= dispc->feat->max_tv_pclk;
3128 }
3129
dispc_mgr_check_timings(struct dispc_device * dispc,enum omap_channel channel,const struct videomode * vm)3130 int dispc_mgr_check_timings(struct dispc_device *dispc,
3131 enum omap_channel channel,
3132 const struct videomode *vm)
3133 {
3134 if (!_dispc_mgr_size_ok(dispc, vm->hactive, vm->vactive))
3135 return MODE_BAD;
3136
3137 if (!_dispc_mgr_pclk_ok(dispc, channel, vm->pixelclock))
3138 return MODE_BAD;
3139
3140 if (dss_mgr_is_lcd(channel)) {
3141 /* TODO: OMAP4+ supports interlace for LCD outputs */
3142 if (vm->flags & DISPLAY_FLAGS_INTERLACED)
3143 return MODE_BAD;
3144
3145 if (!_dispc_lcd_timings_ok(dispc, vm->hsync_len,
3146 vm->hfront_porch, vm->hback_porch,
3147 vm->vsync_len, vm->vfront_porch,
3148 vm->vback_porch))
3149 return MODE_BAD;
3150 }
3151
3152 return MODE_OK;
3153 }
3154
_dispc_mgr_set_lcd_timings(struct dispc_device * dispc,enum omap_channel channel,const struct videomode * vm)3155 static void _dispc_mgr_set_lcd_timings(struct dispc_device *dispc,
3156 enum omap_channel channel,
3157 const struct videomode *vm)
3158 {
3159 u32 timing_h, timing_v, l;
3160 bool onoff, rf, ipc, vs, hs, de;
3161
3162 timing_h = FLD_VAL(vm->hsync_len - 1, dispc->feat->sw_start, 0) |
3163 FLD_VAL(vm->hfront_porch - 1, dispc->feat->fp_start, 8) |
3164 FLD_VAL(vm->hback_porch - 1, dispc->feat->bp_start, 20);
3165 timing_v = FLD_VAL(vm->vsync_len - 1, dispc->feat->sw_start, 0) |
3166 FLD_VAL(vm->vfront_porch, dispc->feat->fp_start, 8) |
3167 FLD_VAL(vm->vback_porch, dispc->feat->bp_start, 20);
3168
3169 dispc_write_reg(dispc, DISPC_TIMING_H(channel), timing_h);
3170 dispc_write_reg(dispc, DISPC_TIMING_V(channel), timing_v);
3171
3172 vs = !!(vm->flags & DISPLAY_FLAGS_VSYNC_LOW);
3173 hs = !!(vm->flags & DISPLAY_FLAGS_HSYNC_LOW);
3174 de = !!(vm->flags & DISPLAY_FLAGS_DE_LOW);
3175 ipc = !!(vm->flags & DISPLAY_FLAGS_PIXDATA_NEGEDGE);
3176 onoff = true; /* always use the 'rf' setting */
3177 rf = !!(vm->flags & DISPLAY_FLAGS_SYNC_POSEDGE);
3178
3179 l = FLD_VAL(onoff, 17, 17) |
3180 FLD_VAL(rf, 16, 16) |
3181 FLD_VAL(de, 15, 15) |
3182 FLD_VAL(ipc, 14, 14) |
3183 FLD_VAL(hs, 13, 13) |
3184 FLD_VAL(vs, 12, 12);
3185
3186 /* always set ALIGN bit when available */
3187 if (dispc->feat->supports_sync_align)
3188 l |= (1 << 18);
3189
3190 dispc_write_reg(dispc, DISPC_POL_FREQ(channel), l);
3191
3192 if (dispc->syscon_pol) {
3193 const int shifts[] = {
3194 [OMAP_DSS_CHANNEL_LCD] = 0,
3195 [OMAP_DSS_CHANNEL_LCD2] = 1,
3196 [OMAP_DSS_CHANNEL_LCD3] = 2,
3197 };
3198
3199 u32 mask, val;
3200
3201 mask = (1 << 0) | (1 << 3) | (1 << 6);
3202 val = (rf << 0) | (ipc << 3) | (onoff << 6);
3203
3204 mask <<= 16 + shifts[channel];
3205 val <<= 16 + shifts[channel];
3206
3207 regmap_update_bits(dispc->syscon_pol, dispc->syscon_pol_offset,
3208 mask, val);
3209 }
3210 }
3211
vm_flag_to_int(enum display_flags flags,enum display_flags high,enum display_flags low)3212 static int vm_flag_to_int(enum display_flags flags, enum display_flags high,
3213 enum display_flags low)
3214 {
3215 if (flags & high)
3216 return 1;
3217 if (flags & low)
3218 return -1;
3219 return 0;
3220 }
3221
3222 /* change name to mode? */
dispc_mgr_set_timings(struct dispc_device * dispc,enum omap_channel channel,const struct videomode * vm)3223 void dispc_mgr_set_timings(struct dispc_device *dispc,
3224 enum omap_channel channel,
3225 const struct videomode *vm)
3226 {
3227 unsigned int xtot, ytot;
3228 unsigned long ht, vt;
3229 struct videomode t = *vm;
3230
3231 DSSDBG("channel %d xres %u yres %u\n", channel, t.hactive, t.vactive);
3232
3233 if (dispc_mgr_check_timings(dispc, channel, &t)) {
3234 BUG();
3235 return;
3236 }
3237
3238 if (dss_mgr_is_lcd(channel)) {
3239 _dispc_mgr_set_lcd_timings(dispc, channel, &t);
3240
3241 xtot = t.hactive + t.hfront_porch + t.hsync_len + t.hback_porch;
3242 ytot = t.vactive + t.vfront_porch + t.vsync_len + t.vback_porch;
3243
3244 ht = vm->pixelclock / xtot;
3245 vt = vm->pixelclock / xtot / ytot;
3246
3247 DSSDBG("pck %lu\n", vm->pixelclock);
3248 DSSDBG("hsync_len %d hfp %d hbp %d vsw %d vfp %d vbp %d\n",
3249 t.hsync_len, t.hfront_porch, t.hback_porch,
3250 t.vsync_len, t.vfront_porch, t.vback_porch);
3251 DSSDBG("vsync_level %d hsync_level %d data_pclk_edge %d de_level %d sync_pclk_edge %d\n",
3252 vm_flag_to_int(t.flags, DISPLAY_FLAGS_VSYNC_HIGH, DISPLAY_FLAGS_VSYNC_LOW),
3253 vm_flag_to_int(t.flags, DISPLAY_FLAGS_HSYNC_HIGH, DISPLAY_FLAGS_HSYNC_LOW),
3254 vm_flag_to_int(t.flags, DISPLAY_FLAGS_PIXDATA_POSEDGE, DISPLAY_FLAGS_PIXDATA_NEGEDGE),
3255 vm_flag_to_int(t.flags, DISPLAY_FLAGS_DE_HIGH, DISPLAY_FLAGS_DE_LOW),
3256 vm_flag_to_int(t.flags, DISPLAY_FLAGS_SYNC_POSEDGE, DISPLAY_FLAGS_SYNC_NEGEDGE));
3257
3258 DSSDBG("hsync %luHz, vsync %luHz\n", ht, vt);
3259 } else {
3260 if (t.flags & DISPLAY_FLAGS_INTERLACED)
3261 t.vactive /= 2;
3262
3263 if (dispc->feat->supports_double_pixel)
3264 REG_FLD_MOD(dispc, DISPC_CONTROL,
3265 !!(t.flags & DISPLAY_FLAGS_DOUBLECLK),
3266 19, 17);
3267 }
3268
3269 dispc_mgr_set_size(dispc, channel, t.hactive, t.vactive);
3270 }
3271
dispc_mgr_set_lcd_divisor(struct dispc_device * dispc,enum omap_channel channel,u16 lck_div,u16 pck_div)3272 static void dispc_mgr_set_lcd_divisor(struct dispc_device *dispc,
3273 enum omap_channel channel, u16 lck_div,
3274 u16 pck_div)
3275 {
3276 BUG_ON(lck_div < 1);
3277 BUG_ON(pck_div < 1);
3278
3279 dispc_write_reg(dispc, DISPC_DIVISORo(channel),
3280 FLD_VAL(lck_div, 23, 16) | FLD_VAL(pck_div, 7, 0));
3281
3282 if (!dispc_has_feature(dispc, FEAT_CORE_CLK_DIV) &&
3283 channel == OMAP_DSS_CHANNEL_LCD)
3284 dispc->core_clk_rate = dispc_fclk_rate(dispc) / lck_div;
3285 }
3286
dispc_mgr_get_lcd_divisor(struct dispc_device * dispc,enum omap_channel channel,int * lck_div,int * pck_div)3287 static void dispc_mgr_get_lcd_divisor(struct dispc_device *dispc,
3288 enum omap_channel channel, int *lck_div,
3289 int *pck_div)
3290 {
3291 u32 l;
3292 l = dispc_read_reg(dispc, DISPC_DIVISORo(channel));
3293 *lck_div = FLD_GET(l, 23, 16);
3294 *pck_div = FLD_GET(l, 7, 0);
3295 }
3296
dispc_fclk_rate(struct dispc_device * dispc)3297 static unsigned long dispc_fclk_rate(struct dispc_device *dispc)
3298 {
3299 unsigned long r;
3300 enum dss_clk_source src;
3301
3302 src = dss_get_dispc_clk_source(dispc->dss);
3303
3304 if (src == DSS_CLK_SRC_FCK) {
3305 r = dss_get_dispc_clk_rate(dispc->dss);
3306 } else {
3307 struct dss_pll *pll;
3308 unsigned int clkout_idx;
3309
3310 pll = dss_pll_find_by_src(dispc->dss, src);
3311 clkout_idx = dss_pll_get_clkout_idx_for_src(src);
3312
3313 r = pll->cinfo.clkout[clkout_idx];
3314 }
3315
3316 return r;
3317 }
3318
dispc_mgr_lclk_rate(struct dispc_device * dispc,enum omap_channel channel)3319 static unsigned long dispc_mgr_lclk_rate(struct dispc_device *dispc,
3320 enum omap_channel channel)
3321 {
3322 int lcd;
3323 unsigned long r;
3324 enum dss_clk_source src;
3325
3326 /* for TV, LCLK rate is the FCLK rate */
3327 if (!dss_mgr_is_lcd(channel))
3328 return dispc_fclk_rate(dispc);
3329
3330 src = dss_get_lcd_clk_source(dispc->dss, channel);
3331
3332 if (src == DSS_CLK_SRC_FCK) {
3333 r = dss_get_dispc_clk_rate(dispc->dss);
3334 } else {
3335 struct dss_pll *pll;
3336 unsigned int clkout_idx;
3337
3338 pll = dss_pll_find_by_src(dispc->dss, src);
3339 clkout_idx = dss_pll_get_clkout_idx_for_src(src);
3340
3341 r = pll->cinfo.clkout[clkout_idx];
3342 }
3343
3344 lcd = REG_GET(dispc, DISPC_DIVISORo(channel), 23, 16);
3345
3346 return r / lcd;
3347 }
3348
dispc_mgr_pclk_rate(struct dispc_device * dispc,enum omap_channel channel)3349 static unsigned long dispc_mgr_pclk_rate(struct dispc_device *dispc,
3350 enum omap_channel channel)
3351 {
3352 unsigned long r;
3353
3354 if (dss_mgr_is_lcd(channel)) {
3355 int pcd;
3356 u32 l;
3357
3358 l = dispc_read_reg(dispc, DISPC_DIVISORo(channel));
3359
3360 pcd = FLD_GET(l, 7, 0);
3361
3362 r = dispc_mgr_lclk_rate(dispc, channel);
3363
3364 return r / pcd;
3365 } else {
3366 return dispc->tv_pclk_rate;
3367 }
3368 }
3369
dispc_set_tv_pclk(struct dispc_device * dispc,unsigned long pclk)3370 void dispc_set_tv_pclk(struct dispc_device *dispc, unsigned long pclk)
3371 {
3372 dispc->tv_pclk_rate = pclk;
3373 }
3374
dispc_core_clk_rate(struct dispc_device * dispc)3375 static unsigned long dispc_core_clk_rate(struct dispc_device *dispc)
3376 {
3377 return dispc->core_clk_rate;
3378 }
3379
dispc_plane_pclk_rate(struct dispc_device * dispc,enum omap_plane_id plane)3380 static unsigned long dispc_plane_pclk_rate(struct dispc_device *dispc,
3381 enum omap_plane_id plane)
3382 {
3383 enum omap_channel channel;
3384
3385 if (plane == OMAP_DSS_WB)
3386 return 0;
3387
3388 channel = dispc_ovl_get_channel_out(dispc, plane);
3389
3390 return dispc_mgr_pclk_rate(dispc, channel);
3391 }
3392
dispc_plane_lclk_rate(struct dispc_device * dispc,enum omap_plane_id plane)3393 static unsigned long dispc_plane_lclk_rate(struct dispc_device *dispc,
3394 enum omap_plane_id plane)
3395 {
3396 enum omap_channel channel;
3397
3398 if (plane == OMAP_DSS_WB)
3399 return 0;
3400
3401 channel = dispc_ovl_get_channel_out(dispc, plane);
3402
3403 return dispc_mgr_lclk_rate(dispc, channel);
3404 }
3405
dispc_dump_clocks_channel(struct dispc_device * dispc,struct seq_file * s,enum omap_channel channel)3406 static void dispc_dump_clocks_channel(struct dispc_device *dispc,
3407 struct seq_file *s,
3408 enum omap_channel channel)
3409 {
3410 int lcd, pcd;
3411 enum dss_clk_source lcd_clk_src;
3412
3413 seq_printf(s, "- %s -\n", mgr_desc[channel].name);
3414
3415 lcd_clk_src = dss_get_lcd_clk_source(dispc->dss, channel);
3416
3417 seq_printf(s, "%s clk source = %s\n", mgr_desc[channel].name,
3418 dss_get_clk_source_name(lcd_clk_src));
3419
3420 dispc_mgr_get_lcd_divisor(dispc, channel, &lcd, &pcd);
3421
3422 seq_printf(s, "lck\t\t%-16lulck div\t%u\n",
3423 dispc_mgr_lclk_rate(dispc, channel), lcd);
3424 seq_printf(s, "pck\t\t%-16lupck div\t%u\n",
3425 dispc_mgr_pclk_rate(dispc, channel), pcd);
3426 }
3427
dispc_dump_clocks(struct dispc_device * dispc,struct seq_file * s)3428 void dispc_dump_clocks(struct dispc_device *dispc, struct seq_file *s)
3429 {
3430 enum dss_clk_source dispc_clk_src;
3431 int lcd;
3432 u32 l;
3433
3434 if (dispc_runtime_get(dispc))
3435 return;
3436
3437 seq_printf(s, "- DISPC -\n");
3438
3439 dispc_clk_src = dss_get_dispc_clk_source(dispc->dss);
3440 seq_printf(s, "dispc fclk source = %s\n",
3441 dss_get_clk_source_name(dispc_clk_src));
3442
3443 seq_printf(s, "fck\t\t%-16lu\n", dispc_fclk_rate(dispc));
3444
3445 if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV)) {
3446 seq_printf(s, "- DISPC-CORE-CLK -\n");
3447 l = dispc_read_reg(dispc, DISPC_DIVISOR);
3448 lcd = FLD_GET(l, 23, 16);
3449
3450 seq_printf(s, "lck\t\t%-16lulck div\t%u\n",
3451 (dispc_fclk_rate(dispc)/lcd), lcd);
3452 }
3453
3454 dispc_dump_clocks_channel(dispc, s, OMAP_DSS_CHANNEL_LCD);
3455
3456 if (dispc_has_feature(dispc, FEAT_MGR_LCD2))
3457 dispc_dump_clocks_channel(dispc, s, OMAP_DSS_CHANNEL_LCD2);
3458 if (dispc_has_feature(dispc, FEAT_MGR_LCD3))
3459 dispc_dump_clocks_channel(dispc, s, OMAP_DSS_CHANNEL_LCD3);
3460
3461 dispc_runtime_put(dispc);
3462 }
3463
dispc_dump_regs(struct seq_file * s,void * p)3464 static int dispc_dump_regs(struct seq_file *s, void *p)
3465 {
3466 struct dispc_device *dispc = s->private;
3467 int i, j;
3468 const char *mgr_names[] = {
3469 [OMAP_DSS_CHANNEL_LCD] = "LCD",
3470 [OMAP_DSS_CHANNEL_DIGIT] = "TV",
3471 [OMAP_DSS_CHANNEL_LCD2] = "LCD2",
3472 [OMAP_DSS_CHANNEL_LCD3] = "LCD3",
3473 };
3474 const char *ovl_names[] = {
3475 [OMAP_DSS_GFX] = "GFX",
3476 [OMAP_DSS_VIDEO1] = "VID1",
3477 [OMAP_DSS_VIDEO2] = "VID2",
3478 [OMAP_DSS_VIDEO3] = "VID3",
3479 [OMAP_DSS_WB] = "WB",
3480 };
3481 const char **p_names;
3482
3483 #define DUMPREG(dispc, r) \
3484 seq_printf(s, "%-50s %08x\n", #r, dispc_read_reg(dispc, r))
3485
3486 if (dispc_runtime_get(dispc))
3487 return 0;
3488
3489 /* DISPC common registers */
3490 DUMPREG(dispc, DISPC_REVISION);
3491 DUMPREG(dispc, DISPC_SYSCONFIG);
3492 DUMPREG(dispc, DISPC_SYSSTATUS);
3493 DUMPREG(dispc, DISPC_IRQSTATUS);
3494 DUMPREG(dispc, DISPC_IRQENABLE);
3495 DUMPREG(dispc, DISPC_CONTROL);
3496 DUMPREG(dispc, DISPC_CONFIG);
3497 DUMPREG(dispc, DISPC_CAPABLE);
3498 DUMPREG(dispc, DISPC_LINE_STATUS);
3499 DUMPREG(dispc, DISPC_LINE_NUMBER);
3500 if (dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER) ||
3501 dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER))
3502 DUMPREG(dispc, DISPC_GLOBAL_ALPHA);
3503 if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) {
3504 DUMPREG(dispc, DISPC_CONTROL2);
3505 DUMPREG(dispc, DISPC_CONFIG2);
3506 }
3507 if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) {
3508 DUMPREG(dispc, DISPC_CONTROL3);
3509 DUMPREG(dispc, DISPC_CONFIG3);
3510 }
3511 if (dispc_has_feature(dispc, FEAT_MFLAG))
3512 DUMPREG(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE);
3513
3514 #undef DUMPREG
3515
3516 #define DISPC_REG(i, name) name(i)
3517 #define DUMPREG(dispc, i, r) seq_printf(s, "%s(%s)%*s %08x\n", #r, p_names[i], \
3518 (int)(48 - strlen(#r) - strlen(p_names[i])), " ", \
3519 dispc_read_reg(dispc, DISPC_REG(i, r)))
3520
3521 p_names = mgr_names;
3522
3523 /* DISPC channel specific registers */
3524 for (i = 0; i < dispc_get_num_mgrs(dispc); i++) {
3525 DUMPREG(dispc, i, DISPC_DEFAULT_COLOR);
3526 DUMPREG(dispc, i, DISPC_TRANS_COLOR);
3527 DUMPREG(dispc, i, DISPC_SIZE_MGR);
3528
3529 if (i == OMAP_DSS_CHANNEL_DIGIT)
3530 continue;
3531
3532 DUMPREG(dispc, i, DISPC_TIMING_H);
3533 DUMPREG(dispc, i, DISPC_TIMING_V);
3534 DUMPREG(dispc, i, DISPC_POL_FREQ);
3535 DUMPREG(dispc, i, DISPC_DIVISORo);
3536
3537 DUMPREG(dispc, i, DISPC_DATA_CYCLE1);
3538 DUMPREG(dispc, i, DISPC_DATA_CYCLE2);
3539 DUMPREG(dispc, i, DISPC_DATA_CYCLE3);
3540
3541 if (dispc_has_feature(dispc, FEAT_CPR)) {
3542 DUMPREG(dispc, i, DISPC_CPR_COEF_R);
3543 DUMPREG(dispc, i, DISPC_CPR_COEF_G);
3544 DUMPREG(dispc, i, DISPC_CPR_COEF_B);
3545 }
3546 }
3547
3548 p_names = ovl_names;
3549
3550 for (i = 0; i < dispc_get_num_ovls(dispc); i++) {
3551 DUMPREG(dispc, i, DISPC_OVL_BA0);
3552 DUMPREG(dispc, i, DISPC_OVL_BA1);
3553 DUMPREG(dispc, i, DISPC_OVL_POSITION);
3554 DUMPREG(dispc, i, DISPC_OVL_SIZE);
3555 DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES);
3556 DUMPREG(dispc, i, DISPC_OVL_FIFO_THRESHOLD);
3557 DUMPREG(dispc, i, DISPC_OVL_FIFO_SIZE_STATUS);
3558 DUMPREG(dispc, i, DISPC_OVL_ROW_INC);
3559 DUMPREG(dispc, i, DISPC_OVL_PIXEL_INC);
3560
3561 if (dispc_has_feature(dispc, FEAT_PRELOAD))
3562 DUMPREG(dispc, i, DISPC_OVL_PRELOAD);
3563 if (dispc_has_feature(dispc, FEAT_MFLAG))
3564 DUMPREG(dispc, i, DISPC_OVL_MFLAG_THRESHOLD);
3565
3566 if (i == OMAP_DSS_GFX) {
3567 DUMPREG(dispc, i, DISPC_OVL_WINDOW_SKIP);
3568 DUMPREG(dispc, i, DISPC_OVL_TABLE_BA);
3569 continue;
3570 }
3571
3572 DUMPREG(dispc, i, DISPC_OVL_FIR);
3573 DUMPREG(dispc, i, DISPC_OVL_PICTURE_SIZE);
3574 DUMPREG(dispc, i, DISPC_OVL_ACCU0);
3575 DUMPREG(dispc, i, DISPC_OVL_ACCU1);
3576 if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
3577 DUMPREG(dispc, i, DISPC_OVL_BA0_UV);
3578 DUMPREG(dispc, i, DISPC_OVL_BA1_UV);
3579 DUMPREG(dispc, i, DISPC_OVL_FIR2);
3580 DUMPREG(dispc, i, DISPC_OVL_ACCU2_0);
3581 DUMPREG(dispc, i, DISPC_OVL_ACCU2_1);
3582 }
3583 if (dispc_has_feature(dispc, FEAT_ATTR2))
3584 DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES2);
3585 }
3586
3587 if (dispc->feat->has_writeback) {
3588 i = OMAP_DSS_WB;
3589 DUMPREG(dispc, i, DISPC_OVL_BA0);
3590 DUMPREG(dispc, i, DISPC_OVL_BA1);
3591 DUMPREG(dispc, i, DISPC_OVL_SIZE);
3592 DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES);
3593 DUMPREG(dispc, i, DISPC_OVL_FIFO_THRESHOLD);
3594 DUMPREG(dispc, i, DISPC_OVL_FIFO_SIZE_STATUS);
3595 DUMPREG(dispc, i, DISPC_OVL_ROW_INC);
3596 DUMPREG(dispc, i, DISPC_OVL_PIXEL_INC);
3597
3598 if (dispc_has_feature(dispc, FEAT_MFLAG))
3599 DUMPREG(dispc, i, DISPC_OVL_MFLAG_THRESHOLD);
3600
3601 DUMPREG(dispc, i, DISPC_OVL_FIR);
3602 DUMPREG(dispc, i, DISPC_OVL_PICTURE_SIZE);
3603 DUMPREG(dispc, i, DISPC_OVL_ACCU0);
3604 DUMPREG(dispc, i, DISPC_OVL_ACCU1);
3605 if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
3606 DUMPREG(dispc, i, DISPC_OVL_BA0_UV);
3607 DUMPREG(dispc, i, DISPC_OVL_BA1_UV);
3608 DUMPREG(dispc, i, DISPC_OVL_FIR2);
3609 DUMPREG(dispc, i, DISPC_OVL_ACCU2_0);
3610 DUMPREG(dispc, i, DISPC_OVL_ACCU2_1);
3611 }
3612 if (dispc_has_feature(dispc, FEAT_ATTR2))
3613 DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES2);
3614 }
3615
3616 #undef DISPC_REG
3617 #undef DUMPREG
3618
3619 #define DISPC_REG(plane, name, i) name(plane, i)
3620 #define DUMPREG(dispc, plane, name, i) \
3621 seq_printf(s, "%s_%d(%s)%*s %08x\n", #name, i, p_names[plane], \
3622 (int)(46 - strlen(#name) - strlen(p_names[plane])), " ", \
3623 dispc_read_reg(dispc, DISPC_REG(plane, name, i)))
3624
3625 /* Video pipeline coefficient registers */
3626
3627 /* start from OMAP_DSS_VIDEO1 */
3628 for (i = 1; i < dispc_get_num_ovls(dispc); i++) {
3629 for (j = 0; j < 8; j++)
3630 DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_H, j);
3631
3632 for (j = 0; j < 8; j++)
3633 DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_HV, j);
3634
3635 for (j = 0; j < 5; j++)
3636 DUMPREG(dispc, i, DISPC_OVL_CONV_COEF, j);
3637
3638 if (dispc_has_feature(dispc, FEAT_FIR_COEF_V)) {
3639 for (j = 0; j < 8; j++)
3640 DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_V, j);
3641 }
3642
3643 if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
3644 for (j = 0; j < 8; j++)
3645 DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_H2, j);
3646
3647 for (j = 0; j < 8; j++)
3648 DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_HV2, j);
3649
3650 for (j = 0; j < 8; j++)
3651 DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_V2, j);
3652 }
3653 }
3654
3655 dispc_runtime_put(dispc);
3656
3657 #undef DISPC_REG
3658 #undef DUMPREG
3659
3660 return 0;
3661 }
3662
3663 /* calculate clock rates using dividers in cinfo */
dispc_calc_clock_rates(struct dispc_device * dispc,unsigned long dispc_fclk_rate,struct dispc_clock_info * cinfo)3664 int dispc_calc_clock_rates(struct dispc_device *dispc,
3665 unsigned long dispc_fclk_rate,
3666 struct dispc_clock_info *cinfo)
3667 {
3668 if (cinfo->lck_div > 255 || cinfo->lck_div == 0)
3669 return -EINVAL;
3670 if (cinfo->pck_div < 1 || cinfo->pck_div > 255)
3671 return -EINVAL;
3672
3673 cinfo->lck = dispc_fclk_rate / cinfo->lck_div;
3674 cinfo->pck = cinfo->lck / cinfo->pck_div;
3675
3676 return 0;
3677 }
3678
dispc_div_calc(struct dispc_device * dispc,unsigned long dispc_freq,unsigned long pck_min,unsigned long pck_max,dispc_div_calc_func func,void * data)3679 bool dispc_div_calc(struct dispc_device *dispc, unsigned long dispc_freq,
3680 unsigned long pck_min, unsigned long pck_max,
3681 dispc_div_calc_func func, void *data)
3682 {
3683 int lckd, lckd_start, lckd_stop;
3684 int pckd, pckd_start, pckd_stop;
3685 unsigned long pck, lck;
3686 unsigned long lck_max;
3687 unsigned long pckd_hw_min, pckd_hw_max;
3688 unsigned int min_fck_per_pck;
3689 unsigned long fck;
3690
3691 #ifdef CONFIG_OMAP2_DSS_MIN_FCK_PER_PCK
3692 min_fck_per_pck = CONFIG_OMAP2_DSS_MIN_FCK_PER_PCK;
3693 #else
3694 min_fck_per_pck = 0;
3695 #endif
3696
3697 pckd_hw_min = dispc->feat->min_pcd;
3698 pckd_hw_max = 255;
3699
3700 lck_max = dss_get_max_fck_rate(dispc->dss);
3701
3702 pck_min = pck_min ? pck_min : 1;
3703 pck_max = pck_max ? pck_max : ULONG_MAX;
3704
3705 lckd_start = max(DIV_ROUND_UP(dispc_freq, lck_max), 1ul);
3706 lckd_stop = min(dispc_freq / pck_min, 255ul);
3707
3708 for (lckd = lckd_start; lckd <= lckd_stop; ++lckd) {
3709 lck = dispc_freq / lckd;
3710
3711 pckd_start = max(DIV_ROUND_UP(lck, pck_max), pckd_hw_min);
3712 pckd_stop = min(lck / pck_min, pckd_hw_max);
3713
3714 for (pckd = pckd_start; pckd <= pckd_stop; ++pckd) {
3715 pck = lck / pckd;
3716
3717 /*
3718 * For OMAP2/3 the DISPC fclk is the same as LCD's logic
3719 * clock, which means we're configuring DISPC fclk here
3720 * also. Thus we need to use the calculated lck. For
3721 * OMAP4+ the DISPC fclk is a separate clock.
3722 */
3723 if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV))
3724 fck = dispc_core_clk_rate(dispc);
3725 else
3726 fck = lck;
3727
3728 if (fck < pck * min_fck_per_pck)
3729 continue;
3730
3731 if (func(lckd, pckd, lck, pck, data))
3732 return true;
3733 }
3734 }
3735
3736 return false;
3737 }
3738
dispc_mgr_set_clock_div(struct dispc_device * dispc,enum omap_channel channel,const struct dispc_clock_info * cinfo)3739 void dispc_mgr_set_clock_div(struct dispc_device *dispc,
3740 enum omap_channel channel,
3741 const struct dispc_clock_info *cinfo)
3742 {
3743 DSSDBG("lck = %lu (%u)\n", cinfo->lck, cinfo->lck_div);
3744 DSSDBG("pck = %lu (%u)\n", cinfo->pck, cinfo->pck_div);
3745
3746 dispc_mgr_set_lcd_divisor(dispc, channel, cinfo->lck_div,
3747 cinfo->pck_div);
3748 }
3749
dispc_mgr_get_clock_div(struct dispc_device * dispc,enum omap_channel channel,struct dispc_clock_info * cinfo)3750 int dispc_mgr_get_clock_div(struct dispc_device *dispc,
3751 enum omap_channel channel,
3752 struct dispc_clock_info *cinfo)
3753 {
3754 unsigned long fck;
3755
3756 fck = dispc_fclk_rate(dispc);
3757
3758 cinfo->lck_div = REG_GET(dispc, DISPC_DIVISORo(channel), 23, 16);
3759 cinfo->pck_div = REG_GET(dispc, DISPC_DIVISORo(channel), 7, 0);
3760
3761 cinfo->lck = fck / cinfo->lck_div;
3762 cinfo->pck = cinfo->lck / cinfo->pck_div;
3763
3764 return 0;
3765 }
3766
dispc_read_irqstatus(struct dispc_device * dispc)3767 u32 dispc_read_irqstatus(struct dispc_device *dispc)
3768 {
3769 return dispc_read_reg(dispc, DISPC_IRQSTATUS);
3770 }
3771
dispc_clear_irqstatus(struct dispc_device * dispc,u32 mask)3772 void dispc_clear_irqstatus(struct dispc_device *dispc, u32 mask)
3773 {
3774 dispc_write_reg(dispc, DISPC_IRQSTATUS, mask);
3775 }
3776
dispc_write_irqenable(struct dispc_device * dispc,u32 mask)3777 void dispc_write_irqenable(struct dispc_device *dispc, u32 mask)
3778 {
3779 u32 old_mask = dispc_read_reg(dispc, DISPC_IRQENABLE);
3780
3781 /* clear the irqstatus for newly enabled irqs */
3782 dispc_clear_irqstatus(dispc, (mask ^ old_mask) & mask);
3783
3784 dispc_write_reg(dispc, DISPC_IRQENABLE, mask);
3785
3786 /* flush posted write */
3787 dispc_read_reg(dispc, DISPC_IRQENABLE);
3788 }
3789
dispc_enable_sidle(struct dispc_device * dispc)3790 void dispc_enable_sidle(struct dispc_device *dispc)
3791 {
3792 /* SIDLEMODE: smart idle */
3793 REG_FLD_MOD(dispc, DISPC_SYSCONFIG, 2, 4, 3);
3794 }
3795
dispc_disable_sidle(struct dispc_device * dispc)3796 void dispc_disable_sidle(struct dispc_device *dispc)
3797 {
3798 REG_FLD_MOD(dispc, DISPC_SYSCONFIG, 1, 4, 3); /* SIDLEMODE: no idle */
3799 }
3800
dispc_mgr_gamma_size(struct dispc_device * dispc,enum omap_channel channel)3801 u32 dispc_mgr_gamma_size(struct dispc_device *dispc,
3802 enum omap_channel channel)
3803 {
3804 const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma;
3805
3806 if (!dispc->feat->has_gamma_table)
3807 return 0;
3808
3809 return gdesc->len;
3810 }
3811
dispc_mgr_write_gamma_table(struct dispc_device * dispc,enum omap_channel channel)3812 static void dispc_mgr_write_gamma_table(struct dispc_device *dispc,
3813 enum omap_channel channel)
3814 {
3815 const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma;
3816 u32 *table = dispc->gamma_table[channel];
3817 unsigned int i;
3818
3819 DSSDBG("%s: channel %d\n", __func__, channel);
3820
3821 for (i = 0; i < gdesc->len; ++i) {
3822 u32 v = table[i];
3823
3824 if (gdesc->has_index)
3825 v |= i << 24;
3826 else if (i == 0)
3827 v |= 1 << 31;
3828
3829 dispc_write_reg(dispc, gdesc->reg, v);
3830 }
3831 }
3832
dispc_restore_gamma_tables(struct dispc_device * dispc)3833 static void dispc_restore_gamma_tables(struct dispc_device *dispc)
3834 {
3835 DSSDBG("%s()\n", __func__);
3836
3837 if (!dispc->feat->has_gamma_table)
3838 return;
3839
3840 dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_LCD);
3841
3842 dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_DIGIT);
3843
3844 if (dispc_has_feature(dispc, FEAT_MGR_LCD2))
3845 dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_LCD2);
3846
3847 if (dispc_has_feature(dispc, FEAT_MGR_LCD3))
3848 dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_LCD3);
3849 }
3850
3851 static const struct drm_color_lut dispc_mgr_gamma_default_lut[] = {
3852 { .red = 0, .green = 0, .blue = 0, },
3853 { .red = U16_MAX, .green = U16_MAX, .blue = U16_MAX, },
3854 };
3855
dispc_mgr_set_gamma(struct dispc_device * dispc,enum omap_channel channel,const struct drm_color_lut * lut,unsigned int length)3856 void dispc_mgr_set_gamma(struct dispc_device *dispc,
3857 enum omap_channel channel,
3858 const struct drm_color_lut *lut,
3859 unsigned int length)
3860 {
3861 const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma;
3862 u32 *table = dispc->gamma_table[channel];
3863 uint i;
3864
3865 DSSDBG("%s: channel %d, lut len %u, hw len %u\n", __func__,
3866 channel, length, gdesc->len);
3867
3868 if (!dispc->feat->has_gamma_table)
3869 return;
3870
3871 if (lut == NULL || length < 2) {
3872 lut = dispc_mgr_gamma_default_lut;
3873 length = ARRAY_SIZE(dispc_mgr_gamma_default_lut);
3874 }
3875
3876 for (i = 0; i < length - 1; ++i) {
3877 uint first = i * (gdesc->len - 1) / (length - 1);
3878 uint last = (i + 1) * (gdesc->len - 1) / (length - 1);
3879 uint w = last - first;
3880 u16 r, g, b;
3881 uint j;
3882
3883 if (w == 0)
3884 continue;
3885
3886 for (j = 0; j <= w; j++) {
3887 r = (lut[i].red * (w - j) + lut[i+1].red * j) / w;
3888 g = (lut[i].green * (w - j) + lut[i+1].green * j) / w;
3889 b = (lut[i].blue * (w - j) + lut[i+1].blue * j) / w;
3890
3891 r >>= 16 - gdesc->bits;
3892 g >>= 16 - gdesc->bits;
3893 b >>= 16 - gdesc->bits;
3894
3895 table[first + j] = (r << (gdesc->bits * 2)) |
3896 (g << gdesc->bits) | b;
3897 }
3898 }
3899
3900 if (dispc->is_enabled)
3901 dispc_mgr_write_gamma_table(dispc, channel);
3902 }
3903
dispc_init_gamma_tables(struct dispc_device * dispc)3904 static int dispc_init_gamma_tables(struct dispc_device *dispc)
3905 {
3906 int channel;
3907
3908 if (!dispc->feat->has_gamma_table)
3909 return 0;
3910
3911 for (channel = 0; channel < ARRAY_SIZE(dispc->gamma_table); channel++) {
3912 const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma;
3913 u32 *gt;
3914
3915 if (channel == OMAP_DSS_CHANNEL_LCD2 &&
3916 !dispc_has_feature(dispc, FEAT_MGR_LCD2))
3917 continue;
3918
3919 if (channel == OMAP_DSS_CHANNEL_LCD3 &&
3920 !dispc_has_feature(dispc, FEAT_MGR_LCD3))
3921 continue;
3922
3923 gt = devm_kmalloc_array(&dispc->pdev->dev, gdesc->len,
3924 sizeof(u32), GFP_KERNEL);
3925 if (!gt)
3926 return -ENOMEM;
3927
3928 dispc->gamma_table[channel] = gt;
3929
3930 dispc_mgr_set_gamma(dispc, channel, NULL, 0);
3931 }
3932 return 0;
3933 }
3934
_omap_dispc_initial_config(struct dispc_device * dispc)3935 static void _omap_dispc_initial_config(struct dispc_device *dispc)
3936 {
3937 u32 l;
3938
3939 /* Exclusively enable DISPC_CORE_CLK and set divider to 1 */
3940 if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV)) {
3941 l = dispc_read_reg(dispc, DISPC_DIVISOR);
3942 /* Use DISPC_DIVISOR.LCD, instead of DISPC_DIVISOR1.LCD */
3943 l = FLD_MOD(l, 1, 0, 0);
3944 l = FLD_MOD(l, 1, 23, 16);
3945 dispc_write_reg(dispc, DISPC_DIVISOR, l);
3946
3947 dispc->core_clk_rate = dispc_fclk_rate(dispc);
3948 }
3949
3950 /* Use gamma table mode, instead of palette mode */
3951 if (dispc->feat->has_gamma_table)
3952 REG_FLD_MOD(dispc, DISPC_CONFIG, 1, 3, 3);
3953
3954 /* For older DSS versions (FEAT_FUNCGATED) this enables
3955 * func-clock auto-gating. For newer versions
3956 * (dispc->feat->has_gamma_table) this enables tv-out gamma tables.
3957 */
3958 if (dispc_has_feature(dispc, FEAT_FUNCGATED) ||
3959 dispc->feat->has_gamma_table)
3960 REG_FLD_MOD(dispc, DISPC_CONFIG, 1, 9, 9);
3961
3962 dispc_set_loadmode(dispc, OMAP_DSS_LOAD_FRAME_ONLY);
3963
3964 dispc_init_fifos(dispc);
3965
3966 dispc_configure_burst_sizes(dispc);
3967
3968 dispc_ovl_enable_zorder_planes(dispc);
3969
3970 if (dispc->feat->mstandby_workaround)
3971 REG_FLD_MOD(dispc, DISPC_MSTANDBY_CTRL, 1, 0, 0);
3972
3973 if (dispc_has_feature(dispc, FEAT_MFLAG))
3974 dispc_init_mflag(dispc);
3975 }
3976
3977 static const enum dispc_feature_id omap2_dispc_features_list[] = {
3978 FEAT_LCDENABLEPOL,
3979 FEAT_LCDENABLESIGNAL,
3980 FEAT_PCKFREEENABLE,
3981 FEAT_FUNCGATED,
3982 FEAT_ROWREPEATENABLE,
3983 FEAT_RESIZECONF,
3984 };
3985
3986 static const enum dispc_feature_id omap3_dispc_features_list[] = {
3987 FEAT_LCDENABLEPOL,
3988 FEAT_LCDENABLESIGNAL,
3989 FEAT_PCKFREEENABLE,
3990 FEAT_FUNCGATED,
3991 FEAT_LINEBUFFERSPLIT,
3992 FEAT_ROWREPEATENABLE,
3993 FEAT_RESIZECONF,
3994 FEAT_CPR,
3995 FEAT_PRELOAD,
3996 FEAT_FIR_COEF_V,
3997 FEAT_ALPHA_FIXED_ZORDER,
3998 FEAT_FIFO_MERGE,
3999 FEAT_OMAP3_DSI_FIFO_BUG,
4000 };
4001
4002 static const enum dispc_feature_id am43xx_dispc_features_list[] = {
4003 FEAT_LCDENABLEPOL,
4004 FEAT_LCDENABLESIGNAL,
4005 FEAT_PCKFREEENABLE,
4006 FEAT_FUNCGATED,
4007 FEAT_LINEBUFFERSPLIT,
4008 FEAT_ROWREPEATENABLE,
4009 FEAT_RESIZECONF,
4010 FEAT_CPR,
4011 FEAT_PRELOAD,
4012 FEAT_FIR_COEF_V,
4013 FEAT_ALPHA_FIXED_ZORDER,
4014 FEAT_FIFO_MERGE,
4015 };
4016
4017 static const enum dispc_feature_id omap4_dispc_features_list[] = {
4018 FEAT_MGR_LCD2,
4019 FEAT_CORE_CLK_DIV,
4020 FEAT_HANDLE_UV_SEPARATE,
4021 FEAT_ATTR2,
4022 FEAT_CPR,
4023 FEAT_PRELOAD,
4024 FEAT_FIR_COEF_V,
4025 FEAT_ALPHA_FREE_ZORDER,
4026 FEAT_FIFO_MERGE,
4027 FEAT_BURST_2D,
4028 };
4029
4030 static const enum dispc_feature_id omap5_dispc_features_list[] = {
4031 FEAT_MGR_LCD2,
4032 FEAT_MGR_LCD3,
4033 FEAT_CORE_CLK_DIV,
4034 FEAT_HANDLE_UV_SEPARATE,
4035 FEAT_ATTR2,
4036 FEAT_CPR,
4037 FEAT_PRELOAD,
4038 FEAT_FIR_COEF_V,
4039 FEAT_ALPHA_FREE_ZORDER,
4040 FEAT_FIFO_MERGE,
4041 FEAT_BURST_2D,
4042 FEAT_MFLAG,
4043 };
4044
4045 static const struct dss_reg_field omap2_dispc_reg_fields[] = {
4046 [FEAT_REG_FIRHINC] = { 11, 0 },
4047 [FEAT_REG_FIRVINC] = { 27, 16 },
4048 [FEAT_REG_FIFOLOWTHRESHOLD] = { 8, 0 },
4049 [FEAT_REG_FIFOHIGHTHRESHOLD] = { 24, 16 },
4050 [FEAT_REG_FIFOSIZE] = { 8, 0 },
4051 [FEAT_REG_HORIZONTALACCU] = { 9, 0 },
4052 [FEAT_REG_VERTICALACCU] = { 25, 16 },
4053 };
4054
4055 static const struct dss_reg_field omap3_dispc_reg_fields[] = {
4056 [FEAT_REG_FIRHINC] = { 12, 0 },
4057 [FEAT_REG_FIRVINC] = { 28, 16 },
4058 [FEAT_REG_FIFOLOWTHRESHOLD] = { 11, 0 },
4059 [FEAT_REG_FIFOHIGHTHRESHOLD] = { 27, 16 },
4060 [FEAT_REG_FIFOSIZE] = { 10, 0 },
4061 [FEAT_REG_HORIZONTALACCU] = { 9, 0 },
4062 [FEAT_REG_VERTICALACCU] = { 25, 16 },
4063 };
4064
4065 static const struct dss_reg_field omap4_dispc_reg_fields[] = {
4066 [FEAT_REG_FIRHINC] = { 12, 0 },
4067 [FEAT_REG_FIRVINC] = { 28, 16 },
4068 [FEAT_REG_FIFOLOWTHRESHOLD] = { 15, 0 },
4069 [FEAT_REG_FIFOHIGHTHRESHOLD] = { 31, 16 },
4070 [FEAT_REG_FIFOSIZE] = { 15, 0 },
4071 [FEAT_REG_HORIZONTALACCU] = { 10, 0 },
4072 [FEAT_REG_VERTICALACCU] = { 26, 16 },
4073 };
4074
4075 static const enum omap_overlay_caps omap2_dispc_overlay_caps[] = {
4076 /* OMAP_DSS_GFX */
4077 OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4078
4079 /* OMAP_DSS_VIDEO1 */
4080 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS |
4081 OMAP_DSS_OVL_CAP_REPLICATION,
4082
4083 /* OMAP_DSS_VIDEO2 */
4084 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS |
4085 OMAP_DSS_OVL_CAP_REPLICATION,
4086 };
4087
4088 static const enum omap_overlay_caps omap3430_dispc_overlay_caps[] = {
4089 /* OMAP_DSS_GFX */
4090 OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | OMAP_DSS_OVL_CAP_POS |
4091 OMAP_DSS_OVL_CAP_REPLICATION,
4092
4093 /* OMAP_DSS_VIDEO1 */
4094 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS |
4095 OMAP_DSS_OVL_CAP_REPLICATION,
4096
4097 /* OMAP_DSS_VIDEO2 */
4098 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
4099 OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4100 };
4101
4102 static const enum omap_overlay_caps omap3630_dispc_overlay_caps[] = {
4103 /* OMAP_DSS_GFX */
4104 OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA |
4105 OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4106
4107 /* OMAP_DSS_VIDEO1 */
4108 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS |
4109 OMAP_DSS_OVL_CAP_REPLICATION,
4110
4111 /* OMAP_DSS_VIDEO2 */
4112 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
4113 OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_POS |
4114 OMAP_DSS_OVL_CAP_REPLICATION,
4115 };
4116
4117 static const enum omap_overlay_caps omap4_dispc_overlay_caps[] = {
4118 /* OMAP_DSS_GFX */
4119 OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA |
4120 OMAP_DSS_OVL_CAP_ZORDER | OMAP_DSS_OVL_CAP_POS |
4121 OMAP_DSS_OVL_CAP_REPLICATION,
4122
4123 /* OMAP_DSS_VIDEO1 */
4124 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
4125 OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_ZORDER |
4126 OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4127
4128 /* OMAP_DSS_VIDEO2 */
4129 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
4130 OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_ZORDER |
4131 OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4132
4133 /* OMAP_DSS_VIDEO3 */
4134 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
4135 OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_ZORDER |
4136 OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4137 };
4138
4139 #define COLOR_ARRAY(arr...) (const u32[]) { arr, 0 }
4140
4141 static const u32 *omap2_dispc_supported_color_modes[] = {
4142
4143 /* OMAP_DSS_GFX */
4144 COLOR_ARRAY(
4145 DRM_FORMAT_RGBX4444, DRM_FORMAT_RGB565,
4146 DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB888),
4147
4148 /* OMAP_DSS_VIDEO1 */
4149 COLOR_ARRAY(
4150 DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4151 DRM_FORMAT_RGB888, DRM_FORMAT_YUYV,
4152 DRM_FORMAT_UYVY),
4153
4154 /* OMAP_DSS_VIDEO2 */
4155 COLOR_ARRAY(
4156 DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4157 DRM_FORMAT_RGB888, DRM_FORMAT_YUYV,
4158 DRM_FORMAT_UYVY),
4159 };
4160
4161 static const u32 *omap3_dispc_supported_color_modes[] = {
4162 /* OMAP_DSS_GFX */
4163 COLOR_ARRAY(
4164 DRM_FORMAT_RGBX4444, DRM_FORMAT_ARGB4444,
4165 DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4166 DRM_FORMAT_RGB888, DRM_FORMAT_ARGB8888,
4167 DRM_FORMAT_RGBA8888, DRM_FORMAT_RGBX8888),
4168
4169 /* OMAP_DSS_VIDEO1 */
4170 COLOR_ARRAY(
4171 DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB888,
4172 DRM_FORMAT_RGBX4444, DRM_FORMAT_RGB565,
4173 DRM_FORMAT_YUYV, DRM_FORMAT_UYVY),
4174
4175 /* OMAP_DSS_VIDEO2 */
4176 COLOR_ARRAY(
4177 DRM_FORMAT_RGBX4444, DRM_FORMAT_ARGB4444,
4178 DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4179 DRM_FORMAT_RGB888, DRM_FORMAT_YUYV,
4180 DRM_FORMAT_UYVY, DRM_FORMAT_ARGB8888,
4181 DRM_FORMAT_RGBA8888, DRM_FORMAT_RGBX8888),
4182 };
4183
4184 static const u32 *omap4_dispc_supported_color_modes[] = {
4185 /* OMAP_DSS_GFX */
4186 COLOR_ARRAY(
4187 DRM_FORMAT_RGBX4444, DRM_FORMAT_ARGB4444,
4188 DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4189 DRM_FORMAT_RGB888, DRM_FORMAT_ARGB8888,
4190 DRM_FORMAT_RGBA8888, DRM_FORMAT_RGBX8888,
4191 DRM_FORMAT_ARGB1555, DRM_FORMAT_XRGB4444,
4192 DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB1555),
4193
4194 /* OMAP_DSS_VIDEO1 */
4195 COLOR_ARRAY(
4196 DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444,
4197 DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555,
4198 DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12,
4199 DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888,
4200 DRM_FORMAT_RGB888, DRM_FORMAT_UYVY,
4201 DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555,
4202 DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444,
4203 DRM_FORMAT_RGBX8888),
4204
4205 /* OMAP_DSS_VIDEO2 */
4206 COLOR_ARRAY(
4207 DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444,
4208 DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555,
4209 DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12,
4210 DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888,
4211 DRM_FORMAT_RGB888, DRM_FORMAT_UYVY,
4212 DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555,
4213 DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444,
4214 DRM_FORMAT_RGBX8888),
4215
4216 /* OMAP_DSS_VIDEO3 */
4217 COLOR_ARRAY(
4218 DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444,
4219 DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555,
4220 DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12,
4221 DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888,
4222 DRM_FORMAT_RGB888, DRM_FORMAT_UYVY,
4223 DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555,
4224 DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444,
4225 DRM_FORMAT_RGBX8888),
4226
4227 /* OMAP_DSS_WB */
4228 COLOR_ARRAY(
4229 DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444,
4230 DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555,
4231 DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12,
4232 DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888,
4233 DRM_FORMAT_RGB888, DRM_FORMAT_UYVY,
4234 DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555,
4235 DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444,
4236 DRM_FORMAT_RGBX8888),
4237 };
4238
4239 static const u32 omap3_dispc_supported_scaler_color_modes[] = {
4240 DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB565, DRM_FORMAT_YUYV,
4241 DRM_FORMAT_UYVY,
4242 0,
4243 };
4244
4245 static const struct dispc_features omap24xx_dispc_feats = {
4246 .sw_start = 5,
4247 .fp_start = 15,
4248 .bp_start = 27,
4249 .sw_max = 64,
4250 .vp_max = 255,
4251 .hp_max = 256,
4252 .mgr_width_start = 10,
4253 .mgr_height_start = 26,
4254 .mgr_width_max = 2048,
4255 .mgr_height_max = 2048,
4256 .ovl_width_max = 2048,
4257 .ovl_height_max = 2048,
4258 .max_lcd_pclk = 66500000,
4259 .max_downscale = 2,
4260 /*
4261 * Assume the line width buffer to be 768 pixels as OMAP2 DISPC scaler
4262 * cannot scale an image width larger than 768.
4263 */
4264 .max_line_width = 768,
4265 .min_pcd = 2,
4266 .calc_scaling = dispc_ovl_calc_scaling_24xx,
4267 .calc_core_clk = calc_core_clk_24xx,
4268 .num_fifos = 3,
4269 .features = omap2_dispc_features_list,
4270 .num_features = ARRAY_SIZE(omap2_dispc_features_list),
4271 .reg_fields = omap2_dispc_reg_fields,
4272 .num_reg_fields = ARRAY_SIZE(omap2_dispc_reg_fields),
4273 .overlay_caps = omap2_dispc_overlay_caps,
4274 .supported_color_modes = omap2_dispc_supported_color_modes,
4275 .supported_scaler_color_modes = COLOR_ARRAY(DRM_FORMAT_XRGB8888),
4276 .num_mgrs = 2,
4277 .num_ovls = 3,
4278 .buffer_size_unit = 1,
4279 .burst_size_unit = 8,
4280 .no_framedone_tv = true,
4281 .set_max_preload = false,
4282 .last_pixel_inc_missing = true,
4283 };
4284
4285 static const struct dispc_features omap34xx_rev1_0_dispc_feats = {
4286 .sw_start = 5,
4287 .fp_start = 15,
4288 .bp_start = 27,
4289 .sw_max = 64,
4290 .vp_max = 255,
4291 .hp_max = 256,
4292 .mgr_width_start = 10,
4293 .mgr_height_start = 26,
4294 .mgr_width_max = 2048,
4295 .mgr_height_max = 2048,
4296 .ovl_width_max = 2048,
4297 .ovl_height_max = 2048,
4298 .max_lcd_pclk = 173000000,
4299 .max_tv_pclk = 59000000,
4300 .max_downscale = 4,
4301 .max_line_width = 1024,
4302 .min_pcd = 1,
4303 .calc_scaling = dispc_ovl_calc_scaling_34xx,
4304 .calc_core_clk = calc_core_clk_34xx,
4305 .num_fifos = 3,
4306 .features = omap3_dispc_features_list,
4307 .num_features = ARRAY_SIZE(omap3_dispc_features_list),
4308 .reg_fields = omap3_dispc_reg_fields,
4309 .num_reg_fields = ARRAY_SIZE(omap3_dispc_reg_fields),
4310 .overlay_caps = omap3430_dispc_overlay_caps,
4311 .supported_color_modes = omap3_dispc_supported_color_modes,
4312 .supported_scaler_color_modes = omap3_dispc_supported_scaler_color_modes,
4313 .num_mgrs = 2,
4314 .num_ovls = 3,
4315 .buffer_size_unit = 1,
4316 .burst_size_unit = 8,
4317 .no_framedone_tv = true,
4318 .set_max_preload = false,
4319 .last_pixel_inc_missing = true,
4320 };
4321
4322 static const struct dispc_features omap34xx_rev3_0_dispc_feats = {
4323 .sw_start = 7,
4324 .fp_start = 19,
4325 .bp_start = 31,
4326 .sw_max = 256,
4327 .vp_max = 4095,
4328 .hp_max = 4096,
4329 .mgr_width_start = 10,
4330 .mgr_height_start = 26,
4331 .mgr_width_max = 2048,
4332 .mgr_height_max = 2048,
4333 .ovl_width_max = 2048,
4334 .ovl_height_max = 2048,
4335 .max_lcd_pclk = 173000000,
4336 .max_tv_pclk = 59000000,
4337 .max_downscale = 4,
4338 .max_line_width = 1024,
4339 .min_pcd = 1,
4340 .calc_scaling = dispc_ovl_calc_scaling_34xx,
4341 .calc_core_clk = calc_core_clk_34xx,
4342 .num_fifos = 3,
4343 .features = omap3_dispc_features_list,
4344 .num_features = ARRAY_SIZE(omap3_dispc_features_list),
4345 .reg_fields = omap3_dispc_reg_fields,
4346 .num_reg_fields = ARRAY_SIZE(omap3_dispc_reg_fields),
4347 .overlay_caps = omap3430_dispc_overlay_caps,
4348 .supported_color_modes = omap3_dispc_supported_color_modes,
4349 .supported_scaler_color_modes = omap3_dispc_supported_scaler_color_modes,
4350 .num_mgrs = 2,
4351 .num_ovls = 3,
4352 .buffer_size_unit = 1,
4353 .burst_size_unit = 8,
4354 .no_framedone_tv = true,
4355 .set_max_preload = false,
4356 .last_pixel_inc_missing = true,
4357 };
4358
4359 static const struct dispc_features omap36xx_dispc_feats = {
4360 .sw_start = 7,
4361 .fp_start = 19,
4362 .bp_start = 31,
4363 .sw_max = 256,
4364 .vp_max = 4095,
4365 .hp_max = 4096,
4366 .mgr_width_start = 10,
4367 .mgr_height_start = 26,
4368 .mgr_width_max = 2048,
4369 .mgr_height_max = 2048,
4370 .ovl_width_max = 2048,
4371 .ovl_height_max = 2048,
4372 .max_lcd_pclk = 173000000,
4373 .max_tv_pclk = 59000000,
4374 .max_downscale = 4,
4375 .max_line_width = 1024,
4376 .min_pcd = 1,
4377 .calc_scaling = dispc_ovl_calc_scaling_34xx,
4378 .calc_core_clk = calc_core_clk_34xx,
4379 .num_fifos = 3,
4380 .features = omap3_dispc_features_list,
4381 .num_features = ARRAY_SIZE(omap3_dispc_features_list),
4382 .reg_fields = omap3_dispc_reg_fields,
4383 .num_reg_fields = ARRAY_SIZE(omap3_dispc_reg_fields),
4384 .overlay_caps = omap3630_dispc_overlay_caps,
4385 .supported_color_modes = omap3_dispc_supported_color_modes,
4386 .supported_scaler_color_modes = omap3_dispc_supported_scaler_color_modes,
4387 .num_mgrs = 2,
4388 .num_ovls = 3,
4389 .buffer_size_unit = 1,
4390 .burst_size_unit = 8,
4391 .no_framedone_tv = true,
4392 .set_max_preload = false,
4393 .last_pixel_inc_missing = true,
4394 };
4395
4396 static const struct dispc_features am43xx_dispc_feats = {
4397 .sw_start = 7,
4398 .fp_start = 19,
4399 .bp_start = 31,
4400 .sw_max = 256,
4401 .vp_max = 4095,
4402 .hp_max = 4096,
4403 .mgr_width_start = 10,
4404 .mgr_height_start = 26,
4405 .mgr_width_max = 2048,
4406 .mgr_height_max = 2048,
4407 .ovl_width_max = 2048,
4408 .ovl_height_max = 2048,
4409 .max_lcd_pclk = 173000000,
4410 .max_tv_pclk = 59000000,
4411 .max_downscale = 4,
4412 .max_line_width = 1024,
4413 .min_pcd = 1,
4414 .calc_scaling = dispc_ovl_calc_scaling_34xx,
4415 .calc_core_clk = calc_core_clk_34xx,
4416 .num_fifos = 3,
4417 .features = am43xx_dispc_features_list,
4418 .num_features = ARRAY_SIZE(am43xx_dispc_features_list),
4419 .reg_fields = omap3_dispc_reg_fields,
4420 .num_reg_fields = ARRAY_SIZE(omap3_dispc_reg_fields),
4421 .overlay_caps = omap3430_dispc_overlay_caps,
4422 .supported_color_modes = omap3_dispc_supported_color_modes,
4423 .supported_scaler_color_modes = omap3_dispc_supported_scaler_color_modes,
4424 .num_mgrs = 1,
4425 .num_ovls = 3,
4426 .buffer_size_unit = 1,
4427 .burst_size_unit = 8,
4428 .no_framedone_tv = true,
4429 .set_max_preload = false,
4430 .last_pixel_inc_missing = true,
4431 };
4432
4433 static const struct dispc_features omap44xx_dispc_feats = {
4434 .sw_start = 7,
4435 .fp_start = 19,
4436 .bp_start = 31,
4437 .sw_max = 256,
4438 .vp_max = 4095,
4439 .hp_max = 4096,
4440 .mgr_width_start = 10,
4441 .mgr_height_start = 26,
4442 .mgr_width_max = 2048,
4443 .mgr_height_max = 2048,
4444 .ovl_width_max = 2048,
4445 .ovl_height_max = 2048,
4446 .max_lcd_pclk = 170000000,
4447 .max_tv_pclk = 185625000,
4448 .max_downscale = 4,
4449 .max_line_width = 2048,
4450 .min_pcd = 1,
4451 .calc_scaling = dispc_ovl_calc_scaling_44xx,
4452 .calc_core_clk = calc_core_clk_44xx,
4453 .num_fifos = 5,
4454 .features = omap4_dispc_features_list,
4455 .num_features = ARRAY_SIZE(omap4_dispc_features_list),
4456 .reg_fields = omap4_dispc_reg_fields,
4457 .num_reg_fields = ARRAY_SIZE(omap4_dispc_reg_fields),
4458 .overlay_caps = omap4_dispc_overlay_caps,
4459 .supported_color_modes = omap4_dispc_supported_color_modes,
4460 .num_mgrs = 3,
4461 .num_ovls = 4,
4462 .buffer_size_unit = 16,
4463 .burst_size_unit = 16,
4464 .gfx_fifo_workaround = true,
4465 .set_max_preload = true,
4466 .supports_sync_align = true,
4467 .has_writeback = true,
4468 .supports_double_pixel = true,
4469 .reverse_ilace_field_order = true,
4470 .has_gamma_table = true,
4471 .has_gamma_i734_bug = true,
4472 };
4473
4474 static const struct dispc_features omap54xx_dispc_feats = {
4475 .sw_start = 7,
4476 .fp_start = 19,
4477 .bp_start = 31,
4478 .sw_max = 256,
4479 .vp_max = 4095,
4480 .hp_max = 4096,
4481 .mgr_width_start = 11,
4482 .mgr_height_start = 27,
4483 .mgr_width_max = 4096,
4484 .mgr_height_max = 4096,
4485 .ovl_width_max = 2048,
4486 .ovl_height_max = 4096,
4487 .max_lcd_pclk = 170000000,
4488 .max_tv_pclk = 192000000,
4489 .max_downscale = 4,
4490 .max_line_width = 2048,
4491 .min_pcd = 1,
4492 .calc_scaling = dispc_ovl_calc_scaling_44xx,
4493 .calc_core_clk = calc_core_clk_44xx,
4494 .num_fifos = 5,
4495 .features = omap5_dispc_features_list,
4496 .num_features = ARRAY_SIZE(omap5_dispc_features_list),
4497 .reg_fields = omap4_dispc_reg_fields,
4498 .num_reg_fields = ARRAY_SIZE(omap4_dispc_reg_fields),
4499 .overlay_caps = omap4_dispc_overlay_caps,
4500 .supported_color_modes = omap4_dispc_supported_color_modes,
4501 .num_mgrs = 4,
4502 .num_ovls = 4,
4503 .buffer_size_unit = 16,
4504 .burst_size_unit = 16,
4505 .gfx_fifo_workaround = true,
4506 .mstandby_workaround = true,
4507 .set_max_preload = true,
4508 .supports_sync_align = true,
4509 .has_writeback = true,
4510 .supports_double_pixel = true,
4511 .reverse_ilace_field_order = true,
4512 .has_gamma_table = true,
4513 .has_gamma_i734_bug = true,
4514 };
4515
dispc_irq_handler(int irq,void * arg)4516 static irqreturn_t dispc_irq_handler(int irq, void *arg)
4517 {
4518 struct dispc_device *dispc = arg;
4519
4520 if (!dispc->is_enabled)
4521 return IRQ_NONE;
4522
4523 return dispc->user_handler(irq, dispc->user_data);
4524 }
4525
dispc_request_irq(struct dispc_device * dispc,irq_handler_t handler,void * dev_id)4526 int dispc_request_irq(struct dispc_device *dispc, irq_handler_t handler,
4527 void *dev_id)
4528 {
4529 int r;
4530
4531 if (dispc->user_handler != NULL)
4532 return -EBUSY;
4533
4534 dispc->user_handler = handler;
4535 dispc->user_data = dev_id;
4536
4537 /* ensure the dispc_irq_handler sees the values above */
4538 smp_wmb();
4539
4540 r = devm_request_irq(&dispc->pdev->dev, dispc->irq, dispc_irq_handler,
4541 IRQF_SHARED, "OMAP DISPC", dispc);
4542 if (r) {
4543 dispc->user_handler = NULL;
4544 dispc->user_data = NULL;
4545 }
4546
4547 return r;
4548 }
4549
dispc_free_irq(struct dispc_device * dispc,void * dev_id)4550 void dispc_free_irq(struct dispc_device *dispc, void *dev_id)
4551 {
4552 devm_free_irq(&dispc->pdev->dev, dispc->irq, dispc);
4553
4554 dispc->user_handler = NULL;
4555 dispc->user_data = NULL;
4556 }
4557
dispc_get_memory_bandwidth_limit(struct dispc_device * dispc)4558 u32 dispc_get_memory_bandwidth_limit(struct dispc_device *dispc)
4559 {
4560 u32 limit = 0;
4561
4562 /* Optional maximum memory bandwidth */
4563 of_property_read_u32(dispc->pdev->dev.of_node, "max-memory-bandwidth",
4564 &limit);
4565
4566 return limit;
4567 }
4568
4569 /*
4570 * Workaround for errata i734 in DSS dispc
4571 * - LCD1 Gamma Correction Is Not Working When GFX Pipe Is Disabled
4572 *
4573 * For gamma tables to work on LCD1 the GFX plane has to be used at
4574 * least once after DSS HW has come out of reset. The workaround
4575 * sets up a minimal LCD setup with GFX plane and waits for one
4576 * vertical sync irq before disabling the setup and continuing with
4577 * the context restore. The physical outputs are gated during the
4578 * operation. This workaround requires that gamma table's LOADMODE
4579 * is set to 0x2 in DISPC_CONTROL1 register.
4580 *
4581 * For details see:
4582 * OMAP543x Multimedia Device Silicon Revision 2.0 Silicon Errata
4583 * Literature Number: SWPZ037E
4584 * Or some other relevant errata document for the DSS IP version.
4585 */
4586
4587 static const struct dispc_errata_i734_data {
4588 struct videomode vm;
4589 struct omap_overlay_info ovli;
4590 struct omap_overlay_manager_info mgri;
4591 struct dss_lcd_mgr_config lcd_conf;
4592 } i734 = {
4593 .vm = {
4594 .hactive = 8, .vactive = 1,
4595 .pixelclock = 16000000,
4596 .hsync_len = 8, .hfront_porch = 4, .hback_porch = 4,
4597 .vsync_len = 1, .vfront_porch = 1, .vback_porch = 1,
4598
4599 .flags = DISPLAY_FLAGS_HSYNC_LOW | DISPLAY_FLAGS_VSYNC_LOW |
4600 DISPLAY_FLAGS_DE_HIGH | DISPLAY_FLAGS_SYNC_POSEDGE |
4601 DISPLAY_FLAGS_PIXDATA_POSEDGE,
4602 },
4603 .ovli = {
4604 .screen_width = 1,
4605 .width = 1, .height = 1,
4606 .fourcc = DRM_FORMAT_XRGB8888,
4607 .rotation = DRM_MODE_ROTATE_0,
4608 .rotation_type = OMAP_DSS_ROT_NONE,
4609 .pos_x = 0, .pos_y = 0,
4610 .out_width = 0, .out_height = 0,
4611 .global_alpha = 0xff,
4612 .pre_mult_alpha = 0,
4613 .zorder = 0,
4614 },
4615 .mgri = {
4616 .default_color = 0,
4617 .trans_enabled = false,
4618 .partial_alpha_enabled = false,
4619 .cpr_enable = false,
4620 },
4621 .lcd_conf = {
4622 .io_pad_mode = DSS_IO_PAD_MODE_BYPASS,
4623 .stallmode = false,
4624 .fifohandcheck = false,
4625 .clock_info = {
4626 .lck_div = 1,
4627 .pck_div = 2,
4628 },
4629 .video_port_width = 24,
4630 .lcden_sig_polarity = 0,
4631 },
4632 };
4633
4634 static struct i734_buf {
4635 size_t size;
4636 dma_addr_t paddr;
4637 void *vaddr;
4638 } i734_buf;
4639
dispc_errata_i734_wa_init(struct dispc_device * dispc)4640 static int dispc_errata_i734_wa_init(struct dispc_device *dispc)
4641 {
4642 if (!dispc->feat->has_gamma_i734_bug)
4643 return 0;
4644
4645 i734_buf.size = i734.ovli.width * i734.ovli.height *
4646 color_mode_to_bpp(i734.ovli.fourcc) / 8;
4647
4648 i734_buf.vaddr = dma_alloc_wc(&dispc->pdev->dev, i734_buf.size,
4649 &i734_buf.paddr, GFP_KERNEL);
4650 if (!i734_buf.vaddr) {
4651 dev_err(&dispc->pdev->dev, "%s: dma_alloc_wc failed\n",
4652 __func__);
4653 return -ENOMEM;
4654 }
4655
4656 return 0;
4657 }
4658
dispc_errata_i734_wa_fini(struct dispc_device * dispc)4659 static void dispc_errata_i734_wa_fini(struct dispc_device *dispc)
4660 {
4661 if (!dispc->feat->has_gamma_i734_bug)
4662 return;
4663
4664 dma_free_wc(&dispc->pdev->dev, i734_buf.size, i734_buf.vaddr,
4665 i734_buf.paddr);
4666 }
4667
dispc_errata_i734_wa(struct dispc_device * dispc)4668 static void dispc_errata_i734_wa(struct dispc_device *dispc)
4669 {
4670 u32 framedone_irq = dispc_mgr_get_framedone_irq(dispc,
4671 OMAP_DSS_CHANNEL_LCD);
4672 struct omap_overlay_info ovli;
4673 struct dss_lcd_mgr_config lcd_conf;
4674 u32 gatestate;
4675 unsigned int count;
4676
4677 if (!dispc->feat->has_gamma_i734_bug)
4678 return;
4679
4680 gatestate = REG_GET(dispc, DISPC_CONFIG, 8, 4);
4681
4682 ovli = i734.ovli;
4683 ovli.paddr = i734_buf.paddr;
4684 lcd_conf = i734.lcd_conf;
4685
4686 /* Gate all LCD1 outputs */
4687 REG_FLD_MOD(dispc, DISPC_CONFIG, 0x1f, 8, 4);
4688
4689 /* Setup and enable GFX plane */
4690 dispc_ovl_setup(dispc, OMAP_DSS_GFX, &ovli, &i734.vm, false,
4691 OMAP_DSS_CHANNEL_LCD);
4692 dispc_ovl_enable(dispc, OMAP_DSS_GFX, true);
4693
4694 /* Set up and enable display manager for LCD1 */
4695 dispc_mgr_setup(dispc, OMAP_DSS_CHANNEL_LCD, &i734.mgri);
4696 dispc_calc_clock_rates(dispc, dss_get_dispc_clk_rate(dispc->dss),
4697 &lcd_conf.clock_info);
4698 dispc_mgr_set_lcd_config(dispc, OMAP_DSS_CHANNEL_LCD, &lcd_conf);
4699 dispc_mgr_set_timings(dispc, OMAP_DSS_CHANNEL_LCD, &i734.vm);
4700
4701 dispc_clear_irqstatus(dispc, framedone_irq);
4702
4703 /* Enable and shut the channel to produce just one frame */
4704 dispc_mgr_enable(dispc, OMAP_DSS_CHANNEL_LCD, true);
4705 dispc_mgr_enable(dispc, OMAP_DSS_CHANNEL_LCD, false);
4706
4707 /* Busy wait for framedone. We can't fiddle with irq handlers
4708 * in PM resume. Typically the loop runs less than 5 times and
4709 * waits less than a micro second.
4710 */
4711 count = 0;
4712 while (!(dispc_read_irqstatus(dispc) & framedone_irq)) {
4713 if (count++ > 10000) {
4714 dev_err(&dispc->pdev->dev, "%s: framedone timeout\n",
4715 __func__);
4716 break;
4717 }
4718 }
4719 dispc_ovl_enable(dispc, OMAP_DSS_GFX, false);
4720
4721 /* Clear all irq bits before continuing */
4722 dispc_clear_irqstatus(dispc, 0xffffffff);
4723
4724 /* Restore the original state to LCD1 output gates */
4725 REG_FLD_MOD(dispc, DISPC_CONFIG, gatestate, 8, 4);
4726 }
4727
4728 /* DISPC HW IP initialisation */
4729 static const struct of_device_id dispc_of_match[] = {
4730 { .compatible = "ti,omap2-dispc", .data = &omap24xx_dispc_feats },
4731 { .compatible = "ti,omap3-dispc", .data = &omap36xx_dispc_feats },
4732 { .compatible = "ti,omap4-dispc", .data = &omap44xx_dispc_feats },
4733 { .compatible = "ti,omap5-dispc", .data = &omap54xx_dispc_feats },
4734 { .compatible = "ti,dra7-dispc", .data = &omap54xx_dispc_feats },
4735 {},
4736 };
4737
4738 static const struct soc_device_attribute dispc_soc_devices[] = {
4739 { .machine = "OMAP3[45]*",
4740 .revision = "ES[12].?", .data = &omap34xx_rev1_0_dispc_feats },
4741 { .machine = "OMAP3[45]*", .data = &omap34xx_rev3_0_dispc_feats },
4742 { .machine = "AM35*", .data = &omap34xx_rev3_0_dispc_feats },
4743 { .machine = "AM43*", .data = &am43xx_dispc_feats },
4744 { /* sentinel */ }
4745 };
4746
dispc_bind(struct device * dev,struct device * master,void * data)4747 static int dispc_bind(struct device *dev, struct device *master, void *data)
4748 {
4749 struct platform_device *pdev = to_platform_device(dev);
4750 const struct soc_device_attribute *soc;
4751 struct dss_device *dss = dss_get_device(master);
4752 struct dispc_device *dispc;
4753 u32 rev;
4754 int r = 0;
4755 struct device_node *np = pdev->dev.of_node;
4756
4757 dispc = kzalloc(sizeof(*dispc), GFP_KERNEL);
4758 if (!dispc)
4759 return -ENOMEM;
4760
4761 dispc->pdev = pdev;
4762 platform_set_drvdata(pdev, dispc);
4763 dispc->dss = dss;
4764
4765 /*
4766 * The OMAP3-based models can't be told apart using the compatible
4767 * string, use SoC device matching.
4768 */
4769 soc = soc_device_match(dispc_soc_devices);
4770 if (soc)
4771 dispc->feat = soc->data;
4772 else
4773 dispc->feat = of_match_device(dispc_of_match, &pdev->dev)->data;
4774
4775 r = dispc_errata_i734_wa_init(dispc);
4776 if (r)
4777 goto err_free;
4778
4779 dispc->base = devm_platform_ioremap_resource(pdev, 0);
4780 if (IS_ERR(dispc->base)) {
4781 r = PTR_ERR(dispc->base);
4782 goto err_free;
4783 }
4784
4785 dispc->irq = platform_get_irq(dispc->pdev, 0);
4786 if (dispc->irq < 0) {
4787 DSSERR("platform_get_irq failed\n");
4788 r = -ENODEV;
4789 goto err_free;
4790 }
4791
4792 if (np && of_property_read_bool(np, "syscon-pol")) {
4793 dispc->syscon_pol = syscon_regmap_lookup_by_phandle(np, "syscon-pol");
4794 if (IS_ERR(dispc->syscon_pol)) {
4795 dev_err(&pdev->dev, "failed to get syscon-pol regmap\n");
4796 r = PTR_ERR(dispc->syscon_pol);
4797 goto err_free;
4798 }
4799
4800 if (of_property_read_u32_index(np, "syscon-pol", 1,
4801 &dispc->syscon_pol_offset)) {
4802 dev_err(&pdev->dev, "failed to get syscon-pol offset\n");
4803 r = -EINVAL;
4804 goto err_free;
4805 }
4806 }
4807
4808 r = dispc_init_gamma_tables(dispc);
4809 if (r)
4810 goto err_free;
4811
4812 pm_runtime_enable(&pdev->dev);
4813
4814 r = dispc_runtime_get(dispc);
4815 if (r)
4816 goto err_runtime_get;
4817
4818 _omap_dispc_initial_config(dispc);
4819
4820 rev = dispc_read_reg(dispc, DISPC_REVISION);
4821 dev_dbg(&pdev->dev, "OMAP DISPC rev %d.%d\n",
4822 FLD_GET(rev, 7, 4), FLD_GET(rev, 3, 0));
4823
4824 dispc_runtime_put(dispc);
4825
4826 dss->dispc = dispc;
4827
4828 dispc->debugfs = dss_debugfs_create_file(dss, "dispc", dispc_dump_regs,
4829 dispc);
4830
4831 return 0;
4832
4833 err_runtime_get:
4834 pm_runtime_disable(&pdev->dev);
4835 err_free:
4836 kfree(dispc);
4837 return r;
4838 }
4839
dispc_unbind(struct device * dev,struct device * master,void * data)4840 static void dispc_unbind(struct device *dev, struct device *master, void *data)
4841 {
4842 struct dispc_device *dispc = dev_get_drvdata(dev);
4843 struct dss_device *dss = dispc->dss;
4844
4845 dss_debugfs_remove_file(dispc->debugfs);
4846
4847 dss->dispc = NULL;
4848
4849 pm_runtime_disable(dev);
4850
4851 dispc_errata_i734_wa_fini(dispc);
4852
4853 kfree(dispc);
4854 }
4855
4856 static const struct component_ops dispc_component_ops = {
4857 .bind = dispc_bind,
4858 .unbind = dispc_unbind,
4859 };
4860
dispc_probe(struct platform_device * pdev)4861 static int dispc_probe(struct platform_device *pdev)
4862 {
4863 return component_add(&pdev->dev, &dispc_component_ops);
4864 }
4865
dispc_remove(struct platform_device * pdev)4866 static int dispc_remove(struct platform_device *pdev)
4867 {
4868 component_del(&pdev->dev, &dispc_component_ops);
4869 return 0;
4870 }
4871
dispc_runtime_suspend(struct device * dev)4872 static __maybe_unused int dispc_runtime_suspend(struct device *dev)
4873 {
4874 struct dispc_device *dispc = dev_get_drvdata(dev);
4875
4876 dispc->is_enabled = false;
4877 /* ensure the dispc_irq_handler sees the is_enabled value */
4878 smp_wmb();
4879 /* wait for current handler to finish before turning the DISPC off */
4880 synchronize_irq(dispc->irq);
4881
4882 dispc_save_context(dispc);
4883
4884 return 0;
4885 }
4886
dispc_runtime_resume(struct device * dev)4887 static __maybe_unused int dispc_runtime_resume(struct device *dev)
4888 {
4889 struct dispc_device *dispc = dev_get_drvdata(dev);
4890
4891 /*
4892 * The reset value for load mode is 0 (OMAP_DSS_LOAD_CLUT_AND_FRAME)
4893 * but we always initialize it to 2 (OMAP_DSS_LOAD_FRAME_ONLY) in
4894 * _omap_dispc_initial_config(). We can thus use it to detect if
4895 * we have lost register context.
4896 */
4897 if (REG_GET(dispc, DISPC_CONFIG, 2, 1) != OMAP_DSS_LOAD_FRAME_ONLY) {
4898 _omap_dispc_initial_config(dispc);
4899
4900 dispc_errata_i734_wa(dispc);
4901
4902 dispc_restore_context(dispc);
4903
4904 dispc_restore_gamma_tables(dispc);
4905 }
4906
4907 dispc->is_enabled = true;
4908 /* ensure the dispc_irq_handler sees the is_enabled value */
4909 smp_wmb();
4910
4911 return 0;
4912 }
4913
4914 static const struct dev_pm_ops dispc_pm_ops = {
4915 SET_RUNTIME_PM_OPS(dispc_runtime_suspend, dispc_runtime_resume, NULL)
4916 SET_LATE_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume)
4917 };
4918
4919 struct platform_driver omap_dispchw_driver = {
4920 .probe = dispc_probe,
4921 .remove = dispc_remove,
4922 .driver = {
4923 .name = "omapdss_dispc",
4924 .pm = &dispc_pm_ops,
4925 .of_match_table = dispc_of_match,
4926 .suppress_bind_attrs = true,
4927 },
4928 };
4929