1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2017-2019 The Linux Foundation. All rights reserved. */
3 
4 
5 #include "msm_gem.h"
6 #include "msm_mmu.h"
7 #include "msm_gpu_trace.h"
8 #include "a6xx_gpu.h"
9 #include "a6xx_gmu.xml.h"
10 
11 #include <linux/bitfield.h>
12 #include <linux/devfreq.h>
13 #include <linux/reset.h>
14 #include <linux/soc/qcom/llcc-qcom.h>
15 
16 #define GPU_PAS_ID 13
17 
_a6xx_check_idle(struct msm_gpu * gpu)18 static inline bool _a6xx_check_idle(struct msm_gpu *gpu)
19 {
20 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
21 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
22 
23 	/* Check that the GMU is idle */
24 	if (!a6xx_gmu_isidle(&a6xx_gpu->gmu))
25 		return false;
26 
27 	/* Check tha the CX master is idle */
28 	if (gpu_read(gpu, REG_A6XX_RBBM_STATUS) &
29 			~A6XX_RBBM_STATUS_CP_AHB_BUSY_CX_MASTER)
30 		return false;
31 
32 	return !(gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS) &
33 		A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT);
34 }
35 
a6xx_idle(struct msm_gpu * gpu,struct msm_ringbuffer * ring)36 static bool a6xx_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
37 {
38 	/* wait for CP to drain ringbuffer: */
39 	if (!adreno_idle(gpu, ring))
40 		return false;
41 
42 	if (spin_until(_a6xx_check_idle(gpu))) {
43 		DRM_ERROR("%s: %ps: timeout waiting for GPU to idle: status %8.8X irq %8.8X rptr/wptr %d/%d\n",
44 			gpu->name, __builtin_return_address(0),
45 			gpu_read(gpu, REG_A6XX_RBBM_STATUS),
46 			gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS),
47 			gpu_read(gpu, REG_A6XX_CP_RB_RPTR),
48 			gpu_read(gpu, REG_A6XX_CP_RB_WPTR));
49 		return false;
50 	}
51 
52 	return true;
53 }
54 
update_shadow_rptr(struct msm_gpu * gpu,struct msm_ringbuffer * ring)55 static void update_shadow_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
56 {
57 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
58 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
59 
60 	/* Expanded APRIV doesn't need to issue the WHERE_AM_I opcode */
61 	if (a6xx_gpu->has_whereami && !adreno_gpu->base.hw_apriv) {
62 		OUT_PKT7(ring, CP_WHERE_AM_I, 2);
63 		OUT_RING(ring, lower_32_bits(shadowptr(a6xx_gpu, ring)));
64 		OUT_RING(ring, upper_32_bits(shadowptr(a6xx_gpu, ring)));
65 	}
66 }
67 
a6xx_flush(struct msm_gpu * gpu,struct msm_ringbuffer * ring)68 static void a6xx_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
69 {
70 	uint32_t wptr;
71 	unsigned long flags;
72 
73 	update_shadow_rptr(gpu, ring);
74 
75 	spin_lock_irqsave(&ring->preempt_lock, flags);
76 
77 	/* Copy the shadow to the actual register */
78 	ring->cur = ring->next;
79 
80 	/* Make sure to wrap wptr if we need to */
81 	wptr = get_wptr(ring);
82 
83 	spin_unlock_irqrestore(&ring->preempt_lock, flags);
84 
85 	/* Make sure everything is posted before making a decision */
86 	mb();
87 
88 	gpu_write(gpu, REG_A6XX_CP_RB_WPTR, wptr);
89 }
90 
get_stats_counter(struct msm_ringbuffer * ring,u32 counter,u64 iova)91 static void get_stats_counter(struct msm_ringbuffer *ring, u32 counter,
92 		u64 iova)
93 {
94 	OUT_PKT7(ring, CP_REG_TO_MEM, 3);
95 	OUT_RING(ring, CP_REG_TO_MEM_0_REG(counter) |
96 		CP_REG_TO_MEM_0_CNT(2) |
97 		CP_REG_TO_MEM_0_64B);
98 	OUT_RING(ring, lower_32_bits(iova));
99 	OUT_RING(ring, upper_32_bits(iova));
100 }
101 
a6xx_set_pagetable(struct a6xx_gpu * a6xx_gpu,struct msm_ringbuffer * ring,struct msm_file_private * ctx)102 static void a6xx_set_pagetable(struct a6xx_gpu *a6xx_gpu,
103 		struct msm_ringbuffer *ring, struct msm_file_private *ctx)
104 {
105 	bool sysprof = refcount_read(&a6xx_gpu->base.base.sysprof_active) > 1;
106 	phys_addr_t ttbr;
107 	u32 asid;
108 	u64 memptr = rbmemptr(ring, ttbr0);
109 
110 	if (ctx->seqno == a6xx_gpu->base.base.cur_ctx_seqno)
111 		return;
112 
113 	if (msm_iommu_pagetable_params(ctx->aspace->mmu, &ttbr, &asid))
114 		return;
115 
116 	if (!sysprof) {
117 		/* Turn off protected mode to write to special registers */
118 		OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
119 		OUT_RING(ring, 0);
120 
121 		OUT_PKT4(ring, REG_A6XX_RBBM_PERFCTR_SRAM_INIT_CMD, 1);
122 		OUT_RING(ring, 1);
123 	}
124 
125 	/* Execute the table update */
126 	OUT_PKT7(ring, CP_SMMU_TABLE_UPDATE, 4);
127 	OUT_RING(ring, CP_SMMU_TABLE_UPDATE_0_TTBR0_LO(lower_32_bits(ttbr)));
128 
129 	OUT_RING(ring,
130 		CP_SMMU_TABLE_UPDATE_1_TTBR0_HI(upper_32_bits(ttbr)) |
131 		CP_SMMU_TABLE_UPDATE_1_ASID(asid));
132 	OUT_RING(ring, CP_SMMU_TABLE_UPDATE_2_CONTEXTIDR(0));
133 	OUT_RING(ring, CP_SMMU_TABLE_UPDATE_3_CONTEXTBANK(0));
134 
135 	/*
136 	 * Write the new TTBR0 to the memstore. This is good for debugging.
137 	 */
138 	OUT_PKT7(ring, CP_MEM_WRITE, 4);
139 	OUT_RING(ring, CP_MEM_WRITE_0_ADDR_LO(lower_32_bits(memptr)));
140 	OUT_RING(ring, CP_MEM_WRITE_1_ADDR_HI(upper_32_bits(memptr)));
141 	OUT_RING(ring, lower_32_bits(ttbr));
142 	OUT_RING(ring, (asid << 16) | upper_32_bits(ttbr));
143 
144 	/*
145 	 * And finally, trigger a uche flush to be sure there isn't anything
146 	 * lingering in that part of the GPU
147 	 */
148 
149 	OUT_PKT7(ring, CP_EVENT_WRITE, 1);
150 	OUT_RING(ring, CACHE_INVALIDATE);
151 
152 	if (!sysprof) {
153 		/*
154 		 * Wait for SRAM clear after the pgtable update, so the
155 		 * two can happen in parallel:
156 		 */
157 		OUT_PKT7(ring, CP_WAIT_REG_MEM, 6);
158 		OUT_RING(ring, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ));
159 		OUT_RING(ring, CP_WAIT_REG_MEM_1_POLL_ADDR_LO(
160 				REG_A6XX_RBBM_PERFCTR_SRAM_INIT_STATUS));
161 		OUT_RING(ring, CP_WAIT_REG_MEM_2_POLL_ADDR_HI(0));
162 		OUT_RING(ring, CP_WAIT_REG_MEM_3_REF(0x1));
163 		OUT_RING(ring, CP_WAIT_REG_MEM_4_MASK(0x1));
164 		OUT_RING(ring, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(0));
165 
166 		/* Re-enable protected mode: */
167 		OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
168 		OUT_RING(ring, 1);
169 	}
170 }
171 
a6xx_submit(struct msm_gpu * gpu,struct msm_gem_submit * submit)172 static void a6xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit)
173 {
174 	unsigned int index = submit->seqno % MSM_GPU_SUBMIT_STATS_COUNT;
175 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
176 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
177 	struct msm_ringbuffer *ring = submit->ring;
178 	unsigned int i, ibs = 0;
179 
180 	a6xx_set_pagetable(a6xx_gpu, ring, submit->queue->ctx);
181 
182 	get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0),
183 		rbmemptr_stats(ring, index, cpcycles_start));
184 
185 	/*
186 	 * For PM4 the GMU register offsets are calculated from the base of the
187 	 * GPU registers so we need to add 0x1a800 to the register value on A630
188 	 * to get the right value from PM4.
189 	 */
190 	get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO,
191 		rbmemptr_stats(ring, index, alwayson_start));
192 
193 	/* Invalidate CCU depth and color */
194 	OUT_PKT7(ring, CP_EVENT_WRITE, 1);
195 	OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_DEPTH));
196 
197 	OUT_PKT7(ring, CP_EVENT_WRITE, 1);
198 	OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_COLOR));
199 
200 	/* Submit the commands */
201 	for (i = 0; i < submit->nr_cmds; i++) {
202 		switch (submit->cmd[i].type) {
203 		case MSM_SUBMIT_CMD_IB_TARGET_BUF:
204 			break;
205 		case MSM_SUBMIT_CMD_CTX_RESTORE_BUF:
206 			if (gpu->cur_ctx_seqno == submit->queue->ctx->seqno)
207 				break;
208 			fallthrough;
209 		case MSM_SUBMIT_CMD_BUF:
210 			OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3);
211 			OUT_RING(ring, lower_32_bits(submit->cmd[i].iova));
212 			OUT_RING(ring, upper_32_bits(submit->cmd[i].iova));
213 			OUT_RING(ring, submit->cmd[i].size);
214 			ibs++;
215 			break;
216 		}
217 
218 		/*
219 		 * Periodically update shadow-wptr if needed, so that we
220 		 * can see partial progress of submits with large # of
221 		 * cmds.. otherwise we could needlessly stall waiting for
222 		 * ringbuffer state, simply due to looking at a shadow
223 		 * rptr value that has not been updated
224 		 */
225 		if ((ibs % 32) == 0)
226 			update_shadow_rptr(gpu, ring);
227 	}
228 
229 	get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0),
230 		rbmemptr_stats(ring, index, cpcycles_end));
231 	get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO,
232 		rbmemptr_stats(ring, index, alwayson_end));
233 
234 	/* Write the fence to the scratch register */
235 	OUT_PKT4(ring, REG_A6XX_CP_SCRATCH_REG(2), 1);
236 	OUT_RING(ring, submit->seqno);
237 
238 	/*
239 	 * Execute a CACHE_FLUSH_TS event. This will ensure that the
240 	 * timestamp is written to the memory and then triggers the interrupt
241 	 */
242 	OUT_PKT7(ring, CP_EVENT_WRITE, 4);
243 	OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(CACHE_FLUSH_TS) |
244 		CP_EVENT_WRITE_0_IRQ);
245 	OUT_RING(ring, lower_32_bits(rbmemptr(ring, fence)));
246 	OUT_RING(ring, upper_32_bits(rbmemptr(ring, fence)));
247 	OUT_RING(ring, submit->seqno);
248 
249 	trace_msm_gpu_submit_flush(submit,
250 		gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO,
251 			REG_A6XX_CP_ALWAYS_ON_COUNTER_HI));
252 
253 	a6xx_flush(gpu, ring);
254 }
255 
256 /* For a615 family (a615, a616, a618 and a619) */
257 const struct adreno_reglist a615_hwcg[] = {
258 	{REG_A6XX_RBBM_CLOCK_CNTL_SP0,  0x02222222},
259 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
260 	{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
261 	{REG_A6XX_RBBM_CLOCK_HYST_SP0,  0x0000F3CF},
262 	{REG_A6XX_RBBM_CLOCK_CNTL_TP0,  0x02222222},
263 	{REG_A6XX_RBBM_CLOCK_CNTL_TP1,  0x02222222},
264 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
265 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222},
266 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
267 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP1, 0x22222222},
268 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
269 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP1, 0x00022222},
270 	{REG_A6XX_RBBM_CLOCK_HYST_TP0,  0x77777777},
271 	{REG_A6XX_RBBM_CLOCK_HYST_TP1,  0x77777777},
272 	{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
273 	{REG_A6XX_RBBM_CLOCK_HYST2_TP1, 0x77777777},
274 	{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
275 	{REG_A6XX_RBBM_CLOCK_HYST3_TP1, 0x77777777},
276 	{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
277 	{REG_A6XX_RBBM_CLOCK_HYST4_TP1, 0x00077777},
278 	{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
279 	{REG_A6XX_RBBM_CLOCK_DELAY_TP1, 0x11111111},
280 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
281 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111},
282 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
283 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP1, 0x11111111},
284 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
285 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP1, 0x00011111},
286 	{REG_A6XX_RBBM_CLOCK_CNTL_UCHE,  0x22222222},
287 	{REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222},
288 	{REG_A6XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222},
289 	{REG_A6XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222},
290 	{REG_A6XX_RBBM_CLOCK_HYST_UCHE,  0x00000004},
291 	{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
292 	{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
293 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x00002222},
294 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002020},
295 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU1, 0x00002220},
296 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU2, 0x00002220},
297 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU3, 0x00002220},
298 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
299 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU1, 0x00040F00},
300 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU2, 0x00040F00},
301 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU3, 0x00040F00},
302 	{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05022022},
303 	{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
304 	{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
305 	{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
306 	{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
307 	{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
308 	{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
309 	{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
310 	{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
311 	{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
312 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
313 	{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
314 	{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
315 	{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
316 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
317 	{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
318 	{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
319 	{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
320 	{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
321 	{},
322 };
323 
324 const struct adreno_reglist a630_hwcg[] = {
325 	{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x22222222},
326 	{REG_A6XX_RBBM_CLOCK_CNTL_SP1, 0x22222222},
327 	{REG_A6XX_RBBM_CLOCK_CNTL_SP2, 0x22222222},
328 	{REG_A6XX_RBBM_CLOCK_CNTL_SP3, 0x22222222},
329 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02022220},
330 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP1, 0x02022220},
331 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP2, 0x02022220},
332 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP3, 0x02022220},
333 	{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
334 	{REG_A6XX_RBBM_CLOCK_DELAY_SP1, 0x00000080},
335 	{REG_A6XX_RBBM_CLOCK_DELAY_SP2, 0x00000080},
336 	{REG_A6XX_RBBM_CLOCK_DELAY_SP3, 0x00000080},
337 	{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000f3cf},
338 	{REG_A6XX_RBBM_CLOCK_HYST_SP1, 0x0000f3cf},
339 	{REG_A6XX_RBBM_CLOCK_HYST_SP2, 0x0000f3cf},
340 	{REG_A6XX_RBBM_CLOCK_HYST_SP3, 0x0000f3cf},
341 	{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
342 	{REG_A6XX_RBBM_CLOCK_CNTL_TP1, 0x02222222},
343 	{REG_A6XX_RBBM_CLOCK_CNTL_TP2, 0x02222222},
344 	{REG_A6XX_RBBM_CLOCK_CNTL_TP3, 0x02222222},
345 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
346 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222},
347 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP2, 0x22222222},
348 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP3, 0x22222222},
349 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
350 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP1, 0x22222222},
351 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP2, 0x22222222},
352 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP3, 0x22222222},
353 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
354 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP1, 0x00022222},
355 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP2, 0x00022222},
356 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP3, 0x00022222},
357 	{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
358 	{REG_A6XX_RBBM_CLOCK_HYST_TP1, 0x77777777},
359 	{REG_A6XX_RBBM_CLOCK_HYST_TP2, 0x77777777},
360 	{REG_A6XX_RBBM_CLOCK_HYST_TP3, 0x77777777},
361 	{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
362 	{REG_A6XX_RBBM_CLOCK_HYST2_TP1, 0x77777777},
363 	{REG_A6XX_RBBM_CLOCK_HYST2_TP2, 0x77777777},
364 	{REG_A6XX_RBBM_CLOCK_HYST2_TP3, 0x77777777},
365 	{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
366 	{REG_A6XX_RBBM_CLOCK_HYST3_TP1, 0x77777777},
367 	{REG_A6XX_RBBM_CLOCK_HYST3_TP2, 0x77777777},
368 	{REG_A6XX_RBBM_CLOCK_HYST3_TP3, 0x77777777},
369 	{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
370 	{REG_A6XX_RBBM_CLOCK_HYST4_TP1, 0x00077777},
371 	{REG_A6XX_RBBM_CLOCK_HYST4_TP2, 0x00077777},
372 	{REG_A6XX_RBBM_CLOCK_HYST4_TP3, 0x00077777},
373 	{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
374 	{REG_A6XX_RBBM_CLOCK_DELAY_TP1, 0x11111111},
375 	{REG_A6XX_RBBM_CLOCK_DELAY_TP2, 0x11111111},
376 	{REG_A6XX_RBBM_CLOCK_DELAY_TP3, 0x11111111},
377 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
378 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111},
379 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP2, 0x11111111},
380 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP3, 0x11111111},
381 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
382 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP1, 0x11111111},
383 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP2, 0x11111111},
384 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP3, 0x11111111},
385 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
386 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP1, 0x00011111},
387 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP2, 0x00011111},
388 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP3, 0x00011111},
389 	{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
390 	{REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222},
391 	{REG_A6XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222},
392 	{REG_A6XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222},
393 	{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
394 	{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
395 	{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
396 	{REG_A6XX_RBBM_CLOCK_CNTL_RB1, 0x22222222},
397 	{REG_A6XX_RBBM_CLOCK_CNTL_RB2, 0x22222222},
398 	{REG_A6XX_RBBM_CLOCK_CNTL_RB3, 0x22222222},
399 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x00002222},
400 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB1, 0x00002222},
401 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB2, 0x00002222},
402 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB3, 0x00002222},
403 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
404 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU1, 0x00002220},
405 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU2, 0x00002220},
406 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU3, 0x00002220},
407 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040f00},
408 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU1, 0x00040f00},
409 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU2, 0x00040f00},
410 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU3, 0x00040f00},
411 	{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05022022},
412 	{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
413 	{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
414 	{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
415 	{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
416 	{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
417 	{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
418 	{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
419 	{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
420 	{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
421 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
422 	{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
423 	{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
424 	{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
425 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
426 	{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
427 	{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
428 	{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
429 	{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
430 	{},
431 };
432 
433 const struct adreno_reglist a640_hwcg[] = {
434 	{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
435 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
436 	{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
437 	{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
438 	{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
439 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
440 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
441 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
442 	{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
443 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
444 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
445 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
446 	{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
447 	{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
448 	{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
449 	{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
450 	{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
451 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
452 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
453 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
454 	{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05222022},
455 	{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
456 	{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
457 	{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
458 	{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
459 	{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
460 	{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
461 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
462 	{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
463 	{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
464 	{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
465 	{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
466 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
467 	{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
468 	{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
469 	{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
470 	{REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
471 	{REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
472 	{REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
473 	{REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000},
474 	{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
475 	{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
476 	{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
477 	{REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
478 	{REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
479 	{REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
480 	{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
481 	{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
482 	{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
483 	{},
484 };
485 
486 const struct adreno_reglist a650_hwcg[] = {
487 	{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
488 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
489 	{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
490 	{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
491 	{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
492 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
493 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
494 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
495 	{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
496 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
497 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
498 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
499 	{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
500 	{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
501 	{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
502 	{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
503 	{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
504 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
505 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
506 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
507 	{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022},
508 	{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
509 	{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
510 	{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
511 	{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
512 	{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
513 	{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
514 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
515 	{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
516 	{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
517 	{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
518 	{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
519 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
520 	{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
521 	{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
522 	{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
523 	{REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
524 	{REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
525 	{REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
526 	{REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000777},
527 	{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
528 	{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
529 	{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
530 	{REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
531 	{REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
532 	{REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
533 	{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
534 	{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
535 	{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
536 	{},
537 };
538 
539 const struct adreno_reglist a660_hwcg[] = {
540 	{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
541 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
542 	{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
543 	{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
544 	{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x22222222},
545 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
546 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
547 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
548 	{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
549 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
550 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
551 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
552 	{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
553 	{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
554 	{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
555 	{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
556 	{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
557 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
558 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
559 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
560 	{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022},
561 	{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
562 	{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
563 	{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
564 	{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
565 	{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
566 	{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
567 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
568 	{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
569 	{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
570 	{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
571 	{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
572 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
573 	{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
574 	{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
575 	{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
576 	{REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
577 	{REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
578 	{REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
579 	{REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000},
580 	{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
581 	{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
582 	{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
583 	{REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
584 	{REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
585 	{REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
586 	{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
587 	{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
588 	{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
589 	{},
590 };
591 
a6xx_set_hwcg(struct msm_gpu * gpu,bool state)592 static void a6xx_set_hwcg(struct msm_gpu *gpu, bool state)
593 {
594 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
595 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
596 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
597 	const struct adreno_reglist *reg;
598 	unsigned int i;
599 	u32 val, clock_cntl_on;
600 
601 	if (!adreno_gpu->info->hwcg)
602 		return;
603 
604 	if (adreno_is_a630(adreno_gpu))
605 		clock_cntl_on = 0x8aa8aa02;
606 	else
607 		clock_cntl_on = 0x8aa8aa82;
608 
609 	val = gpu_read(gpu, REG_A6XX_RBBM_CLOCK_CNTL);
610 
611 	/* Don't re-program the registers if they are already correct */
612 	if ((!state && !val) || (state && (val == clock_cntl_on)))
613 		return;
614 
615 	/* Disable SP clock before programming HWCG registers */
616 	gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 1, 0);
617 
618 	for (i = 0; (reg = &adreno_gpu->info->hwcg[i], reg->offset); i++)
619 		gpu_write(gpu, reg->offset, state ? reg->value : 0);
620 
621 	/* Enable SP clock */
622 	gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 0, 1);
623 
624 	gpu_write(gpu, REG_A6XX_RBBM_CLOCK_CNTL, state ? clock_cntl_on : 0);
625 }
626 
627 /* For a615, a616, a618, a619, a630, a640 and a680 */
628 static const u32 a6xx_protect[] = {
629 	A6XX_PROTECT_RDONLY(0x00000, 0x04ff),
630 	A6XX_PROTECT_RDONLY(0x00501, 0x0005),
631 	A6XX_PROTECT_RDONLY(0x0050b, 0x02f4),
632 	A6XX_PROTECT_NORDWR(0x0050e, 0x0000),
633 	A6XX_PROTECT_NORDWR(0x00510, 0x0000),
634 	A6XX_PROTECT_NORDWR(0x00534, 0x0000),
635 	A6XX_PROTECT_NORDWR(0x00800, 0x0082),
636 	A6XX_PROTECT_NORDWR(0x008a0, 0x0008),
637 	A6XX_PROTECT_NORDWR(0x008ab, 0x0024),
638 	A6XX_PROTECT_RDONLY(0x008de, 0x00ae),
639 	A6XX_PROTECT_NORDWR(0x00900, 0x004d),
640 	A6XX_PROTECT_NORDWR(0x0098d, 0x0272),
641 	A6XX_PROTECT_NORDWR(0x00e00, 0x0001),
642 	A6XX_PROTECT_NORDWR(0x00e03, 0x000c),
643 	A6XX_PROTECT_NORDWR(0x03c00, 0x00c3),
644 	A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff),
645 	A6XX_PROTECT_NORDWR(0x08630, 0x01cf),
646 	A6XX_PROTECT_NORDWR(0x08e00, 0x0000),
647 	A6XX_PROTECT_NORDWR(0x08e08, 0x0000),
648 	A6XX_PROTECT_NORDWR(0x08e50, 0x001f),
649 	A6XX_PROTECT_NORDWR(0x09624, 0x01db),
650 	A6XX_PROTECT_NORDWR(0x09e70, 0x0001),
651 	A6XX_PROTECT_NORDWR(0x09e78, 0x0187),
652 	A6XX_PROTECT_NORDWR(0x0a630, 0x01cf),
653 	A6XX_PROTECT_NORDWR(0x0ae02, 0x0000),
654 	A6XX_PROTECT_NORDWR(0x0ae50, 0x032f),
655 	A6XX_PROTECT_NORDWR(0x0b604, 0x0000),
656 	A6XX_PROTECT_NORDWR(0x0be02, 0x0001),
657 	A6XX_PROTECT_NORDWR(0x0be20, 0x17df),
658 	A6XX_PROTECT_NORDWR(0x0f000, 0x0bff),
659 	A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff),
660 	A6XX_PROTECT_NORDWR(0x11c00, 0x0000), /* note: infinite range */
661 };
662 
663 /* These are for a620 and a650 */
664 static const u32 a650_protect[] = {
665 	A6XX_PROTECT_RDONLY(0x00000, 0x04ff),
666 	A6XX_PROTECT_RDONLY(0x00501, 0x0005),
667 	A6XX_PROTECT_RDONLY(0x0050b, 0x02f4),
668 	A6XX_PROTECT_NORDWR(0x0050e, 0x0000),
669 	A6XX_PROTECT_NORDWR(0x00510, 0x0000),
670 	A6XX_PROTECT_NORDWR(0x00534, 0x0000),
671 	A6XX_PROTECT_NORDWR(0x00800, 0x0082),
672 	A6XX_PROTECT_NORDWR(0x008a0, 0x0008),
673 	A6XX_PROTECT_NORDWR(0x008ab, 0x0024),
674 	A6XX_PROTECT_RDONLY(0x008de, 0x00ae),
675 	A6XX_PROTECT_NORDWR(0x00900, 0x004d),
676 	A6XX_PROTECT_NORDWR(0x0098d, 0x0272),
677 	A6XX_PROTECT_NORDWR(0x00e00, 0x0001),
678 	A6XX_PROTECT_NORDWR(0x00e03, 0x000c),
679 	A6XX_PROTECT_NORDWR(0x03c00, 0x00c3),
680 	A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff),
681 	A6XX_PROTECT_NORDWR(0x08630, 0x01cf),
682 	A6XX_PROTECT_NORDWR(0x08e00, 0x0000),
683 	A6XX_PROTECT_NORDWR(0x08e08, 0x0000),
684 	A6XX_PROTECT_NORDWR(0x08e50, 0x001f),
685 	A6XX_PROTECT_NORDWR(0x08e80, 0x027f),
686 	A6XX_PROTECT_NORDWR(0x09624, 0x01db),
687 	A6XX_PROTECT_NORDWR(0x09e60, 0x0011),
688 	A6XX_PROTECT_NORDWR(0x09e78, 0x0187),
689 	A6XX_PROTECT_NORDWR(0x0a630, 0x01cf),
690 	A6XX_PROTECT_NORDWR(0x0ae02, 0x0000),
691 	A6XX_PROTECT_NORDWR(0x0ae50, 0x032f),
692 	A6XX_PROTECT_NORDWR(0x0b604, 0x0000),
693 	A6XX_PROTECT_NORDWR(0x0b608, 0x0007),
694 	A6XX_PROTECT_NORDWR(0x0be02, 0x0001),
695 	A6XX_PROTECT_NORDWR(0x0be20, 0x17df),
696 	A6XX_PROTECT_NORDWR(0x0f000, 0x0bff),
697 	A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff),
698 	A6XX_PROTECT_NORDWR(0x18400, 0x1fff),
699 	A6XX_PROTECT_NORDWR(0x1a800, 0x1fff),
700 	A6XX_PROTECT_NORDWR(0x1f400, 0x0443),
701 	A6XX_PROTECT_RDONLY(0x1f844, 0x007b),
702 	A6XX_PROTECT_NORDWR(0x1f887, 0x001b),
703 	A6XX_PROTECT_NORDWR(0x1f8c0, 0x0000), /* note: infinite range */
704 };
705 
706 /* These are for a635 and a660 */
707 static const u32 a660_protect[] = {
708 	A6XX_PROTECT_RDONLY(0x00000, 0x04ff),
709 	A6XX_PROTECT_RDONLY(0x00501, 0x0005),
710 	A6XX_PROTECT_RDONLY(0x0050b, 0x02f4),
711 	A6XX_PROTECT_NORDWR(0x0050e, 0x0000),
712 	A6XX_PROTECT_NORDWR(0x00510, 0x0000),
713 	A6XX_PROTECT_NORDWR(0x00534, 0x0000),
714 	A6XX_PROTECT_NORDWR(0x00800, 0x0082),
715 	A6XX_PROTECT_NORDWR(0x008a0, 0x0008),
716 	A6XX_PROTECT_NORDWR(0x008ab, 0x0024),
717 	A6XX_PROTECT_RDONLY(0x008de, 0x00ae),
718 	A6XX_PROTECT_NORDWR(0x00900, 0x004d),
719 	A6XX_PROTECT_NORDWR(0x0098d, 0x0272),
720 	A6XX_PROTECT_NORDWR(0x00e00, 0x0001),
721 	A6XX_PROTECT_NORDWR(0x00e03, 0x000c),
722 	A6XX_PROTECT_NORDWR(0x03c00, 0x00c3),
723 	A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff),
724 	A6XX_PROTECT_NORDWR(0x08630, 0x01cf),
725 	A6XX_PROTECT_NORDWR(0x08e00, 0x0000),
726 	A6XX_PROTECT_NORDWR(0x08e08, 0x0000),
727 	A6XX_PROTECT_NORDWR(0x08e50, 0x001f),
728 	A6XX_PROTECT_NORDWR(0x08e80, 0x027f),
729 	A6XX_PROTECT_NORDWR(0x09624, 0x01db),
730 	A6XX_PROTECT_NORDWR(0x09e60, 0x0011),
731 	A6XX_PROTECT_NORDWR(0x09e78, 0x0187),
732 	A6XX_PROTECT_NORDWR(0x0a630, 0x01cf),
733 	A6XX_PROTECT_NORDWR(0x0ae02, 0x0000),
734 	A6XX_PROTECT_NORDWR(0x0ae50, 0x012f),
735 	A6XX_PROTECT_NORDWR(0x0b604, 0x0000),
736 	A6XX_PROTECT_NORDWR(0x0b608, 0x0006),
737 	A6XX_PROTECT_NORDWR(0x0be02, 0x0001),
738 	A6XX_PROTECT_NORDWR(0x0be20, 0x015f),
739 	A6XX_PROTECT_NORDWR(0x0d000, 0x05ff),
740 	A6XX_PROTECT_NORDWR(0x0f000, 0x0bff),
741 	A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff),
742 	A6XX_PROTECT_NORDWR(0x18400, 0x1fff),
743 	A6XX_PROTECT_NORDWR(0x1a400, 0x1fff),
744 	A6XX_PROTECT_NORDWR(0x1f400, 0x0443),
745 	A6XX_PROTECT_RDONLY(0x1f844, 0x007b),
746 	A6XX_PROTECT_NORDWR(0x1f860, 0x0000),
747 	A6XX_PROTECT_NORDWR(0x1f887, 0x001b),
748 	A6XX_PROTECT_NORDWR(0x1f8c0, 0x0000), /* note: infinite range */
749 };
750 
a6xx_set_cp_protect(struct msm_gpu * gpu)751 static void a6xx_set_cp_protect(struct msm_gpu *gpu)
752 {
753 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
754 	const u32 *regs = a6xx_protect;
755 	unsigned i, count, count_max;
756 
757 	if (adreno_is_a650(adreno_gpu)) {
758 		regs = a650_protect;
759 		count = ARRAY_SIZE(a650_protect);
760 		count_max = 48;
761 		BUILD_BUG_ON(ARRAY_SIZE(a650_protect) > 48);
762 	} else if (adreno_is_a660_family(adreno_gpu)) {
763 		regs = a660_protect;
764 		count = ARRAY_SIZE(a660_protect);
765 		count_max = 48;
766 		BUILD_BUG_ON(ARRAY_SIZE(a660_protect) > 48);
767 	} else {
768 		regs = a6xx_protect;
769 		count = ARRAY_SIZE(a6xx_protect);
770 		count_max = 32;
771 		BUILD_BUG_ON(ARRAY_SIZE(a6xx_protect) > 32);
772 	}
773 
774 	/*
775 	 * Enable access protection to privileged registers, fault on an access
776 	 * protect violation and select the last span to protect from the start
777 	 * address all the way to the end of the register address space
778 	 */
779 	gpu_write(gpu, REG_A6XX_CP_PROTECT_CNTL, BIT(0) | BIT(1) | BIT(3));
780 
781 	for (i = 0; i < count - 1; i++)
782 		gpu_write(gpu, REG_A6XX_CP_PROTECT(i), regs[i]);
783 	/* last CP_PROTECT to have "infinite" length on the last entry */
784 	gpu_write(gpu, REG_A6XX_CP_PROTECT(count_max - 1), regs[i]);
785 }
786 
a6xx_set_ubwc_config(struct msm_gpu * gpu)787 static void a6xx_set_ubwc_config(struct msm_gpu *gpu)
788 {
789 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
790 	u32 lower_bit = 2;
791 	u32 amsbc = 0;
792 	u32 rgb565_predicator = 0;
793 	u32 uavflagprd_inv = 0;
794 
795 	/* a618 is using the hw default values */
796 	if (adreno_is_a618(adreno_gpu))
797 		return;
798 
799 	if (adreno_is_a640_family(adreno_gpu))
800 		amsbc = 1;
801 
802 	if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu)) {
803 		/* TODO: get ddr type from bootloader and use 2 for LPDDR4 */
804 		lower_bit = 3;
805 		amsbc = 1;
806 		rgb565_predicator = 1;
807 		uavflagprd_inv = 2;
808 	}
809 
810 	if (adreno_is_7c3(adreno_gpu)) {
811 		lower_bit = 1;
812 		amsbc = 1;
813 		rgb565_predicator = 1;
814 		uavflagprd_inv = 2;
815 	}
816 
817 	gpu_write(gpu, REG_A6XX_RB_NC_MODE_CNTL,
818 		rgb565_predicator << 11 | amsbc << 4 | lower_bit << 1);
819 	gpu_write(gpu, REG_A6XX_TPL1_NC_MODE_CNTL, lower_bit << 1);
820 	gpu_write(gpu, REG_A6XX_SP_NC_MODE_CNTL,
821 		uavflagprd_inv << 4 | lower_bit << 1);
822 	gpu_write(gpu, REG_A6XX_UCHE_MODE_CNTL, lower_bit << 21);
823 }
824 
a6xx_cp_init(struct msm_gpu * gpu)825 static int a6xx_cp_init(struct msm_gpu *gpu)
826 {
827 	struct msm_ringbuffer *ring = gpu->rb[0];
828 
829 	OUT_PKT7(ring, CP_ME_INIT, 8);
830 
831 	OUT_RING(ring, 0x0000002f);
832 
833 	/* Enable multiple hardware contexts */
834 	OUT_RING(ring, 0x00000003);
835 
836 	/* Enable error detection */
837 	OUT_RING(ring, 0x20000000);
838 
839 	/* Don't enable header dump */
840 	OUT_RING(ring, 0x00000000);
841 	OUT_RING(ring, 0x00000000);
842 
843 	/* No workarounds enabled */
844 	OUT_RING(ring, 0x00000000);
845 
846 	/* Pad rest of the cmds with 0's */
847 	OUT_RING(ring, 0x00000000);
848 	OUT_RING(ring, 0x00000000);
849 
850 	a6xx_flush(gpu, ring);
851 	return a6xx_idle(gpu, ring) ? 0 : -EINVAL;
852 }
853 
854 /*
855  * Check that the microcode version is new enough to include several key
856  * security fixes. Return true if the ucode is safe.
857  */
a6xx_ucode_check_version(struct a6xx_gpu * a6xx_gpu,struct drm_gem_object * obj)858 static bool a6xx_ucode_check_version(struct a6xx_gpu *a6xx_gpu,
859 		struct drm_gem_object *obj)
860 {
861 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
862 	struct msm_gpu *gpu = &adreno_gpu->base;
863 	const char *sqe_name = adreno_gpu->info->fw[ADRENO_FW_SQE];
864 	u32 *buf = msm_gem_get_vaddr(obj);
865 	bool ret = false;
866 
867 	if (IS_ERR(buf))
868 		return false;
869 
870 	/*
871 	 * Targets up to a640 (a618, a630 and a640) need to check for a
872 	 * microcode version that is patched to support the whereami opcode or
873 	 * one that is new enough to include it by default.
874 	 *
875 	 * a650 tier targets don't need whereami but still need to be
876 	 * equal to or newer than 0.95 for other security fixes
877 	 *
878 	 * a660 targets have all the critical security fixes from the start
879 	 */
880 	if (!strcmp(sqe_name, "a630_sqe.fw")) {
881 		/*
882 		 * If the lowest nibble is 0xa that is an indication that this
883 		 * microcode has been patched. The actual version is in dword
884 		 * [3] but we only care about the patchlevel which is the lowest
885 		 * nibble of dword [3]
886 		 *
887 		 * Otherwise check that the firmware is greater than or equal
888 		 * to 1.90 which was the first version that had this fix built
889 		 * in
890 		 */
891 		if ((((buf[0] & 0xf) == 0xa) && (buf[2] & 0xf) >= 1) ||
892 			(buf[0] & 0xfff) >= 0x190) {
893 			a6xx_gpu->has_whereami = true;
894 			ret = true;
895 			goto out;
896 		}
897 
898 		DRM_DEV_ERROR(&gpu->pdev->dev,
899 			"a630 SQE ucode is too old. Have version %x need at least %x\n",
900 			buf[0] & 0xfff, 0x190);
901 	} else if (!strcmp(sqe_name, "a650_sqe.fw")) {
902 		if ((buf[0] & 0xfff) >= 0x095) {
903 			ret = true;
904 			goto out;
905 		}
906 
907 		DRM_DEV_ERROR(&gpu->pdev->dev,
908 			"a650 SQE ucode is too old. Have version %x need at least %x\n",
909 			buf[0] & 0xfff, 0x095);
910 	} else if (!strcmp(sqe_name, "a660_sqe.fw")) {
911 		ret = true;
912 	} else {
913 		DRM_DEV_ERROR(&gpu->pdev->dev,
914 			"unknown GPU, add it to a6xx_ucode_check_version()!!\n");
915 	}
916 out:
917 	msm_gem_put_vaddr(obj);
918 	return ret;
919 }
920 
a6xx_ucode_init(struct msm_gpu * gpu)921 static int a6xx_ucode_init(struct msm_gpu *gpu)
922 {
923 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
924 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
925 
926 	if (!a6xx_gpu->sqe_bo) {
927 		a6xx_gpu->sqe_bo = adreno_fw_create_bo(gpu,
928 			adreno_gpu->fw[ADRENO_FW_SQE], &a6xx_gpu->sqe_iova);
929 
930 		if (IS_ERR(a6xx_gpu->sqe_bo)) {
931 			int ret = PTR_ERR(a6xx_gpu->sqe_bo);
932 
933 			a6xx_gpu->sqe_bo = NULL;
934 			DRM_DEV_ERROR(&gpu->pdev->dev,
935 				"Could not allocate SQE ucode: %d\n", ret);
936 
937 			return ret;
938 		}
939 
940 		msm_gem_object_set_name(a6xx_gpu->sqe_bo, "sqefw");
941 		if (!a6xx_ucode_check_version(a6xx_gpu, a6xx_gpu->sqe_bo)) {
942 			msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace);
943 			drm_gem_object_put(a6xx_gpu->sqe_bo);
944 
945 			a6xx_gpu->sqe_bo = NULL;
946 			return -EPERM;
947 		}
948 	}
949 
950 	gpu_write64(gpu, REG_A6XX_CP_SQE_INSTR_BASE,
951 		REG_A6XX_CP_SQE_INSTR_BASE+1, a6xx_gpu->sqe_iova);
952 
953 	return 0;
954 }
955 
a6xx_zap_shader_init(struct msm_gpu * gpu)956 static int a6xx_zap_shader_init(struct msm_gpu *gpu)
957 {
958 	static bool loaded;
959 	int ret;
960 
961 	if (loaded)
962 		return 0;
963 
964 	ret = adreno_zap_shader_load(gpu, GPU_PAS_ID);
965 
966 	loaded = !ret;
967 	return ret;
968 }
969 
970 #define A6XX_INT_MASK (A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR | \
971 	  A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW | \
972 	  A6XX_RBBM_INT_0_MASK_CP_HW_ERROR | \
973 	  A6XX_RBBM_INT_0_MASK_CP_IB2 | \
974 	  A6XX_RBBM_INT_0_MASK_CP_IB1 | \
975 	  A6XX_RBBM_INT_0_MASK_CP_RB | \
976 	  A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS | \
977 	  A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW | \
978 	  A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT | \
979 	  A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS | \
980 	  A6XX_RBBM_INT_0_MASK_UCHE_TRAP_INTR)
981 
hw_init(struct msm_gpu * gpu)982 static int hw_init(struct msm_gpu *gpu)
983 {
984 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
985 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
986 	int ret;
987 
988 	/* Make sure the GMU keeps the GPU on while we set it up */
989 	a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
990 
991 	/* Clear GBIF halt in case GX domain was not collapsed */
992 	if (a6xx_has_gbif(adreno_gpu))
993 		gpu_write(gpu, REG_A6XX_RBBM_GBIF_HALT, 0);
994 
995 	gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_CNTL, 0);
996 
997 	/*
998 	 * Disable the trusted memory range - we don't actually supported secure
999 	 * memory rendering at this point in time and we don't want to block off
1000 	 * part of the virtual memory space.
1001 	 */
1002 	gpu_write64(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_LO,
1003 		REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_HI, 0x00000000);
1004 	gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_SIZE, 0x00000000);
1005 
1006 	/* Turn on 64 bit addressing for all blocks */
1007 	gpu_write(gpu, REG_A6XX_CP_ADDR_MODE_CNTL, 0x1);
1008 	gpu_write(gpu, REG_A6XX_VSC_ADDR_MODE_CNTL, 0x1);
1009 	gpu_write(gpu, REG_A6XX_GRAS_ADDR_MODE_CNTL, 0x1);
1010 	gpu_write(gpu, REG_A6XX_RB_ADDR_MODE_CNTL, 0x1);
1011 	gpu_write(gpu, REG_A6XX_PC_ADDR_MODE_CNTL, 0x1);
1012 	gpu_write(gpu, REG_A6XX_HLSQ_ADDR_MODE_CNTL, 0x1);
1013 	gpu_write(gpu, REG_A6XX_VFD_ADDR_MODE_CNTL, 0x1);
1014 	gpu_write(gpu, REG_A6XX_VPC_ADDR_MODE_CNTL, 0x1);
1015 	gpu_write(gpu, REG_A6XX_UCHE_ADDR_MODE_CNTL, 0x1);
1016 	gpu_write(gpu, REG_A6XX_SP_ADDR_MODE_CNTL, 0x1);
1017 	gpu_write(gpu, REG_A6XX_TPL1_ADDR_MODE_CNTL, 0x1);
1018 	gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_ADDR_MODE_CNTL, 0x1);
1019 
1020 	/* enable hardware clockgating */
1021 	a6xx_set_hwcg(gpu, true);
1022 
1023 	/* VBIF/GBIF start*/
1024 	if (adreno_is_a640_family(adreno_gpu) ||
1025 	    adreno_is_a650_family(adreno_gpu)) {
1026 		gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE0, 0x00071620);
1027 		gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE1, 0x00071620);
1028 		gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE2, 0x00071620);
1029 		gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620);
1030 		gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620);
1031 		gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x3);
1032 	} else {
1033 		gpu_write(gpu, REG_A6XX_RBBM_VBIF_CLIENT_QOS_CNTL, 0x3);
1034 	}
1035 
1036 	if (adreno_is_a630(adreno_gpu))
1037 		gpu_write(gpu, REG_A6XX_VBIF_GATE_OFF_WRREQ_EN, 0x00000009);
1038 
1039 	/* Make all blocks contribute to the GPU BUSY perf counter */
1040 	gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_GPU_BUSY_MASKED, 0xffffffff);
1041 
1042 	/* Disable L2 bypass in the UCHE */
1043 	gpu_write(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX_LO, 0xffffffc0);
1044 	gpu_write(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX_HI, 0x0001ffff);
1045 	gpu_write(gpu, REG_A6XX_UCHE_TRAP_BASE_LO, 0xfffff000);
1046 	gpu_write(gpu, REG_A6XX_UCHE_TRAP_BASE_HI, 0x0001ffff);
1047 	gpu_write(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE_LO, 0xfffff000);
1048 	gpu_write(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE_HI, 0x0001ffff);
1049 
1050 	if (!adreno_is_a650_family(adreno_gpu)) {
1051 		/* Set the GMEM VA range [0x100000:0x100000 + gpu->gmem - 1] */
1052 		gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MIN_LO,
1053 			REG_A6XX_UCHE_GMEM_RANGE_MIN_HI, 0x00100000);
1054 
1055 		gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MAX_LO,
1056 			REG_A6XX_UCHE_GMEM_RANGE_MAX_HI,
1057 			0x00100000 + adreno_gpu->gmem - 1);
1058 	}
1059 
1060 	gpu_write(gpu, REG_A6XX_UCHE_FILTER_CNTL, 0x804);
1061 	gpu_write(gpu, REG_A6XX_UCHE_CACHE_WAYS, 0x4);
1062 
1063 	if (adreno_is_a640_family(adreno_gpu) ||
1064 	    adreno_is_a650_family(adreno_gpu))
1065 		gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x02000140);
1066 	else
1067 		gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x010000c0);
1068 	gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_1, 0x8040362c);
1069 
1070 	if (adreno_is_a660_family(adreno_gpu))
1071 		gpu_write(gpu, REG_A6XX_CP_LPAC_PROG_FIFO_SIZE, 0x00000020);
1072 
1073 	/* Setting the mem pool size */
1074 	gpu_write(gpu, REG_A6XX_CP_MEM_POOL_SIZE, 128);
1075 
1076 	/* Setting the primFifo thresholds default values,
1077 	 * and vccCacheSkipDis=1 bit (0x200) for A640 and newer
1078 	*/
1079 	if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu))
1080 		gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00300200);
1081 	else if (adreno_is_a640_family(adreno_gpu) || adreno_is_7c3(adreno_gpu))
1082 		gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00200200);
1083 	else if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu))
1084 		gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00300200);
1085 	else
1086 		gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00180000);
1087 
1088 	/* Set the AHB default slave response to "ERROR" */
1089 	gpu_write(gpu, REG_A6XX_CP_AHB_CNTL, 0x1);
1090 
1091 	/* Turn on performance counters */
1092 	gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_CNTL, 0x1);
1093 
1094 	/* Select CP0 to always count cycles */
1095 	gpu_write(gpu, REG_A6XX_CP_PERFCTR_CP_SEL(0), PERF_CP_ALWAYS_COUNT);
1096 
1097 	a6xx_set_ubwc_config(gpu);
1098 
1099 	/* Enable fault detection */
1100 	gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL,
1101 		(1 << 30) | 0x1fffff);
1102 
1103 	gpu_write(gpu, REG_A6XX_UCHE_CLIENT_PF, 1);
1104 
1105 	/* Set weights for bicubic filtering */
1106 	if (adreno_is_a650_family(adreno_gpu)) {
1107 		gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_0, 0);
1108 		gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_1,
1109 			0x3fe05ff4);
1110 		gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_2,
1111 			0x3fa0ebee);
1112 		gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_3,
1113 			0x3f5193ed);
1114 		gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_4,
1115 			0x3f0243f0);
1116 	}
1117 
1118 	/* Protect registers from the CP */
1119 	a6xx_set_cp_protect(gpu);
1120 
1121 	if (adreno_is_a660_family(adreno_gpu)) {
1122 		gpu_write(gpu, REG_A6XX_CP_CHICKEN_DBG, 0x1);
1123 		gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x0);
1124 	}
1125 
1126 	/* Set dualQ + disable afull for A660 GPU */
1127 	if (adreno_is_a660(adreno_gpu))
1128 		gpu_write(gpu, REG_A6XX_UCHE_CMDQ_CONFIG, 0x66906);
1129 
1130 	/* Enable expanded apriv for targets that support it */
1131 	if (gpu->hw_apriv) {
1132 		gpu_write(gpu, REG_A6XX_CP_APRIV_CNTL,
1133 			(1 << 6) | (1 << 5) | (1 << 3) | (1 << 2) | (1 << 1));
1134 	}
1135 
1136 	/* Enable interrupts */
1137 	gpu_write(gpu, REG_A6XX_RBBM_INT_0_MASK, A6XX_INT_MASK);
1138 
1139 	ret = adreno_hw_init(gpu);
1140 	if (ret)
1141 		goto out;
1142 
1143 	ret = a6xx_ucode_init(gpu);
1144 	if (ret)
1145 		goto out;
1146 
1147 	/* Set the ringbuffer address */
1148 	gpu_write64(gpu, REG_A6XX_CP_RB_BASE, REG_A6XX_CP_RB_BASE_HI,
1149 		gpu->rb[0]->iova);
1150 
1151 	/* Targets that support extended APRIV can use the RPTR shadow from
1152 	 * hardware but all the other ones need to disable the feature. Targets
1153 	 * that support the WHERE_AM_I opcode can use that instead
1154 	 */
1155 	if (adreno_gpu->base.hw_apriv)
1156 		gpu_write(gpu, REG_A6XX_CP_RB_CNTL, MSM_GPU_RB_CNTL_DEFAULT);
1157 	else
1158 		gpu_write(gpu, REG_A6XX_CP_RB_CNTL,
1159 			MSM_GPU_RB_CNTL_DEFAULT | AXXX_CP_RB_CNTL_NO_UPDATE);
1160 
1161 	/*
1162 	 * Expanded APRIV and targets that support WHERE_AM_I both need a
1163 	 * privileged buffer to store the RPTR shadow
1164 	 */
1165 
1166 	if (adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami) {
1167 		if (!a6xx_gpu->shadow_bo) {
1168 			a6xx_gpu->shadow = msm_gem_kernel_new(gpu->dev,
1169 				sizeof(u32) * gpu->nr_rings,
1170 				MSM_BO_WC | MSM_BO_MAP_PRIV,
1171 				gpu->aspace, &a6xx_gpu->shadow_bo,
1172 				&a6xx_gpu->shadow_iova);
1173 
1174 			if (IS_ERR(a6xx_gpu->shadow))
1175 				return PTR_ERR(a6xx_gpu->shadow);
1176 
1177 			msm_gem_object_set_name(a6xx_gpu->shadow_bo, "shadow");
1178 		}
1179 
1180 		gpu_write64(gpu, REG_A6XX_CP_RB_RPTR_ADDR_LO,
1181 			REG_A6XX_CP_RB_RPTR_ADDR_HI,
1182 			shadowptr(a6xx_gpu, gpu->rb[0]));
1183 	}
1184 
1185 	/* Always come up on rb 0 */
1186 	a6xx_gpu->cur_ring = gpu->rb[0];
1187 
1188 	gpu->cur_ctx_seqno = 0;
1189 
1190 	/* Enable the SQE_to start the CP engine */
1191 	gpu_write(gpu, REG_A6XX_CP_SQE_CNTL, 1);
1192 
1193 	ret = a6xx_cp_init(gpu);
1194 	if (ret)
1195 		goto out;
1196 
1197 	/*
1198 	 * Try to load a zap shader into the secure world. If successful
1199 	 * we can use the CP to switch out of secure mode. If not then we
1200 	 * have no resource but to try to switch ourselves out manually. If we
1201 	 * guessed wrong then access to the RBBM_SECVID_TRUST_CNTL register will
1202 	 * be blocked and a permissions violation will soon follow.
1203 	 */
1204 	ret = a6xx_zap_shader_init(gpu);
1205 	if (!ret) {
1206 		OUT_PKT7(gpu->rb[0], CP_SET_SECURE_MODE, 1);
1207 		OUT_RING(gpu->rb[0], 0x00000000);
1208 
1209 		a6xx_flush(gpu, gpu->rb[0]);
1210 		if (!a6xx_idle(gpu, gpu->rb[0]))
1211 			return -EINVAL;
1212 	} else if (ret == -ENODEV) {
1213 		/*
1214 		 * This device does not use zap shader (but print a warning
1215 		 * just in case someone got their dt wrong.. hopefully they
1216 		 * have a debug UART to realize the error of their ways...
1217 		 * if you mess this up you are about to crash horribly)
1218 		 */
1219 		dev_warn_once(gpu->dev->dev,
1220 			"Zap shader not enabled - using SECVID_TRUST_CNTL instead\n");
1221 		gpu_write(gpu, REG_A6XX_RBBM_SECVID_TRUST_CNTL, 0x0);
1222 		ret = 0;
1223 	} else {
1224 		return ret;
1225 	}
1226 
1227 out:
1228 	/*
1229 	 * Tell the GMU that we are done touching the GPU and it can start power
1230 	 * management
1231 	 */
1232 	a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
1233 
1234 	if (a6xx_gpu->gmu.legacy) {
1235 		/* Take the GMU out of its special boot mode */
1236 		a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_BOOT_SLUMBER);
1237 	}
1238 
1239 	return ret;
1240 }
1241 
a6xx_hw_init(struct msm_gpu * gpu)1242 static int a6xx_hw_init(struct msm_gpu *gpu)
1243 {
1244 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1245 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1246 	int ret;
1247 
1248 	mutex_lock(&a6xx_gpu->gmu.lock);
1249 	ret = hw_init(gpu);
1250 	mutex_unlock(&a6xx_gpu->gmu.lock);
1251 
1252 	return ret;
1253 }
1254 
a6xx_dump(struct msm_gpu * gpu)1255 static void a6xx_dump(struct msm_gpu *gpu)
1256 {
1257 	DRM_DEV_INFO(&gpu->pdev->dev, "status:   %08x\n",
1258 			gpu_read(gpu, REG_A6XX_RBBM_STATUS));
1259 	adreno_dump(gpu);
1260 }
1261 
1262 #define VBIF_RESET_ACK_TIMEOUT	100
1263 #define VBIF_RESET_ACK_MASK	0x00f0
1264 
a6xx_recover(struct msm_gpu * gpu)1265 static void a6xx_recover(struct msm_gpu *gpu)
1266 {
1267 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1268 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1269 	int i, active_submits;
1270 
1271 	adreno_dump_info(gpu);
1272 
1273 	for (i = 0; i < 8; i++)
1274 		DRM_DEV_INFO(&gpu->pdev->dev, "CP_SCRATCH_REG%d: %u\n", i,
1275 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(i)));
1276 
1277 	if (hang_debug)
1278 		a6xx_dump(gpu);
1279 
1280 	/*
1281 	 * To handle recovery specific sequences during the rpm suspend we are
1282 	 * about to trigger
1283 	 */
1284 	a6xx_gpu->hung = true;
1285 
1286 	/* Halt SQE first */
1287 	gpu_write(gpu, REG_A6XX_CP_SQE_CNTL, 3);
1288 
1289 	/*
1290 	 * Turn off keep alive that might have been enabled by the hang
1291 	 * interrupt
1292 	 */
1293 	gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 0);
1294 
1295 	pm_runtime_dont_use_autosuspend(&gpu->pdev->dev);
1296 
1297 	/* active_submit won't change until we make a submission */
1298 	mutex_lock(&gpu->active_lock);
1299 	active_submits = gpu->active_submits;
1300 
1301 	/*
1302 	 * Temporarily clear active_submits count to silence a WARN() in the
1303 	 * runtime suspend cb
1304 	 */
1305 	gpu->active_submits = 0;
1306 
1307 	/* Drop the rpm refcount from active submits */
1308 	if (active_submits)
1309 		pm_runtime_put(&gpu->pdev->dev);
1310 
1311 	/* And the final one from recover worker */
1312 	pm_runtime_put_sync(&gpu->pdev->dev);
1313 
1314 	/* Call into gpucc driver to poll for cx gdsc collapse */
1315 	reset_control_reset(gpu->cx_collapse);
1316 
1317 	pm_runtime_use_autosuspend(&gpu->pdev->dev);
1318 
1319 	if (active_submits)
1320 		pm_runtime_get(&gpu->pdev->dev);
1321 
1322 	pm_runtime_get_sync(&gpu->pdev->dev);
1323 
1324 	gpu->active_submits = active_submits;
1325 	mutex_unlock(&gpu->active_lock);
1326 
1327 	msm_gpu_hw_init(gpu);
1328 	a6xx_gpu->hung = false;
1329 }
1330 
a6xx_uche_fault_block(struct msm_gpu * gpu,u32 mid)1331 static const char *a6xx_uche_fault_block(struct msm_gpu *gpu, u32 mid)
1332 {
1333 	static const char *uche_clients[7] = {
1334 		"VFD", "SP", "VSC", "VPC", "HLSQ", "PC", "LRZ",
1335 	};
1336 	u32 val;
1337 
1338 	if (mid < 1 || mid > 3)
1339 		return "UNKNOWN";
1340 
1341 	/*
1342 	 * The source of the data depends on the mid ID read from FSYNR1.
1343 	 * and the client ID read from the UCHE block
1344 	 */
1345 	val = gpu_read(gpu, REG_A6XX_UCHE_CLIENT_PF);
1346 
1347 	/* mid = 3 is most precise and refers to only one block per client */
1348 	if (mid == 3)
1349 		return uche_clients[val & 7];
1350 
1351 	/* For mid=2 the source is TP or VFD except when the client id is 0 */
1352 	if (mid == 2)
1353 		return ((val & 7) == 0) ? "TP" : "TP|VFD";
1354 
1355 	/* For mid=1 just return "UCHE" as a catchall for everything else */
1356 	return "UCHE";
1357 }
1358 
a6xx_fault_block(struct msm_gpu * gpu,u32 id)1359 static const char *a6xx_fault_block(struct msm_gpu *gpu, u32 id)
1360 {
1361 	if (id == 0)
1362 		return "CP";
1363 	else if (id == 4)
1364 		return "CCU";
1365 	else if (id == 6)
1366 		return "CDP Prefetch";
1367 
1368 	return a6xx_uche_fault_block(gpu, id);
1369 }
1370 
1371 #define ARM_SMMU_FSR_TF                 BIT(1)
1372 #define ARM_SMMU_FSR_PF			BIT(3)
1373 #define ARM_SMMU_FSR_EF			BIT(4)
1374 
a6xx_fault_handler(void * arg,unsigned long iova,int flags,void * data)1375 static int a6xx_fault_handler(void *arg, unsigned long iova, int flags, void *data)
1376 {
1377 	struct msm_gpu *gpu = arg;
1378 	struct adreno_smmu_fault_info *info = data;
1379 	const char *type = "UNKNOWN";
1380 	const char *block;
1381 	bool do_devcoredump = info && !READ_ONCE(gpu->crashstate);
1382 
1383 	/*
1384 	 * If we aren't going to be resuming later from fault_worker, then do
1385 	 * it now.
1386 	 */
1387 	if (!do_devcoredump) {
1388 		gpu->aspace->mmu->funcs->resume_translation(gpu->aspace->mmu);
1389 	}
1390 
1391 	/*
1392 	 * Print a default message if we couldn't get the data from the
1393 	 * adreno-smmu-priv
1394 	 */
1395 	if (!info) {
1396 		pr_warn_ratelimited("*** gpu fault: iova=%.16lx flags=%d (%u,%u,%u,%u)\n",
1397 			iova, flags,
1398 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(4)),
1399 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(5)),
1400 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(6)),
1401 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(7)));
1402 
1403 		return 0;
1404 	}
1405 
1406 	if (info->fsr & ARM_SMMU_FSR_TF)
1407 		type = "TRANSLATION";
1408 	else if (info->fsr & ARM_SMMU_FSR_PF)
1409 		type = "PERMISSION";
1410 	else if (info->fsr & ARM_SMMU_FSR_EF)
1411 		type = "EXTERNAL";
1412 
1413 	block = a6xx_fault_block(gpu, info->fsynr1 & 0xff);
1414 
1415 	pr_warn_ratelimited("*** gpu fault: ttbr0=%.16llx iova=%.16lx dir=%s type=%s source=%s (%u,%u,%u,%u)\n",
1416 			info->ttbr0, iova,
1417 			flags & IOMMU_FAULT_WRITE ? "WRITE" : "READ",
1418 			type, block,
1419 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(4)),
1420 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(5)),
1421 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(6)),
1422 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(7)));
1423 
1424 	if (do_devcoredump) {
1425 		/* Turn off the hangcheck timer to keep it from bothering us */
1426 		del_timer(&gpu->hangcheck_timer);
1427 
1428 		gpu->fault_info.ttbr0 = info->ttbr0;
1429 		gpu->fault_info.iova  = iova;
1430 		gpu->fault_info.flags = flags;
1431 		gpu->fault_info.type  = type;
1432 		gpu->fault_info.block = block;
1433 
1434 		kthread_queue_work(gpu->worker, &gpu->fault_work);
1435 	}
1436 
1437 	return 0;
1438 }
1439 
a6xx_cp_hw_err_irq(struct msm_gpu * gpu)1440 static void a6xx_cp_hw_err_irq(struct msm_gpu *gpu)
1441 {
1442 	u32 status = gpu_read(gpu, REG_A6XX_CP_INTERRUPT_STATUS);
1443 
1444 	if (status & A6XX_CP_INT_CP_OPCODE_ERROR) {
1445 		u32 val;
1446 
1447 		gpu_write(gpu, REG_A6XX_CP_SQE_STAT_ADDR, 1);
1448 		val = gpu_read(gpu, REG_A6XX_CP_SQE_STAT_DATA);
1449 		dev_err_ratelimited(&gpu->pdev->dev,
1450 			"CP | opcode error | possible opcode=0x%8.8X\n",
1451 			val);
1452 	}
1453 
1454 	if (status & A6XX_CP_INT_CP_UCODE_ERROR)
1455 		dev_err_ratelimited(&gpu->pdev->dev,
1456 			"CP ucode error interrupt\n");
1457 
1458 	if (status & A6XX_CP_INT_CP_HW_FAULT_ERROR)
1459 		dev_err_ratelimited(&gpu->pdev->dev, "CP | HW fault | status=0x%8.8X\n",
1460 			gpu_read(gpu, REG_A6XX_CP_HW_FAULT));
1461 
1462 	if (status & A6XX_CP_INT_CP_REGISTER_PROTECTION_ERROR) {
1463 		u32 val = gpu_read(gpu, REG_A6XX_CP_PROTECT_STATUS);
1464 
1465 		dev_err_ratelimited(&gpu->pdev->dev,
1466 			"CP | protected mode error | %s | addr=0x%8.8X | status=0x%8.8X\n",
1467 			val & (1 << 20) ? "READ" : "WRITE",
1468 			(val & 0x3ffff), val);
1469 	}
1470 
1471 	if (status & A6XX_CP_INT_CP_AHB_ERROR)
1472 		dev_err_ratelimited(&gpu->pdev->dev, "CP AHB error interrupt\n");
1473 
1474 	if (status & A6XX_CP_INT_CP_VSD_PARITY_ERROR)
1475 		dev_err_ratelimited(&gpu->pdev->dev, "CP VSD decoder parity error\n");
1476 
1477 	if (status & A6XX_CP_INT_CP_ILLEGAL_INSTR_ERROR)
1478 		dev_err_ratelimited(&gpu->pdev->dev, "CP illegal instruction error\n");
1479 
1480 }
1481 
a6xx_fault_detect_irq(struct msm_gpu * gpu)1482 static void a6xx_fault_detect_irq(struct msm_gpu *gpu)
1483 {
1484 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1485 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1486 	struct msm_ringbuffer *ring = gpu->funcs->active_ring(gpu);
1487 
1488 	/*
1489 	 * If stalled on SMMU fault, we could trip the GPU's hang detection,
1490 	 * but the fault handler will trigger the devcore dump, and we want
1491 	 * to otherwise resume normally rather than killing the submit, so
1492 	 * just bail.
1493 	 */
1494 	if (gpu_read(gpu, REG_A6XX_RBBM_STATUS3) & A6XX_RBBM_STATUS3_SMMU_STALLED_ON_FAULT)
1495 		return;
1496 
1497 	/*
1498 	 * Force the GPU to stay on until after we finish
1499 	 * collecting information
1500 	 */
1501 	gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 1);
1502 
1503 	DRM_DEV_ERROR(&gpu->pdev->dev,
1504 		"gpu fault ring %d fence %x status %8.8X rb %4.4x/%4.4x ib1 %16.16llX/%4.4x ib2 %16.16llX/%4.4x\n",
1505 		ring ? ring->id : -1, ring ? ring->fctx->last_fence : 0,
1506 		gpu_read(gpu, REG_A6XX_RBBM_STATUS),
1507 		gpu_read(gpu, REG_A6XX_CP_RB_RPTR),
1508 		gpu_read(gpu, REG_A6XX_CP_RB_WPTR),
1509 		gpu_read64(gpu, REG_A6XX_CP_IB1_BASE, REG_A6XX_CP_IB1_BASE_HI),
1510 		gpu_read(gpu, REG_A6XX_CP_IB1_REM_SIZE),
1511 		gpu_read64(gpu, REG_A6XX_CP_IB2_BASE, REG_A6XX_CP_IB2_BASE_HI),
1512 		gpu_read(gpu, REG_A6XX_CP_IB2_REM_SIZE));
1513 
1514 	/* Turn off the hangcheck timer to keep it from bothering us */
1515 	del_timer(&gpu->hangcheck_timer);
1516 
1517 	kthread_queue_work(gpu->worker, &gpu->recover_work);
1518 }
1519 
a6xx_irq(struct msm_gpu * gpu)1520 static irqreturn_t a6xx_irq(struct msm_gpu *gpu)
1521 {
1522 	struct msm_drm_private *priv = gpu->dev->dev_private;
1523 	u32 status = gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS);
1524 
1525 	gpu_write(gpu, REG_A6XX_RBBM_INT_CLEAR_CMD, status);
1526 
1527 	if (priv->disable_err_irq)
1528 		status &= A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS;
1529 
1530 	if (status & A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT)
1531 		a6xx_fault_detect_irq(gpu);
1532 
1533 	if (status & A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR)
1534 		dev_err_ratelimited(&gpu->pdev->dev, "CP | AHB bus error\n");
1535 
1536 	if (status & A6XX_RBBM_INT_0_MASK_CP_HW_ERROR)
1537 		a6xx_cp_hw_err_irq(gpu);
1538 
1539 	if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW)
1540 		dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB ASYNC overflow\n");
1541 
1542 	if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW)
1543 		dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB bus overflow\n");
1544 
1545 	if (status & A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS)
1546 		dev_err_ratelimited(&gpu->pdev->dev, "UCHE | Out of bounds access\n");
1547 
1548 	if (status & A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS)
1549 		msm_gpu_retire(gpu);
1550 
1551 	return IRQ_HANDLED;
1552 }
1553 
a6xx_llc_rmw(struct a6xx_gpu * a6xx_gpu,u32 reg,u32 mask,u32 or)1554 static void a6xx_llc_rmw(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 mask, u32 or)
1555 {
1556 	return msm_rmw(a6xx_gpu->llc_mmio + (reg << 2), mask, or);
1557 }
1558 
a6xx_llc_write(struct a6xx_gpu * a6xx_gpu,u32 reg,u32 value)1559 static void a6xx_llc_write(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 value)
1560 {
1561 	msm_writel(value, a6xx_gpu->llc_mmio + (reg << 2));
1562 }
1563 
a6xx_llc_deactivate(struct a6xx_gpu * a6xx_gpu)1564 static void a6xx_llc_deactivate(struct a6xx_gpu *a6xx_gpu)
1565 {
1566 	llcc_slice_deactivate(a6xx_gpu->llc_slice);
1567 	llcc_slice_deactivate(a6xx_gpu->htw_llc_slice);
1568 }
1569 
a6xx_llc_activate(struct a6xx_gpu * a6xx_gpu)1570 static void a6xx_llc_activate(struct a6xx_gpu *a6xx_gpu)
1571 {
1572 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
1573 	struct msm_gpu *gpu = &adreno_gpu->base;
1574 	u32 cntl1_regval = 0;
1575 
1576 	if (IS_ERR(a6xx_gpu->llc_mmio))
1577 		return;
1578 
1579 	if (!llcc_slice_activate(a6xx_gpu->llc_slice)) {
1580 		u32 gpu_scid = llcc_get_slice_id(a6xx_gpu->llc_slice);
1581 
1582 		gpu_scid &= 0x1f;
1583 		cntl1_regval = (gpu_scid << 0) | (gpu_scid << 5) | (gpu_scid << 10) |
1584 			       (gpu_scid << 15) | (gpu_scid << 20);
1585 
1586 		/* On A660, the SCID programming for UCHE traffic is done in
1587 		 * A6XX_GBIF_SCACHE_CNTL0[14:10]
1588 		 */
1589 		if (adreno_is_a660_family(adreno_gpu))
1590 			gpu_rmw(gpu, REG_A6XX_GBIF_SCACHE_CNTL0, (0x1f << 10) |
1591 				(1 << 8), (gpu_scid << 10) | (1 << 8));
1592 	}
1593 
1594 	/*
1595 	 * For targets with a MMU500, activate the slice but don't program the
1596 	 * register.  The XBL will take care of that.
1597 	 */
1598 	if (!llcc_slice_activate(a6xx_gpu->htw_llc_slice)) {
1599 		if (!a6xx_gpu->have_mmu500) {
1600 			u32 gpuhtw_scid = llcc_get_slice_id(a6xx_gpu->htw_llc_slice);
1601 
1602 			gpuhtw_scid &= 0x1f;
1603 			cntl1_regval |= FIELD_PREP(GENMASK(29, 25), gpuhtw_scid);
1604 		}
1605 	}
1606 
1607 	if (!cntl1_regval)
1608 		return;
1609 
1610 	/*
1611 	 * Program the slice IDs for the various GPU blocks and GPU MMU
1612 	 * pagetables
1613 	 */
1614 	if (!a6xx_gpu->have_mmu500) {
1615 		a6xx_llc_write(a6xx_gpu,
1616 			REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_1, cntl1_regval);
1617 
1618 		/*
1619 		 * Program cacheability overrides to not allocate cache
1620 		 * lines on a write miss
1621 		 */
1622 		a6xx_llc_rmw(a6xx_gpu,
1623 			REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_0, 0xF, 0x03);
1624 		return;
1625 	}
1626 
1627 	gpu_rmw(gpu, REG_A6XX_GBIF_SCACHE_CNTL1, GENMASK(24, 0), cntl1_regval);
1628 }
1629 
a6xx_llc_slices_destroy(struct a6xx_gpu * a6xx_gpu)1630 static void a6xx_llc_slices_destroy(struct a6xx_gpu *a6xx_gpu)
1631 {
1632 	llcc_slice_putd(a6xx_gpu->llc_slice);
1633 	llcc_slice_putd(a6xx_gpu->htw_llc_slice);
1634 }
1635 
a6xx_llc_slices_init(struct platform_device * pdev,struct a6xx_gpu * a6xx_gpu)1636 static void a6xx_llc_slices_init(struct platform_device *pdev,
1637 		struct a6xx_gpu *a6xx_gpu)
1638 {
1639 	struct device_node *phandle;
1640 
1641 	/*
1642 	 * There is a different programming path for targets with an mmu500
1643 	 * attached, so detect if that is the case
1644 	 */
1645 	phandle = of_parse_phandle(pdev->dev.of_node, "iommus", 0);
1646 	a6xx_gpu->have_mmu500 = (phandle &&
1647 		of_device_is_compatible(phandle, "arm,mmu-500"));
1648 	of_node_put(phandle);
1649 
1650 	if (a6xx_gpu->have_mmu500)
1651 		a6xx_gpu->llc_mmio = NULL;
1652 	else
1653 		a6xx_gpu->llc_mmio = msm_ioremap(pdev, "cx_mem");
1654 
1655 	a6xx_gpu->llc_slice = llcc_slice_getd(LLCC_GPU);
1656 	a6xx_gpu->htw_llc_slice = llcc_slice_getd(LLCC_GPUHTW);
1657 
1658 	if (IS_ERR_OR_NULL(a6xx_gpu->llc_slice) && IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice))
1659 		a6xx_gpu->llc_mmio = ERR_PTR(-EINVAL);
1660 }
1661 
a6xx_pm_resume(struct msm_gpu * gpu)1662 static int a6xx_pm_resume(struct msm_gpu *gpu)
1663 {
1664 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1665 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1666 	int ret;
1667 
1668 	gpu->needs_hw_init = true;
1669 
1670 	trace_msm_gpu_resume(0);
1671 
1672 	mutex_lock(&a6xx_gpu->gmu.lock);
1673 	ret = a6xx_gmu_resume(a6xx_gpu);
1674 	mutex_unlock(&a6xx_gpu->gmu.lock);
1675 	if (ret)
1676 		return ret;
1677 
1678 	msm_devfreq_resume(gpu);
1679 
1680 	a6xx_llc_activate(a6xx_gpu);
1681 
1682 	return 0;
1683 }
1684 
a6xx_pm_suspend(struct msm_gpu * gpu)1685 static int a6xx_pm_suspend(struct msm_gpu *gpu)
1686 {
1687 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1688 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1689 	int i, ret;
1690 
1691 	trace_msm_gpu_suspend(0);
1692 
1693 	a6xx_llc_deactivate(a6xx_gpu);
1694 
1695 	msm_devfreq_suspend(gpu);
1696 
1697 	mutex_lock(&a6xx_gpu->gmu.lock);
1698 	ret = a6xx_gmu_stop(a6xx_gpu);
1699 	mutex_unlock(&a6xx_gpu->gmu.lock);
1700 	if (ret)
1701 		return ret;
1702 
1703 	if (a6xx_gpu->shadow_bo)
1704 		for (i = 0; i < gpu->nr_rings; i++)
1705 			a6xx_gpu->shadow[i] = 0;
1706 
1707 	gpu->suspend_count++;
1708 
1709 	return 0;
1710 }
1711 
a6xx_get_timestamp(struct msm_gpu * gpu,uint64_t * value)1712 static int a6xx_get_timestamp(struct msm_gpu *gpu, uint64_t *value)
1713 {
1714 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1715 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1716 
1717 	mutex_lock(&a6xx_gpu->gmu.lock);
1718 
1719 	/* Force the GPU power on so we can read this register */
1720 	a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET);
1721 
1722 	*value = gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO,
1723 			    REG_A6XX_CP_ALWAYS_ON_COUNTER_HI);
1724 
1725 	a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET);
1726 
1727 	mutex_unlock(&a6xx_gpu->gmu.lock);
1728 
1729 	return 0;
1730 }
1731 
a6xx_active_ring(struct msm_gpu * gpu)1732 static struct msm_ringbuffer *a6xx_active_ring(struct msm_gpu *gpu)
1733 {
1734 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1735 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1736 
1737 	return a6xx_gpu->cur_ring;
1738 }
1739 
a6xx_destroy(struct msm_gpu * gpu)1740 static void a6xx_destroy(struct msm_gpu *gpu)
1741 {
1742 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1743 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1744 
1745 	if (a6xx_gpu->sqe_bo) {
1746 		msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace);
1747 		drm_gem_object_put(a6xx_gpu->sqe_bo);
1748 	}
1749 
1750 	if (a6xx_gpu->shadow_bo) {
1751 		msm_gem_unpin_iova(a6xx_gpu->shadow_bo, gpu->aspace);
1752 		drm_gem_object_put(a6xx_gpu->shadow_bo);
1753 	}
1754 
1755 	a6xx_llc_slices_destroy(a6xx_gpu);
1756 
1757 	a6xx_gmu_remove(a6xx_gpu);
1758 
1759 	adreno_gpu_cleanup(adreno_gpu);
1760 
1761 	kfree(a6xx_gpu);
1762 }
1763 
a6xx_gpu_busy(struct msm_gpu * gpu,unsigned long * out_sample_rate)1764 static u64 a6xx_gpu_busy(struct msm_gpu *gpu, unsigned long *out_sample_rate)
1765 {
1766 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1767 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1768 	u64 busy_cycles;
1769 
1770 	/* 19.2MHz */
1771 	*out_sample_rate = 19200000;
1772 
1773 	busy_cycles = gmu_read64(&a6xx_gpu->gmu,
1774 			REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_L,
1775 			REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_H);
1776 
1777 	return busy_cycles;
1778 }
1779 
a6xx_gpu_set_freq(struct msm_gpu * gpu,struct dev_pm_opp * opp,bool suspended)1780 static void a6xx_gpu_set_freq(struct msm_gpu *gpu, struct dev_pm_opp *opp,
1781 			      bool suspended)
1782 {
1783 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1784 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1785 
1786 	mutex_lock(&a6xx_gpu->gmu.lock);
1787 	a6xx_gmu_set_freq(gpu, opp, suspended);
1788 	mutex_unlock(&a6xx_gpu->gmu.lock);
1789 }
1790 
1791 static struct msm_gem_address_space *
a6xx_create_address_space(struct msm_gpu * gpu,struct platform_device * pdev)1792 a6xx_create_address_space(struct msm_gpu *gpu, struct platform_device *pdev)
1793 {
1794 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1795 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1796 	struct iommu_domain *iommu;
1797 	struct msm_mmu *mmu;
1798 	struct msm_gem_address_space *aspace;
1799 	u64 start, size;
1800 
1801 	iommu = iommu_domain_alloc(&platform_bus_type);
1802 	if (!iommu)
1803 		return NULL;
1804 
1805 	/*
1806 	 * This allows GPU to set the bus attributes required to use system
1807 	 * cache on behalf of the iommu page table walker.
1808 	 */
1809 	if (!IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice))
1810 		adreno_set_llc_attributes(iommu);
1811 
1812 	mmu = msm_iommu_new(&pdev->dev, iommu);
1813 	if (IS_ERR(mmu)) {
1814 		iommu_domain_free(iommu);
1815 		return ERR_CAST(mmu);
1816 	}
1817 
1818 	/*
1819 	 * Use the aperture start or SZ_16M, whichever is greater. This will
1820 	 * ensure that we align with the allocated pagetable range while still
1821 	 * allowing room in the lower 32 bits for GMEM and whatnot
1822 	 */
1823 	start = max_t(u64, SZ_16M, iommu->geometry.aperture_start);
1824 	size = iommu->geometry.aperture_end - start + 1;
1825 
1826 	aspace = msm_gem_address_space_create(mmu, "gpu",
1827 		start & GENMASK_ULL(48, 0), size);
1828 
1829 	if (IS_ERR(aspace) && !IS_ERR(mmu))
1830 		mmu->funcs->destroy(mmu);
1831 
1832 	return aspace;
1833 }
1834 
1835 static struct msm_gem_address_space *
a6xx_create_private_address_space(struct msm_gpu * gpu)1836 a6xx_create_private_address_space(struct msm_gpu *gpu)
1837 {
1838 	struct msm_mmu *mmu;
1839 
1840 	mmu = msm_iommu_pagetable_create(gpu->aspace->mmu);
1841 
1842 	if (IS_ERR(mmu))
1843 		return ERR_CAST(mmu);
1844 
1845 	return msm_gem_address_space_create(mmu,
1846 		"gpu", 0x100000000ULL,
1847 		adreno_private_address_space_size(gpu));
1848 }
1849 
a6xx_get_rptr(struct msm_gpu * gpu,struct msm_ringbuffer * ring)1850 static uint32_t a6xx_get_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
1851 {
1852 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1853 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1854 
1855 	if (adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami)
1856 		return a6xx_gpu->shadow[ring->id];
1857 
1858 	return ring->memptrs->rptr = gpu_read(gpu, REG_A6XX_CP_RB_RPTR);
1859 }
1860 
a618_get_speed_bin(u32 fuse)1861 static u32 a618_get_speed_bin(u32 fuse)
1862 {
1863 	if (fuse == 0)
1864 		return 0;
1865 	else if (fuse == 169)
1866 		return 1;
1867 	else if (fuse == 174)
1868 		return 2;
1869 
1870 	return UINT_MAX;
1871 }
1872 
a619_get_speed_bin(u32 fuse)1873 static u32 a619_get_speed_bin(u32 fuse)
1874 {
1875 	if (fuse == 0)
1876 		return 0;
1877 	else if (fuse == 120)
1878 		return 4;
1879 	else if (fuse == 138)
1880 		return 3;
1881 	else if (fuse == 169)
1882 		return 2;
1883 	else if (fuse == 180)
1884 		return 1;
1885 
1886 	return UINT_MAX;
1887 }
1888 
adreno_7c3_get_speed_bin(u32 fuse)1889 static u32 adreno_7c3_get_speed_bin(u32 fuse)
1890 {
1891 	if (fuse == 0)
1892 		return 0;
1893 	else if (fuse == 117)
1894 		return 0;
1895 	else if (fuse == 190)
1896 		return 1;
1897 
1898 	return UINT_MAX;
1899 }
1900 
fuse_to_supp_hw(struct device * dev,struct adreno_rev rev,u32 fuse)1901 static u32 fuse_to_supp_hw(struct device *dev, struct adreno_rev rev, u32 fuse)
1902 {
1903 	u32 val = UINT_MAX;
1904 
1905 	if (adreno_cmp_rev(ADRENO_REV(6, 1, 8, ANY_ID), rev))
1906 		val = a618_get_speed_bin(fuse);
1907 
1908 	if (adreno_cmp_rev(ADRENO_REV(6, 1, 9, ANY_ID), rev))
1909 		val = a619_get_speed_bin(fuse);
1910 
1911 	if (adreno_cmp_rev(ADRENO_REV(6, 3, 5, ANY_ID), rev))
1912 		val = adreno_7c3_get_speed_bin(fuse);
1913 
1914 	if (val == UINT_MAX) {
1915 		DRM_DEV_ERROR(dev,
1916 			"missing support for speed-bin: %u. Some OPPs may not be supported by hardware\n",
1917 			fuse);
1918 		return UINT_MAX;
1919 	}
1920 
1921 	return (1 << val);
1922 }
1923 
a6xx_set_supported_hw(struct device * dev,struct adreno_rev rev)1924 static int a6xx_set_supported_hw(struct device *dev, struct adreno_rev rev)
1925 {
1926 	u32 supp_hw;
1927 	u32 speedbin;
1928 	int ret;
1929 
1930 	ret = adreno_read_speedbin(dev, &speedbin);
1931 	/*
1932 	 * -ENOENT means that the platform doesn't support speedbin which is
1933 	 * fine
1934 	 */
1935 	if (ret == -ENOENT) {
1936 		return 0;
1937 	} else if (ret) {
1938 		dev_err_probe(dev, ret,
1939 			      "failed to read speed-bin. Some OPPs may not be supported by hardware\n");
1940 		return ret;
1941 	}
1942 
1943 	supp_hw = fuse_to_supp_hw(dev, rev, speedbin);
1944 
1945 	ret = devm_pm_opp_set_supported_hw(dev, &supp_hw, 1);
1946 	if (ret)
1947 		return ret;
1948 
1949 	return 0;
1950 }
1951 
1952 static const struct adreno_gpu_funcs funcs = {
1953 	.base = {
1954 		.get_param = adreno_get_param,
1955 		.set_param = adreno_set_param,
1956 		.hw_init = a6xx_hw_init,
1957 		.pm_suspend = a6xx_pm_suspend,
1958 		.pm_resume = a6xx_pm_resume,
1959 		.recover = a6xx_recover,
1960 		.submit = a6xx_submit,
1961 		.active_ring = a6xx_active_ring,
1962 		.irq = a6xx_irq,
1963 		.destroy = a6xx_destroy,
1964 #if defined(CONFIG_DRM_MSM_GPU_STATE)
1965 		.show = a6xx_show,
1966 #endif
1967 		.gpu_busy = a6xx_gpu_busy,
1968 		.gpu_get_freq = a6xx_gmu_get_freq,
1969 		.gpu_set_freq = a6xx_gpu_set_freq,
1970 #if defined(CONFIG_DRM_MSM_GPU_STATE)
1971 		.gpu_state_get = a6xx_gpu_state_get,
1972 		.gpu_state_put = a6xx_gpu_state_put,
1973 #endif
1974 		.create_address_space = a6xx_create_address_space,
1975 		.create_private_address_space = a6xx_create_private_address_space,
1976 		.get_rptr = a6xx_get_rptr,
1977 	},
1978 	.get_timestamp = a6xx_get_timestamp,
1979 };
1980 
a6xx_gpu_init(struct drm_device * dev)1981 struct msm_gpu *a6xx_gpu_init(struct drm_device *dev)
1982 {
1983 	struct msm_drm_private *priv = dev->dev_private;
1984 	struct platform_device *pdev = priv->gpu_pdev;
1985 	struct adreno_platform_config *config = pdev->dev.platform_data;
1986 	const struct adreno_info *info;
1987 	struct device_node *node;
1988 	struct a6xx_gpu *a6xx_gpu;
1989 	struct adreno_gpu *adreno_gpu;
1990 	struct msm_gpu *gpu;
1991 	int ret;
1992 
1993 	a6xx_gpu = kzalloc(sizeof(*a6xx_gpu), GFP_KERNEL);
1994 	if (!a6xx_gpu)
1995 		return ERR_PTR(-ENOMEM);
1996 
1997 	adreno_gpu = &a6xx_gpu->base;
1998 	gpu = &adreno_gpu->base;
1999 
2000 	adreno_gpu->registers = NULL;
2001 
2002 	/*
2003 	 * We need to know the platform type before calling into adreno_gpu_init
2004 	 * so that the hw_apriv flag can be correctly set. Snoop into the info
2005 	 * and grab the revision number
2006 	 */
2007 	info = adreno_info(config->rev);
2008 
2009 	if (info && (info->revn == 650 || info->revn == 660 ||
2010 			adreno_cmp_rev(ADRENO_REV(6, 3, 5, ANY_ID), info->rev)))
2011 		adreno_gpu->base.hw_apriv = true;
2012 
2013 	/*
2014 	 * For now only clamp to idle freq for devices where this is known not
2015 	 * to cause power supply issues:
2016 	 */
2017 	if (info && (info->revn == 618))
2018 		gpu->clamp_to_idle = true;
2019 
2020 	a6xx_llc_slices_init(pdev, a6xx_gpu);
2021 
2022 	ret = a6xx_set_supported_hw(&pdev->dev, config->rev);
2023 	if (ret) {
2024 		a6xx_destroy(&(a6xx_gpu->base.base));
2025 		return ERR_PTR(ret);
2026 	}
2027 
2028 	ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs, 1);
2029 	if (ret) {
2030 		a6xx_destroy(&(a6xx_gpu->base.base));
2031 		return ERR_PTR(ret);
2032 	}
2033 
2034 	/* Check if there is a GMU phandle and set it up */
2035 	node = of_parse_phandle(pdev->dev.of_node, "qcom,gmu", 0);
2036 
2037 	/* FIXME: How do we gracefully handle this? */
2038 	BUG_ON(!node);
2039 
2040 	ret = a6xx_gmu_init(a6xx_gpu, node);
2041 	of_node_put(node);
2042 	if (ret) {
2043 		a6xx_destroy(&(a6xx_gpu->base.base));
2044 		return ERR_PTR(ret);
2045 	}
2046 
2047 	if (gpu->aspace)
2048 		msm_mmu_set_fault_handler(gpu->aspace->mmu, gpu,
2049 				a6xx_fault_handler);
2050 
2051 	return gpu;
2052 }
2053