1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2012-2014, The Linux Foundation. All rights reserved.
4 */
5
6 #include <linux/err.h>
7 #include <linux/interrupt.h>
8 #include <linux/types.h>
9 #include <crypto/scatterwalk.h>
10 #include <crypto/sha1.h>
11 #include <crypto/sha2.h>
12
13 #include "cipher.h"
14 #include "common.h"
15 #include "core.h"
16 #include "regs-v5.h"
17 #include "sha.h"
18 #include "aead.h"
19
qce_read(struct qce_device * qce,u32 offset)20 static inline u32 qce_read(struct qce_device *qce, u32 offset)
21 {
22 return readl(qce->base + offset);
23 }
24
qce_write(struct qce_device * qce,u32 offset,u32 val)25 static inline void qce_write(struct qce_device *qce, u32 offset, u32 val)
26 {
27 writel(val, qce->base + offset);
28 }
29
qce_write_array(struct qce_device * qce,u32 offset,const u32 * val,unsigned int len)30 static inline void qce_write_array(struct qce_device *qce, u32 offset,
31 const u32 *val, unsigned int len)
32 {
33 int i;
34
35 for (i = 0; i < len; i++)
36 qce_write(qce, offset + i * sizeof(u32), val[i]);
37 }
38
39 static inline void
qce_clear_array(struct qce_device * qce,u32 offset,unsigned int len)40 qce_clear_array(struct qce_device *qce, u32 offset, unsigned int len)
41 {
42 int i;
43
44 for (i = 0; i < len; i++)
45 qce_write(qce, offset + i * sizeof(u32), 0);
46 }
47
qce_config_reg(struct qce_device * qce,int little)48 static u32 qce_config_reg(struct qce_device *qce, int little)
49 {
50 u32 beats = (qce->burst_size >> 3) - 1;
51 u32 pipe_pair = qce->pipe_pair_id;
52 u32 config;
53
54 config = (beats << REQ_SIZE_SHIFT) & REQ_SIZE_MASK;
55 config |= BIT(MASK_DOUT_INTR_SHIFT) | BIT(MASK_DIN_INTR_SHIFT) |
56 BIT(MASK_OP_DONE_INTR_SHIFT) | BIT(MASK_ERR_INTR_SHIFT);
57 config |= (pipe_pair << PIPE_SET_SELECT_SHIFT) & PIPE_SET_SELECT_MASK;
58 config &= ~HIGH_SPD_EN_N_SHIFT;
59
60 if (little)
61 config |= BIT(LITTLE_ENDIAN_MODE_SHIFT);
62
63 return config;
64 }
65
qce_cpu_to_be32p_array(__be32 * dst,const u8 * src,unsigned int len)66 void qce_cpu_to_be32p_array(__be32 *dst, const u8 *src, unsigned int len)
67 {
68 __be32 *d = dst;
69 const u8 *s = src;
70 unsigned int n;
71
72 n = len / sizeof(u32);
73 for (; n > 0; n--) {
74 *d = cpu_to_be32p((const __u32 *) s);
75 s += sizeof(__u32);
76 d++;
77 }
78 }
79
qce_setup_config(struct qce_device * qce)80 static void qce_setup_config(struct qce_device *qce)
81 {
82 u32 config;
83
84 /* get big endianness */
85 config = qce_config_reg(qce, 0);
86
87 /* clear status */
88 qce_write(qce, REG_STATUS, 0);
89 qce_write(qce, REG_CONFIG, config);
90 }
91
qce_crypto_go(struct qce_device * qce,bool result_dump)92 static inline void qce_crypto_go(struct qce_device *qce, bool result_dump)
93 {
94 if (result_dump)
95 qce_write(qce, REG_GOPROC, BIT(GO_SHIFT) | BIT(RESULTS_DUMP_SHIFT));
96 else
97 qce_write(qce, REG_GOPROC, BIT(GO_SHIFT));
98 }
99
100 #if defined(CONFIG_CRYPTO_DEV_QCE_SHA) || defined(CONFIG_CRYPTO_DEV_QCE_AEAD)
qce_auth_cfg(unsigned long flags,u32 key_size,u32 auth_size)101 static u32 qce_auth_cfg(unsigned long flags, u32 key_size, u32 auth_size)
102 {
103 u32 cfg = 0;
104
105 if (IS_CCM(flags) || IS_CMAC(flags))
106 cfg |= AUTH_ALG_AES << AUTH_ALG_SHIFT;
107 else
108 cfg |= AUTH_ALG_SHA << AUTH_ALG_SHIFT;
109
110 if (IS_CCM(flags) || IS_CMAC(flags)) {
111 if (key_size == AES_KEYSIZE_128)
112 cfg |= AUTH_KEY_SZ_AES128 << AUTH_KEY_SIZE_SHIFT;
113 else if (key_size == AES_KEYSIZE_256)
114 cfg |= AUTH_KEY_SZ_AES256 << AUTH_KEY_SIZE_SHIFT;
115 }
116
117 if (IS_SHA1(flags) || IS_SHA1_HMAC(flags))
118 cfg |= AUTH_SIZE_SHA1 << AUTH_SIZE_SHIFT;
119 else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags))
120 cfg |= AUTH_SIZE_SHA256 << AUTH_SIZE_SHIFT;
121 else if (IS_CMAC(flags))
122 cfg |= AUTH_SIZE_ENUM_16_BYTES << AUTH_SIZE_SHIFT;
123 else if (IS_CCM(flags))
124 cfg |= (auth_size - 1) << AUTH_SIZE_SHIFT;
125
126 if (IS_SHA1(flags) || IS_SHA256(flags))
127 cfg |= AUTH_MODE_HASH << AUTH_MODE_SHIFT;
128 else if (IS_SHA1_HMAC(flags) || IS_SHA256_HMAC(flags))
129 cfg |= AUTH_MODE_HMAC << AUTH_MODE_SHIFT;
130 else if (IS_CCM(flags))
131 cfg |= AUTH_MODE_CCM << AUTH_MODE_SHIFT;
132 else if (IS_CMAC(flags))
133 cfg |= AUTH_MODE_CMAC << AUTH_MODE_SHIFT;
134
135 if (IS_SHA(flags) || IS_SHA_HMAC(flags))
136 cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT;
137
138 if (IS_CCM(flags))
139 cfg |= QCE_MAX_NONCE_WORDS << AUTH_NONCE_NUM_WORDS_SHIFT;
140
141 return cfg;
142 }
143 #endif
144
145 #ifdef CONFIG_CRYPTO_DEV_QCE_SHA
qce_setup_regs_ahash(struct crypto_async_request * async_req)146 static int qce_setup_regs_ahash(struct crypto_async_request *async_req)
147 {
148 struct ahash_request *req = ahash_request_cast(async_req);
149 struct crypto_ahash *ahash = __crypto_ahash_cast(async_req->tfm);
150 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
151 struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
152 struct qce_device *qce = tmpl->qce;
153 unsigned int digestsize = crypto_ahash_digestsize(ahash);
154 unsigned int blocksize = crypto_tfm_alg_blocksize(async_req->tfm);
155 __be32 auth[SHA256_DIGEST_SIZE / sizeof(__be32)] = {0};
156 __be32 mackey[QCE_SHA_HMAC_KEY_SIZE / sizeof(__be32)] = {0};
157 u32 auth_cfg = 0, config;
158 unsigned int iv_words;
159
160 /* if not the last, the size has to be on the block boundary */
161 if (!rctx->last_blk && req->nbytes % blocksize)
162 return -EINVAL;
163
164 qce_setup_config(qce);
165
166 if (IS_CMAC(rctx->flags)) {
167 qce_write(qce, REG_AUTH_SEG_CFG, 0);
168 qce_write(qce, REG_ENCR_SEG_CFG, 0);
169 qce_write(qce, REG_ENCR_SEG_SIZE, 0);
170 qce_clear_array(qce, REG_AUTH_IV0, 16);
171 qce_clear_array(qce, REG_AUTH_KEY0, 16);
172 qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
173
174 auth_cfg = qce_auth_cfg(rctx->flags, rctx->authklen, digestsize);
175 }
176
177 if (IS_SHA_HMAC(rctx->flags) || IS_CMAC(rctx->flags)) {
178 u32 authkey_words = rctx->authklen / sizeof(u32);
179
180 qce_cpu_to_be32p_array(mackey, rctx->authkey, rctx->authklen);
181 qce_write_array(qce, REG_AUTH_KEY0, (u32 *)mackey,
182 authkey_words);
183 }
184
185 if (IS_CMAC(rctx->flags))
186 goto go_proc;
187
188 if (rctx->first_blk)
189 memcpy(auth, rctx->digest, digestsize);
190 else
191 qce_cpu_to_be32p_array(auth, rctx->digest, digestsize);
192
193 iv_words = (IS_SHA1(rctx->flags) || IS_SHA1_HMAC(rctx->flags)) ? 5 : 8;
194 qce_write_array(qce, REG_AUTH_IV0, (u32 *)auth, iv_words);
195
196 if (rctx->first_blk)
197 qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
198 else
199 qce_write_array(qce, REG_AUTH_BYTECNT0,
200 (u32 *)rctx->byte_count, 2);
201
202 auth_cfg = qce_auth_cfg(rctx->flags, 0, digestsize);
203
204 if (rctx->last_blk)
205 auth_cfg |= BIT(AUTH_LAST_SHIFT);
206 else
207 auth_cfg &= ~BIT(AUTH_LAST_SHIFT);
208
209 if (rctx->first_blk)
210 auth_cfg |= BIT(AUTH_FIRST_SHIFT);
211 else
212 auth_cfg &= ~BIT(AUTH_FIRST_SHIFT);
213
214 go_proc:
215 qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
216 qce_write(qce, REG_AUTH_SEG_SIZE, req->nbytes);
217 qce_write(qce, REG_AUTH_SEG_START, 0);
218 qce_write(qce, REG_ENCR_SEG_CFG, 0);
219 qce_write(qce, REG_SEG_SIZE, req->nbytes);
220
221 /* get little endianness */
222 config = qce_config_reg(qce, 1);
223 qce_write(qce, REG_CONFIG, config);
224
225 qce_crypto_go(qce, true);
226
227 return 0;
228 }
229 #endif
230
231 #if defined(CONFIG_CRYPTO_DEV_QCE_SKCIPHER) || defined(CONFIG_CRYPTO_DEV_QCE_AEAD)
qce_encr_cfg(unsigned long flags,u32 aes_key_size)232 static u32 qce_encr_cfg(unsigned long flags, u32 aes_key_size)
233 {
234 u32 cfg = 0;
235
236 if (IS_AES(flags)) {
237 if (aes_key_size == AES_KEYSIZE_128)
238 cfg |= ENCR_KEY_SZ_AES128 << ENCR_KEY_SZ_SHIFT;
239 else if (aes_key_size == AES_KEYSIZE_256)
240 cfg |= ENCR_KEY_SZ_AES256 << ENCR_KEY_SZ_SHIFT;
241 }
242
243 if (IS_AES(flags))
244 cfg |= ENCR_ALG_AES << ENCR_ALG_SHIFT;
245 else if (IS_DES(flags) || IS_3DES(flags))
246 cfg |= ENCR_ALG_DES << ENCR_ALG_SHIFT;
247
248 if (IS_DES(flags))
249 cfg |= ENCR_KEY_SZ_DES << ENCR_KEY_SZ_SHIFT;
250
251 if (IS_3DES(flags))
252 cfg |= ENCR_KEY_SZ_3DES << ENCR_KEY_SZ_SHIFT;
253
254 switch (flags & QCE_MODE_MASK) {
255 case QCE_MODE_ECB:
256 cfg |= ENCR_MODE_ECB << ENCR_MODE_SHIFT;
257 break;
258 case QCE_MODE_CBC:
259 cfg |= ENCR_MODE_CBC << ENCR_MODE_SHIFT;
260 break;
261 case QCE_MODE_CTR:
262 cfg |= ENCR_MODE_CTR << ENCR_MODE_SHIFT;
263 break;
264 case QCE_MODE_XTS:
265 cfg |= ENCR_MODE_XTS << ENCR_MODE_SHIFT;
266 break;
267 case QCE_MODE_CCM:
268 cfg |= ENCR_MODE_CCM << ENCR_MODE_SHIFT;
269 cfg |= LAST_CCM_XFR << LAST_CCM_SHIFT;
270 break;
271 default:
272 return ~0;
273 }
274
275 return cfg;
276 }
277 #endif
278
279 #ifdef CONFIG_CRYPTO_DEV_QCE_SKCIPHER
qce_xts_swapiv(__be32 * dst,const u8 * src,unsigned int ivsize)280 static void qce_xts_swapiv(__be32 *dst, const u8 *src, unsigned int ivsize)
281 {
282 u8 swap[QCE_AES_IV_LENGTH];
283 u32 i, j;
284
285 if (ivsize > QCE_AES_IV_LENGTH)
286 return;
287
288 memset(swap, 0, QCE_AES_IV_LENGTH);
289
290 for (i = (QCE_AES_IV_LENGTH - ivsize), j = ivsize - 1;
291 i < QCE_AES_IV_LENGTH; i++, j--)
292 swap[i] = src[j];
293
294 qce_cpu_to_be32p_array(dst, swap, QCE_AES_IV_LENGTH);
295 }
296
qce_xtskey(struct qce_device * qce,const u8 * enckey,unsigned int enckeylen,unsigned int cryptlen)297 static void qce_xtskey(struct qce_device *qce, const u8 *enckey,
298 unsigned int enckeylen, unsigned int cryptlen)
299 {
300 u32 xtskey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(u32)] = {0};
301 unsigned int xtsklen = enckeylen / (2 * sizeof(u32));
302
303 qce_cpu_to_be32p_array((__be32 *)xtskey, enckey + enckeylen / 2,
304 enckeylen / 2);
305 qce_write_array(qce, REG_ENCR_XTS_KEY0, xtskey, xtsklen);
306
307 /* Set data unit size to cryptlen. Anything else causes
308 * crypto engine to return back incorrect results.
309 */
310 qce_write(qce, REG_ENCR_XTS_DU_SIZE, cryptlen);
311 }
312
qce_setup_regs_skcipher(struct crypto_async_request * async_req)313 static int qce_setup_regs_skcipher(struct crypto_async_request *async_req)
314 {
315 struct skcipher_request *req = skcipher_request_cast(async_req);
316 struct qce_cipher_reqctx *rctx = skcipher_request_ctx(req);
317 struct qce_cipher_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
318 struct qce_alg_template *tmpl = to_cipher_tmpl(crypto_skcipher_reqtfm(req));
319 struct qce_device *qce = tmpl->qce;
320 __be32 enckey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(__be32)] = {0};
321 __be32 enciv[QCE_MAX_IV_SIZE / sizeof(__be32)] = {0};
322 unsigned int enckey_words, enciv_words;
323 unsigned int keylen;
324 u32 encr_cfg = 0, auth_cfg = 0, config;
325 unsigned int ivsize = rctx->ivsize;
326 unsigned long flags = rctx->flags;
327
328 qce_setup_config(qce);
329
330 if (IS_XTS(flags))
331 keylen = ctx->enc_keylen / 2;
332 else
333 keylen = ctx->enc_keylen;
334
335 qce_cpu_to_be32p_array(enckey, ctx->enc_key, keylen);
336 enckey_words = keylen / sizeof(u32);
337
338 qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
339
340 encr_cfg = qce_encr_cfg(flags, keylen);
341
342 if (IS_DES(flags)) {
343 enciv_words = 2;
344 enckey_words = 2;
345 } else if (IS_3DES(flags)) {
346 enciv_words = 2;
347 enckey_words = 6;
348 } else if (IS_AES(flags)) {
349 if (IS_XTS(flags))
350 qce_xtskey(qce, ctx->enc_key, ctx->enc_keylen,
351 rctx->cryptlen);
352 enciv_words = 4;
353 } else {
354 return -EINVAL;
355 }
356
357 qce_write_array(qce, REG_ENCR_KEY0, (u32 *)enckey, enckey_words);
358
359 if (!IS_ECB(flags)) {
360 if (IS_XTS(flags))
361 qce_xts_swapiv(enciv, rctx->iv, ivsize);
362 else
363 qce_cpu_to_be32p_array(enciv, rctx->iv, ivsize);
364
365 qce_write_array(qce, REG_CNTR0_IV0, (u32 *)enciv, enciv_words);
366 }
367
368 if (IS_ENCRYPT(flags))
369 encr_cfg |= BIT(ENCODE_SHIFT);
370
371 qce_write(qce, REG_ENCR_SEG_CFG, encr_cfg);
372 qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen);
373 qce_write(qce, REG_ENCR_SEG_START, 0);
374
375 if (IS_CTR(flags)) {
376 qce_write(qce, REG_CNTR_MASK, ~0);
377 qce_write(qce, REG_CNTR_MASK0, ~0);
378 qce_write(qce, REG_CNTR_MASK1, ~0);
379 qce_write(qce, REG_CNTR_MASK2, ~0);
380 }
381
382 qce_write(qce, REG_SEG_SIZE, rctx->cryptlen);
383
384 /* get little endianness */
385 config = qce_config_reg(qce, 1);
386 qce_write(qce, REG_CONFIG, config);
387
388 qce_crypto_go(qce, true);
389
390 return 0;
391 }
392 #endif
393
394 #ifdef CONFIG_CRYPTO_DEV_QCE_AEAD
395 static const u32 std_iv_sha1[SHA256_DIGEST_SIZE / sizeof(u32)] = {
396 SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 0, 0, 0
397 };
398
399 static const u32 std_iv_sha256[SHA256_DIGEST_SIZE / sizeof(u32)] = {
400 SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
401 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7
402 };
403
qce_be32_to_cpu_array(u32 * dst,const u8 * src,unsigned int len)404 static unsigned int qce_be32_to_cpu_array(u32 *dst, const u8 *src, unsigned int len)
405 {
406 u32 *d = dst;
407 const u8 *s = src;
408 unsigned int n;
409
410 n = len / sizeof(u32);
411 for (; n > 0; n--) {
412 *d = be32_to_cpup((const __be32 *)s);
413 s += sizeof(u32);
414 d++;
415 }
416 return DIV_ROUND_UP(len, sizeof(u32));
417 }
418
qce_setup_regs_aead(struct crypto_async_request * async_req)419 static int qce_setup_regs_aead(struct crypto_async_request *async_req)
420 {
421 struct aead_request *req = aead_request_cast(async_req);
422 struct qce_aead_reqctx *rctx = aead_request_ctx(req);
423 struct qce_aead_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
424 struct qce_alg_template *tmpl = to_aead_tmpl(crypto_aead_reqtfm(req));
425 struct qce_device *qce = tmpl->qce;
426 u32 enckey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(u32)] = {0};
427 u32 enciv[QCE_MAX_IV_SIZE / sizeof(u32)] = {0};
428 u32 authkey[QCE_SHA_HMAC_KEY_SIZE / sizeof(u32)] = {0};
429 u32 authiv[SHA256_DIGEST_SIZE / sizeof(u32)] = {0};
430 u32 authnonce[QCE_MAX_NONCE / sizeof(u32)] = {0};
431 unsigned int enc_keylen = ctx->enc_keylen;
432 unsigned int auth_keylen = ctx->auth_keylen;
433 unsigned int enc_ivsize = rctx->ivsize;
434 unsigned int auth_ivsize = 0;
435 unsigned int enckey_words, enciv_words;
436 unsigned int authkey_words, authiv_words, authnonce_words;
437 unsigned long flags = rctx->flags;
438 u32 encr_cfg, auth_cfg, config, totallen;
439 u32 iv_last_word;
440
441 qce_setup_config(qce);
442
443 /* Write encryption key */
444 enckey_words = qce_be32_to_cpu_array(enckey, ctx->enc_key, enc_keylen);
445 qce_write_array(qce, REG_ENCR_KEY0, enckey, enckey_words);
446
447 /* Write encryption iv */
448 enciv_words = qce_be32_to_cpu_array(enciv, rctx->iv, enc_ivsize);
449 qce_write_array(qce, REG_CNTR0_IV0, enciv, enciv_words);
450
451 if (IS_CCM(rctx->flags)) {
452 iv_last_word = enciv[enciv_words - 1];
453 qce_write(qce, REG_CNTR3_IV3, iv_last_word + 1);
454 qce_write_array(qce, REG_ENCR_CCM_INT_CNTR0, (u32 *)enciv, enciv_words);
455 qce_write(qce, REG_CNTR_MASK, ~0);
456 qce_write(qce, REG_CNTR_MASK0, ~0);
457 qce_write(qce, REG_CNTR_MASK1, ~0);
458 qce_write(qce, REG_CNTR_MASK2, ~0);
459 }
460
461 /* Clear authentication IV and KEY registers of previous values */
462 qce_clear_array(qce, REG_AUTH_IV0, 16);
463 qce_clear_array(qce, REG_AUTH_KEY0, 16);
464
465 /* Clear byte count */
466 qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
467
468 /* Write authentication key */
469 authkey_words = qce_be32_to_cpu_array(authkey, ctx->auth_key, auth_keylen);
470 qce_write_array(qce, REG_AUTH_KEY0, (u32 *)authkey, authkey_words);
471
472 /* Write initial authentication IV only for HMAC algorithms */
473 if (IS_SHA_HMAC(rctx->flags)) {
474 /* Write default authentication iv */
475 if (IS_SHA1_HMAC(rctx->flags)) {
476 auth_ivsize = SHA1_DIGEST_SIZE;
477 memcpy(authiv, std_iv_sha1, auth_ivsize);
478 } else if (IS_SHA256_HMAC(rctx->flags)) {
479 auth_ivsize = SHA256_DIGEST_SIZE;
480 memcpy(authiv, std_iv_sha256, auth_ivsize);
481 }
482 authiv_words = auth_ivsize / sizeof(u32);
483 qce_write_array(qce, REG_AUTH_IV0, (u32 *)authiv, authiv_words);
484 } else if (IS_CCM(rctx->flags)) {
485 /* Write nonce for CCM algorithms */
486 authnonce_words = qce_be32_to_cpu_array(authnonce, rctx->ccm_nonce, QCE_MAX_NONCE);
487 qce_write_array(qce, REG_AUTH_INFO_NONCE0, authnonce, authnonce_words);
488 }
489
490 /* Set up ENCR_SEG_CFG */
491 encr_cfg = qce_encr_cfg(flags, enc_keylen);
492 if (IS_ENCRYPT(flags))
493 encr_cfg |= BIT(ENCODE_SHIFT);
494 qce_write(qce, REG_ENCR_SEG_CFG, encr_cfg);
495
496 /* Set up AUTH_SEG_CFG */
497 auth_cfg = qce_auth_cfg(rctx->flags, auth_keylen, ctx->authsize);
498 auth_cfg |= BIT(AUTH_LAST_SHIFT);
499 auth_cfg |= BIT(AUTH_FIRST_SHIFT);
500 if (IS_ENCRYPT(flags)) {
501 if (IS_CCM(rctx->flags))
502 auth_cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT;
503 else
504 auth_cfg |= AUTH_POS_AFTER << AUTH_POS_SHIFT;
505 } else {
506 if (IS_CCM(rctx->flags))
507 auth_cfg |= AUTH_POS_AFTER << AUTH_POS_SHIFT;
508 else
509 auth_cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT;
510 }
511 qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
512
513 totallen = rctx->cryptlen + rctx->assoclen;
514
515 /* Set the encryption size and start offset */
516 if (IS_CCM(rctx->flags) && IS_DECRYPT(rctx->flags))
517 qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen + ctx->authsize);
518 else
519 qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen);
520 qce_write(qce, REG_ENCR_SEG_START, rctx->assoclen & 0xffff);
521
522 /* Set the authentication size and start offset */
523 qce_write(qce, REG_AUTH_SEG_SIZE, totallen);
524 qce_write(qce, REG_AUTH_SEG_START, 0);
525
526 /* Write total length */
527 if (IS_CCM(rctx->flags) && IS_DECRYPT(rctx->flags))
528 qce_write(qce, REG_SEG_SIZE, totallen + ctx->authsize);
529 else
530 qce_write(qce, REG_SEG_SIZE, totallen);
531
532 /* get little endianness */
533 config = qce_config_reg(qce, 1);
534 qce_write(qce, REG_CONFIG, config);
535
536 /* Start the process */
537 qce_crypto_go(qce, !IS_CCM(flags));
538
539 return 0;
540 }
541 #endif
542
qce_start(struct crypto_async_request * async_req,u32 type)543 int qce_start(struct crypto_async_request *async_req, u32 type)
544 {
545 switch (type) {
546 #ifdef CONFIG_CRYPTO_DEV_QCE_SKCIPHER
547 case CRYPTO_ALG_TYPE_SKCIPHER:
548 return qce_setup_regs_skcipher(async_req);
549 #endif
550 #ifdef CONFIG_CRYPTO_DEV_QCE_SHA
551 case CRYPTO_ALG_TYPE_AHASH:
552 return qce_setup_regs_ahash(async_req);
553 #endif
554 #ifdef CONFIG_CRYPTO_DEV_QCE_AEAD
555 case CRYPTO_ALG_TYPE_AEAD:
556 return qce_setup_regs_aead(async_req);
557 #endif
558 default:
559 return -EINVAL;
560 }
561 }
562
563 #define STATUS_ERRORS \
564 (BIT(SW_ERR_SHIFT) | BIT(AXI_ERR_SHIFT) | BIT(HSD_ERR_SHIFT))
565
qce_check_status(struct qce_device * qce,u32 * status)566 int qce_check_status(struct qce_device *qce, u32 *status)
567 {
568 int ret = 0;
569
570 *status = qce_read(qce, REG_STATUS);
571
572 /*
573 * Don't use result dump status. The operation may not be complete.
574 * Instead, use the status we just read from device. In case, we need to
575 * use result_status from result dump the result_status needs to be byte
576 * swapped, since we set the device to little endian.
577 */
578 if (*status & STATUS_ERRORS || !(*status & BIT(OPERATION_DONE_SHIFT)))
579 ret = -ENXIO;
580 else if (*status & BIT(MAC_FAILED_SHIFT))
581 ret = -EBADMSG;
582
583 return ret;
584 }
585
qce_get_version(struct qce_device * qce,u32 * major,u32 * minor,u32 * step)586 void qce_get_version(struct qce_device *qce, u32 *major, u32 *minor, u32 *step)
587 {
588 u32 val;
589
590 val = qce_read(qce, REG_VERSION);
591 *major = (val & CORE_MAJOR_REV_MASK) >> CORE_MAJOR_REV_SHIFT;
592 *minor = (val & CORE_MINOR_REV_MASK) >> CORE_MINOR_REV_SHIFT;
593 *step = (val & CORE_STEP_REV_MASK) >> CORE_STEP_REV_SHIFT;
594 }
595