1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Memory subsystem support
4 *
5 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
6 * Dave Hansen <haveblue@us.ibm.com>
7 *
8 * This file provides the necessary infrastructure to represent
9 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
10 * All arch-independent code that assumes MEMORY_HOTPLUG requires
11 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
12 */
13
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/topology.h>
17 #include <linux/capability.h>
18 #include <linux/device.h>
19 #include <linux/memory.h>
20 #include <linux/memory_hotplug.h>
21 #include <linux/mm.h>
22 #include <linux/stat.h>
23 #include <linux/slab.h>
24 #include <linux/xarray.h>
25
26 #include <linux/atomic.h>
27 #include <linux/uaccess.h>
28
29 #define MEMORY_CLASS_NAME "memory"
30
31 static const char *const online_type_to_str[] = {
32 [MMOP_OFFLINE] = "offline",
33 [MMOP_ONLINE] = "online",
34 [MMOP_ONLINE_KERNEL] = "online_kernel",
35 [MMOP_ONLINE_MOVABLE] = "online_movable",
36 };
37
mhp_online_type_from_str(const char * str)38 int mhp_online_type_from_str(const char *str)
39 {
40 int i;
41
42 for (i = 0; i < ARRAY_SIZE(online_type_to_str); i++) {
43 if (sysfs_streq(str, online_type_to_str[i]))
44 return i;
45 }
46 return -EINVAL;
47 }
48
49 #define to_memory_block(dev) container_of(dev, struct memory_block, dev)
50
51 static int sections_per_block;
52
memory_block_id(unsigned long section_nr)53 static inline unsigned long memory_block_id(unsigned long section_nr)
54 {
55 return section_nr / sections_per_block;
56 }
57
pfn_to_block_id(unsigned long pfn)58 static inline unsigned long pfn_to_block_id(unsigned long pfn)
59 {
60 return memory_block_id(pfn_to_section_nr(pfn));
61 }
62
phys_to_block_id(unsigned long phys)63 static inline unsigned long phys_to_block_id(unsigned long phys)
64 {
65 return pfn_to_block_id(PFN_DOWN(phys));
66 }
67
68 static int memory_subsys_online(struct device *dev);
69 static int memory_subsys_offline(struct device *dev);
70
71 static struct bus_type memory_subsys = {
72 .name = MEMORY_CLASS_NAME,
73 .dev_name = MEMORY_CLASS_NAME,
74 .online = memory_subsys_online,
75 .offline = memory_subsys_offline,
76 };
77
78 /*
79 * Memory blocks are cached in a local radix tree to avoid
80 * a costly linear search for the corresponding device on
81 * the subsystem bus.
82 */
83 static DEFINE_XARRAY(memory_blocks);
84
85 /*
86 * Memory groups, indexed by memory group id (mgid).
87 */
88 static DEFINE_XARRAY_FLAGS(memory_groups, XA_FLAGS_ALLOC);
89 #define MEMORY_GROUP_MARK_DYNAMIC XA_MARK_1
90
91 static BLOCKING_NOTIFIER_HEAD(memory_chain);
92
register_memory_notifier(struct notifier_block * nb)93 int register_memory_notifier(struct notifier_block *nb)
94 {
95 return blocking_notifier_chain_register(&memory_chain, nb);
96 }
97 EXPORT_SYMBOL(register_memory_notifier);
98
unregister_memory_notifier(struct notifier_block * nb)99 void unregister_memory_notifier(struct notifier_block *nb)
100 {
101 blocking_notifier_chain_unregister(&memory_chain, nb);
102 }
103 EXPORT_SYMBOL(unregister_memory_notifier);
104
memory_block_release(struct device * dev)105 static void memory_block_release(struct device *dev)
106 {
107 struct memory_block *mem = to_memory_block(dev);
108
109 kfree(mem);
110 }
111
memory_block_size_bytes(void)112 unsigned long __weak memory_block_size_bytes(void)
113 {
114 return MIN_MEMORY_BLOCK_SIZE;
115 }
116 EXPORT_SYMBOL_GPL(memory_block_size_bytes);
117
118 /*
119 * Show the first physical section index (number) of this memory block.
120 */
phys_index_show(struct device * dev,struct device_attribute * attr,char * buf)121 static ssize_t phys_index_show(struct device *dev,
122 struct device_attribute *attr, char *buf)
123 {
124 struct memory_block *mem = to_memory_block(dev);
125 unsigned long phys_index;
126
127 phys_index = mem->start_section_nr / sections_per_block;
128
129 return sysfs_emit(buf, "%08lx\n", phys_index);
130 }
131
132 /*
133 * Legacy interface that we cannot remove. Always indicate "removable"
134 * with CONFIG_MEMORY_HOTREMOVE - bad heuristic.
135 */
removable_show(struct device * dev,struct device_attribute * attr,char * buf)136 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
137 char *buf)
138 {
139 return sysfs_emit(buf, "%d\n", (int)IS_ENABLED(CONFIG_MEMORY_HOTREMOVE));
140 }
141
142 /*
143 * online, offline, going offline, etc.
144 */
state_show(struct device * dev,struct device_attribute * attr,char * buf)145 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
146 char *buf)
147 {
148 struct memory_block *mem = to_memory_block(dev);
149 const char *output;
150
151 /*
152 * We can probably put these states in a nice little array
153 * so that they're not open-coded
154 */
155 switch (mem->state) {
156 case MEM_ONLINE:
157 output = "online";
158 break;
159 case MEM_OFFLINE:
160 output = "offline";
161 break;
162 case MEM_GOING_OFFLINE:
163 output = "going-offline";
164 break;
165 default:
166 WARN_ON(1);
167 return sysfs_emit(buf, "ERROR-UNKNOWN-%ld\n", mem->state);
168 }
169
170 return sysfs_emit(buf, "%s\n", output);
171 }
172
memory_notify(unsigned long val,void * v)173 int memory_notify(unsigned long val, void *v)
174 {
175 return blocking_notifier_call_chain(&memory_chain, val, v);
176 }
177
memory_block_online(struct memory_block * mem)178 static int memory_block_online(struct memory_block *mem)
179 {
180 unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
181 unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
182 unsigned long nr_vmemmap_pages = mem->nr_vmemmap_pages;
183 struct zone *zone;
184 int ret;
185
186 zone = zone_for_pfn_range(mem->online_type, mem->nid, mem->group,
187 start_pfn, nr_pages);
188
189 /*
190 * Although vmemmap pages have a different lifecycle than the pages
191 * they describe (they remain until the memory is unplugged), doing
192 * their initialization and accounting at memory onlining/offlining
193 * stage helps to keep accounting easier to follow - e.g vmemmaps
194 * belong to the same zone as the memory they backed.
195 */
196 if (nr_vmemmap_pages) {
197 ret = mhp_init_memmap_on_memory(start_pfn, nr_vmemmap_pages, zone);
198 if (ret)
199 return ret;
200 }
201
202 ret = online_pages(start_pfn + nr_vmemmap_pages,
203 nr_pages - nr_vmemmap_pages, zone, mem->group);
204 if (ret) {
205 if (nr_vmemmap_pages)
206 mhp_deinit_memmap_on_memory(start_pfn, nr_vmemmap_pages);
207 return ret;
208 }
209
210 /*
211 * Account once onlining succeeded. If the zone was unpopulated, it is
212 * now already properly populated.
213 */
214 if (nr_vmemmap_pages)
215 adjust_present_page_count(pfn_to_page(start_pfn), mem->group,
216 nr_vmemmap_pages);
217
218 mem->zone = zone;
219 return ret;
220 }
221
memory_block_offline(struct memory_block * mem)222 static int memory_block_offline(struct memory_block *mem)
223 {
224 unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
225 unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
226 unsigned long nr_vmemmap_pages = mem->nr_vmemmap_pages;
227 int ret;
228
229 if (!mem->zone)
230 return -EINVAL;
231
232 /*
233 * Unaccount before offlining, such that unpopulated zone and kthreads
234 * can properly be torn down in offline_pages().
235 */
236 if (nr_vmemmap_pages)
237 adjust_present_page_count(pfn_to_page(start_pfn), mem->group,
238 -nr_vmemmap_pages);
239
240 ret = offline_pages(start_pfn + nr_vmemmap_pages,
241 nr_pages - nr_vmemmap_pages, mem->zone, mem->group);
242 if (ret) {
243 /* offline_pages() failed. Account back. */
244 if (nr_vmemmap_pages)
245 adjust_present_page_count(pfn_to_page(start_pfn),
246 mem->group, nr_vmemmap_pages);
247 return ret;
248 }
249
250 if (nr_vmemmap_pages)
251 mhp_deinit_memmap_on_memory(start_pfn, nr_vmemmap_pages);
252
253 mem->zone = NULL;
254 return ret;
255 }
256
257 /*
258 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
259 * OK to have direct references to sparsemem variables in here.
260 */
261 static int
memory_block_action(struct memory_block * mem,unsigned long action)262 memory_block_action(struct memory_block *mem, unsigned long action)
263 {
264 int ret;
265
266 switch (action) {
267 case MEM_ONLINE:
268 ret = memory_block_online(mem);
269 break;
270 case MEM_OFFLINE:
271 ret = memory_block_offline(mem);
272 break;
273 default:
274 WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
275 "%ld\n", __func__, mem->start_section_nr, action, action);
276 ret = -EINVAL;
277 }
278
279 return ret;
280 }
281
memory_block_change_state(struct memory_block * mem,unsigned long to_state,unsigned long from_state_req)282 static int memory_block_change_state(struct memory_block *mem,
283 unsigned long to_state, unsigned long from_state_req)
284 {
285 int ret = 0;
286
287 if (mem->state != from_state_req)
288 return -EINVAL;
289
290 if (to_state == MEM_OFFLINE)
291 mem->state = MEM_GOING_OFFLINE;
292
293 ret = memory_block_action(mem, to_state);
294 mem->state = ret ? from_state_req : to_state;
295
296 return ret;
297 }
298
299 /* The device lock serializes operations on memory_subsys_[online|offline] */
memory_subsys_online(struct device * dev)300 static int memory_subsys_online(struct device *dev)
301 {
302 struct memory_block *mem = to_memory_block(dev);
303 int ret;
304
305 if (mem->state == MEM_ONLINE)
306 return 0;
307
308 /*
309 * When called via device_online() without configuring the online_type,
310 * we want to default to MMOP_ONLINE.
311 */
312 if (mem->online_type == MMOP_OFFLINE)
313 mem->online_type = MMOP_ONLINE;
314
315 ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
316 mem->online_type = MMOP_OFFLINE;
317
318 return ret;
319 }
320
memory_subsys_offline(struct device * dev)321 static int memory_subsys_offline(struct device *dev)
322 {
323 struct memory_block *mem = to_memory_block(dev);
324
325 if (mem->state == MEM_OFFLINE)
326 return 0;
327
328 return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
329 }
330
state_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)331 static ssize_t state_store(struct device *dev, struct device_attribute *attr,
332 const char *buf, size_t count)
333 {
334 const int online_type = mhp_online_type_from_str(buf);
335 struct memory_block *mem = to_memory_block(dev);
336 int ret;
337
338 if (online_type < 0)
339 return -EINVAL;
340
341 ret = lock_device_hotplug_sysfs();
342 if (ret)
343 return ret;
344
345 switch (online_type) {
346 case MMOP_ONLINE_KERNEL:
347 case MMOP_ONLINE_MOVABLE:
348 case MMOP_ONLINE:
349 /* mem->online_type is protected by device_hotplug_lock */
350 mem->online_type = online_type;
351 ret = device_online(&mem->dev);
352 break;
353 case MMOP_OFFLINE:
354 ret = device_offline(&mem->dev);
355 break;
356 default:
357 ret = -EINVAL; /* should never happen */
358 }
359
360 unlock_device_hotplug();
361
362 if (ret < 0)
363 return ret;
364 if (ret)
365 return -EINVAL;
366
367 return count;
368 }
369
370 /*
371 * Legacy interface that we cannot remove: s390x exposes the storage increment
372 * covered by a memory block, allowing for identifying which memory blocks
373 * comprise a storage increment. Since a memory block spans complete
374 * storage increments nowadays, this interface is basically unused. Other
375 * archs never exposed != 0.
376 */
phys_device_show(struct device * dev,struct device_attribute * attr,char * buf)377 static ssize_t phys_device_show(struct device *dev,
378 struct device_attribute *attr, char *buf)
379 {
380 struct memory_block *mem = to_memory_block(dev);
381 unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
382
383 return sysfs_emit(buf, "%d\n",
384 arch_get_memory_phys_device(start_pfn));
385 }
386
387 #ifdef CONFIG_MEMORY_HOTREMOVE
print_allowed_zone(char * buf,int len,int nid,struct memory_group * group,unsigned long start_pfn,unsigned long nr_pages,int online_type,struct zone * default_zone)388 static int print_allowed_zone(char *buf, int len, int nid,
389 struct memory_group *group,
390 unsigned long start_pfn, unsigned long nr_pages,
391 int online_type, struct zone *default_zone)
392 {
393 struct zone *zone;
394
395 zone = zone_for_pfn_range(online_type, nid, group, start_pfn, nr_pages);
396 if (zone == default_zone)
397 return 0;
398
399 return sysfs_emit_at(buf, len, " %s", zone->name);
400 }
401
valid_zones_show(struct device * dev,struct device_attribute * attr,char * buf)402 static ssize_t valid_zones_show(struct device *dev,
403 struct device_attribute *attr, char *buf)
404 {
405 struct memory_block *mem = to_memory_block(dev);
406 unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
407 unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
408 struct memory_group *group = mem->group;
409 struct zone *default_zone;
410 int nid = mem->nid;
411 int len = 0;
412
413 /*
414 * Check the existing zone. Make sure that we do that only on the
415 * online nodes otherwise the page_zone is not reliable
416 */
417 if (mem->state == MEM_ONLINE) {
418 /*
419 * If !mem->zone, the memory block spans multiple zones and
420 * cannot get offlined.
421 */
422 default_zone = mem->zone;
423 if (!default_zone)
424 return sysfs_emit(buf, "%s\n", "none");
425 len += sysfs_emit_at(buf, len, "%s", default_zone->name);
426 goto out;
427 }
428
429 default_zone = zone_for_pfn_range(MMOP_ONLINE, nid, group,
430 start_pfn, nr_pages);
431
432 len += sysfs_emit_at(buf, len, "%s", default_zone->name);
433 len += print_allowed_zone(buf, len, nid, group, start_pfn, nr_pages,
434 MMOP_ONLINE_KERNEL, default_zone);
435 len += print_allowed_zone(buf, len, nid, group, start_pfn, nr_pages,
436 MMOP_ONLINE_MOVABLE, default_zone);
437 out:
438 len += sysfs_emit_at(buf, len, "\n");
439 return len;
440 }
441 static DEVICE_ATTR_RO(valid_zones);
442 #endif
443
444 static DEVICE_ATTR_RO(phys_index);
445 static DEVICE_ATTR_RW(state);
446 static DEVICE_ATTR_RO(phys_device);
447 static DEVICE_ATTR_RO(removable);
448
449 /*
450 * Show the memory block size (shared by all memory blocks).
451 */
block_size_bytes_show(struct device * dev,struct device_attribute * attr,char * buf)452 static ssize_t block_size_bytes_show(struct device *dev,
453 struct device_attribute *attr, char *buf)
454 {
455 return sysfs_emit(buf, "%lx\n", memory_block_size_bytes());
456 }
457
458 static DEVICE_ATTR_RO(block_size_bytes);
459
460 /*
461 * Memory auto online policy.
462 */
463
auto_online_blocks_show(struct device * dev,struct device_attribute * attr,char * buf)464 static ssize_t auto_online_blocks_show(struct device *dev,
465 struct device_attribute *attr, char *buf)
466 {
467 return sysfs_emit(buf, "%s\n",
468 online_type_to_str[mhp_default_online_type]);
469 }
470
auto_online_blocks_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)471 static ssize_t auto_online_blocks_store(struct device *dev,
472 struct device_attribute *attr,
473 const char *buf, size_t count)
474 {
475 const int online_type = mhp_online_type_from_str(buf);
476
477 if (online_type < 0)
478 return -EINVAL;
479
480 mhp_default_online_type = online_type;
481 return count;
482 }
483
484 static DEVICE_ATTR_RW(auto_online_blocks);
485
486 /*
487 * Some architectures will have custom drivers to do this, and
488 * will not need to do it from userspace. The fake hot-add code
489 * as well as ppc64 will do all of their discovery in userspace
490 * and will require this interface.
491 */
492 #ifdef CONFIG_ARCH_MEMORY_PROBE
probe_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)493 static ssize_t probe_store(struct device *dev, struct device_attribute *attr,
494 const char *buf, size_t count)
495 {
496 u64 phys_addr;
497 int nid, ret;
498 unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
499
500 ret = kstrtoull(buf, 0, &phys_addr);
501 if (ret)
502 return ret;
503
504 if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
505 return -EINVAL;
506
507 ret = lock_device_hotplug_sysfs();
508 if (ret)
509 return ret;
510
511 nid = memory_add_physaddr_to_nid(phys_addr);
512 ret = __add_memory(nid, phys_addr,
513 MIN_MEMORY_BLOCK_SIZE * sections_per_block,
514 MHP_NONE);
515
516 if (ret)
517 goto out;
518
519 ret = count;
520 out:
521 unlock_device_hotplug();
522 return ret;
523 }
524
525 static DEVICE_ATTR_WO(probe);
526 #endif
527
528 #ifdef CONFIG_MEMORY_FAILURE
529 /*
530 * Support for offlining pages of memory
531 */
532
533 /* Soft offline a page */
soft_offline_page_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)534 static ssize_t soft_offline_page_store(struct device *dev,
535 struct device_attribute *attr,
536 const char *buf, size_t count)
537 {
538 int ret;
539 u64 pfn;
540 if (!capable(CAP_SYS_ADMIN))
541 return -EPERM;
542 if (kstrtoull(buf, 0, &pfn) < 0)
543 return -EINVAL;
544 pfn >>= PAGE_SHIFT;
545 ret = soft_offline_page(pfn, 0);
546 return ret == 0 ? count : ret;
547 }
548
549 /* Forcibly offline a page, including killing processes. */
hard_offline_page_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)550 static ssize_t hard_offline_page_store(struct device *dev,
551 struct device_attribute *attr,
552 const char *buf, size_t count)
553 {
554 int ret;
555 u64 pfn;
556 if (!capable(CAP_SYS_ADMIN))
557 return -EPERM;
558 if (kstrtoull(buf, 0, &pfn) < 0)
559 return -EINVAL;
560 pfn >>= PAGE_SHIFT;
561 ret = memory_failure(pfn, MF_SW_SIMULATED);
562 if (ret == -EOPNOTSUPP)
563 ret = 0;
564 return ret ? ret : count;
565 }
566
567 static DEVICE_ATTR_WO(soft_offline_page);
568 static DEVICE_ATTR_WO(hard_offline_page);
569 #endif
570
571 /* See phys_device_show(). */
arch_get_memory_phys_device(unsigned long start_pfn)572 int __weak arch_get_memory_phys_device(unsigned long start_pfn)
573 {
574 return 0;
575 }
576
577 /*
578 * A reference for the returned memory block device is acquired.
579 *
580 * Called under device_hotplug_lock.
581 */
find_memory_block_by_id(unsigned long block_id)582 static struct memory_block *find_memory_block_by_id(unsigned long block_id)
583 {
584 struct memory_block *mem;
585
586 mem = xa_load(&memory_blocks, block_id);
587 if (mem)
588 get_device(&mem->dev);
589 return mem;
590 }
591
592 /*
593 * Called under device_hotplug_lock.
594 */
find_memory_block(unsigned long section_nr)595 struct memory_block *find_memory_block(unsigned long section_nr)
596 {
597 unsigned long block_id = memory_block_id(section_nr);
598
599 return find_memory_block_by_id(block_id);
600 }
601
602 static struct attribute *memory_memblk_attrs[] = {
603 &dev_attr_phys_index.attr,
604 &dev_attr_state.attr,
605 &dev_attr_phys_device.attr,
606 &dev_attr_removable.attr,
607 #ifdef CONFIG_MEMORY_HOTREMOVE
608 &dev_attr_valid_zones.attr,
609 #endif
610 NULL
611 };
612
613 static const struct attribute_group memory_memblk_attr_group = {
614 .attrs = memory_memblk_attrs,
615 };
616
617 static const struct attribute_group *memory_memblk_attr_groups[] = {
618 &memory_memblk_attr_group,
619 NULL,
620 };
621
__add_memory_block(struct memory_block * memory)622 static int __add_memory_block(struct memory_block *memory)
623 {
624 int ret;
625
626 memory->dev.bus = &memory_subsys;
627 memory->dev.id = memory->start_section_nr / sections_per_block;
628 memory->dev.release = memory_block_release;
629 memory->dev.groups = memory_memblk_attr_groups;
630 memory->dev.offline = memory->state == MEM_OFFLINE;
631
632 ret = device_register(&memory->dev);
633 if (ret) {
634 put_device(&memory->dev);
635 return ret;
636 }
637 ret = xa_err(xa_store(&memory_blocks, memory->dev.id, memory,
638 GFP_KERNEL));
639 if (ret)
640 device_unregister(&memory->dev);
641
642 return ret;
643 }
644
early_node_zone_for_memory_block(struct memory_block * mem,int nid)645 static struct zone *early_node_zone_for_memory_block(struct memory_block *mem,
646 int nid)
647 {
648 const unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
649 const unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
650 struct zone *zone, *matching_zone = NULL;
651 pg_data_t *pgdat = NODE_DATA(nid);
652 int i;
653
654 /*
655 * This logic only works for early memory, when the applicable zones
656 * already span the memory block. We don't expect overlapping zones on
657 * a single node for early memory. So if we're told that some PFNs
658 * of a node fall into this memory block, we can assume that all node
659 * zones that intersect with the memory block are actually applicable.
660 * No need to look at the memmap.
661 */
662 for (i = 0; i < MAX_NR_ZONES; i++) {
663 zone = pgdat->node_zones + i;
664 if (!populated_zone(zone))
665 continue;
666 if (!zone_intersects(zone, start_pfn, nr_pages))
667 continue;
668 if (!matching_zone) {
669 matching_zone = zone;
670 continue;
671 }
672 /* Spans multiple zones ... */
673 matching_zone = NULL;
674 break;
675 }
676 return matching_zone;
677 }
678
679 #ifdef CONFIG_NUMA
680 /**
681 * memory_block_add_nid() - Indicate that system RAM falling into this memory
682 * block device (partially) belongs to the given node.
683 * @mem: The memory block device.
684 * @nid: The node id.
685 * @context: The memory initialization context.
686 *
687 * Indicate that system RAM falling into this memory block (partially) belongs
688 * to the given node. If the context indicates ("early") that we are adding the
689 * node during node device subsystem initialization, this will also properly
690 * set/adjust mem->zone based on the zone ranges of the given node.
691 */
memory_block_add_nid(struct memory_block * mem,int nid,enum meminit_context context)692 void memory_block_add_nid(struct memory_block *mem, int nid,
693 enum meminit_context context)
694 {
695 if (context == MEMINIT_EARLY && mem->nid != nid) {
696 /*
697 * For early memory we have to determine the zone when setting
698 * the node id and handle multiple nodes spanning a single
699 * memory block by indicate via zone == NULL that we're not
700 * dealing with a single zone. So if we're setting the node id
701 * the first time, determine if there is a single zone. If we're
702 * setting the node id a second time to a different node,
703 * invalidate the single detected zone.
704 */
705 if (mem->nid == NUMA_NO_NODE)
706 mem->zone = early_node_zone_for_memory_block(mem, nid);
707 else
708 mem->zone = NULL;
709 }
710
711 /*
712 * If this memory block spans multiple nodes, we only indicate
713 * the last processed node. If we span multiple nodes (not applicable
714 * to hotplugged memory), zone == NULL will prohibit memory offlining
715 * and consequently unplug.
716 */
717 mem->nid = nid;
718 }
719 #endif
720
add_memory_block(unsigned long block_id,unsigned long state,unsigned long nr_vmemmap_pages,struct memory_group * group)721 static int add_memory_block(unsigned long block_id, unsigned long state,
722 unsigned long nr_vmemmap_pages,
723 struct memory_group *group)
724 {
725 struct memory_block *mem;
726 int ret = 0;
727
728 mem = find_memory_block_by_id(block_id);
729 if (mem) {
730 put_device(&mem->dev);
731 return -EEXIST;
732 }
733 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
734 if (!mem)
735 return -ENOMEM;
736
737 mem->start_section_nr = block_id * sections_per_block;
738 mem->state = state;
739 mem->nid = NUMA_NO_NODE;
740 mem->nr_vmemmap_pages = nr_vmemmap_pages;
741 INIT_LIST_HEAD(&mem->group_next);
742
743 #ifndef CONFIG_NUMA
744 if (state == MEM_ONLINE)
745 /*
746 * MEM_ONLINE at this point implies early memory. With NUMA,
747 * we'll determine the zone when setting the node id via
748 * memory_block_add_nid(). Memory hotplug updated the zone
749 * manually when memory onlining/offlining succeeds.
750 */
751 mem->zone = early_node_zone_for_memory_block(mem, NUMA_NO_NODE);
752 #endif /* CONFIG_NUMA */
753
754 ret = __add_memory_block(mem);
755 if (ret)
756 return ret;
757
758 if (group) {
759 mem->group = group;
760 list_add(&mem->group_next, &group->memory_blocks);
761 }
762
763 return 0;
764 }
765
add_boot_memory_block(unsigned long base_section_nr)766 static int __init add_boot_memory_block(unsigned long base_section_nr)
767 {
768 int section_count = 0;
769 unsigned long nr;
770
771 for (nr = base_section_nr; nr < base_section_nr + sections_per_block;
772 nr++)
773 if (present_section_nr(nr))
774 section_count++;
775
776 if (section_count == 0)
777 return 0;
778 return add_memory_block(memory_block_id(base_section_nr),
779 MEM_ONLINE, 0, NULL);
780 }
781
add_hotplug_memory_block(unsigned long block_id,unsigned long nr_vmemmap_pages,struct memory_group * group)782 static int add_hotplug_memory_block(unsigned long block_id,
783 unsigned long nr_vmemmap_pages,
784 struct memory_group *group)
785 {
786 return add_memory_block(block_id, MEM_OFFLINE, nr_vmemmap_pages, group);
787 }
788
remove_memory_block(struct memory_block * memory)789 static void remove_memory_block(struct memory_block *memory)
790 {
791 if (WARN_ON_ONCE(memory->dev.bus != &memory_subsys))
792 return;
793
794 WARN_ON(xa_erase(&memory_blocks, memory->dev.id) == NULL);
795
796 if (memory->group) {
797 list_del(&memory->group_next);
798 memory->group = NULL;
799 }
800
801 /* drop the ref. we got via find_memory_block() */
802 put_device(&memory->dev);
803 device_unregister(&memory->dev);
804 }
805
806 /*
807 * Create memory block devices for the given memory area. Start and size
808 * have to be aligned to memory block granularity. Memory block devices
809 * will be initialized as offline.
810 *
811 * Called under device_hotplug_lock.
812 */
create_memory_block_devices(unsigned long start,unsigned long size,unsigned long vmemmap_pages,struct memory_group * group)813 int create_memory_block_devices(unsigned long start, unsigned long size,
814 unsigned long vmemmap_pages,
815 struct memory_group *group)
816 {
817 const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start));
818 unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size));
819 struct memory_block *mem;
820 unsigned long block_id;
821 int ret = 0;
822
823 if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) ||
824 !IS_ALIGNED(size, memory_block_size_bytes())))
825 return -EINVAL;
826
827 for (block_id = start_block_id; block_id != end_block_id; block_id++) {
828 ret = add_hotplug_memory_block(block_id, vmemmap_pages, group);
829 if (ret)
830 break;
831 }
832 if (ret) {
833 end_block_id = block_id;
834 for (block_id = start_block_id; block_id != end_block_id;
835 block_id++) {
836 mem = find_memory_block_by_id(block_id);
837 if (WARN_ON_ONCE(!mem))
838 continue;
839 remove_memory_block(mem);
840 }
841 }
842 return ret;
843 }
844
845 /*
846 * Remove memory block devices for the given memory area. Start and size
847 * have to be aligned to memory block granularity. Memory block devices
848 * have to be offline.
849 *
850 * Called under device_hotplug_lock.
851 */
remove_memory_block_devices(unsigned long start,unsigned long size)852 void remove_memory_block_devices(unsigned long start, unsigned long size)
853 {
854 const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start));
855 const unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size));
856 struct memory_block *mem;
857 unsigned long block_id;
858
859 if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) ||
860 !IS_ALIGNED(size, memory_block_size_bytes())))
861 return;
862
863 for (block_id = start_block_id; block_id != end_block_id; block_id++) {
864 mem = find_memory_block_by_id(block_id);
865 if (WARN_ON_ONCE(!mem))
866 continue;
867 unregister_memory_block_under_nodes(mem);
868 remove_memory_block(mem);
869 }
870 }
871
872 static struct attribute *memory_root_attrs[] = {
873 #ifdef CONFIG_ARCH_MEMORY_PROBE
874 &dev_attr_probe.attr,
875 #endif
876
877 #ifdef CONFIG_MEMORY_FAILURE
878 &dev_attr_soft_offline_page.attr,
879 &dev_attr_hard_offline_page.attr,
880 #endif
881
882 &dev_attr_block_size_bytes.attr,
883 &dev_attr_auto_online_blocks.attr,
884 NULL
885 };
886
887 static const struct attribute_group memory_root_attr_group = {
888 .attrs = memory_root_attrs,
889 };
890
891 static const struct attribute_group *memory_root_attr_groups[] = {
892 &memory_root_attr_group,
893 NULL,
894 };
895
896 /*
897 * Initialize the sysfs support for memory devices. At the time this function
898 * is called, we cannot have concurrent creation/deletion of memory block
899 * devices, the device_hotplug_lock is not needed.
900 */
memory_dev_init(void)901 void __init memory_dev_init(void)
902 {
903 int ret;
904 unsigned long block_sz, nr;
905
906 /* Validate the configured memory block size */
907 block_sz = memory_block_size_bytes();
908 if (!is_power_of_2(block_sz) || block_sz < MIN_MEMORY_BLOCK_SIZE)
909 panic("Memory block size not suitable: 0x%lx\n", block_sz);
910 sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
911
912 ret = subsys_system_register(&memory_subsys, memory_root_attr_groups);
913 if (ret)
914 panic("%s() failed to register subsystem: %d\n", __func__, ret);
915
916 /*
917 * Create entries for memory sections that were found
918 * during boot and have been initialized
919 */
920 for (nr = 0; nr <= __highest_present_section_nr;
921 nr += sections_per_block) {
922 ret = add_boot_memory_block(nr);
923 if (ret)
924 panic("%s() failed to add memory block: %d\n", __func__,
925 ret);
926 }
927 }
928
929 /**
930 * walk_memory_blocks - walk through all present memory blocks overlapped
931 * by the range [start, start + size)
932 *
933 * @start: start address of the memory range
934 * @size: size of the memory range
935 * @arg: argument passed to func
936 * @func: callback for each memory section walked
937 *
938 * This function walks through all present memory blocks overlapped by the
939 * range [start, start + size), calling func on each memory block.
940 *
941 * In case func() returns an error, walking is aborted and the error is
942 * returned.
943 *
944 * Called under device_hotplug_lock.
945 */
walk_memory_blocks(unsigned long start,unsigned long size,void * arg,walk_memory_blocks_func_t func)946 int walk_memory_blocks(unsigned long start, unsigned long size,
947 void *arg, walk_memory_blocks_func_t func)
948 {
949 const unsigned long start_block_id = phys_to_block_id(start);
950 const unsigned long end_block_id = phys_to_block_id(start + size - 1);
951 struct memory_block *mem;
952 unsigned long block_id;
953 int ret = 0;
954
955 if (!size)
956 return 0;
957
958 for (block_id = start_block_id; block_id <= end_block_id; block_id++) {
959 mem = find_memory_block_by_id(block_id);
960 if (!mem)
961 continue;
962
963 ret = func(mem, arg);
964 put_device(&mem->dev);
965 if (ret)
966 break;
967 }
968 return ret;
969 }
970
971 struct for_each_memory_block_cb_data {
972 walk_memory_blocks_func_t func;
973 void *arg;
974 };
975
for_each_memory_block_cb(struct device * dev,void * data)976 static int for_each_memory_block_cb(struct device *dev, void *data)
977 {
978 struct memory_block *mem = to_memory_block(dev);
979 struct for_each_memory_block_cb_data *cb_data = data;
980
981 return cb_data->func(mem, cb_data->arg);
982 }
983
984 /**
985 * for_each_memory_block - walk through all present memory blocks
986 *
987 * @arg: argument passed to func
988 * @func: callback for each memory block walked
989 *
990 * This function walks through all present memory blocks, calling func on
991 * each memory block.
992 *
993 * In case func() returns an error, walking is aborted and the error is
994 * returned.
995 */
for_each_memory_block(void * arg,walk_memory_blocks_func_t func)996 int for_each_memory_block(void *arg, walk_memory_blocks_func_t func)
997 {
998 struct for_each_memory_block_cb_data cb_data = {
999 .func = func,
1000 .arg = arg,
1001 };
1002
1003 return bus_for_each_dev(&memory_subsys, NULL, &cb_data,
1004 for_each_memory_block_cb);
1005 }
1006
1007 /*
1008 * This is an internal helper to unify allocation and initialization of
1009 * memory groups. Note that the passed memory group will be copied to a
1010 * dynamically allocated memory group. After this call, the passed
1011 * memory group should no longer be used.
1012 */
memory_group_register(struct memory_group group)1013 static int memory_group_register(struct memory_group group)
1014 {
1015 struct memory_group *new_group;
1016 uint32_t mgid;
1017 int ret;
1018
1019 if (!node_possible(group.nid))
1020 return -EINVAL;
1021
1022 new_group = kzalloc(sizeof(group), GFP_KERNEL);
1023 if (!new_group)
1024 return -ENOMEM;
1025 *new_group = group;
1026 INIT_LIST_HEAD(&new_group->memory_blocks);
1027
1028 ret = xa_alloc(&memory_groups, &mgid, new_group, xa_limit_31b,
1029 GFP_KERNEL);
1030 if (ret) {
1031 kfree(new_group);
1032 return ret;
1033 } else if (group.is_dynamic) {
1034 xa_set_mark(&memory_groups, mgid, MEMORY_GROUP_MARK_DYNAMIC);
1035 }
1036 return mgid;
1037 }
1038
1039 /**
1040 * memory_group_register_static() - Register a static memory group.
1041 * @nid: The node id.
1042 * @max_pages: The maximum number of pages we'll have in this static memory
1043 * group.
1044 *
1045 * Register a new static memory group and return the memory group id.
1046 * All memory in the group belongs to a single unit, such as a DIMM. All
1047 * memory belonging to a static memory group is added in one go to be removed
1048 * in one go -- it's static.
1049 *
1050 * Returns an error if out of memory, if the node id is invalid, if no new
1051 * memory groups can be registered, or if max_pages is invalid (0). Otherwise,
1052 * returns the new memory group id.
1053 */
memory_group_register_static(int nid,unsigned long max_pages)1054 int memory_group_register_static(int nid, unsigned long max_pages)
1055 {
1056 struct memory_group group = {
1057 .nid = nid,
1058 .s = {
1059 .max_pages = max_pages,
1060 },
1061 };
1062
1063 if (!max_pages)
1064 return -EINVAL;
1065 return memory_group_register(group);
1066 }
1067 EXPORT_SYMBOL_GPL(memory_group_register_static);
1068
1069 /**
1070 * memory_group_register_dynamic() - Register a dynamic memory group.
1071 * @nid: The node id.
1072 * @unit_pages: Unit in pages in which is memory added/removed in this dynamic
1073 * memory group.
1074 *
1075 * Register a new dynamic memory group and return the memory group id.
1076 * Memory within a dynamic memory group is added/removed dynamically
1077 * in unit_pages.
1078 *
1079 * Returns an error if out of memory, if the node id is invalid, if no new
1080 * memory groups can be registered, or if unit_pages is invalid (0, not a
1081 * power of two, smaller than a single memory block). Otherwise, returns the
1082 * new memory group id.
1083 */
memory_group_register_dynamic(int nid,unsigned long unit_pages)1084 int memory_group_register_dynamic(int nid, unsigned long unit_pages)
1085 {
1086 struct memory_group group = {
1087 .nid = nid,
1088 .is_dynamic = true,
1089 .d = {
1090 .unit_pages = unit_pages,
1091 },
1092 };
1093
1094 if (!unit_pages || !is_power_of_2(unit_pages) ||
1095 unit_pages < PHYS_PFN(memory_block_size_bytes()))
1096 return -EINVAL;
1097 return memory_group_register(group);
1098 }
1099 EXPORT_SYMBOL_GPL(memory_group_register_dynamic);
1100
1101 /**
1102 * memory_group_unregister() - Unregister a memory group.
1103 * @mgid: the memory group id
1104 *
1105 * Unregister a memory group. If any memory block still belongs to this
1106 * memory group, unregistering will fail.
1107 *
1108 * Returns -EINVAL if the memory group id is invalid, returns -EBUSY if some
1109 * memory blocks still belong to this memory group and returns 0 if
1110 * unregistering succeeded.
1111 */
memory_group_unregister(int mgid)1112 int memory_group_unregister(int mgid)
1113 {
1114 struct memory_group *group;
1115
1116 if (mgid < 0)
1117 return -EINVAL;
1118
1119 group = xa_load(&memory_groups, mgid);
1120 if (!group)
1121 return -EINVAL;
1122 if (!list_empty(&group->memory_blocks))
1123 return -EBUSY;
1124 xa_erase(&memory_groups, mgid);
1125 kfree(group);
1126 return 0;
1127 }
1128 EXPORT_SYMBOL_GPL(memory_group_unregister);
1129
1130 /*
1131 * This is an internal helper only to be used in core memory hotplug code to
1132 * lookup a memory group. We don't care about locking, as we don't expect a
1133 * memory group to get unregistered while adding memory to it -- because
1134 * the group and the memory is managed by the same driver.
1135 */
memory_group_find_by_id(int mgid)1136 struct memory_group *memory_group_find_by_id(int mgid)
1137 {
1138 return xa_load(&memory_groups, mgid);
1139 }
1140
1141 /*
1142 * This is an internal helper only to be used in core memory hotplug code to
1143 * walk all dynamic memory groups excluding a given memory group, either
1144 * belonging to a specific node, or belonging to any node.
1145 */
walk_dynamic_memory_groups(int nid,walk_memory_groups_func_t func,struct memory_group * excluded,void * arg)1146 int walk_dynamic_memory_groups(int nid, walk_memory_groups_func_t func,
1147 struct memory_group *excluded, void *arg)
1148 {
1149 struct memory_group *group;
1150 unsigned long index;
1151 int ret = 0;
1152
1153 xa_for_each_marked(&memory_groups, index, group,
1154 MEMORY_GROUP_MARK_DYNAMIC) {
1155 if (group == excluded)
1156 continue;
1157 #ifdef CONFIG_NUMA
1158 if (nid != NUMA_NO_NODE && group->nid != nid)
1159 continue;
1160 #endif /* CONFIG_NUMA */
1161 ret = func(group, arg);
1162 if (ret)
1163 break;
1164 }
1165 return ret;
1166 }
1167