1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * drivers/base/core.c - core driver model code (device registration, etc)
4 *
5 * Copyright (c) 2002-3 Patrick Mochel
6 * Copyright (c) 2002-3 Open Source Development Labs
7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8 * Copyright (c) 2006 Novell, Inc.
9 */
10
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/blkdev.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sched/mm.h>
30 #include <linux/swiotlb.h>
31 #include <linux/sysfs.h>
32 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
33
34 #include "base.h"
35 #include "physical_location.h"
36 #include "power/power.h"
37
38 #ifdef CONFIG_SYSFS_DEPRECATED
39 #ifdef CONFIG_SYSFS_DEPRECATED_V2
40 long sysfs_deprecated = 1;
41 #else
42 long sysfs_deprecated = 0;
43 #endif
sysfs_deprecated_setup(char * arg)44 static int __init sysfs_deprecated_setup(char *arg)
45 {
46 return kstrtol(arg, 10, &sysfs_deprecated);
47 }
48 early_param("sysfs.deprecated", sysfs_deprecated_setup);
49 #endif
50
51 /* Device links support. */
52 static LIST_HEAD(deferred_sync);
53 static unsigned int defer_sync_state_count = 1;
54 static DEFINE_MUTEX(fwnode_link_lock);
55 static bool fw_devlink_is_permissive(void);
56 static bool fw_devlink_drv_reg_done;
57 static bool fw_devlink_best_effort;
58
59 /**
60 * fwnode_link_add - Create a link between two fwnode_handles.
61 * @con: Consumer end of the link.
62 * @sup: Supplier end of the link.
63 *
64 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
65 * represents the detail that the firmware lists @sup fwnode as supplying a
66 * resource to @con.
67 *
68 * The driver core will use the fwnode link to create a device link between the
69 * two device objects corresponding to @con and @sup when they are created. The
70 * driver core will automatically delete the fwnode link between @con and @sup
71 * after doing that.
72 *
73 * Attempts to create duplicate links between the same pair of fwnode handles
74 * are ignored and there is no reference counting.
75 */
fwnode_link_add(struct fwnode_handle * con,struct fwnode_handle * sup)76 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
77 {
78 struct fwnode_link *link;
79 int ret = 0;
80
81 mutex_lock(&fwnode_link_lock);
82
83 list_for_each_entry(link, &sup->consumers, s_hook)
84 if (link->consumer == con)
85 goto out;
86
87 link = kzalloc(sizeof(*link), GFP_KERNEL);
88 if (!link) {
89 ret = -ENOMEM;
90 goto out;
91 }
92
93 link->supplier = sup;
94 INIT_LIST_HEAD(&link->s_hook);
95 link->consumer = con;
96 INIT_LIST_HEAD(&link->c_hook);
97
98 list_add(&link->s_hook, &sup->consumers);
99 list_add(&link->c_hook, &con->suppliers);
100 pr_debug("%pfwP Linked as a fwnode consumer to %pfwP\n",
101 con, sup);
102 out:
103 mutex_unlock(&fwnode_link_lock);
104
105 return ret;
106 }
107
108 /**
109 * __fwnode_link_del - Delete a link between two fwnode_handles.
110 * @link: the fwnode_link to be deleted
111 *
112 * The fwnode_link_lock needs to be held when this function is called.
113 */
__fwnode_link_del(struct fwnode_link * link)114 static void __fwnode_link_del(struct fwnode_link *link)
115 {
116 pr_debug("%pfwP Dropping the fwnode link to %pfwP\n",
117 link->consumer, link->supplier);
118 list_del(&link->s_hook);
119 list_del(&link->c_hook);
120 kfree(link);
121 }
122
123 /**
124 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
125 * @fwnode: fwnode whose supplier links need to be deleted
126 *
127 * Deletes all supplier links connecting directly to @fwnode.
128 */
fwnode_links_purge_suppliers(struct fwnode_handle * fwnode)129 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
130 {
131 struct fwnode_link *link, *tmp;
132
133 mutex_lock(&fwnode_link_lock);
134 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
135 __fwnode_link_del(link);
136 mutex_unlock(&fwnode_link_lock);
137 }
138
139 /**
140 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
141 * @fwnode: fwnode whose consumer links need to be deleted
142 *
143 * Deletes all consumer links connecting directly to @fwnode.
144 */
fwnode_links_purge_consumers(struct fwnode_handle * fwnode)145 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
146 {
147 struct fwnode_link *link, *tmp;
148
149 mutex_lock(&fwnode_link_lock);
150 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
151 __fwnode_link_del(link);
152 mutex_unlock(&fwnode_link_lock);
153 }
154
155 /**
156 * fwnode_links_purge - Delete all links connected to a fwnode_handle.
157 * @fwnode: fwnode whose links needs to be deleted
158 *
159 * Deletes all links connecting directly to a fwnode.
160 */
fwnode_links_purge(struct fwnode_handle * fwnode)161 void fwnode_links_purge(struct fwnode_handle *fwnode)
162 {
163 fwnode_links_purge_suppliers(fwnode);
164 fwnode_links_purge_consumers(fwnode);
165 }
166
fw_devlink_purge_absent_suppliers(struct fwnode_handle * fwnode)167 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
168 {
169 struct fwnode_handle *child;
170
171 /* Don't purge consumer links of an added child */
172 if (fwnode->dev)
173 return;
174
175 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
176 fwnode_links_purge_consumers(fwnode);
177
178 fwnode_for_each_available_child_node(fwnode, child)
179 fw_devlink_purge_absent_suppliers(child);
180 }
181 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
182
183 #ifdef CONFIG_SRCU
184 static DEFINE_MUTEX(device_links_lock);
185 DEFINE_STATIC_SRCU(device_links_srcu);
186
device_links_write_lock(void)187 static inline void device_links_write_lock(void)
188 {
189 mutex_lock(&device_links_lock);
190 }
191
device_links_write_unlock(void)192 static inline void device_links_write_unlock(void)
193 {
194 mutex_unlock(&device_links_lock);
195 }
196
device_links_read_lock(void)197 int device_links_read_lock(void) __acquires(&device_links_srcu)
198 {
199 return srcu_read_lock(&device_links_srcu);
200 }
201
device_links_read_unlock(int idx)202 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
203 {
204 srcu_read_unlock(&device_links_srcu, idx);
205 }
206
device_links_read_lock_held(void)207 int device_links_read_lock_held(void)
208 {
209 return srcu_read_lock_held(&device_links_srcu);
210 }
211
device_link_synchronize_removal(void)212 static void device_link_synchronize_removal(void)
213 {
214 synchronize_srcu(&device_links_srcu);
215 }
216
device_link_remove_from_lists(struct device_link * link)217 static void device_link_remove_from_lists(struct device_link *link)
218 {
219 list_del_rcu(&link->s_node);
220 list_del_rcu(&link->c_node);
221 }
222 #else /* !CONFIG_SRCU */
223 static DECLARE_RWSEM(device_links_lock);
224
device_links_write_lock(void)225 static inline void device_links_write_lock(void)
226 {
227 down_write(&device_links_lock);
228 }
229
device_links_write_unlock(void)230 static inline void device_links_write_unlock(void)
231 {
232 up_write(&device_links_lock);
233 }
234
device_links_read_lock(void)235 int device_links_read_lock(void)
236 {
237 down_read(&device_links_lock);
238 return 0;
239 }
240
device_links_read_unlock(int not_used)241 void device_links_read_unlock(int not_used)
242 {
243 up_read(&device_links_lock);
244 }
245
246 #ifdef CONFIG_DEBUG_LOCK_ALLOC
device_links_read_lock_held(void)247 int device_links_read_lock_held(void)
248 {
249 return lockdep_is_held(&device_links_lock);
250 }
251 #endif
252
device_link_synchronize_removal(void)253 static inline void device_link_synchronize_removal(void)
254 {
255 }
256
device_link_remove_from_lists(struct device_link * link)257 static void device_link_remove_from_lists(struct device_link *link)
258 {
259 list_del(&link->s_node);
260 list_del(&link->c_node);
261 }
262 #endif /* !CONFIG_SRCU */
263
device_is_ancestor(struct device * dev,struct device * target)264 static bool device_is_ancestor(struct device *dev, struct device *target)
265 {
266 while (target->parent) {
267 target = target->parent;
268 if (dev == target)
269 return true;
270 }
271 return false;
272 }
273
274 /**
275 * device_is_dependent - Check if one device depends on another one
276 * @dev: Device to check dependencies for.
277 * @target: Device to check against.
278 *
279 * Check if @target depends on @dev or any device dependent on it (its child or
280 * its consumer etc). Return 1 if that is the case or 0 otherwise.
281 */
device_is_dependent(struct device * dev,void * target)282 int device_is_dependent(struct device *dev, void *target)
283 {
284 struct device_link *link;
285 int ret;
286
287 /*
288 * The "ancestors" check is needed to catch the case when the target
289 * device has not been completely initialized yet and it is still
290 * missing from the list of children of its parent device.
291 */
292 if (dev == target || device_is_ancestor(dev, target))
293 return 1;
294
295 ret = device_for_each_child(dev, target, device_is_dependent);
296 if (ret)
297 return ret;
298
299 list_for_each_entry(link, &dev->links.consumers, s_node) {
300 if ((link->flags & ~DL_FLAG_INFERRED) ==
301 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
302 continue;
303
304 if (link->consumer == target)
305 return 1;
306
307 ret = device_is_dependent(link->consumer, target);
308 if (ret)
309 break;
310 }
311 return ret;
312 }
313
device_link_init_status(struct device_link * link,struct device * consumer,struct device * supplier)314 static void device_link_init_status(struct device_link *link,
315 struct device *consumer,
316 struct device *supplier)
317 {
318 switch (supplier->links.status) {
319 case DL_DEV_PROBING:
320 switch (consumer->links.status) {
321 case DL_DEV_PROBING:
322 /*
323 * A consumer driver can create a link to a supplier
324 * that has not completed its probing yet as long as it
325 * knows that the supplier is already functional (for
326 * example, it has just acquired some resources from the
327 * supplier).
328 */
329 link->status = DL_STATE_CONSUMER_PROBE;
330 break;
331 default:
332 link->status = DL_STATE_DORMANT;
333 break;
334 }
335 break;
336 case DL_DEV_DRIVER_BOUND:
337 switch (consumer->links.status) {
338 case DL_DEV_PROBING:
339 link->status = DL_STATE_CONSUMER_PROBE;
340 break;
341 case DL_DEV_DRIVER_BOUND:
342 link->status = DL_STATE_ACTIVE;
343 break;
344 default:
345 link->status = DL_STATE_AVAILABLE;
346 break;
347 }
348 break;
349 case DL_DEV_UNBINDING:
350 link->status = DL_STATE_SUPPLIER_UNBIND;
351 break;
352 default:
353 link->status = DL_STATE_DORMANT;
354 break;
355 }
356 }
357
device_reorder_to_tail(struct device * dev,void * not_used)358 static int device_reorder_to_tail(struct device *dev, void *not_used)
359 {
360 struct device_link *link;
361
362 /*
363 * Devices that have not been registered yet will be put to the ends
364 * of the lists during the registration, so skip them here.
365 */
366 if (device_is_registered(dev))
367 devices_kset_move_last(dev);
368
369 if (device_pm_initialized(dev))
370 device_pm_move_last(dev);
371
372 device_for_each_child(dev, NULL, device_reorder_to_tail);
373 list_for_each_entry(link, &dev->links.consumers, s_node) {
374 if ((link->flags & ~DL_FLAG_INFERRED) ==
375 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
376 continue;
377 device_reorder_to_tail(link->consumer, NULL);
378 }
379
380 return 0;
381 }
382
383 /**
384 * device_pm_move_to_tail - Move set of devices to the end of device lists
385 * @dev: Device to move
386 *
387 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
388 *
389 * It moves the @dev along with all of its children and all of its consumers
390 * to the ends of the device_kset and dpm_list, recursively.
391 */
device_pm_move_to_tail(struct device * dev)392 void device_pm_move_to_tail(struct device *dev)
393 {
394 int idx;
395
396 idx = device_links_read_lock();
397 device_pm_lock();
398 device_reorder_to_tail(dev, NULL);
399 device_pm_unlock();
400 device_links_read_unlock(idx);
401 }
402
403 #define to_devlink(dev) container_of((dev), struct device_link, link_dev)
404
status_show(struct device * dev,struct device_attribute * attr,char * buf)405 static ssize_t status_show(struct device *dev,
406 struct device_attribute *attr, char *buf)
407 {
408 const char *output;
409
410 switch (to_devlink(dev)->status) {
411 case DL_STATE_NONE:
412 output = "not tracked";
413 break;
414 case DL_STATE_DORMANT:
415 output = "dormant";
416 break;
417 case DL_STATE_AVAILABLE:
418 output = "available";
419 break;
420 case DL_STATE_CONSUMER_PROBE:
421 output = "consumer probing";
422 break;
423 case DL_STATE_ACTIVE:
424 output = "active";
425 break;
426 case DL_STATE_SUPPLIER_UNBIND:
427 output = "supplier unbinding";
428 break;
429 default:
430 output = "unknown";
431 break;
432 }
433
434 return sysfs_emit(buf, "%s\n", output);
435 }
436 static DEVICE_ATTR_RO(status);
437
auto_remove_on_show(struct device * dev,struct device_attribute * attr,char * buf)438 static ssize_t auto_remove_on_show(struct device *dev,
439 struct device_attribute *attr, char *buf)
440 {
441 struct device_link *link = to_devlink(dev);
442 const char *output;
443
444 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
445 output = "supplier unbind";
446 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
447 output = "consumer unbind";
448 else
449 output = "never";
450
451 return sysfs_emit(buf, "%s\n", output);
452 }
453 static DEVICE_ATTR_RO(auto_remove_on);
454
runtime_pm_show(struct device * dev,struct device_attribute * attr,char * buf)455 static ssize_t runtime_pm_show(struct device *dev,
456 struct device_attribute *attr, char *buf)
457 {
458 struct device_link *link = to_devlink(dev);
459
460 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
461 }
462 static DEVICE_ATTR_RO(runtime_pm);
463
sync_state_only_show(struct device * dev,struct device_attribute * attr,char * buf)464 static ssize_t sync_state_only_show(struct device *dev,
465 struct device_attribute *attr, char *buf)
466 {
467 struct device_link *link = to_devlink(dev);
468
469 return sysfs_emit(buf, "%d\n",
470 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
471 }
472 static DEVICE_ATTR_RO(sync_state_only);
473
474 static struct attribute *devlink_attrs[] = {
475 &dev_attr_status.attr,
476 &dev_attr_auto_remove_on.attr,
477 &dev_attr_runtime_pm.attr,
478 &dev_attr_sync_state_only.attr,
479 NULL,
480 };
481 ATTRIBUTE_GROUPS(devlink);
482
device_link_release_fn(struct work_struct * work)483 static void device_link_release_fn(struct work_struct *work)
484 {
485 struct device_link *link = container_of(work, struct device_link, rm_work);
486
487 /* Ensure that all references to the link object have been dropped. */
488 device_link_synchronize_removal();
489
490 pm_runtime_release_supplier(link);
491 /*
492 * If supplier_preactivated is set, the link has been dropped between
493 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
494 * in __driver_probe_device(). In that case, drop the supplier's
495 * PM-runtime usage counter to remove the reference taken by
496 * pm_runtime_get_suppliers().
497 */
498 if (link->supplier_preactivated)
499 pm_runtime_put_noidle(link->supplier);
500
501 pm_request_idle(link->supplier);
502
503 put_device(link->consumer);
504 put_device(link->supplier);
505 kfree(link);
506 }
507
devlink_dev_release(struct device * dev)508 static void devlink_dev_release(struct device *dev)
509 {
510 struct device_link *link = to_devlink(dev);
511
512 INIT_WORK(&link->rm_work, device_link_release_fn);
513 /*
514 * It may take a while to complete this work because of the SRCU
515 * synchronization in device_link_release_fn() and if the consumer or
516 * supplier devices get deleted when it runs, so put it into the "long"
517 * workqueue.
518 */
519 queue_work(system_long_wq, &link->rm_work);
520 }
521
522 static struct class devlink_class = {
523 .name = "devlink",
524 .owner = THIS_MODULE,
525 .dev_groups = devlink_groups,
526 .dev_release = devlink_dev_release,
527 };
528
devlink_add_symlinks(struct device * dev,struct class_interface * class_intf)529 static int devlink_add_symlinks(struct device *dev,
530 struct class_interface *class_intf)
531 {
532 int ret;
533 size_t len;
534 struct device_link *link = to_devlink(dev);
535 struct device *sup = link->supplier;
536 struct device *con = link->consumer;
537 char *buf;
538
539 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
540 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
541 len += strlen(":");
542 len += strlen("supplier:") + 1;
543 buf = kzalloc(len, GFP_KERNEL);
544 if (!buf)
545 return -ENOMEM;
546
547 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
548 if (ret)
549 goto out;
550
551 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
552 if (ret)
553 goto err_con;
554
555 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
556 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
557 if (ret)
558 goto err_con_dev;
559
560 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
561 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
562 if (ret)
563 goto err_sup_dev;
564
565 goto out;
566
567 err_sup_dev:
568 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
569 sysfs_remove_link(&sup->kobj, buf);
570 err_con_dev:
571 sysfs_remove_link(&link->link_dev.kobj, "consumer");
572 err_con:
573 sysfs_remove_link(&link->link_dev.kobj, "supplier");
574 out:
575 kfree(buf);
576 return ret;
577 }
578
devlink_remove_symlinks(struct device * dev,struct class_interface * class_intf)579 static void devlink_remove_symlinks(struct device *dev,
580 struct class_interface *class_intf)
581 {
582 struct device_link *link = to_devlink(dev);
583 size_t len;
584 struct device *sup = link->supplier;
585 struct device *con = link->consumer;
586 char *buf;
587
588 sysfs_remove_link(&link->link_dev.kobj, "consumer");
589 sysfs_remove_link(&link->link_dev.kobj, "supplier");
590
591 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
592 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
593 len += strlen(":");
594 len += strlen("supplier:") + 1;
595 buf = kzalloc(len, GFP_KERNEL);
596 if (!buf) {
597 WARN(1, "Unable to properly free device link symlinks!\n");
598 return;
599 }
600
601 if (device_is_registered(con)) {
602 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
603 sysfs_remove_link(&con->kobj, buf);
604 }
605 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
606 sysfs_remove_link(&sup->kobj, buf);
607 kfree(buf);
608 }
609
610 static struct class_interface devlink_class_intf = {
611 .class = &devlink_class,
612 .add_dev = devlink_add_symlinks,
613 .remove_dev = devlink_remove_symlinks,
614 };
615
devlink_class_init(void)616 static int __init devlink_class_init(void)
617 {
618 int ret;
619
620 ret = class_register(&devlink_class);
621 if (ret)
622 return ret;
623
624 ret = class_interface_register(&devlink_class_intf);
625 if (ret)
626 class_unregister(&devlink_class);
627
628 return ret;
629 }
630 postcore_initcall(devlink_class_init);
631
632 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
633 DL_FLAG_AUTOREMOVE_SUPPLIER | \
634 DL_FLAG_AUTOPROBE_CONSUMER | \
635 DL_FLAG_SYNC_STATE_ONLY | \
636 DL_FLAG_INFERRED)
637
638 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
639 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
640
641 /**
642 * device_link_add - Create a link between two devices.
643 * @consumer: Consumer end of the link.
644 * @supplier: Supplier end of the link.
645 * @flags: Link flags.
646 *
647 * The caller is responsible for the proper synchronization of the link creation
648 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
649 * runtime PM framework to take the link into account. Second, if the
650 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
651 * be forced into the active meta state and reference-counted upon the creation
652 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
653 * ignored.
654 *
655 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
656 * expected to release the link returned by it directly with the help of either
657 * device_link_del() or device_link_remove().
658 *
659 * If that flag is not set, however, the caller of this function is handing the
660 * management of the link over to the driver core entirely and its return value
661 * can only be used to check whether or not the link is present. In that case,
662 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
663 * flags can be used to indicate to the driver core when the link can be safely
664 * deleted. Namely, setting one of them in @flags indicates to the driver core
665 * that the link is not going to be used (by the given caller of this function)
666 * after unbinding the consumer or supplier driver, respectively, from its
667 * device, so the link can be deleted at that point. If none of them is set,
668 * the link will be maintained until one of the devices pointed to by it (either
669 * the consumer or the supplier) is unregistered.
670 *
671 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
672 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
673 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
674 * be used to request the driver core to automatically probe for a consumer
675 * driver after successfully binding a driver to the supplier device.
676 *
677 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
678 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
679 * the same time is invalid and will cause NULL to be returned upfront.
680 * However, if a device link between the given @consumer and @supplier pair
681 * exists already when this function is called for them, the existing link will
682 * be returned regardless of its current type and status (the link's flags may
683 * be modified then). The caller of this function is then expected to treat
684 * the link as though it has just been created, so (in particular) if
685 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
686 * explicitly when not needed any more (as stated above).
687 *
688 * A side effect of the link creation is re-ordering of dpm_list and the
689 * devices_kset list by moving the consumer device and all devices depending
690 * on it to the ends of these lists (that does not happen to devices that have
691 * not been registered when this function is called).
692 *
693 * The supplier device is required to be registered when this function is called
694 * and NULL will be returned if that is not the case. The consumer device need
695 * not be registered, however.
696 */
device_link_add(struct device * consumer,struct device * supplier,u32 flags)697 struct device_link *device_link_add(struct device *consumer,
698 struct device *supplier, u32 flags)
699 {
700 struct device_link *link;
701
702 if (!consumer || !supplier || consumer == supplier ||
703 flags & ~DL_ADD_VALID_FLAGS ||
704 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
705 (flags & DL_FLAG_SYNC_STATE_ONLY &&
706 (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) ||
707 (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
708 flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
709 DL_FLAG_AUTOREMOVE_SUPPLIER)))
710 return NULL;
711
712 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
713 if (pm_runtime_get_sync(supplier) < 0) {
714 pm_runtime_put_noidle(supplier);
715 return NULL;
716 }
717 }
718
719 if (!(flags & DL_FLAG_STATELESS))
720 flags |= DL_FLAG_MANAGED;
721
722 device_links_write_lock();
723 device_pm_lock();
724
725 /*
726 * If the supplier has not been fully registered yet or there is a
727 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
728 * the supplier already in the graph, return NULL. If the link is a
729 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
730 * because it only affects sync_state() callbacks.
731 */
732 if (!device_pm_initialized(supplier)
733 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
734 device_is_dependent(consumer, supplier))) {
735 link = NULL;
736 goto out;
737 }
738
739 /*
740 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
741 * So, only create it if the consumer hasn't probed yet.
742 */
743 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
744 consumer->links.status != DL_DEV_NO_DRIVER &&
745 consumer->links.status != DL_DEV_PROBING) {
746 link = NULL;
747 goto out;
748 }
749
750 /*
751 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
752 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
753 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
754 */
755 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
756 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
757
758 list_for_each_entry(link, &supplier->links.consumers, s_node) {
759 if (link->consumer != consumer)
760 continue;
761
762 if (link->flags & DL_FLAG_INFERRED &&
763 !(flags & DL_FLAG_INFERRED))
764 link->flags &= ~DL_FLAG_INFERRED;
765
766 if (flags & DL_FLAG_PM_RUNTIME) {
767 if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
768 pm_runtime_new_link(consumer);
769 link->flags |= DL_FLAG_PM_RUNTIME;
770 }
771 if (flags & DL_FLAG_RPM_ACTIVE)
772 refcount_inc(&link->rpm_active);
773 }
774
775 if (flags & DL_FLAG_STATELESS) {
776 kref_get(&link->kref);
777 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
778 !(link->flags & DL_FLAG_STATELESS)) {
779 link->flags |= DL_FLAG_STATELESS;
780 goto reorder;
781 } else {
782 link->flags |= DL_FLAG_STATELESS;
783 goto out;
784 }
785 }
786
787 /*
788 * If the life time of the link following from the new flags is
789 * longer than indicated by the flags of the existing link,
790 * update the existing link to stay around longer.
791 */
792 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
793 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
794 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
795 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
796 }
797 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
798 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
799 DL_FLAG_AUTOREMOVE_SUPPLIER);
800 }
801 if (!(link->flags & DL_FLAG_MANAGED)) {
802 kref_get(&link->kref);
803 link->flags |= DL_FLAG_MANAGED;
804 device_link_init_status(link, consumer, supplier);
805 }
806 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
807 !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
808 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
809 goto reorder;
810 }
811
812 goto out;
813 }
814
815 link = kzalloc(sizeof(*link), GFP_KERNEL);
816 if (!link)
817 goto out;
818
819 refcount_set(&link->rpm_active, 1);
820
821 get_device(supplier);
822 link->supplier = supplier;
823 INIT_LIST_HEAD(&link->s_node);
824 get_device(consumer);
825 link->consumer = consumer;
826 INIT_LIST_HEAD(&link->c_node);
827 link->flags = flags;
828 kref_init(&link->kref);
829
830 link->link_dev.class = &devlink_class;
831 device_set_pm_not_required(&link->link_dev);
832 dev_set_name(&link->link_dev, "%s:%s--%s:%s",
833 dev_bus_name(supplier), dev_name(supplier),
834 dev_bus_name(consumer), dev_name(consumer));
835 if (device_register(&link->link_dev)) {
836 put_device(&link->link_dev);
837 link = NULL;
838 goto out;
839 }
840
841 if (flags & DL_FLAG_PM_RUNTIME) {
842 if (flags & DL_FLAG_RPM_ACTIVE)
843 refcount_inc(&link->rpm_active);
844
845 pm_runtime_new_link(consumer);
846 }
847
848 /* Determine the initial link state. */
849 if (flags & DL_FLAG_STATELESS)
850 link->status = DL_STATE_NONE;
851 else
852 device_link_init_status(link, consumer, supplier);
853
854 /*
855 * Some callers expect the link creation during consumer driver probe to
856 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
857 */
858 if (link->status == DL_STATE_CONSUMER_PROBE &&
859 flags & DL_FLAG_PM_RUNTIME)
860 pm_runtime_resume(supplier);
861
862 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
863 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
864
865 if (flags & DL_FLAG_SYNC_STATE_ONLY) {
866 dev_dbg(consumer,
867 "Linked as a sync state only consumer to %s\n",
868 dev_name(supplier));
869 goto out;
870 }
871
872 reorder:
873 /*
874 * Move the consumer and all of the devices depending on it to the end
875 * of dpm_list and the devices_kset list.
876 *
877 * It is necessary to hold dpm_list locked throughout all that or else
878 * we may end up suspending with a wrong ordering of it.
879 */
880 device_reorder_to_tail(consumer, NULL);
881
882 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
883
884 out:
885 device_pm_unlock();
886 device_links_write_unlock();
887
888 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
889 pm_runtime_put(supplier);
890
891 return link;
892 }
893 EXPORT_SYMBOL_GPL(device_link_add);
894
__device_link_del(struct kref * kref)895 static void __device_link_del(struct kref *kref)
896 {
897 struct device_link *link = container_of(kref, struct device_link, kref);
898
899 dev_dbg(link->consumer, "Dropping the link to %s\n",
900 dev_name(link->supplier));
901
902 pm_runtime_drop_link(link);
903
904 device_link_remove_from_lists(link);
905 device_unregister(&link->link_dev);
906 }
907
device_link_put_kref(struct device_link * link)908 static void device_link_put_kref(struct device_link *link)
909 {
910 if (link->flags & DL_FLAG_STATELESS)
911 kref_put(&link->kref, __device_link_del);
912 else if (!device_is_registered(link->consumer))
913 __device_link_del(&link->kref);
914 else
915 WARN(1, "Unable to drop a managed device link reference\n");
916 }
917
918 /**
919 * device_link_del - Delete a stateless link between two devices.
920 * @link: Device link to delete.
921 *
922 * The caller must ensure proper synchronization of this function with runtime
923 * PM. If the link was added multiple times, it needs to be deleted as often.
924 * Care is required for hotplugged devices: Their links are purged on removal
925 * and calling device_link_del() is then no longer allowed.
926 */
device_link_del(struct device_link * link)927 void device_link_del(struct device_link *link)
928 {
929 device_links_write_lock();
930 device_link_put_kref(link);
931 device_links_write_unlock();
932 }
933 EXPORT_SYMBOL_GPL(device_link_del);
934
935 /**
936 * device_link_remove - Delete a stateless link between two devices.
937 * @consumer: Consumer end of the link.
938 * @supplier: Supplier end of the link.
939 *
940 * The caller must ensure proper synchronization of this function with runtime
941 * PM.
942 */
device_link_remove(void * consumer,struct device * supplier)943 void device_link_remove(void *consumer, struct device *supplier)
944 {
945 struct device_link *link;
946
947 if (WARN_ON(consumer == supplier))
948 return;
949
950 device_links_write_lock();
951
952 list_for_each_entry(link, &supplier->links.consumers, s_node) {
953 if (link->consumer == consumer) {
954 device_link_put_kref(link);
955 break;
956 }
957 }
958
959 device_links_write_unlock();
960 }
961 EXPORT_SYMBOL_GPL(device_link_remove);
962
device_links_missing_supplier(struct device * dev)963 static void device_links_missing_supplier(struct device *dev)
964 {
965 struct device_link *link;
966
967 list_for_each_entry(link, &dev->links.suppliers, c_node) {
968 if (link->status != DL_STATE_CONSUMER_PROBE)
969 continue;
970
971 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
972 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
973 } else {
974 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
975 WRITE_ONCE(link->status, DL_STATE_DORMANT);
976 }
977 }
978 }
979
dev_is_best_effort(struct device * dev)980 static bool dev_is_best_effort(struct device *dev)
981 {
982 return (fw_devlink_best_effort && dev->can_match) ||
983 (dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
984 }
985
986 /**
987 * device_links_check_suppliers - Check presence of supplier drivers.
988 * @dev: Consumer device.
989 *
990 * Check links from this device to any suppliers. Walk the list of the device's
991 * links to suppliers and see if all of them are available. If not, simply
992 * return -EPROBE_DEFER.
993 *
994 * We need to guarantee that the supplier will not go away after the check has
995 * been positive here. It only can go away in __device_release_driver() and
996 * that function checks the device's links to consumers. This means we need to
997 * mark the link as "consumer probe in progress" to make the supplier removal
998 * wait for us to complete (or bad things may happen).
999 *
1000 * Links without the DL_FLAG_MANAGED flag set are ignored.
1001 */
device_links_check_suppliers(struct device * dev)1002 int device_links_check_suppliers(struct device *dev)
1003 {
1004 struct device_link *link;
1005 int ret = 0, fwnode_ret = 0;
1006 struct fwnode_handle *sup_fw;
1007
1008 /*
1009 * Device waiting for supplier to become available is not allowed to
1010 * probe.
1011 */
1012 mutex_lock(&fwnode_link_lock);
1013 if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) &&
1014 !fw_devlink_is_permissive()) {
1015 sup_fw = list_first_entry(&dev->fwnode->suppliers,
1016 struct fwnode_link,
1017 c_hook)->supplier;
1018 if (!dev_is_best_effort(dev)) {
1019 fwnode_ret = -EPROBE_DEFER;
1020 dev_err_probe(dev, -EPROBE_DEFER,
1021 "wait for supplier %pfwP\n", sup_fw);
1022 } else {
1023 fwnode_ret = -EAGAIN;
1024 }
1025 }
1026 mutex_unlock(&fwnode_link_lock);
1027 if (fwnode_ret == -EPROBE_DEFER)
1028 return fwnode_ret;
1029
1030 device_links_write_lock();
1031
1032 list_for_each_entry(link, &dev->links.suppliers, c_node) {
1033 if (!(link->flags & DL_FLAG_MANAGED))
1034 continue;
1035
1036 if (link->status != DL_STATE_AVAILABLE &&
1037 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1038
1039 if (dev_is_best_effort(dev) &&
1040 link->flags & DL_FLAG_INFERRED &&
1041 !link->supplier->can_match) {
1042 ret = -EAGAIN;
1043 continue;
1044 }
1045
1046 device_links_missing_supplier(dev);
1047 dev_err_probe(dev, -EPROBE_DEFER,
1048 "supplier %s not ready\n",
1049 dev_name(link->supplier));
1050 ret = -EPROBE_DEFER;
1051 break;
1052 }
1053 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1054 }
1055 dev->links.status = DL_DEV_PROBING;
1056
1057 device_links_write_unlock();
1058
1059 return ret ? ret : fwnode_ret;
1060 }
1061
1062 /**
1063 * __device_links_queue_sync_state - Queue a device for sync_state() callback
1064 * @dev: Device to call sync_state() on
1065 * @list: List head to queue the @dev on
1066 *
1067 * Queues a device for a sync_state() callback when the device links write lock
1068 * isn't held. This allows the sync_state() execution flow to use device links
1069 * APIs. The caller must ensure this function is called with
1070 * device_links_write_lock() held.
1071 *
1072 * This function does a get_device() to make sure the device is not freed while
1073 * on this list.
1074 *
1075 * So the caller must also ensure that device_links_flush_sync_list() is called
1076 * as soon as the caller releases device_links_write_lock(). This is necessary
1077 * to make sure the sync_state() is called in a timely fashion and the
1078 * put_device() is called on this device.
1079 */
__device_links_queue_sync_state(struct device * dev,struct list_head * list)1080 static void __device_links_queue_sync_state(struct device *dev,
1081 struct list_head *list)
1082 {
1083 struct device_link *link;
1084
1085 if (!dev_has_sync_state(dev))
1086 return;
1087 if (dev->state_synced)
1088 return;
1089
1090 list_for_each_entry(link, &dev->links.consumers, s_node) {
1091 if (!(link->flags & DL_FLAG_MANAGED))
1092 continue;
1093 if (link->status != DL_STATE_ACTIVE)
1094 return;
1095 }
1096
1097 /*
1098 * Set the flag here to avoid adding the same device to a list more
1099 * than once. This can happen if new consumers get added to the device
1100 * and probed before the list is flushed.
1101 */
1102 dev->state_synced = true;
1103
1104 if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1105 return;
1106
1107 get_device(dev);
1108 list_add_tail(&dev->links.defer_sync, list);
1109 }
1110
1111 /**
1112 * device_links_flush_sync_list - Call sync_state() on a list of devices
1113 * @list: List of devices to call sync_state() on
1114 * @dont_lock_dev: Device for which lock is already held by the caller
1115 *
1116 * Calls sync_state() on all the devices that have been queued for it. This
1117 * function is used in conjunction with __device_links_queue_sync_state(). The
1118 * @dont_lock_dev parameter is useful when this function is called from a
1119 * context where a device lock is already held.
1120 */
device_links_flush_sync_list(struct list_head * list,struct device * dont_lock_dev)1121 static void device_links_flush_sync_list(struct list_head *list,
1122 struct device *dont_lock_dev)
1123 {
1124 struct device *dev, *tmp;
1125
1126 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1127 list_del_init(&dev->links.defer_sync);
1128
1129 if (dev != dont_lock_dev)
1130 device_lock(dev);
1131
1132 if (dev->bus->sync_state)
1133 dev->bus->sync_state(dev);
1134 else if (dev->driver && dev->driver->sync_state)
1135 dev->driver->sync_state(dev);
1136
1137 if (dev != dont_lock_dev)
1138 device_unlock(dev);
1139
1140 put_device(dev);
1141 }
1142 }
1143
device_links_supplier_sync_state_pause(void)1144 void device_links_supplier_sync_state_pause(void)
1145 {
1146 device_links_write_lock();
1147 defer_sync_state_count++;
1148 device_links_write_unlock();
1149 }
1150
device_links_supplier_sync_state_resume(void)1151 void device_links_supplier_sync_state_resume(void)
1152 {
1153 struct device *dev, *tmp;
1154 LIST_HEAD(sync_list);
1155
1156 device_links_write_lock();
1157 if (!defer_sync_state_count) {
1158 WARN(true, "Unmatched sync_state pause/resume!");
1159 goto out;
1160 }
1161 defer_sync_state_count--;
1162 if (defer_sync_state_count)
1163 goto out;
1164
1165 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1166 /*
1167 * Delete from deferred_sync list before queuing it to
1168 * sync_list because defer_sync is used for both lists.
1169 */
1170 list_del_init(&dev->links.defer_sync);
1171 __device_links_queue_sync_state(dev, &sync_list);
1172 }
1173 out:
1174 device_links_write_unlock();
1175
1176 device_links_flush_sync_list(&sync_list, NULL);
1177 }
1178
sync_state_resume_initcall(void)1179 static int sync_state_resume_initcall(void)
1180 {
1181 device_links_supplier_sync_state_resume();
1182 return 0;
1183 }
1184 late_initcall(sync_state_resume_initcall);
1185
__device_links_supplier_defer_sync(struct device * sup)1186 static void __device_links_supplier_defer_sync(struct device *sup)
1187 {
1188 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1189 list_add_tail(&sup->links.defer_sync, &deferred_sync);
1190 }
1191
device_link_drop_managed(struct device_link * link)1192 static void device_link_drop_managed(struct device_link *link)
1193 {
1194 link->flags &= ~DL_FLAG_MANAGED;
1195 WRITE_ONCE(link->status, DL_STATE_NONE);
1196 kref_put(&link->kref, __device_link_del);
1197 }
1198
waiting_for_supplier_show(struct device * dev,struct device_attribute * attr,char * buf)1199 static ssize_t waiting_for_supplier_show(struct device *dev,
1200 struct device_attribute *attr,
1201 char *buf)
1202 {
1203 bool val;
1204
1205 device_lock(dev);
1206 val = !list_empty(&dev->fwnode->suppliers);
1207 device_unlock(dev);
1208 return sysfs_emit(buf, "%u\n", val);
1209 }
1210 static DEVICE_ATTR_RO(waiting_for_supplier);
1211
1212 /**
1213 * device_links_force_bind - Prepares device to be force bound
1214 * @dev: Consumer device.
1215 *
1216 * device_bind_driver() force binds a device to a driver without calling any
1217 * driver probe functions. So the consumer really isn't going to wait for any
1218 * supplier before it's bound to the driver. We still want the device link
1219 * states to be sensible when this happens.
1220 *
1221 * In preparation for device_bind_driver(), this function goes through each
1222 * supplier device links and checks if the supplier is bound. If it is, then
1223 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1224 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1225 */
device_links_force_bind(struct device * dev)1226 void device_links_force_bind(struct device *dev)
1227 {
1228 struct device_link *link, *ln;
1229
1230 device_links_write_lock();
1231
1232 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1233 if (!(link->flags & DL_FLAG_MANAGED))
1234 continue;
1235
1236 if (link->status != DL_STATE_AVAILABLE) {
1237 device_link_drop_managed(link);
1238 continue;
1239 }
1240 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1241 }
1242 dev->links.status = DL_DEV_PROBING;
1243
1244 device_links_write_unlock();
1245 }
1246
1247 /**
1248 * device_links_driver_bound - Update device links after probing its driver.
1249 * @dev: Device to update the links for.
1250 *
1251 * The probe has been successful, so update links from this device to any
1252 * consumers by changing their status to "available".
1253 *
1254 * Also change the status of @dev's links to suppliers to "active".
1255 *
1256 * Links without the DL_FLAG_MANAGED flag set are ignored.
1257 */
device_links_driver_bound(struct device * dev)1258 void device_links_driver_bound(struct device *dev)
1259 {
1260 struct device_link *link, *ln;
1261 LIST_HEAD(sync_list);
1262
1263 /*
1264 * If a device binds successfully, it's expected to have created all
1265 * the device links it needs to or make new device links as it needs
1266 * them. So, fw_devlink no longer needs to create device links to any
1267 * of the device's suppliers.
1268 *
1269 * Also, if a child firmware node of this bound device is not added as
1270 * a device by now, assume it is never going to be added and make sure
1271 * other devices don't defer probe indefinitely by waiting for such a
1272 * child device.
1273 */
1274 if (dev->fwnode && dev->fwnode->dev == dev) {
1275 struct fwnode_handle *child;
1276 fwnode_links_purge_suppliers(dev->fwnode);
1277 fwnode_for_each_available_child_node(dev->fwnode, child)
1278 fw_devlink_purge_absent_suppliers(child);
1279 }
1280 device_remove_file(dev, &dev_attr_waiting_for_supplier);
1281
1282 device_links_write_lock();
1283
1284 list_for_each_entry(link, &dev->links.consumers, s_node) {
1285 if (!(link->flags & DL_FLAG_MANAGED))
1286 continue;
1287
1288 /*
1289 * Links created during consumer probe may be in the "consumer
1290 * probe" state to start with if the supplier is still probing
1291 * when they are created and they may become "active" if the
1292 * consumer probe returns first. Skip them here.
1293 */
1294 if (link->status == DL_STATE_CONSUMER_PROBE ||
1295 link->status == DL_STATE_ACTIVE)
1296 continue;
1297
1298 WARN_ON(link->status != DL_STATE_DORMANT);
1299 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1300
1301 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1302 driver_deferred_probe_add(link->consumer);
1303 }
1304
1305 if (defer_sync_state_count)
1306 __device_links_supplier_defer_sync(dev);
1307 else
1308 __device_links_queue_sync_state(dev, &sync_list);
1309
1310 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1311 struct device *supplier;
1312
1313 if (!(link->flags & DL_FLAG_MANAGED))
1314 continue;
1315
1316 supplier = link->supplier;
1317 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1318 /*
1319 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1320 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1321 * save to drop the managed link completely.
1322 */
1323 device_link_drop_managed(link);
1324 } else if (dev_is_best_effort(dev) &&
1325 link->flags & DL_FLAG_INFERRED &&
1326 link->status != DL_STATE_CONSUMER_PROBE &&
1327 !link->supplier->can_match) {
1328 /*
1329 * When dev_is_best_effort() is true, we ignore device
1330 * links to suppliers that don't have a driver. If the
1331 * consumer device still managed to probe, there's no
1332 * point in maintaining a device link in a weird state
1333 * (consumer probed before supplier). So delete it.
1334 */
1335 device_link_drop_managed(link);
1336 } else {
1337 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1338 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1339 }
1340
1341 /*
1342 * This needs to be done even for the deleted
1343 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1344 * device link that was preventing the supplier from getting a
1345 * sync_state() call.
1346 */
1347 if (defer_sync_state_count)
1348 __device_links_supplier_defer_sync(supplier);
1349 else
1350 __device_links_queue_sync_state(supplier, &sync_list);
1351 }
1352
1353 dev->links.status = DL_DEV_DRIVER_BOUND;
1354
1355 device_links_write_unlock();
1356
1357 device_links_flush_sync_list(&sync_list, dev);
1358 }
1359
1360 /**
1361 * __device_links_no_driver - Update links of a device without a driver.
1362 * @dev: Device without a drvier.
1363 *
1364 * Delete all non-persistent links from this device to any suppliers.
1365 *
1366 * Persistent links stay around, but their status is changed to "available",
1367 * unless they already are in the "supplier unbind in progress" state in which
1368 * case they need not be updated.
1369 *
1370 * Links without the DL_FLAG_MANAGED flag set are ignored.
1371 */
__device_links_no_driver(struct device * dev)1372 static void __device_links_no_driver(struct device *dev)
1373 {
1374 struct device_link *link, *ln;
1375
1376 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1377 if (!(link->flags & DL_FLAG_MANAGED))
1378 continue;
1379
1380 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1381 device_link_drop_managed(link);
1382 continue;
1383 }
1384
1385 if (link->status != DL_STATE_CONSUMER_PROBE &&
1386 link->status != DL_STATE_ACTIVE)
1387 continue;
1388
1389 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1390 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1391 } else {
1392 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1393 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1394 }
1395 }
1396
1397 dev->links.status = DL_DEV_NO_DRIVER;
1398 }
1399
1400 /**
1401 * device_links_no_driver - Update links after failing driver probe.
1402 * @dev: Device whose driver has just failed to probe.
1403 *
1404 * Clean up leftover links to consumers for @dev and invoke
1405 * %__device_links_no_driver() to update links to suppliers for it as
1406 * appropriate.
1407 *
1408 * Links without the DL_FLAG_MANAGED flag set are ignored.
1409 */
device_links_no_driver(struct device * dev)1410 void device_links_no_driver(struct device *dev)
1411 {
1412 struct device_link *link;
1413
1414 device_links_write_lock();
1415
1416 list_for_each_entry(link, &dev->links.consumers, s_node) {
1417 if (!(link->flags & DL_FLAG_MANAGED))
1418 continue;
1419
1420 /*
1421 * The probe has failed, so if the status of the link is
1422 * "consumer probe" or "active", it must have been added by
1423 * a probing consumer while this device was still probing.
1424 * Change its state to "dormant", as it represents a valid
1425 * relationship, but it is not functionally meaningful.
1426 */
1427 if (link->status == DL_STATE_CONSUMER_PROBE ||
1428 link->status == DL_STATE_ACTIVE)
1429 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1430 }
1431
1432 __device_links_no_driver(dev);
1433
1434 device_links_write_unlock();
1435 }
1436
1437 /**
1438 * device_links_driver_cleanup - Update links after driver removal.
1439 * @dev: Device whose driver has just gone away.
1440 *
1441 * Update links to consumers for @dev by changing their status to "dormant" and
1442 * invoke %__device_links_no_driver() to update links to suppliers for it as
1443 * appropriate.
1444 *
1445 * Links without the DL_FLAG_MANAGED flag set are ignored.
1446 */
device_links_driver_cleanup(struct device * dev)1447 void device_links_driver_cleanup(struct device *dev)
1448 {
1449 struct device_link *link, *ln;
1450
1451 device_links_write_lock();
1452
1453 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1454 if (!(link->flags & DL_FLAG_MANAGED))
1455 continue;
1456
1457 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1458 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1459
1460 /*
1461 * autoremove the links between this @dev and its consumer
1462 * devices that are not active, i.e. where the link state
1463 * has moved to DL_STATE_SUPPLIER_UNBIND.
1464 */
1465 if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1466 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1467 device_link_drop_managed(link);
1468
1469 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1470 }
1471
1472 list_del_init(&dev->links.defer_sync);
1473 __device_links_no_driver(dev);
1474
1475 device_links_write_unlock();
1476 }
1477
1478 /**
1479 * device_links_busy - Check if there are any busy links to consumers.
1480 * @dev: Device to check.
1481 *
1482 * Check each consumer of the device and return 'true' if its link's status
1483 * is one of "consumer probe" or "active" (meaning that the given consumer is
1484 * probing right now or its driver is present). Otherwise, change the link
1485 * state to "supplier unbind" to prevent the consumer from being probed
1486 * successfully going forward.
1487 *
1488 * Return 'false' if there are no probing or active consumers.
1489 *
1490 * Links without the DL_FLAG_MANAGED flag set are ignored.
1491 */
device_links_busy(struct device * dev)1492 bool device_links_busy(struct device *dev)
1493 {
1494 struct device_link *link;
1495 bool ret = false;
1496
1497 device_links_write_lock();
1498
1499 list_for_each_entry(link, &dev->links.consumers, s_node) {
1500 if (!(link->flags & DL_FLAG_MANAGED))
1501 continue;
1502
1503 if (link->status == DL_STATE_CONSUMER_PROBE
1504 || link->status == DL_STATE_ACTIVE) {
1505 ret = true;
1506 break;
1507 }
1508 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1509 }
1510
1511 dev->links.status = DL_DEV_UNBINDING;
1512
1513 device_links_write_unlock();
1514 return ret;
1515 }
1516
1517 /**
1518 * device_links_unbind_consumers - Force unbind consumers of the given device.
1519 * @dev: Device to unbind the consumers of.
1520 *
1521 * Walk the list of links to consumers for @dev and if any of them is in the
1522 * "consumer probe" state, wait for all device probes in progress to complete
1523 * and start over.
1524 *
1525 * If that's not the case, change the status of the link to "supplier unbind"
1526 * and check if the link was in the "active" state. If so, force the consumer
1527 * driver to unbind and start over (the consumer will not re-probe as we have
1528 * changed the state of the link already).
1529 *
1530 * Links without the DL_FLAG_MANAGED flag set are ignored.
1531 */
device_links_unbind_consumers(struct device * dev)1532 void device_links_unbind_consumers(struct device *dev)
1533 {
1534 struct device_link *link;
1535
1536 start:
1537 device_links_write_lock();
1538
1539 list_for_each_entry(link, &dev->links.consumers, s_node) {
1540 enum device_link_state status;
1541
1542 if (!(link->flags & DL_FLAG_MANAGED) ||
1543 link->flags & DL_FLAG_SYNC_STATE_ONLY)
1544 continue;
1545
1546 status = link->status;
1547 if (status == DL_STATE_CONSUMER_PROBE) {
1548 device_links_write_unlock();
1549
1550 wait_for_device_probe();
1551 goto start;
1552 }
1553 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1554 if (status == DL_STATE_ACTIVE) {
1555 struct device *consumer = link->consumer;
1556
1557 get_device(consumer);
1558
1559 device_links_write_unlock();
1560
1561 device_release_driver_internal(consumer, NULL,
1562 consumer->parent);
1563 put_device(consumer);
1564 goto start;
1565 }
1566 }
1567
1568 device_links_write_unlock();
1569 }
1570
1571 /**
1572 * device_links_purge - Delete existing links to other devices.
1573 * @dev: Target device.
1574 */
device_links_purge(struct device * dev)1575 static void device_links_purge(struct device *dev)
1576 {
1577 struct device_link *link, *ln;
1578
1579 if (dev->class == &devlink_class)
1580 return;
1581
1582 /*
1583 * Delete all of the remaining links from this device to any other
1584 * devices (either consumers or suppliers).
1585 */
1586 device_links_write_lock();
1587
1588 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1589 WARN_ON(link->status == DL_STATE_ACTIVE);
1590 __device_link_del(&link->kref);
1591 }
1592
1593 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1594 WARN_ON(link->status != DL_STATE_DORMANT &&
1595 link->status != DL_STATE_NONE);
1596 __device_link_del(&link->kref);
1597 }
1598
1599 device_links_write_unlock();
1600 }
1601
1602 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \
1603 DL_FLAG_SYNC_STATE_ONLY)
1604 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \
1605 DL_FLAG_AUTOPROBE_CONSUMER)
1606 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \
1607 DL_FLAG_PM_RUNTIME)
1608
1609 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
fw_devlink_setup(char * arg)1610 static int __init fw_devlink_setup(char *arg)
1611 {
1612 if (!arg)
1613 return -EINVAL;
1614
1615 if (strcmp(arg, "off") == 0) {
1616 fw_devlink_flags = 0;
1617 } else if (strcmp(arg, "permissive") == 0) {
1618 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1619 } else if (strcmp(arg, "on") == 0) {
1620 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1621 } else if (strcmp(arg, "rpm") == 0) {
1622 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1623 }
1624 return 0;
1625 }
1626 early_param("fw_devlink", fw_devlink_setup);
1627
1628 static bool fw_devlink_strict;
fw_devlink_strict_setup(char * arg)1629 static int __init fw_devlink_strict_setup(char *arg)
1630 {
1631 return strtobool(arg, &fw_devlink_strict);
1632 }
1633 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1634
fw_devlink_get_flags(void)1635 u32 fw_devlink_get_flags(void)
1636 {
1637 return fw_devlink_flags;
1638 }
1639
fw_devlink_is_permissive(void)1640 static bool fw_devlink_is_permissive(void)
1641 {
1642 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1643 }
1644
fw_devlink_is_strict(void)1645 bool fw_devlink_is_strict(void)
1646 {
1647 return fw_devlink_strict && !fw_devlink_is_permissive();
1648 }
1649
fw_devlink_parse_fwnode(struct fwnode_handle * fwnode)1650 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1651 {
1652 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1653 return;
1654
1655 fwnode_call_int_op(fwnode, add_links);
1656 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1657 }
1658
fw_devlink_parse_fwtree(struct fwnode_handle * fwnode)1659 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1660 {
1661 struct fwnode_handle *child = NULL;
1662
1663 fw_devlink_parse_fwnode(fwnode);
1664
1665 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1666 fw_devlink_parse_fwtree(child);
1667 }
1668
fw_devlink_relax_link(struct device_link * link)1669 static void fw_devlink_relax_link(struct device_link *link)
1670 {
1671 if (!(link->flags & DL_FLAG_INFERRED))
1672 return;
1673
1674 if (link->flags == (DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE))
1675 return;
1676
1677 pm_runtime_drop_link(link);
1678 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1679 dev_dbg(link->consumer, "Relaxing link with %s\n",
1680 dev_name(link->supplier));
1681 }
1682
fw_devlink_no_driver(struct device * dev,void * data)1683 static int fw_devlink_no_driver(struct device *dev, void *data)
1684 {
1685 struct device_link *link = to_devlink(dev);
1686
1687 if (!link->supplier->can_match)
1688 fw_devlink_relax_link(link);
1689
1690 return 0;
1691 }
1692
fw_devlink_drivers_done(void)1693 void fw_devlink_drivers_done(void)
1694 {
1695 fw_devlink_drv_reg_done = true;
1696 device_links_write_lock();
1697 class_for_each_device(&devlink_class, NULL, NULL,
1698 fw_devlink_no_driver);
1699 device_links_write_unlock();
1700 }
1701
1702 /**
1703 * wait_for_init_devices_probe - Try to probe any device needed for init
1704 *
1705 * Some devices might need to be probed and bound successfully before the kernel
1706 * boot sequence can finish and move on to init/userspace. For example, a
1707 * network interface might need to be bound to be able to mount a NFS rootfs.
1708 *
1709 * With fw_devlink=on by default, some of these devices might be blocked from
1710 * probing because they are waiting on a optional supplier that doesn't have a
1711 * driver. While fw_devlink will eventually identify such devices and unblock
1712 * the probing automatically, it might be too late by the time it unblocks the
1713 * probing of devices. For example, the IP4 autoconfig might timeout before
1714 * fw_devlink unblocks probing of the network interface.
1715 *
1716 * This function is available to temporarily try and probe all devices that have
1717 * a driver even if some of their suppliers haven't been added or don't have
1718 * drivers.
1719 *
1720 * The drivers can then decide which of the suppliers are optional vs mandatory
1721 * and probe the device if possible. By the time this function returns, all such
1722 * "best effort" probes are guaranteed to be completed. If a device successfully
1723 * probes in this mode, we delete all fw_devlink discovered dependencies of that
1724 * device where the supplier hasn't yet probed successfully because they have to
1725 * be optional dependencies.
1726 *
1727 * Any devices that didn't successfully probe go back to being treated as if
1728 * this function was never called.
1729 *
1730 * This also means that some devices that aren't needed for init and could have
1731 * waited for their optional supplier to probe (when the supplier's module is
1732 * loaded later on) would end up probing prematurely with limited functionality.
1733 * So call this function only when boot would fail without it.
1734 */
wait_for_init_devices_probe(void)1735 void __init wait_for_init_devices_probe(void)
1736 {
1737 if (!fw_devlink_flags || fw_devlink_is_permissive())
1738 return;
1739
1740 /*
1741 * Wait for all ongoing probes to finish so that the "best effort" is
1742 * only applied to devices that can't probe otherwise.
1743 */
1744 wait_for_device_probe();
1745
1746 pr_info("Trying to probe devices needed for running init ...\n");
1747 fw_devlink_best_effort = true;
1748 driver_deferred_probe_trigger();
1749
1750 /*
1751 * Wait for all "best effort" probes to finish before going back to
1752 * normal enforcement.
1753 */
1754 wait_for_device_probe();
1755 fw_devlink_best_effort = false;
1756 }
1757
fw_devlink_unblock_consumers(struct device * dev)1758 static void fw_devlink_unblock_consumers(struct device *dev)
1759 {
1760 struct device_link *link;
1761
1762 if (!fw_devlink_flags || fw_devlink_is_permissive())
1763 return;
1764
1765 device_links_write_lock();
1766 list_for_each_entry(link, &dev->links.consumers, s_node)
1767 fw_devlink_relax_link(link);
1768 device_links_write_unlock();
1769 }
1770
1771 /**
1772 * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links
1773 * @con: Device to check dependencies for.
1774 * @sup: Device to check against.
1775 *
1776 * Check if @sup depends on @con or any device dependent on it (its child or
1777 * its consumer etc). When such a cyclic dependency is found, convert all
1778 * device links created solely by fw_devlink into SYNC_STATE_ONLY device links.
1779 * This is the equivalent of doing fw_devlink=permissive just between the
1780 * devices in the cycle. We need to do this because, at this point, fw_devlink
1781 * can't tell which of these dependencies is not a real dependency.
1782 *
1783 * Return 1 if a cycle is found. Otherwise, return 0.
1784 */
fw_devlink_relax_cycle(struct device * con,void * sup)1785 static int fw_devlink_relax_cycle(struct device *con, void *sup)
1786 {
1787 struct device_link *link;
1788 int ret;
1789
1790 if (con == sup)
1791 return 1;
1792
1793 ret = device_for_each_child(con, sup, fw_devlink_relax_cycle);
1794 if (ret)
1795 return ret;
1796
1797 list_for_each_entry(link, &con->links.consumers, s_node) {
1798 if ((link->flags & ~DL_FLAG_INFERRED) ==
1799 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
1800 continue;
1801
1802 if (!fw_devlink_relax_cycle(link->consumer, sup))
1803 continue;
1804
1805 ret = 1;
1806
1807 fw_devlink_relax_link(link);
1808 }
1809 return ret;
1810 }
1811
1812 /**
1813 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
1814 * @con: consumer device for the device link
1815 * @sup_handle: fwnode handle of supplier
1816 * @flags: devlink flags
1817 *
1818 * This function will try to create a device link between the consumer device
1819 * @con and the supplier device represented by @sup_handle.
1820 *
1821 * The supplier has to be provided as a fwnode because incorrect cycles in
1822 * fwnode links can sometimes cause the supplier device to never be created.
1823 * This function detects such cases and returns an error if it cannot create a
1824 * device link from the consumer to a missing supplier.
1825 *
1826 * Returns,
1827 * 0 on successfully creating a device link
1828 * -EINVAL if the device link cannot be created as expected
1829 * -EAGAIN if the device link cannot be created right now, but it may be
1830 * possible to do that in the future
1831 */
fw_devlink_create_devlink(struct device * con,struct fwnode_handle * sup_handle,u32 flags)1832 static int fw_devlink_create_devlink(struct device *con,
1833 struct fwnode_handle *sup_handle, u32 flags)
1834 {
1835 struct device *sup_dev;
1836 int ret = 0;
1837
1838 /*
1839 * In some cases, a device P might also be a supplier to its child node
1840 * C. However, this would defer the probe of C until the probe of P
1841 * completes successfully. This is perfectly fine in the device driver
1842 * model. device_add() doesn't guarantee probe completion of the device
1843 * by the time it returns.
1844 *
1845 * However, there are a few drivers that assume C will finish probing
1846 * as soon as it's added and before P finishes probing. So, we provide
1847 * a flag to let fw_devlink know not to delay the probe of C until the
1848 * probe of P completes successfully.
1849 *
1850 * When such a flag is set, we can't create device links where P is the
1851 * supplier of C as that would delay the probe of C.
1852 */
1853 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
1854 fwnode_is_ancestor_of(sup_handle, con->fwnode))
1855 return -EINVAL;
1856
1857 sup_dev = get_dev_from_fwnode(sup_handle);
1858 if (sup_dev) {
1859 /*
1860 * If it's one of those drivers that don't actually bind to
1861 * their device using driver core, then don't wait on this
1862 * supplier device indefinitely.
1863 */
1864 if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
1865 sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
1866 ret = -EINVAL;
1867 goto out;
1868 }
1869
1870 /*
1871 * If this fails, it is due to cycles in device links. Just
1872 * give up on this link and treat it as invalid.
1873 */
1874 if (!device_link_add(con, sup_dev, flags) &&
1875 !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
1876 dev_info(con, "Fixing up cyclic dependency with %s\n",
1877 dev_name(sup_dev));
1878 device_links_write_lock();
1879 fw_devlink_relax_cycle(con, sup_dev);
1880 device_links_write_unlock();
1881 device_link_add(con, sup_dev,
1882 FW_DEVLINK_FLAGS_PERMISSIVE);
1883 ret = -EINVAL;
1884 }
1885
1886 goto out;
1887 }
1888
1889 /* Supplier that's already initialized without a struct device. */
1890 if (sup_handle->flags & FWNODE_FLAG_INITIALIZED)
1891 return -EINVAL;
1892
1893 /*
1894 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
1895 * cycles. So cycle detection isn't necessary and shouldn't be
1896 * done.
1897 */
1898 if (flags & DL_FLAG_SYNC_STATE_ONLY)
1899 return -EAGAIN;
1900
1901 /*
1902 * If we can't find the supplier device from its fwnode, it might be
1903 * due to a cyclic dependency between fwnodes. Some of these cycles can
1904 * be broken by applying logic. Check for these types of cycles and
1905 * break them so that devices in the cycle probe properly.
1906 *
1907 * If the supplier's parent is dependent on the consumer, then the
1908 * consumer and supplier have a cyclic dependency. Since fw_devlink
1909 * can't tell which of the inferred dependencies are incorrect, don't
1910 * enforce probe ordering between any of the devices in this cyclic
1911 * dependency. Do this by relaxing all the fw_devlink device links in
1912 * this cycle and by treating the fwnode link between the consumer and
1913 * the supplier as an invalid dependency.
1914 */
1915 sup_dev = fwnode_get_next_parent_dev(sup_handle);
1916 if (sup_dev && device_is_dependent(con, sup_dev)) {
1917 dev_info(con, "Fixing up cyclic dependency with %pfwP (%s)\n",
1918 sup_handle, dev_name(sup_dev));
1919 device_links_write_lock();
1920 fw_devlink_relax_cycle(con, sup_dev);
1921 device_links_write_unlock();
1922 ret = -EINVAL;
1923 } else {
1924 /*
1925 * Can't check for cycles or no cycles. So let's try
1926 * again later.
1927 */
1928 ret = -EAGAIN;
1929 }
1930
1931 out:
1932 put_device(sup_dev);
1933 return ret;
1934 }
1935
1936 /**
1937 * __fw_devlink_link_to_consumers - Create device links to consumers of a device
1938 * @dev: Device that needs to be linked to its consumers
1939 *
1940 * This function looks at all the consumer fwnodes of @dev and creates device
1941 * links between the consumer device and @dev (supplier).
1942 *
1943 * If the consumer device has not been added yet, then this function creates a
1944 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
1945 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
1946 * sync_state() callback before the real consumer device gets to be added and
1947 * then probed.
1948 *
1949 * Once device links are created from the real consumer to @dev (supplier), the
1950 * fwnode links are deleted.
1951 */
__fw_devlink_link_to_consumers(struct device * dev)1952 static void __fw_devlink_link_to_consumers(struct device *dev)
1953 {
1954 struct fwnode_handle *fwnode = dev->fwnode;
1955 struct fwnode_link *link, *tmp;
1956
1957 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
1958 u32 dl_flags = fw_devlink_get_flags();
1959 struct device *con_dev;
1960 bool own_link = true;
1961 int ret;
1962
1963 con_dev = get_dev_from_fwnode(link->consumer);
1964 /*
1965 * If consumer device is not available yet, make a "proxy"
1966 * SYNC_STATE_ONLY link from the consumer's parent device to
1967 * the supplier device. This is necessary to make sure the
1968 * supplier doesn't get a sync_state() callback before the real
1969 * consumer can create a device link to the supplier.
1970 *
1971 * This proxy link step is needed to handle the case where the
1972 * consumer's parent device is added before the supplier.
1973 */
1974 if (!con_dev) {
1975 con_dev = fwnode_get_next_parent_dev(link->consumer);
1976 /*
1977 * However, if the consumer's parent device is also the
1978 * parent of the supplier, don't create a
1979 * consumer-supplier link from the parent to its child
1980 * device. Such a dependency is impossible.
1981 */
1982 if (con_dev &&
1983 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
1984 put_device(con_dev);
1985 con_dev = NULL;
1986 } else {
1987 own_link = false;
1988 dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1989 }
1990 }
1991
1992 if (!con_dev)
1993 continue;
1994
1995 ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags);
1996 put_device(con_dev);
1997 if (!own_link || ret == -EAGAIN)
1998 continue;
1999
2000 __fwnode_link_del(link);
2001 }
2002 }
2003
2004 /**
2005 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
2006 * @dev: The consumer device that needs to be linked to its suppliers
2007 * @fwnode: Root of the fwnode tree that is used to create device links
2008 *
2009 * This function looks at all the supplier fwnodes of fwnode tree rooted at
2010 * @fwnode and creates device links between @dev (consumer) and all the
2011 * supplier devices of the entire fwnode tree at @fwnode.
2012 *
2013 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
2014 * and the real suppliers of @dev. Once these device links are created, the
2015 * fwnode links are deleted. When such device links are successfully created,
2016 * this function is called recursively on those supplier devices. This is
2017 * needed to detect and break some invalid cycles in fwnode links. See
2018 * fw_devlink_create_devlink() for more details.
2019 *
2020 * In addition, it also looks at all the suppliers of the entire fwnode tree
2021 * because some of the child devices of @dev that have not been added yet
2022 * (because @dev hasn't probed) might already have their suppliers added to
2023 * driver core. So, this function creates SYNC_STATE_ONLY device links between
2024 * @dev (consumer) and these suppliers to make sure they don't execute their
2025 * sync_state() callbacks before these child devices have a chance to create
2026 * their device links. The fwnode links that correspond to the child devices
2027 * aren't delete because they are needed later to create the device links
2028 * between the real consumer and supplier devices.
2029 */
__fw_devlink_link_to_suppliers(struct device * dev,struct fwnode_handle * fwnode)2030 static void __fw_devlink_link_to_suppliers(struct device *dev,
2031 struct fwnode_handle *fwnode)
2032 {
2033 bool own_link = (dev->fwnode == fwnode);
2034 struct fwnode_link *link, *tmp;
2035 struct fwnode_handle *child = NULL;
2036 u32 dl_flags;
2037
2038 if (own_link)
2039 dl_flags = fw_devlink_get_flags();
2040 else
2041 dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
2042
2043 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
2044 int ret;
2045 struct device *sup_dev;
2046 struct fwnode_handle *sup = link->supplier;
2047
2048 ret = fw_devlink_create_devlink(dev, sup, dl_flags);
2049 if (!own_link || ret == -EAGAIN)
2050 continue;
2051
2052 __fwnode_link_del(link);
2053
2054 /* If no device link was created, nothing more to do. */
2055 if (ret)
2056 continue;
2057
2058 /*
2059 * If a device link was successfully created to a supplier, we
2060 * now need to try and link the supplier to all its suppliers.
2061 *
2062 * This is needed to detect and delete false dependencies in
2063 * fwnode links that haven't been converted to a device link
2064 * yet. See comments in fw_devlink_create_devlink() for more
2065 * details on the false dependency.
2066 *
2067 * Without deleting these false dependencies, some devices will
2068 * never probe because they'll keep waiting for their false
2069 * dependency fwnode links to be converted to device links.
2070 */
2071 sup_dev = get_dev_from_fwnode(sup);
2072 __fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode);
2073 put_device(sup_dev);
2074 }
2075
2076 /*
2077 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
2078 * all the descendants. This proxy link step is needed to handle the
2079 * case where the supplier is added before the consumer's parent device
2080 * (@dev).
2081 */
2082 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
2083 __fw_devlink_link_to_suppliers(dev, child);
2084 }
2085
fw_devlink_link_device(struct device * dev)2086 static void fw_devlink_link_device(struct device *dev)
2087 {
2088 struct fwnode_handle *fwnode = dev->fwnode;
2089
2090 if (!fw_devlink_flags)
2091 return;
2092
2093 fw_devlink_parse_fwtree(fwnode);
2094
2095 mutex_lock(&fwnode_link_lock);
2096 __fw_devlink_link_to_consumers(dev);
2097 __fw_devlink_link_to_suppliers(dev, fwnode);
2098 mutex_unlock(&fwnode_link_lock);
2099 }
2100
2101 /* Device links support end. */
2102
2103 int (*platform_notify)(struct device *dev) = NULL;
2104 int (*platform_notify_remove)(struct device *dev) = NULL;
2105 static struct kobject *dev_kobj;
2106 struct kobject *sysfs_dev_char_kobj;
2107 struct kobject *sysfs_dev_block_kobj;
2108
2109 static DEFINE_MUTEX(device_hotplug_lock);
2110
lock_device_hotplug(void)2111 void lock_device_hotplug(void)
2112 {
2113 mutex_lock(&device_hotplug_lock);
2114 }
2115
unlock_device_hotplug(void)2116 void unlock_device_hotplug(void)
2117 {
2118 mutex_unlock(&device_hotplug_lock);
2119 }
2120
lock_device_hotplug_sysfs(void)2121 int lock_device_hotplug_sysfs(void)
2122 {
2123 if (mutex_trylock(&device_hotplug_lock))
2124 return 0;
2125
2126 /* Avoid busy looping (5 ms of sleep should do). */
2127 msleep(5);
2128 return restart_syscall();
2129 }
2130
2131 #ifdef CONFIG_BLOCK
device_is_not_partition(struct device * dev)2132 static inline int device_is_not_partition(struct device *dev)
2133 {
2134 return !(dev->type == &part_type);
2135 }
2136 #else
device_is_not_partition(struct device * dev)2137 static inline int device_is_not_partition(struct device *dev)
2138 {
2139 return 1;
2140 }
2141 #endif
2142
device_platform_notify(struct device * dev)2143 static void device_platform_notify(struct device *dev)
2144 {
2145 acpi_device_notify(dev);
2146
2147 software_node_notify(dev);
2148
2149 if (platform_notify)
2150 platform_notify(dev);
2151 }
2152
device_platform_notify_remove(struct device * dev)2153 static void device_platform_notify_remove(struct device *dev)
2154 {
2155 acpi_device_notify_remove(dev);
2156
2157 software_node_notify_remove(dev);
2158
2159 if (platform_notify_remove)
2160 platform_notify_remove(dev);
2161 }
2162
2163 /**
2164 * dev_driver_string - Return a device's driver name, if at all possible
2165 * @dev: struct device to get the name of
2166 *
2167 * Will return the device's driver's name if it is bound to a device. If
2168 * the device is not bound to a driver, it will return the name of the bus
2169 * it is attached to. If it is not attached to a bus either, an empty
2170 * string will be returned.
2171 */
dev_driver_string(const struct device * dev)2172 const char *dev_driver_string(const struct device *dev)
2173 {
2174 struct device_driver *drv;
2175
2176 /* dev->driver can change to NULL underneath us because of unbinding,
2177 * so be careful about accessing it. dev->bus and dev->class should
2178 * never change once they are set, so they don't need special care.
2179 */
2180 drv = READ_ONCE(dev->driver);
2181 return drv ? drv->name : dev_bus_name(dev);
2182 }
2183 EXPORT_SYMBOL(dev_driver_string);
2184
2185 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2186
dev_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)2187 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2188 char *buf)
2189 {
2190 struct device_attribute *dev_attr = to_dev_attr(attr);
2191 struct device *dev = kobj_to_dev(kobj);
2192 ssize_t ret = -EIO;
2193
2194 if (dev_attr->show)
2195 ret = dev_attr->show(dev, dev_attr, buf);
2196 if (ret >= (ssize_t)PAGE_SIZE) {
2197 printk("dev_attr_show: %pS returned bad count\n",
2198 dev_attr->show);
2199 }
2200 return ret;
2201 }
2202
dev_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)2203 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2204 const char *buf, size_t count)
2205 {
2206 struct device_attribute *dev_attr = to_dev_attr(attr);
2207 struct device *dev = kobj_to_dev(kobj);
2208 ssize_t ret = -EIO;
2209
2210 if (dev_attr->store)
2211 ret = dev_attr->store(dev, dev_attr, buf, count);
2212 return ret;
2213 }
2214
2215 static const struct sysfs_ops dev_sysfs_ops = {
2216 .show = dev_attr_show,
2217 .store = dev_attr_store,
2218 };
2219
2220 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2221
device_store_ulong(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2222 ssize_t device_store_ulong(struct device *dev,
2223 struct device_attribute *attr,
2224 const char *buf, size_t size)
2225 {
2226 struct dev_ext_attribute *ea = to_ext_attr(attr);
2227 int ret;
2228 unsigned long new;
2229
2230 ret = kstrtoul(buf, 0, &new);
2231 if (ret)
2232 return ret;
2233 *(unsigned long *)(ea->var) = new;
2234 /* Always return full write size even if we didn't consume all */
2235 return size;
2236 }
2237 EXPORT_SYMBOL_GPL(device_store_ulong);
2238
device_show_ulong(struct device * dev,struct device_attribute * attr,char * buf)2239 ssize_t device_show_ulong(struct device *dev,
2240 struct device_attribute *attr,
2241 char *buf)
2242 {
2243 struct dev_ext_attribute *ea = to_ext_attr(attr);
2244 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2245 }
2246 EXPORT_SYMBOL_GPL(device_show_ulong);
2247
device_store_int(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2248 ssize_t device_store_int(struct device *dev,
2249 struct device_attribute *attr,
2250 const char *buf, size_t size)
2251 {
2252 struct dev_ext_attribute *ea = to_ext_attr(attr);
2253 int ret;
2254 long new;
2255
2256 ret = kstrtol(buf, 0, &new);
2257 if (ret)
2258 return ret;
2259
2260 if (new > INT_MAX || new < INT_MIN)
2261 return -EINVAL;
2262 *(int *)(ea->var) = new;
2263 /* Always return full write size even if we didn't consume all */
2264 return size;
2265 }
2266 EXPORT_SYMBOL_GPL(device_store_int);
2267
device_show_int(struct device * dev,struct device_attribute * attr,char * buf)2268 ssize_t device_show_int(struct device *dev,
2269 struct device_attribute *attr,
2270 char *buf)
2271 {
2272 struct dev_ext_attribute *ea = to_ext_attr(attr);
2273
2274 return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2275 }
2276 EXPORT_SYMBOL_GPL(device_show_int);
2277
device_store_bool(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2278 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2279 const char *buf, size_t size)
2280 {
2281 struct dev_ext_attribute *ea = to_ext_attr(attr);
2282
2283 if (strtobool(buf, ea->var) < 0)
2284 return -EINVAL;
2285
2286 return size;
2287 }
2288 EXPORT_SYMBOL_GPL(device_store_bool);
2289
device_show_bool(struct device * dev,struct device_attribute * attr,char * buf)2290 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2291 char *buf)
2292 {
2293 struct dev_ext_attribute *ea = to_ext_attr(attr);
2294
2295 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2296 }
2297 EXPORT_SYMBOL_GPL(device_show_bool);
2298
2299 /**
2300 * device_release - free device structure.
2301 * @kobj: device's kobject.
2302 *
2303 * This is called once the reference count for the object
2304 * reaches 0. We forward the call to the device's release
2305 * method, which should handle actually freeing the structure.
2306 */
device_release(struct kobject * kobj)2307 static void device_release(struct kobject *kobj)
2308 {
2309 struct device *dev = kobj_to_dev(kobj);
2310 struct device_private *p = dev->p;
2311
2312 /*
2313 * Some platform devices are driven without driver attached
2314 * and managed resources may have been acquired. Make sure
2315 * all resources are released.
2316 *
2317 * Drivers still can add resources into device after device
2318 * is deleted but alive, so release devres here to avoid
2319 * possible memory leak.
2320 */
2321 devres_release_all(dev);
2322
2323 kfree(dev->dma_range_map);
2324
2325 if (dev->release)
2326 dev->release(dev);
2327 else if (dev->type && dev->type->release)
2328 dev->type->release(dev);
2329 else if (dev->class && dev->class->dev_release)
2330 dev->class->dev_release(dev);
2331 else
2332 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2333 dev_name(dev));
2334 kfree(p);
2335 }
2336
device_namespace(struct kobject * kobj)2337 static const void *device_namespace(struct kobject *kobj)
2338 {
2339 struct device *dev = kobj_to_dev(kobj);
2340 const void *ns = NULL;
2341
2342 if (dev->class && dev->class->ns_type)
2343 ns = dev->class->namespace(dev);
2344
2345 return ns;
2346 }
2347
device_get_ownership(struct kobject * kobj,kuid_t * uid,kgid_t * gid)2348 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2349 {
2350 struct device *dev = kobj_to_dev(kobj);
2351
2352 if (dev->class && dev->class->get_ownership)
2353 dev->class->get_ownership(dev, uid, gid);
2354 }
2355
2356 static struct kobj_type device_ktype = {
2357 .release = device_release,
2358 .sysfs_ops = &dev_sysfs_ops,
2359 .namespace = device_namespace,
2360 .get_ownership = device_get_ownership,
2361 };
2362
2363
dev_uevent_filter(struct kobject * kobj)2364 static int dev_uevent_filter(struct kobject *kobj)
2365 {
2366 const struct kobj_type *ktype = get_ktype(kobj);
2367
2368 if (ktype == &device_ktype) {
2369 struct device *dev = kobj_to_dev(kobj);
2370 if (dev->bus)
2371 return 1;
2372 if (dev->class)
2373 return 1;
2374 }
2375 return 0;
2376 }
2377
dev_uevent_name(struct kobject * kobj)2378 static const char *dev_uevent_name(struct kobject *kobj)
2379 {
2380 struct device *dev = kobj_to_dev(kobj);
2381
2382 if (dev->bus)
2383 return dev->bus->name;
2384 if (dev->class)
2385 return dev->class->name;
2386 return NULL;
2387 }
2388
dev_uevent(struct kobject * kobj,struct kobj_uevent_env * env)2389 static int dev_uevent(struct kobject *kobj, struct kobj_uevent_env *env)
2390 {
2391 struct device *dev = kobj_to_dev(kobj);
2392 int retval = 0;
2393
2394 /* add device node properties if present */
2395 if (MAJOR(dev->devt)) {
2396 const char *tmp;
2397 const char *name;
2398 umode_t mode = 0;
2399 kuid_t uid = GLOBAL_ROOT_UID;
2400 kgid_t gid = GLOBAL_ROOT_GID;
2401
2402 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2403 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2404 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2405 if (name) {
2406 add_uevent_var(env, "DEVNAME=%s", name);
2407 if (mode)
2408 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2409 if (!uid_eq(uid, GLOBAL_ROOT_UID))
2410 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2411 if (!gid_eq(gid, GLOBAL_ROOT_GID))
2412 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2413 kfree(tmp);
2414 }
2415 }
2416
2417 if (dev->type && dev->type->name)
2418 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2419
2420 if (dev->driver)
2421 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2422
2423 /* Add common DT information about the device */
2424 of_device_uevent(dev, env);
2425
2426 /* have the bus specific function add its stuff */
2427 if (dev->bus && dev->bus->uevent) {
2428 retval = dev->bus->uevent(dev, env);
2429 if (retval)
2430 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2431 dev_name(dev), __func__, retval);
2432 }
2433
2434 /* have the class specific function add its stuff */
2435 if (dev->class && dev->class->dev_uevent) {
2436 retval = dev->class->dev_uevent(dev, env);
2437 if (retval)
2438 pr_debug("device: '%s': %s: class uevent() "
2439 "returned %d\n", dev_name(dev),
2440 __func__, retval);
2441 }
2442
2443 /* have the device type specific function add its stuff */
2444 if (dev->type && dev->type->uevent) {
2445 retval = dev->type->uevent(dev, env);
2446 if (retval)
2447 pr_debug("device: '%s': %s: dev_type uevent() "
2448 "returned %d\n", dev_name(dev),
2449 __func__, retval);
2450 }
2451
2452 return retval;
2453 }
2454
2455 static const struct kset_uevent_ops device_uevent_ops = {
2456 .filter = dev_uevent_filter,
2457 .name = dev_uevent_name,
2458 .uevent = dev_uevent,
2459 };
2460
uevent_show(struct device * dev,struct device_attribute * attr,char * buf)2461 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2462 char *buf)
2463 {
2464 struct kobject *top_kobj;
2465 struct kset *kset;
2466 struct kobj_uevent_env *env = NULL;
2467 int i;
2468 int len = 0;
2469 int retval;
2470
2471 /* search the kset, the device belongs to */
2472 top_kobj = &dev->kobj;
2473 while (!top_kobj->kset && top_kobj->parent)
2474 top_kobj = top_kobj->parent;
2475 if (!top_kobj->kset)
2476 goto out;
2477
2478 kset = top_kobj->kset;
2479 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2480 goto out;
2481
2482 /* respect filter */
2483 if (kset->uevent_ops && kset->uevent_ops->filter)
2484 if (!kset->uevent_ops->filter(&dev->kobj))
2485 goto out;
2486
2487 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2488 if (!env)
2489 return -ENOMEM;
2490
2491 /* let the kset specific function add its keys */
2492 retval = kset->uevent_ops->uevent(&dev->kobj, env);
2493 if (retval)
2494 goto out;
2495
2496 /* copy keys to file */
2497 for (i = 0; i < env->envp_idx; i++)
2498 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2499 out:
2500 kfree(env);
2501 return len;
2502 }
2503
uevent_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2504 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2505 const char *buf, size_t count)
2506 {
2507 int rc;
2508
2509 rc = kobject_synth_uevent(&dev->kobj, buf, count);
2510
2511 if (rc) {
2512 dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc);
2513 return rc;
2514 }
2515
2516 return count;
2517 }
2518 static DEVICE_ATTR_RW(uevent);
2519
online_show(struct device * dev,struct device_attribute * attr,char * buf)2520 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2521 char *buf)
2522 {
2523 bool val;
2524
2525 device_lock(dev);
2526 val = !dev->offline;
2527 device_unlock(dev);
2528 return sysfs_emit(buf, "%u\n", val);
2529 }
2530
online_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2531 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2532 const char *buf, size_t count)
2533 {
2534 bool val;
2535 int ret;
2536
2537 ret = strtobool(buf, &val);
2538 if (ret < 0)
2539 return ret;
2540
2541 ret = lock_device_hotplug_sysfs();
2542 if (ret)
2543 return ret;
2544
2545 ret = val ? device_online(dev) : device_offline(dev);
2546 unlock_device_hotplug();
2547 return ret < 0 ? ret : count;
2548 }
2549 static DEVICE_ATTR_RW(online);
2550
removable_show(struct device * dev,struct device_attribute * attr,char * buf)2551 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2552 char *buf)
2553 {
2554 const char *loc;
2555
2556 switch (dev->removable) {
2557 case DEVICE_REMOVABLE:
2558 loc = "removable";
2559 break;
2560 case DEVICE_FIXED:
2561 loc = "fixed";
2562 break;
2563 default:
2564 loc = "unknown";
2565 }
2566 return sysfs_emit(buf, "%s\n", loc);
2567 }
2568 static DEVICE_ATTR_RO(removable);
2569
device_add_groups(struct device * dev,const struct attribute_group ** groups)2570 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2571 {
2572 return sysfs_create_groups(&dev->kobj, groups);
2573 }
2574 EXPORT_SYMBOL_GPL(device_add_groups);
2575
device_remove_groups(struct device * dev,const struct attribute_group ** groups)2576 void device_remove_groups(struct device *dev,
2577 const struct attribute_group **groups)
2578 {
2579 sysfs_remove_groups(&dev->kobj, groups);
2580 }
2581 EXPORT_SYMBOL_GPL(device_remove_groups);
2582
2583 union device_attr_group_devres {
2584 const struct attribute_group *group;
2585 const struct attribute_group **groups;
2586 };
2587
devm_attr_group_match(struct device * dev,void * res,void * data)2588 static int devm_attr_group_match(struct device *dev, void *res, void *data)
2589 {
2590 return ((union device_attr_group_devres *)res)->group == data;
2591 }
2592
devm_attr_group_remove(struct device * dev,void * res)2593 static void devm_attr_group_remove(struct device *dev, void *res)
2594 {
2595 union device_attr_group_devres *devres = res;
2596 const struct attribute_group *group = devres->group;
2597
2598 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2599 sysfs_remove_group(&dev->kobj, group);
2600 }
2601
devm_attr_groups_remove(struct device * dev,void * res)2602 static void devm_attr_groups_remove(struct device *dev, void *res)
2603 {
2604 union device_attr_group_devres *devres = res;
2605 const struct attribute_group **groups = devres->groups;
2606
2607 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2608 sysfs_remove_groups(&dev->kobj, groups);
2609 }
2610
2611 /**
2612 * devm_device_add_group - given a device, create a managed attribute group
2613 * @dev: The device to create the group for
2614 * @grp: The attribute group to create
2615 *
2616 * This function creates a group for the first time. It will explicitly
2617 * warn and error if any of the attribute files being created already exist.
2618 *
2619 * Returns 0 on success or error code on failure.
2620 */
devm_device_add_group(struct device * dev,const struct attribute_group * grp)2621 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2622 {
2623 union device_attr_group_devres *devres;
2624 int error;
2625
2626 devres = devres_alloc(devm_attr_group_remove,
2627 sizeof(*devres), GFP_KERNEL);
2628 if (!devres)
2629 return -ENOMEM;
2630
2631 error = sysfs_create_group(&dev->kobj, grp);
2632 if (error) {
2633 devres_free(devres);
2634 return error;
2635 }
2636
2637 devres->group = grp;
2638 devres_add(dev, devres);
2639 return 0;
2640 }
2641 EXPORT_SYMBOL_GPL(devm_device_add_group);
2642
2643 /**
2644 * devm_device_remove_group: remove a managed group from a device
2645 * @dev: device to remove the group from
2646 * @grp: group to remove
2647 *
2648 * This function removes a group of attributes from a device. The attributes
2649 * previously have to have been created for this group, otherwise it will fail.
2650 */
devm_device_remove_group(struct device * dev,const struct attribute_group * grp)2651 void devm_device_remove_group(struct device *dev,
2652 const struct attribute_group *grp)
2653 {
2654 WARN_ON(devres_release(dev, devm_attr_group_remove,
2655 devm_attr_group_match,
2656 /* cast away const */ (void *)grp));
2657 }
2658 EXPORT_SYMBOL_GPL(devm_device_remove_group);
2659
2660 /**
2661 * devm_device_add_groups - create a bunch of managed attribute groups
2662 * @dev: The device to create the group for
2663 * @groups: The attribute groups to create, NULL terminated
2664 *
2665 * This function creates a bunch of managed attribute groups. If an error
2666 * occurs when creating a group, all previously created groups will be
2667 * removed, unwinding everything back to the original state when this
2668 * function was called. It will explicitly warn and error if any of the
2669 * attribute files being created already exist.
2670 *
2671 * Returns 0 on success or error code from sysfs_create_group on failure.
2672 */
devm_device_add_groups(struct device * dev,const struct attribute_group ** groups)2673 int devm_device_add_groups(struct device *dev,
2674 const struct attribute_group **groups)
2675 {
2676 union device_attr_group_devres *devres;
2677 int error;
2678
2679 devres = devres_alloc(devm_attr_groups_remove,
2680 sizeof(*devres), GFP_KERNEL);
2681 if (!devres)
2682 return -ENOMEM;
2683
2684 error = sysfs_create_groups(&dev->kobj, groups);
2685 if (error) {
2686 devres_free(devres);
2687 return error;
2688 }
2689
2690 devres->groups = groups;
2691 devres_add(dev, devres);
2692 return 0;
2693 }
2694 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2695
2696 /**
2697 * devm_device_remove_groups - remove a list of managed groups
2698 *
2699 * @dev: The device for the groups to be removed from
2700 * @groups: NULL terminated list of groups to be removed
2701 *
2702 * If groups is not NULL, remove the specified groups from the device.
2703 */
devm_device_remove_groups(struct device * dev,const struct attribute_group ** groups)2704 void devm_device_remove_groups(struct device *dev,
2705 const struct attribute_group **groups)
2706 {
2707 WARN_ON(devres_release(dev, devm_attr_groups_remove,
2708 devm_attr_group_match,
2709 /* cast away const */ (void *)groups));
2710 }
2711 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2712
device_add_attrs(struct device * dev)2713 static int device_add_attrs(struct device *dev)
2714 {
2715 struct class *class = dev->class;
2716 const struct device_type *type = dev->type;
2717 int error;
2718
2719 if (class) {
2720 error = device_add_groups(dev, class->dev_groups);
2721 if (error)
2722 return error;
2723 }
2724
2725 if (type) {
2726 error = device_add_groups(dev, type->groups);
2727 if (error)
2728 goto err_remove_class_groups;
2729 }
2730
2731 error = device_add_groups(dev, dev->groups);
2732 if (error)
2733 goto err_remove_type_groups;
2734
2735 if (device_supports_offline(dev) && !dev->offline_disabled) {
2736 error = device_create_file(dev, &dev_attr_online);
2737 if (error)
2738 goto err_remove_dev_groups;
2739 }
2740
2741 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2742 error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2743 if (error)
2744 goto err_remove_dev_online;
2745 }
2746
2747 if (dev_removable_is_valid(dev)) {
2748 error = device_create_file(dev, &dev_attr_removable);
2749 if (error)
2750 goto err_remove_dev_waiting_for_supplier;
2751 }
2752
2753 if (dev_add_physical_location(dev)) {
2754 error = device_add_group(dev,
2755 &dev_attr_physical_location_group);
2756 if (error)
2757 goto err_remove_dev_removable;
2758 }
2759
2760 return 0;
2761
2762 err_remove_dev_removable:
2763 device_remove_file(dev, &dev_attr_removable);
2764 err_remove_dev_waiting_for_supplier:
2765 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2766 err_remove_dev_online:
2767 device_remove_file(dev, &dev_attr_online);
2768 err_remove_dev_groups:
2769 device_remove_groups(dev, dev->groups);
2770 err_remove_type_groups:
2771 if (type)
2772 device_remove_groups(dev, type->groups);
2773 err_remove_class_groups:
2774 if (class)
2775 device_remove_groups(dev, class->dev_groups);
2776
2777 return error;
2778 }
2779
device_remove_attrs(struct device * dev)2780 static void device_remove_attrs(struct device *dev)
2781 {
2782 struct class *class = dev->class;
2783 const struct device_type *type = dev->type;
2784
2785 if (dev->physical_location) {
2786 device_remove_group(dev, &dev_attr_physical_location_group);
2787 kfree(dev->physical_location);
2788 }
2789
2790 device_remove_file(dev, &dev_attr_removable);
2791 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2792 device_remove_file(dev, &dev_attr_online);
2793 device_remove_groups(dev, dev->groups);
2794
2795 if (type)
2796 device_remove_groups(dev, type->groups);
2797
2798 if (class)
2799 device_remove_groups(dev, class->dev_groups);
2800 }
2801
dev_show(struct device * dev,struct device_attribute * attr,char * buf)2802 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2803 char *buf)
2804 {
2805 return print_dev_t(buf, dev->devt);
2806 }
2807 static DEVICE_ATTR_RO(dev);
2808
2809 /* /sys/devices/ */
2810 struct kset *devices_kset;
2811
2812 /**
2813 * devices_kset_move_before - Move device in the devices_kset's list.
2814 * @deva: Device to move.
2815 * @devb: Device @deva should come before.
2816 */
devices_kset_move_before(struct device * deva,struct device * devb)2817 static void devices_kset_move_before(struct device *deva, struct device *devb)
2818 {
2819 if (!devices_kset)
2820 return;
2821 pr_debug("devices_kset: Moving %s before %s\n",
2822 dev_name(deva), dev_name(devb));
2823 spin_lock(&devices_kset->list_lock);
2824 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2825 spin_unlock(&devices_kset->list_lock);
2826 }
2827
2828 /**
2829 * devices_kset_move_after - Move device in the devices_kset's list.
2830 * @deva: Device to move
2831 * @devb: Device @deva should come after.
2832 */
devices_kset_move_after(struct device * deva,struct device * devb)2833 static void devices_kset_move_after(struct device *deva, struct device *devb)
2834 {
2835 if (!devices_kset)
2836 return;
2837 pr_debug("devices_kset: Moving %s after %s\n",
2838 dev_name(deva), dev_name(devb));
2839 spin_lock(&devices_kset->list_lock);
2840 list_move(&deva->kobj.entry, &devb->kobj.entry);
2841 spin_unlock(&devices_kset->list_lock);
2842 }
2843
2844 /**
2845 * devices_kset_move_last - move the device to the end of devices_kset's list.
2846 * @dev: device to move
2847 */
devices_kset_move_last(struct device * dev)2848 void devices_kset_move_last(struct device *dev)
2849 {
2850 if (!devices_kset)
2851 return;
2852 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2853 spin_lock(&devices_kset->list_lock);
2854 list_move_tail(&dev->kobj.entry, &devices_kset->list);
2855 spin_unlock(&devices_kset->list_lock);
2856 }
2857
2858 /**
2859 * device_create_file - create sysfs attribute file for device.
2860 * @dev: device.
2861 * @attr: device attribute descriptor.
2862 */
device_create_file(struct device * dev,const struct device_attribute * attr)2863 int device_create_file(struct device *dev,
2864 const struct device_attribute *attr)
2865 {
2866 int error = 0;
2867
2868 if (dev) {
2869 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2870 "Attribute %s: write permission without 'store'\n",
2871 attr->attr.name);
2872 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2873 "Attribute %s: read permission without 'show'\n",
2874 attr->attr.name);
2875 error = sysfs_create_file(&dev->kobj, &attr->attr);
2876 }
2877
2878 return error;
2879 }
2880 EXPORT_SYMBOL_GPL(device_create_file);
2881
2882 /**
2883 * device_remove_file - remove sysfs attribute file.
2884 * @dev: device.
2885 * @attr: device attribute descriptor.
2886 */
device_remove_file(struct device * dev,const struct device_attribute * attr)2887 void device_remove_file(struct device *dev,
2888 const struct device_attribute *attr)
2889 {
2890 if (dev)
2891 sysfs_remove_file(&dev->kobj, &attr->attr);
2892 }
2893 EXPORT_SYMBOL_GPL(device_remove_file);
2894
2895 /**
2896 * device_remove_file_self - remove sysfs attribute file from its own method.
2897 * @dev: device.
2898 * @attr: device attribute descriptor.
2899 *
2900 * See kernfs_remove_self() for details.
2901 */
device_remove_file_self(struct device * dev,const struct device_attribute * attr)2902 bool device_remove_file_self(struct device *dev,
2903 const struct device_attribute *attr)
2904 {
2905 if (dev)
2906 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2907 else
2908 return false;
2909 }
2910 EXPORT_SYMBOL_GPL(device_remove_file_self);
2911
2912 /**
2913 * device_create_bin_file - create sysfs binary attribute file for device.
2914 * @dev: device.
2915 * @attr: device binary attribute descriptor.
2916 */
device_create_bin_file(struct device * dev,const struct bin_attribute * attr)2917 int device_create_bin_file(struct device *dev,
2918 const struct bin_attribute *attr)
2919 {
2920 int error = -EINVAL;
2921 if (dev)
2922 error = sysfs_create_bin_file(&dev->kobj, attr);
2923 return error;
2924 }
2925 EXPORT_SYMBOL_GPL(device_create_bin_file);
2926
2927 /**
2928 * device_remove_bin_file - remove sysfs binary attribute file
2929 * @dev: device.
2930 * @attr: device binary attribute descriptor.
2931 */
device_remove_bin_file(struct device * dev,const struct bin_attribute * attr)2932 void device_remove_bin_file(struct device *dev,
2933 const struct bin_attribute *attr)
2934 {
2935 if (dev)
2936 sysfs_remove_bin_file(&dev->kobj, attr);
2937 }
2938 EXPORT_SYMBOL_GPL(device_remove_bin_file);
2939
klist_children_get(struct klist_node * n)2940 static void klist_children_get(struct klist_node *n)
2941 {
2942 struct device_private *p = to_device_private_parent(n);
2943 struct device *dev = p->device;
2944
2945 get_device(dev);
2946 }
2947
klist_children_put(struct klist_node * n)2948 static void klist_children_put(struct klist_node *n)
2949 {
2950 struct device_private *p = to_device_private_parent(n);
2951 struct device *dev = p->device;
2952
2953 put_device(dev);
2954 }
2955
2956 /**
2957 * device_initialize - init device structure.
2958 * @dev: device.
2959 *
2960 * This prepares the device for use by other layers by initializing
2961 * its fields.
2962 * It is the first half of device_register(), if called by
2963 * that function, though it can also be called separately, so one
2964 * may use @dev's fields. In particular, get_device()/put_device()
2965 * may be used for reference counting of @dev after calling this
2966 * function.
2967 *
2968 * All fields in @dev must be initialized by the caller to 0, except
2969 * for those explicitly set to some other value. The simplest
2970 * approach is to use kzalloc() to allocate the structure containing
2971 * @dev.
2972 *
2973 * NOTE: Use put_device() to give up your reference instead of freeing
2974 * @dev directly once you have called this function.
2975 */
device_initialize(struct device * dev)2976 void device_initialize(struct device *dev)
2977 {
2978 dev->kobj.kset = devices_kset;
2979 kobject_init(&dev->kobj, &device_ktype);
2980 INIT_LIST_HEAD(&dev->dma_pools);
2981 mutex_init(&dev->mutex);
2982 lockdep_set_novalidate_class(&dev->mutex);
2983 spin_lock_init(&dev->devres_lock);
2984 INIT_LIST_HEAD(&dev->devres_head);
2985 device_pm_init(dev);
2986 set_dev_node(dev, NUMA_NO_NODE);
2987 INIT_LIST_HEAD(&dev->links.consumers);
2988 INIT_LIST_HEAD(&dev->links.suppliers);
2989 INIT_LIST_HEAD(&dev->links.defer_sync);
2990 dev->links.status = DL_DEV_NO_DRIVER;
2991 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
2992 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
2993 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
2994 dev->dma_coherent = dma_default_coherent;
2995 #endif
2996 #ifdef CONFIG_SWIOTLB
2997 dev->dma_io_tlb_mem = &io_tlb_default_mem;
2998 #endif
2999 }
3000 EXPORT_SYMBOL_GPL(device_initialize);
3001
virtual_device_parent(struct device * dev)3002 struct kobject *virtual_device_parent(struct device *dev)
3003 {
3004 static struct kobject *virtual_dir = NULL;
3005
3006 if (!virtual_dir)
3007 virtual_dir = kobject_create_and_add("virtual",
3008 &devices_kset->kobj);
3009
3010 return virtual_dir;
3011 }
3012
3013 struct class_dir {
3014 struct kobject kobj;
3015 struct class *class;
3016 };
3017
3018 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
3019
class_dir_release(struct kobject * kobj)3020 static void class_dir_release(struct kobject *kobj)
3021 {
3022 struct class_dir *dir = to_class_dir(kobj);
3023 kfree(dir);
3024 }
3025
3026 static const
class_dir_child_ns_type(struct kobject * kobj)3027 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
3028 {
3029 struct class_dir *dir = to_class_dir(kobj);
3030 return dir->class->ns_type;
3031 }
3032
3033 static struct kobj_type class_dir_ktype = {
3034 .release = class_dir_release,
3035 .sysfs_ops = &kobj_sysfs_ops,
3036 .child_ns_type = class_dir_child_ns_type
3037 };
3038
3039 static struct kobject *
class_dir_create_and_add(struct class * class,struct kobject * parent_kobj)3040 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
3041 {
3042 struct class_dir *dir;
3043 int retval;
3044
3045 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
3046 if (!dir)
3047 return ERR_PTR(-ENOMEM);
3048
3049 dir->class = class;
3050 kobject_init(&dir->kobj, &class_dir_ktype);
3051
3052 dir->kobj.kset = &class->p->glue_dirs;
3053
3054 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
3055 if (retval < 0) {
3056 kobject_put(&dir->kobj);
3057 return ERR_PTR(retval);
3058 }
3059 return &dir->kobj;
3060 }
3061
3062 static DEFINE_MUTEX(gdp_mutex);
3063
get_device_parent(struct device * dev,struct device * parent)3064 static struct kobject *get_device_parent(struct device *dev,
3065 struct device *parent)
3066 {
3067 if (dev->class) {
3068 struct kobject *kobj = NULL;
3069 struct kobject *parent_kobj;
3070 struct kobject *k;
3071
3072 #ifdef CONFIG_BLOCK
3073 /* block disks show up in /sys/block */
3074 if (sysfs_deprecated && dev->class == &block_class) {
3075 if (parent && parent->class == &block_class)
3076 return &parent->kobj;
3077 return &block_class.p->subsys.kobj;
3078 }
3079 #endif
3080
3081 /*
3082 * If we have no parent, we live in "virtual".
3083 * Class-devices with a non class-device as parent, live
3084 * in a "glue" directory to prevent namespace collisions.
3085 */
3086 if (parent == NULL)
3087 parent_kobj = virtual_device_parent(dev);
3088 else if (parent->class && !dev->class->ns_type)
3089 return &parent->kobj;
3090 else
3091 parent_kobj = &parent->kobj;
3092
3093 mutex_lock(&gdp_mutex);
3094
3095 /* find our class-directory at the parent and reference it */
3096 spin_lock(&dev->class->p->glue_dirs.list_lock);
3097 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
3098 if (k->parent == parent_kobj) {
3099 kobj = kobject_get(k);
3100 break;
3101 }
3102 spin_unlock(&dev->class->p->glue_dirs.list_lock);
3103 if (kobj) {
3104 mutex_unlock(&gdp_mutex);
3105 return kobj;
3106 }
3107
3108 /* or create a new class-directory at the parent device */
3109 k = class_dir_create_and_add(dev->class, parent_kobj);
3110 /* do not emit an uevent for this simple "glue" directory */
3111 mutex_unlock(&gdp_mutex);
3112 return k;
3113 }
3114
3115 /* subsystems can specify a default root directory for their devices */
3116 if (!parent && dev->bus && dev->bus->dev_root)
3117 return &dev->bus->dev_root->kobj;
3118
3119 if (parent)
3120 return &parent->kobj;
3121 return NULL;
3122 }
3123
live_in_glue_dir(struct kobject * kobj,struct device * dev)3124 static inline bool live_in_glue_dir(struct kobject *kobj,
3125 struct device *dev)
3126 {
3127 if (!kobj || !dev->class ||
3128 kobj->kset != &dev->class->p->glue_dirs)
3129 return false;
3130 return true;
3131 }
3132
get_glue_dir(struct device * dev)3133 static inline struct kobject *get_glue_dir(struct device *dev)
3134 {
3135 return dev->kobj.parent;
3136 }
3137
3138 /**
3139 * kobject_has_children - Returns whether a kobject has children.
3140 * @kobj: the object to test
3141 *
3142 * This will return whether a kobject has other kobjects as children.
3143 *
3144 * It does NOT account for the presence of attribute files, only sub
3145 * directories. It also assumes there is no concurrent addition or
3146 * removal of such children, and thus relies on external locking.
3147 */
kobject_has_children(struct kobject * kobj)3148 static inline bool kobject_has_children(struct kobject *kobj)
3149 {
3150 WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3151
3152 return kobj->sd && kobj->sd->dir.subdirs;
3153 }
3154
3155 /*
3156 * make sure cleaning up dir as the last step, we need to make
3157 * sure .release handler of kobject is run with holding the
3158 * global lock
3159 */
cleanup_glue_dir(struct device * dev,struct kobject * glue_dir)3160 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3161 {
3162 unsigned int ref;
3163
3164 /* see if we live in a "glue" directory */
3165 if (!live_in_glue_dir(glue_dir, dev))
3166 return;
3167
3168 mutex_lock(&gdp_mutex);
3169 /**
3170 * There is a race condition between removing glue directory
3171 * and adding a new device under the glue directory.
3172 *
3173 * CPU1: CPU2:
3174 *
3175 * device_add()
3176 * get_device_parent()
3177 * class_dir_create_and_add()
3178 * kobject_add_internal()
3179 * create_dir() // create glue_dir
3180 *
3181 * device_add()
3182 * get_device_parent()
3183 * kobject_get() // get glue_dir
3184 *
3185 * device_del()
3186 * cleanup_glue_dir()
3187 * kobject_del(glue_dir)
3188 *
3189 * kobject_add()
3190 * kobject_add_internal()
3191 * create_dir() // in glue_dir
3192 * sysfs_create_dir_ns()
3193 * kernfs_create_dir_ns(sd)
3194 *
3195 * sysfs_remove_dir() // glue_dir->sd=NULL
3196 * sysfs_put() // free glue_dir->sd
3197 *
3198 * // sd is freed
3199 * kernfs_new_node(sd)
3200 * kernfs_get(glue_dir)
3201 * kernfs_add_one()
3202 * kernfs_put()
3203 *
3204 * Before CPU1 remove last child device under glue dir, if CPU2 add
3205 * a new device under glue dir, the glue_dir kobject reference count
3206 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3207 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3208 * and sysfs_put(). This result in glue_dir->sd is freed.
3209 *
3210 * Then the CPU2 will see a stale "empty" but still potentially used
3211 * glue dir around in kernfs_new_node().
3212 *
3213 * In order to avoid this happening, we also should make sure that
3214 * kernfs_node for glue_dir is released in CPU1 only when refcount
3215 * for glue_dir kobj is 1.
3216 */
3217 ref = kref_read(&glue_dir->kref);
3218 if (!kobject_has_children(glue_dir) && !--ref)
3219 kobject_del(glue_dir);
3220 kobject_put(glue_dir);
3221 mutex_unlock(&gdp_mutex);
3222 }
3223
device_add_class_symlinks(struct device * dev)3224 static int device_add_class_symlinks(struct device *dev)
3225 {
3226 struct device_node *of_node = dev_of_node(dev);
3227 int error;
3228
3229 if (of_node) {
3230 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3231 if (error)
3232 dev_warn(dev, "Error %d creating of_node link\n",error);
3233 /* An error here doesn't warrant bringing down the device */
3234 }
3235
3236 if (!dev->class)
3237 return 0;
3238
3239 error = sysfs_create_link(&dev->kobj,
3240 &dev->class->p->subsys.kobj,
3241 "subsystem");
3242 if (error)
3243 goto out_devnode;
3244
3245 if (dev->parent && device_is_not_partition(dev)) {
3246 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3247 "device");
3248 if (error)
3249 goto out_subsys;
3250 }
3251
3252 #ifdef CONFIG_BLOCK
3253 /* /sys/block has directories and does not need symlinks */
3254 if (sysfs_deprecated && dev->class == &block_class)
3255 return 0;
3256 #endif
3257
3258 /* link in the class directory pointing to the device */
3259 error = sysfs_create_link(&dev->class->p->subsys.kobj,
3260 &dev->kobj, dev_name(dev));
3261 if (error)
3262 goto out_device;
3263
3264 return 0;
3265
3266 out_device:
3267 sysfs_remove_link(&dev->kobj, "device");
3268
3269 out_subsys:
3270 sysfs_remove_link(&dev->kobj, "subsystem");
3271 out_devnode:
3272 sysfs_remove_link(&dev->kobj, "of_node");
3273 return error;
3274 }
3275
device_remove_class_symlinks(struct device * dev)3276 static void device_remove_class_symlinks(struct device *dev)
3277 {
3278 if (dev_of_node(dev))
3279 sysfs_remove_link(&dev->kobj, "of_node");
3280
3281 if (!dev->class)
3282 return;
3283
3284 if (dev->parent && device_is_not_partition(dev))
3285 sysfs_remove_link(&dev->kobj, "device");
3286 sysfs_remove_link(&dev->kobj, "subsystem");
3287 #ifdef CONFIG_BLOCK
3288 if (sysfs_deprecated && dev->class == &block_class)
3289 return;
3290 #endif
3291 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
3292 }
3293
3294 /**
3295 * dev_set_name - set a device name
3296 * @dev: device
3297 * @fmt: format string for the device's name
3298 */
dev_set_name(struct device * dev,const char * fmt,...)3299 int dev_set_name(struct device *dev, const char *fmt, ...)
3300 {
3301 va_list vargs;
3302 int err;
3303
3304 va_start(vargs, fmt);
3305 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3306 va_end(vargs);
3307 return err;
3308 }
3309 EXPORT_SYMBOL_GPL(dev_set_name);
3310
3311 /**
3312 * device_to_dev_kobj - select a /sys/dev/ directory for the device
3313 * @dev: device
3314 *
3315 * By default we select char/ for new entries. Setting class->dev_obj
3316 * to NULL prevents an entry from being created. class->dev_kobj must
3317 * be set (or cleared) before any devices are registered to the class
3318 * otherwise device_create_sys_dev_entry() and
3319 * device_remove_sys_dev_entry() will disagree about the presence of
3320 * the link.
3321 */
device_to_dev_kobj(struct device * dev)3322 static struct kobject *device_to_dev_kobj(struct device *dev)
3323 {
3324 struct kobject *kobj;
3325
3326 if (dev->class)
3327 kobj = dev->class->dev_kobj;
3328 else
3329 kobj = sysfs_dev_char_kobj;
3330
3331 return kobj;
3332 }
3333
device_create_sys_dev_entry(struct device * dev)3334 static int device_create_sys_dev_entry(struct device *dev)
3335 {
3336 struct kobject *kobj = device_to_dev_kobj(dev);
3337 int error = 0;
3338 char devt_str[15];
3339
3340 if (kobj) {
3341 format_dev_t(devt_str, dev->devt);
3342 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3343 }
3344
3345 return error;
3346 }
3347
device_remove_sys_dev_entry(struct device * dev)3348 static void device_remove_sys_dev_entry(struct device *dev)
3349 {
3350 struct kobject *kobj = device_to_dev_kobj(dev);
3351 char devt_str[15];
3352
3353 if (kobj) {
3354 format_dev_t(devt_str, dev->devt);
3355 sysfs_remove_link(kobj, devt_str);
3356 }
3357 }
3358
device_private_init(struct device * dev)3359 static int device_private_init(struct device *dev)
3360 {
3361 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3362 if (!dev->p)
3363 return -ENOMEM;
3364 dev->p->device = dev;
3365 klist_init(&dev->p->klist_children, klist_children_get,
3366 klist_children_put);
3367 INIT_LIST_HEAD(&dev->p->deferred_probe);
3368 return 0;
3369 }
3370
3371 /**
3372 * device_add - add device to device hierarchy.
3373 * @dev: device.
3374 *
3375 * This is part 2 of device_register(), though may be called
3376 * separately _iff_ device_initialize() has been called separately.
3377 *
3378 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3379 * to the global and sibling lists for the device, then
3380 * adds it to the other relevant subsystems of the driver model.
3381 *
3382 * Do not call this routine or device_register() more than once for
3383 * any device structure. The driver model core is not designed to work
3384 * with devices that get unregistered and then spring back to life.
3385 * (Among other things, it's very hard to guarantee that all references
3386 * to the previous incarnation of @dev have been dropped.) Allocate
3387 * and register a fresh new struct device instead.
3388 *
3389 * NOTE: _Never_ directly free @dev after calling this function, even
3390 * if it returned an error! Always use put_device() to give up your
3391 * reference instead.
3392 *
3393 * Rule of thumb is: if device_add() succeeds, you should call
3394 * device_del() when you want to get rid of it. If device_add() has
3395 * *not* succeeded, use *only* put_device() to drop the reference
3396 * count.
3397 */
device_add(struct device * dev)3398 int device_add(struct device *dev)
3399 {
3400 struct device *parent;
3401 struct kobject *kobj;
3402 struct class_interface *class_intf;
3403 int error = -EINVAL;
3404 struct kobject *glue_dir = NULL;
3405
3406 dev = get_device(dev);
3407 if (!dev)
3408 goto done;
3409
3410 if (!dev->p) {
3411 error = device_private_init(dev);
3412 if (error)
3413 goto done;
3414 }
3415
3416 /*
3417 * for statically allocated devices, which should all be converted
3418 * some day, we need to initialize the name. We prevent reading back
3419 * the name, and force the use of dev_name()
3420 */
3421 if (dev->init_name) {
3422 dev_set_name(dev, "%s", dev->init_name);
3423 dev->init_name = NULL;
3424 }
3425
3426 /* subsystems can specify simple device enumeration */
3427 if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
3428 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3429
3430 if (!dev_name(dev)) {
3431 error = -EINVAL;
3432 goto name_error;
3433 }
3434
3435 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3436
3437 parent = get_device(dev->parent);
3438 kobj = get_device_parent(dev, parent);
3439 if (IS_ERR(kobj)) {
3440 error = PTR_ERR(kobj);
3441 goto parent_error;
3442 }
3443 if (kobj)
3444 dev->kobj.parent = kobj;
3445
3446 /* use parent numa_node */
3447 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3448 set_dev_node(dev, dev_to_node(parent));
3449
3450 /* first, register with generic layer. */
3451 /* we require the name to be set before, and pass NULL */
3452 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3453 if (error) {
3454 glue_dir = get_glue_dir(dev);
3455 goto Error;
3456 }
3457
3458 /* notify platform of device entry */
3459 device_platform_notify(dev);
3460
3461 error = device_create_file(dev, &dev_attr_uevent);
3462 if (error)
3463 goto attrError;
3464
3465 error = device_add_class_symlinks(dev);
3466 if (error)
3467 goto SymlinkError;
3468 error = device_add_attrs(dev);
3469 if (error)
3470 goto AttrsError;
3471 error = bus_add_device(dev);
3472 if (error)
3473 goto BusError;
3474 error = dpm_sysfs_add(dev);
3475 if (error)
3476 goto DPMError;
3477 device_pm_add(dev);
3478
3479 if (MAJOR(dev->devt)) {
3480 error = device_create_file(dev, &dev_attr_dev);
3481 if (error)
3482 goto DevAttrError;
3483
3484 error = device_create_sys_dev_entry(dev);
3485 if (error)
3486 goto SysEntryError;
3487
3488 devtmpfs_create_node(dev);
3489 }
3490
3491 /* Notify clients of device addition. This call must come
3492 * after dpm_sysfs_add() and before kobject_uevent().
3493 */
3494 if (dev->bus)
3495 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3496 BUS_NOTIFY_ADD_DEVICE, dev);
3497
3498 kobject_uevent(&dev->kobj, KOBJ_ADD);
3499
3500 /*
3501 * Check if any of the other devices (consumers) have been waiting for
3502 * this device (supplier) to be added so that they can create a device
3503 * link to it.
3504 *
3505 * This needs to happen after device_pm_add() because device_link_add()
3506 * requires the supplier be registered before it's called.
3507 *
3508 * But this also needs to happen before bus_probe_device() to make sure
3509 * waiting consumers can link to it before the driver is bound to the
3510 * device and the driver sync_state callback is called for this device.
3511 */
3512 if (dev->fwnode && !dev->fwnode->dev) {
3513 dev->fwnode->dev = dev;
3514 fw_devlink_link_device(dev);
3515 }
3516
3517 bus_probe_device(dev);
3518
3519 /*
3520 * If all driver registration is done and a newly added device doesn't
3521 * match with any driver, don't block its consumers from probing in
3522 * case the consumer device is able to operate without this supplier.
3523 */
3524 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3525 fw_devlink_unblock_consumers(dev);
3526
3527 if (parent)
3528 klist_add_tail(&dev->p->knode_parent,
3529 &parent->p->klist_children);
3530
3531 if (dev->class) {
3532 mutex_lock(&dev->class->p->mutex);
3533 /* tie the class to the device */
3534 klist_add_tail(&dev->p->knode_class,
3535 &dev->class->p->klist_devices);
3536
3537 /* notify any interfaces that the device is here */
3538 list_for_each_entry(class_intf,
3539 &dev->class->p->interfaces, node)
3540 if (class_intf->add_dev)
3541 class_intf->add_dev(dev, class_intf);
3542 mutex_unlock(&dev->class->p->mutex);
3543 }
3544 done:
3545 put_device(dev);
3546 return error;
3547 SysEntryError:
3548 if (MAJOR(dev->devt))
3549 device_remove_file(dev, &dev_attr_dev);
3550 DevAttrError:
3551 device_pm_remove(dev);
3552 dpm_sysfs_remove(dev);
3553 DPMError:
3554 bus_remove_device(dev);
3555 BusError:
3556 device_remove_attrs(dev);
3557 AttrsError:
3558 device_remove_class_symlinks(dev);
3559 SymlinkError:
3560 device_remove_file(dev, &dev_attr_uevent);
3561 attrError:
3562 device_platform_notify_remove(dev);
3563 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3564 glue_dir = get_glue_dir(dev);
3565 kobject_del(&dev->kobj);
3566 Error:
3567 cleanup_glue_dir(dev, glue_dir);
3568 parent_error:
3569 put_device(parent);
3570 name_error:
3571 kfree(dev->p);
3572 dev->p = NULL;
3573 goto done;
3574 }
3575 EXPORT_SYMBOL_GPL(device_add);
3576
3577 /**
3578 * device_register - register a device with the system.
3579 * @dev: pointer to the device structure
3580 *
3581 * This happens in two clean steps - initialize the device
3582 * and add it to the system. The two steps can be called
3583 * separately, but this is the easiest and most common.
3584 * I.e. you should only call the two helpers separately if
3585 * have a clearly defined need to use and refcount the device
3586 * before it is added to the hierarchy.
3587 *
3588 * For more information, see the kerneldoc for device_initialize()
3589 * and device_add().
3590 *
3591 * NOTE: _Never_ directly free @dev after calling this function, even
3592 * if it returned an error! Always use put_device() to give up the
3593 * reference initialized in this function instead.
3594 */
device_register(struct device * dev)3595 int device_register(struct device *dev)
3596 {
3597 device_initialize(dev);
3598 return device_add(dev);
3599 }
3600 EXPORT_SYMBOL_GPL(device_register);
3601
3602 /**
3603 * get_device - increment reference count for device.
3604 * @dev: device.
3605 *
3606 * This simply forwards the call to kobject_get(), though
3607 * we do take care to provide for the case that we get a NULL
3608 * pointer passed in.
3609 */
get_device(struct device * dev)3610 struct device *get_device(struct device *dev)
3611 {
3612 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3613 }
3614 EXPORT_SYMBOL_GPL(get_device);
3615
3616 /**
3617 * put_device - decrement reference count.
3618 * @dev: device in question.
3619 */
put_device(struct device * dev)3620 void put_device(struct device *dev)
3621 {
3622 /* might_sleep(); */
3623 if (dev)
3624 kobject_put(&dev->kobj);
3625 }
3626 EXPORT_SYMBOL_GPL(put_device);
3627
kill_device(struct device * dev)3628 bool kill_device(struct device *dev)
3629 {
3630 /*
3631 * Require the device lock and set the "dead" flag to guarantee that
3632 * the update behavior is consistent with the other bitfields near
3633 * it and that we cannot have an asynchronous probe routine trying
3634 * to run while we are tearing out the bus/class/sysfs from
3635 * underneath the device.
3636 */
3637 device_lock_assert(dev);
3638
3639 if (dev->p->dead)
3640 return false;
3641 dev->p->dead = true;
3642 return true;
3643 }
3644 EXPORT_SYMBOL_GPL(kill_device);
3645
3646 /**
3647 * device_del - delete device from system.
3648 * @dev: device.
3649 *
3650 * This is the first part of the device unregistration
3651 * sequence. This removes the device from the lists we control
3652 * from here, has it removed from the other driver model
3653 * subsystems it was added to in device_add(), and removes it
3654 * from the kobject hierarchy.
3655 *
3656 * NOTE: this should be called manually _iff_ device_add() was
3657 * also called manually.
3658 */
device_del(struct device * dev)3659 void device_del(struct device *dev)
3660 {
3661 struct device *parent = dev->parent;
3662 struct kobject *glue_dir = NULL;
3663 struct class_interface *class_intf;
3664 unsigned int noio_flag;
3665
3666 device_lock(dev);
3667 kill_device(dev);
3668 device_unlock(dev);
3669
3670 if (dev->fwnode && dev->fwnode->dev == dev)
3671 dev->fwnode->dev = NULL;
3672
3673 /* Notify clients of device removal. This call must come
3674 * before dpm_sysfs_remove().
3675 */
3676 noio_flag = memalloc_noio_save();
3677 if (dev->bus)
3678 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3679 BUS_NOTIFY_DEL_DEVICE, dev);
3680
3681 dpm_sysfs_remove(dev);
3682 if (parent)
3683 klist_del(&dev->p->knode_parent);
3684 if (MAJOR(dev->devt)) {
3685 devtmpfs_delete_node(dev);
3686 device_remove_sys_dev_entry(dev);
3687 device_remove_file(dev, &dev_attr_dev);
3688 }
3689 if (dev->class) {
3690 device_remove_class_symlinks(dev);
3691
3692 mutex_lock(&dev->class->p->mutex);
3693 /* notify any interfaces that the device is now gone */
3694 list_for_each_entry(class_intf,
3695 &dev->class->p->interfaces, node)
3696 if (class_intf->remove_dev)
3697 class_intf->remove_dev(dev, class_intf);
3698 /* remove the device from the class list */
3699 klist_del(&dev->p->knode_class);
3700 mutex_unlock(&dev->class->p->mutex);
3701 }
3702 device_remove_file(dev, &dev_attr_uevent);
3703 device_remove_attrs(dev);
3704 bus_remove_device(dev);
3705 device_pm_remove(dev);
3706 driver_deferred_probe_del(dev);
3707 device_platform_notify_remove(dev);
3708 device_links_purge(dev);
3709
3710 if (dev->bus)
3711 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3712 BUS_NOTIFY_REMOVED_DEVICE, dev);
3713 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3714 glue_dir = get_glue_dir(dev);
3715 kobject_del(&dev->kobj);
3716 cleanup_glue_dir(dev, glue_dir);
3717 memalloc_noio_restore(noio_flag);
3718 put_device(parent);
3719 }
3720 EXPORT_SYMBOL_GPL(device_del);
3721
3722 /**
3723 * device_unregister - unregister device from system.
3724 * @dev: device going away.
3725 *
3726 * We do this in two parts, like we do device_register(). First,
3727 * we remove it from all the subsystems with device_del(), then
3728 * we decrement the reference count via put_device(). If that
3729 * is the final reference count, the device will be cleaned up
3730 * via device_release() above. Otherwise, the structure will
3731 * stick around until the final reference to the device is dropped.
3732 */
device_unregister(struct device * dev)3733 void device_unregister(struct device *dev)
3734 {
3735 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3736 device_del(dev);
3737 put_device(dev);
3738 }
3739 EXPORT_SYMBOL_GPL(device_unregister);
3740
prev_device(struct klist_iter * i)3741 static struct device *prev_device(struct klist_iter *i)
3742 {
3743 struct klist_node *n = klist_prev(i);
3744 struct device *dev = NULL;
3745 struct device_private *p;
3746
3747 if (n) {
3748 p = to_device_private_parent(n);
3749 dev = p->device;
3750 }
3751 return dev;
3752 }
3753
next_device(struct klist_iter * i)3754 static struct device *next_device(struct klist_iter *i)
3755 {
3756 struct klist_node *n = klist_next(i);
3757 struct device *dev = NULL;
3758 struct device_private *p;
3759
3760 if (n) {
3761 p = to_device_private_parent(n);
3762 dev = p->device;
3763 }
3764 return dev;
3765 }
3766
3767 /**
3768 * device_get_devnode - path of device node file
3769 * @dev: device
3770 * @mode: returned file access mode
3771 * @uid: returned file owner
3772 * @gid: returned file group
3773 * @tmp: possibly allocated string
3774 *
3775 * Return the relative path of a possible device node.
3776 * Non-default names may need to allocate a memory to compose
3777 * a name. This memory is returned in tmp and needs to be
3778 * freed by the caller.
3779 */
device_get_devnode(struct device * dev,umode_t * mode,kuid_t * uid,kgid_t * gid,const char ** tmp)3780 const char *device_get_devnode(struct device *dev,
3781 umode_t *mode, kuid_t *uid, kgid_t *gid,
3782 const char **tmp)
3783 {
3784 char *s;
3785
3786 *tmp = NULL;
3787
3788 /* the device type may provide a specific name */
3789 if (dev->type && dev->type->devnode)
3790 *tmp = dev->type->devnode(dev, mode, uid, gid);
3791 if (*tmp)
3792 return *tmp;
3793
3794 /* the class may provide a specific name */
3795 if (dev->class && dev->class->devnode)
3796 *tmp = dev->class->devnode(dev, mode);
3797 if (*tmp)
3798 return *tmp;
3799
3800 /* return name without allocation, tmp == NULL */
3801 if (strchr(dev_name(dev), '!') == NULL)
3802 return dev_name(dev);
3803
3804 /* replace '!' in the name with '/' */
3805 s = kstrdup(dev_name(dev), GFP_KERNEL);
3806 if (!s)
3807 return NULL;
3808 strreplace(s, '!', '/');
3809 return *tmp = s;
3810 }
3811
3812 /**
3813 * device_for_each_child - device child iterator.
3814 * @parent: parent struct device.
3815 * @fn: function to be called for each device.
3816 * @data: data for the callback.
3817 *
3818 * Iterate over @parent's child devices, and call @fn for each,
3819 * passing it @data.
3820 *
3821 * We check the return of @fn each time. If it returns anything
3822 * other than 0, we break out and return that value.
3823 */
device_for_each_child(struct device * parent,void * data,int (* fn)(struct device * dev,void * data))3824 int device_for_each_child(struct device *parent, void *data,
3825 int (*fn)(struct device *dev, void *data))
3826 {
3827 struct klist_iter i;
3828 struct device *child;
3829 int error = 0;
3830
3831 if (!parent->p)
3832 return 0;
3833
3834 klist_iter_init(&parent->p->klist_children, &i);
3835 while (!error && (child = next_device(&i)))
3836 error = fn(child, data);
3837 klist_iter_exit(&i);
3838 return error;
3839 }
3840 EXPORT_SYMBOL_GPL(device_for_each_child);
3841
3842 /**
3843 * device_for_each_child_reverse - device child iterator in reversed order.
3844 * @parent: parent struct device.
3845 * @fn: function to be called for each device.
3846 * @data: data for the callback.
3847 *
3848 * Iterate over @parent's child devices, and call @fn for each,
3849 * passing it @data.
3850 *
3851 * We check the return of @fn each time. If it returns anything
3852 * other than 0, we break out and return that value.
3853 */
device_for_each_child_reverse(struct device * parent,void * data,int (* fn)(struct device * dev,void * data))3854 int device_for_each_child_reverse(struct device *parent, void *data,
3855 int (*fn)(struct device *dev, void *data))
3856 {
3857 struct klist_iter i;
3858 struct device *child;
3859 int error = 0;
3860
3861 if (!parent->p)
3862 return 0;
3863
3864 klist_iter_init(&parent->p->klist_children, &i);
3865 while ((child = prev_device(&i)) && !error)
3866 error = fn(child, data);
3867 klist_iter_exit(&i);
3868 return error;
3869 }
3870 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3871
3872 /**
3873 * device_find_child - device iterator for locating a particular device.
3874 * @parent: parent struct device
3875 * @match: Callback function to check device
3876 * @data: Data to pass to match function
3877 *
3878 * This is similar to the device_for_each_child() function above, but it
3879 * returns a reference to a device that is 'found' for later use, as
3880 * determined by the @match callback.
3881 *
3882 * The callback should return 0 if the device doesn't match and non-zero
3883 * if it does. If the callback returns non-zero and a reference to the
3884 * current device can be obtained, this function will return to the caller
3885 * and not iterate over any more devices.
3886 *
3887 * NOTE: you will need to drop the reference with put_device() after use.
3888 */
device_find_child(struct device * parent,void * data,int (* match)(struct device * dev,void * data))3889 struct device *device_find_child(struct device *parent, void *data,
3890 int (*match)(struct device *dev, void *data))
3891 {
3892 struct klist_iter i;
3893 struct device *child;
3894
3895 if (!parent)
3896 return NULL;
3897
3898 klist_iter_init(&parent->p->klist_children, &i);
3899 while ((child = next_device(&i)))
3900 if (match(child, data) && get_device(child))
3901 break;
3902 klist_iter_exit(&i);
3903 return child;
3904 }
3905 EXPORT_SYMBOL_GPL(device_find_child);
3906
3907 /**
3908 * device_find_child_by_name - device iterator for locating a child device.
3909 * @parent: parent struct device
3910 * @name: name of the child device
3911 *
3912 * This is similar to the device_find_child() function above, but it
3913 * returns a reference to a device that has the name @name.
3914 *
3915 * NOTE: you will need to drop the reference with put_device() after use.
3916 */
device_find_child_by_name(struct device * parent,const char * name)3917 struct device *device_find_child_by_name(struct device *parent,
3918 const char *name)
3919 {
3920 struct klist_iter i;
3921 struct device *child;
3922
3923 if (!parent)
3924 return NULL;
3925
3926 klist_iter_init(&parent->p->klist_children, &i);
3927 while ((child = next_device(&i)))
3928 if (sysfs_streq(dev_name(child), name) && get_device(child))
3929 break;
3930 klist_iter_exit(&i);
3931 return child;
3932 }
3933 EXPORT_SYMBOL_GPL(device_find_child_by_name);
3934
match_any(struct device * dev,void * unused)3935 static int match_any(struct device *dev, void *unused)
3936 {
3937 return 1;
3938 }
3939
3940 /**
3941 * device_find_any_child - device iterator for locating a child device, if any.
3942 * @parent: parent struct device
3943 *
3944 * This is similar to the device_find_child() function above, but it
3945 * returns a reference to a child device, if any.
3946 *
3947 * NOTE: you will need to drop the reference with put_device() after use.
3948 */
device_find_any_child(struct device * parent)3949 struct device *device_find_any_child(struct device *parent)
3950 {
3951 return device_find_child(parent, NULL, match_any);
3952 }
3953 EXPORT_SYMBOL_GPL(device_find_any_child);
3954
devices_init(void)3955 int __init devices_init(void)
3956 {
3957 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3958 if (!devices_kset)
3959 return -ENOMEM;
3960 dev_kobj = kobject_create_and_add("dev", NULL);
3961 if (!dev_kobj)
3962 goto dev_kobj_err;
3963 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3964 if (!sysfs_dev_block_kobj)
3965 goto block_kobj_err;
3966 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3967 if (!sysfs_dev_char_kobj)
3968 goto char_kobj_err;
3969
3970 return 0;
3971
3972 char_kobj_err:
3973 kobject_put(sysfs_dev_block_kobj);
3974 block_kobj_err:
3975 kobject_put(dev_kobj);
3976 dev_kobj_err:
3977 kset_unregister(devices_kset);
3978 return -ENOMEM;
3979 }
3980
device_check_offline(struct device * dev,void * not_used)3981 static int device_check_offline(struct device *dev, void *not_used)
3982 {
3983 int ret;
3984
3985 ret = device_for_each_child(dev, NULL, device_check_offline);
3986 if (ret)
3987 return ret;
3988
3989 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3990 }
3991
3992 /**
3993 * device_offline - Prepare the device for hot-removal.
3994 * @dev: Device to be put offline.
3995 *
3996 * Execute the device bus type's .offline() callback, if present, to prepare
3997 * the device for a subsequent hot-removal. If that succeeds, the device must
3998 * not be used until either it is removed or its bus type's .online() callback
3999 * is executed.
4000 *
4001 * Call under device_hotplug_lock.
4002 */
device_offline(struct device * dev)4003 int device_offline(struct device *dev)
4004 {
4005 int ret;
4006
4007 if (dev->offline_disabled)
4008 return -EPERM;
4009
4010 ret = device_for_each_child(dev, NULL, device_check_offline);
4011 if (ret)
4012 return ret;
4013
4014 device_lock(dev);
4015 if (device_supports_offline(dev)) {
4016 if (dev->offline) {
4017 ret = 1;
4018 } else {
4019 ret = dev->bus->offline(dev);
4020 if (!ret) {
4021 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
4022 dev->offline = true;
4023 }
4024 }
4025 }
4026 device_unlock(dev);
4027
4028 return ret;
4029 }
4030
4031 /**
4032 * device_online - Put the device back online after successful device_offline().
4033 * @dev: Device to be put back online.
4034 *
4035 * If device_offline() has been successfully executed for @dev, but the device
4036 * has not been removed subsequently, execute its bus type's .online() callback
4037 * to indicate that the device can be used again.
4038 *
4039 * Call under device_hotplug_lock.
4040 */
device_online(struct device * dev)4041 int device_online(struct device *dev)
4042 {
4043 int ret = 0;
4044
4045 device_lock(dev);
4046 if (device_supports_offline(dev)) {
4047 if (dev->offline) {
4048 ret = dev->bus->online(dev);
4049 if (!ret) {
4050 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
4051 dev->offline = false;
4052 }
4053 } else {
4054 ret = 1;
4055 }
4056 }
4057 device_unlock(dev);
4058
4059 return ret;
4060 }
4061
4062 struct root_device {
4063 struct device dev;
4064 struct module *owner;
4065 };
4066
to_root_device(struct device * d)4067 static inline struct root_device *to_root_device(struct device *d)
4068 {
4069 return container_of(d, struct root_device, dev);
4070 }
4071
root_device_release(struct device * dev)4072 static void root_device_release(struct device *dev)
4073 {
4074 kfree(to_root_device(dev));
4075 }
4076
4077 /**
4078 * __root_device_register - allocate and register a root device
4079 * @name: root device name
4080 * @owner: owner module of the root device, usually THIS_MODULE
4081 *
4082 * This function allocates a root device and registers it
4083 * using device_register(). In order to free the returned
4084 * device, use root_device_unregister().
4085 *
4086 * Root devices are dummy devices which allow other devices
4087 * to be grouped under /sys/devices. Use this function to
4088 * allocate a root device and then use it as the parent of
4089 * any device which should appear under /sys/devices/{name}
4090 *
4091 * The /sys/devices/{name} directory will also contain a
4092 * 'module' symlink which points to the @owner directory
4093 * in sysfs.
4094 *
4095 * Returns &struct device pointer on success, or ERR_PTR() on error.
4096 *
4097 * Note: You probably want to use root_device_register().
4098 */
__root_device_register(const char * name,struct module * owner)4099 struct device *__root_device_register(const char *name, struct module *owner)
4100 {
4101 struct root_device *root;
4102 int err = -ENOMEM;
4103
4104 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
4105 if (!root)
4106 return ERR_PTR(err);
4107
4108 err = dev_set_name(&root->dev, "%s", name);
4109 if (err) {
4110 kfree(root);
4111 return ERR_PTR(err);
4112 }
4113
4114 root->dev.release = root_device_release;
4115
4116 err = device_register(&root->dev);
4117 if (err) {
4118 put_device(&root->dev);
4119 return ERR_PTR(err);
4120 }
4121
4122 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
4123 if (owner) {
4124 struct module_kobject *mk = &owner->mkobj;
4125
4126 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4127 if (err) {
4128 device_unregister(&root->dev);
4129 return ERR_PTR(err);
4130 }
4131 root->owner = owner;
4132 }
4133 #endif
4134
4135 return &root->dev;
4136 }
4137 EXPORT_SYMBOL_GPL(__root_device_register);
4138
4139 /**
4140 * root_device_unregister - unregister and free a root device
4141 * @dev: device going away
4142 *
4143 * This function unregisters and cleans up a device that was created by
4144 * root_device_register().
4145 */
root_device_unregister(struct device * dev)4146 void root_device_unregister(struct device *dev)
4147 {
4148 struct root_device *root = to_root_device(dev);
4149
4150 if (root->owner)
4151 sysfs_remove_link(&root->dev.kobj, "module");
4152
4153 device_unregister(dev);
4154 }
4155 EXPORT_SYMBOL_GPL(root_device_unregister);
4156
4157
device_create_release(struct device * dev)4158 static void device_create_release(struct device *dev)
4159 {
4160 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4161 kfree(dev);
4162 }
4163
4164 static __printf(6, 0) struct device *
device_create_groups_vargs(struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,va_list args)4165 device_create_groups_vargs(struct class *class, struct device *parent,
4166 dev_t devt, void *drvdata,
4167 const struct attribute_group **groups,
4168 const char *fmt, va_list args)
4169 {
4170 struct device *dev = NULL;
4171 int retval = -ENODEV;
4172
4173 if (IS_ERR_OR_NULL(class))
4174 goto error;
4175
4176 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4177 if (!dev) {
4178 retval = -ENOMEM;
4179 goto error;
4180 }
4181
4182 device_initialize(dev);
4183 dev->devt = devt;
4184 dev->class = class;
4185 dev->parent = parent;
4186 dev->groups = groups;
4187 dev->release = device_create_release;
4188 dev_set_drvdata(dev, drvdata);
4189
4190 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4191 if (retval)
4192 goto error;
4193
4194 retval = device_add(dev);
4195 if (retval)
4196 goto error;
4197
4198 return dev;
4199
4200 error:
4201 put_device(dev);
4202 return ERR_PTR(retval);
4203 }
4204
4205 /**
4206 * device_create - creates a device and registers it with sysfs
4207 * @class: pointer to the struct class that this device should be registered to
4208 * @parent: pointer to the parent struct device of this new device, if any
4209 * @devt: the dev_t for the char device to be added
4210 * @drvdata: the data to be added to the device for callbacks
4211 * @fmt: string for the device's name
4212 *
4213 * This function can be used by char device classes. A struct device
4214 * will be created in sysfs, registered to the specified class.
4215 *
4216 * A "dev" file will be created, showing the dev_t for the device, if
4217 * the dev_t is not 0,0.
4218 * If a pointer to a parent struct device is passed in, the newly created
4219 * struct device will be a child of that device in sysfs.
4220 * The pointer to the struct device will be returned from the call.
4221 * Any further sysfs files that might be required can be created using this
4222 * pointer.
4223 *
4224 * Returns &struct device pointer on success, or ERR_PTR() on error.
4225 *
4226 * Note: the struct class passed to this function must have previously
4227 * been created with a call to class_create().
4228 */
device_create(struct class * class,struct device * parent,dev_t devt,void * drvdata,const char * fmt,...)4229 struct device *device_create(struct class *class, struct device *parent,
4230 dev_t devt, void *drvdata, const char *fmt, ...)
4231 {
4232 va_list vargs;
4233 struct device *dev;
4234
4235 va_start(vargs, fmt);
4236 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4237 fmt, vargs);
4238 va_end(vargs);
4239 return dev;
4240 }
4241 EXPORT_SYMBOL_GPL(device_create);
4242
4243 /**
4244 * device_create_with_groups - creates a device and registers it with sysfs
4245 * @class: pointer to the struct class that this device should be registered to
4246 * @parent: pointer to the parent struct device of this new device, if any
4247 * @devt: the dev_t for the char device to be added
4248 * @drvdata: the data to be added to the device for callbacks
4249 * @groups: NULL-terminated list of attribute groups to be created
4250 * @fmt: string for the device's name
4251 *
4252 * This function can be used by char device classes. A struct device
4253 * will be created in sysfs, registered to the specified class.
4254 * Additional attributes specified in the groups parameter will also
4255 * be created automatically.
4256 *
4257 * A "dev" file will be created, showing the dev_t for the device, if
4258 * the dev_t is not 0,0.
4259 * If a pointer to a parent struct device is passed in, the newly created
4260 * struct device will be a child of that device in sysfs.
4261 * The pointer to the struct device will be returned from the call.
4262 * Any further sysfs files that might be required can be created using this
4263 * pointer.
4264 *
4265 * Returns &struct device pointer on success, or ERR_PTR() on error.
4266 *
4267 * Note: the struct class passed to this function must have previously
4268 * been created with a call to class_create().
4269 */
device_create_with_groups(struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,...)4270 struct device *device_create_with_groups(struct class *class,
4271 struct device *parent, dev_t devt,
4272 void *drvdata,
4273 const struct attribute_group **groups,
4274 const char *fmt, ...)
4275 {
4276 va_list vargs;
4277 struct device *dev;
4278
4279 va_start(vargs, fmt);
4280 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4281 fmt, vargs);
4282 va_end(vargs);
4283 return dev;
4284 }
4285 EXPORT_SYMBOL_GPL(device_create_with_groups);
4286
4287 /**
4288 * device_destroy - removes a device that was created with device_create()
4289 * @class: pointer to the struct class that this device was registered with
4290 * @devt: the dev_t of the device that was previously registered
4291 *
4292 * This call unregisters and cleans up a device that was created with a
4293 * call to device_create().
4294 */
device_destroy(struct class * class,dev_t devt)4295 void device_destroy(struct class *class, dev_t devt)
4296 {
4297 struct device *dev;
4298
4299 dev = class_find_device_by_devt(class, devt);
4300 if (dev) {
4301 put_device(dev);
4302 device_unregister(dev);
4303 }
4304 }
4305 EXPORT_SYMBOL_GPL(device_destroy);
4306
4307 /**
4308 * device_rename - renames a device
4309 * @dev: the pointer to the struct device to be renamed
4310 * @new_name: the new name of the device
4311 *
4312 * It is the responsibility of the caller to provide mutual
4313 * exclusion between two different calls of device_rename
4314 * on the same device to ensure that new_name is valid and
4315 * won't conflict with other devices.
4316 *
4317 * Note: Don't call this function. Currently, the networking layer calls this
4318 * function, but that will change. The following text from Kay Sievers offers
4319 * some insight:
4320 *
4321 * Renaming devices is racy at many levels, symlinks and other stuff are not
4322 * replaced atomically, and you get a "move" uevent, but it's not easy to
4323 * connect the event to the old and new device. Device nodes are not renamed at
4324 * all, there isn't even support for that in the kernel now.
4325 *
4326 * In the meantime, during renaming, your target name might be taken by another
4327 * driver, creating conflicts. Or the old name is taken directly after you
4328 * renamed it -- then you get events for the same DEVPATH, before you even see
4329 * the "move" event. It's just a mess, and nothing new should ever rely on
4330 * kernel device renaming. Besides that, it's not even implemented now for
4331 * other things than (driver-core wise very simple) network devices.
4332 *
4333 * We are currently about to change network renaming in udev to completely
4334 * disallow renaming of devices in the same namespace as the kernel uses,
4335 * because we can't solve the problems properly, that arise with swapping names
4336 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
4337 * be allowed to some other name than eth[0-9]*, for the aforementioned
4338 * reasons.
4339 *
4340 * Make up a "real" name in the driver before you register anything, or add
4341 * some other attributes for userspace to find the device, or use udev to add
4342 * symlinks -- but never rename kernel devices later, it's a complete mess. We
4343 * don't even want to get into that and try to implement the missing pieces in
4344 * the core. We really have other pieces to fix in the driver core mess. :)
4345 */
device_rename(struct device * dev,const char * new_name)4346 int device_rename(struct device *dev, const char *new_name)
4347 {
4348 struct kobject *kobj = &dev->kobj;
4349 char *old_device_name = NULL;
4350 int error;
4351
4352 dev = get_device(dev);
4353 if (!dev)
4354 return -EINVAL;
4355
4356 dev_dbg(dev, "renaming to %s\n", new_name);
4357
4358 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4359 if (!old_device_name) {
4360 error = -ENOMEM;
4361 goto out;
4362 }
4363
4364 if (dev->class) {
4365 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
4366 kobj, old_device_name,
4367 new_name, kobject_namespace(kobj));
4368 if (error)
4369 goto out;
4370 }
4371
4372 error = kobject_rename(kobj, new_name);
4373 if (error)
4374 goto out;
4375
4376 out:
4377 put_device(dev);
4378
4379 kfree(old_device_name);
4380
4381 return error;
4382 }
4383 EXPORT_SYMBOL_GPL(device_rename);
4384
device_move_class_links(struct device * dev,struct device * old_parent,struct device * new_parent)4385 static int device_move_class_links(struct device *dev,
4386 struct device *old_parent,
4387 struct device *new_parent)
4388 {
4389 int error = 0;
4390
4391 if (old_parent)
4392 sysfs_remove_link(&dev->kobj, "device");
4393 if (new_parent)
4394 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4395 "device");
4396 return error;
4397 }
4398
4399 /**
4400 * device_move - moves a device to a new parent
4401 * @dev: the pointer to the struct device to be moved
4402 * @new_parent: the new parent of the device (can be NULL)
4403 * @dpm_order: how to reorder the dpm_list
4404 */
device_move(struct device * dev,struct device * new_parent,enum dpm_order dpm_order)4405 int device_move(struct device *dev, struct device *new_parent,
4406 enum dpm_order dpm_order)
4407 {
4408 int error;
4409 struct device *old_parent;
4410 struct kobject *new_parent_kobj;
4411
4412 dev = get_device(dev);
4413 if (!dev)
4414 return -EINVAL;
4415
4416 device_pm_lock();
4417 new_parent = get_device(new_parent);
4418 new_parent_kobj = get_device_parent(dev, new_parent);
4419 if (IS_ERR(new_parent_kobj)) {
4420 error = PTR_ERR(new_parent_kobj);
4421 put_device(new_parent);
4422 goto out;
4423 }
4424
4425 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4426 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4427 error = kobject_move(&dev->kobj, new_parent_kobj);
4428 if (error) {
4429 cleanup_glue_dir(dev, new_parent_kobj);
4430 put_device(new_parent);
4431 goto out;
4432 }
4433 old_parent = dev->parent;
4434 dev->parent = new_parent;
4435 if (old_parent)
4436 klist_remove(&dev->p->knode_parent);
4437 if (new_parent) {
4438 klist_add_tail(&dev->p->knode_parent,
4439 &new_parent->p->klist_children);
4440 set_dev_node(dev, dev_to_node(new_parent));
4441 }
4442
4443 if (dev->class) {
4444 error = device_move_class_links(dev, old_parent, new_parent);
4445 if (error) {
4446 /* We ignore errors on cleanup since we're hosed anyway... */
4447 device_move_class_links(dev, new_parent, old_parent);
4448 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4449 if (new_parent)
4450 klist_remove(&dev->p->knode_parent);
4451 dev->parent = old_parent;
4452 if (old_parent) {
4453 klist_add_tail(&dev->p->knode_parent,
4454 &old_parent->p->klist_children);
4455 set_dev_node(dev, dev_to_node(old_parent));
4456 }
4457 }
4458 cleanup_glue_dir(dev, new_parent_kobj);
4459 put_device(new_parent);
4460 goto out;
4461 }
4462 }
4463 switch (dpm_order) {
4464 case DPM_ORDER_NONE:
4465 break;
4466 case DPM_ORDER_DEV_AFTER_PARENT:
4467 device_pm_move_after(dev, new_parent);
4468 devices_kset_move_after(dev, new_parent);
4469 break;
4470 case DPM_ORDER_PARENT_BEFORE_DEV:
4471 device_pm_move_before(new_parent, dev);
4472 devices_kset_move_before(new_parent, dev);
4473 break;
4474 case DPM_ORDER_DEV_LAST:
4475 device_pm_move_last(dev);
4476 devices_kset_move_last(dev);
4477 break;
4478 }
4479
4480 put_device(old_parent);
4481 out:
4482 device_pm_unlock();
4483 put_device(dev);
4484 return error;
4485 }
4486 EXPORT_SYMBOL_GPL(device_move);
4487
device_attrs_change_owner(struct device * dev,kuid_t kuid,kgid_t kgid)4488 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4489 kgid_t kgid)
4490 {
4491 struct kobject *kobj = &dev->kobj;
4492 struct class *class = dev->class;
4493 const struct device_type *type = dev->type;
4494 int error;
4495
4496 if (class) {
4497 /*
4498 * Change the device groups of the device class for @dev to
4499 * @kuid/@kgid.
4500 */
4501 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4502 kgid);
4503 if (error)
4504 return error;
4505 }
4506
4507 if (type) {
4508 /*
4509 * Change the device groups of the device type for @dev to
4510 * @kuid/@kgid.
4511 */
4512 error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4513 kgid);
4514 if (error)
4515 return error;
4516 }
4517
4518 /* Change the device groups of @dev to @kuid/@kgid. */
4519 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4520 if (error)
4521 return error;
4522
4523 if (device_supports_offline(dev) && !dev->offline_disabled) {
4524 /* Change online device attributes of @dev to @kuid/@kgid. */
4525 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4526 kuid, kgid);
4527 if (error)
4528 return error;
4529 }
4530
4531 return 0;
4532 }
4533
4534 /**
4535 * device_change_owner - change the owner of an existing device.
4536 * @dev: device.
4537 * @kuid: new owner's kuid
4538 * @kgid: new owner's kgid
4539 *
4540 * This changes the owner of @dev and its corresponding sysfs entries to
4541 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4542 * core.
4543 *
4544 * Returns 0 on success or error code on failure.
4545 */
device_change_owner(struct device * dev,kuid_t kuid,kgid_t kgid)4546 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4547 {
4548 int error;
4549 struct kobject *kobj = &dev->kobj;
4550
4551 dev = get_device(dev);
4552 if (!dev)
4553 return -EINVAL;
4554
4555 /*
4556 * Change the kobject and the default attributes and groups of the
4557 * ktype associated with it to @kuid/@kgid.
4558 */
4559 error = sysfs_change_owner(kobj, kuid, kgid);
4560 if (error)
4561 goto out;
4562
4563 /*
4564 * Change the uevent file for @dev to the new owner. The uevent file
4565 * was created in a separate step when @dev got added and we mirror
4566 * that step here.
4567 */
4568 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4569 kgid);
4570 if (error)
4571 goto out;
4572
4573 /*
4574 * Change the device groups, the device groups associated with the
4575 * device class, and the groups associated with the device type of @dev
4576 * to @kuid/@kgid.
4577 */
4578 error = device_attrs_change_owner(dev, kuid, kgid);
4579 if (error)
4580 goto out;
4581
4582 error = dpm_sysfs_change_owner(dev, kuid, kgid);
4583 if (error)
4584 goto out;
4585
4586 #ifdef CONFIG_BLOCK
4587 if (sysfs_deprecated && dev->class == &block_class)
4588 goto out;
4589 #endif
4590
4591 /*
4592 * Change the owner of the symlink located in the class directory of
4593 * the device class associated with @dev which points to the actual
4594 * directory entry for @dev to @kuid/@kgid. This ensures that the
4595 * symlink shows the same permissions as its target.
4596 */
4597 error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4598 dev_name(dev), kuid, kgid);
4599 if (error)
4600 goto out;
4601
4602 out:
4603 put_device(dev);
4604 return error;
4605 }
4606 EXPORT_SYMBOL_GPL(device_change_owner);
4607
4608 /**
4609 * device_shutdown - call ->shutdown() on each device to shutdown.
4610 */
device_shutdown(void)4611 void device_shutdown(void)
4612 {
4613 struct device *dev, *parent;
4614
4615 wait_for_device_probe();
4616 device_block_probing();
4617
4618 cpufreq_suspend();
4619
4620 spin_lock(&devices_kset->list_lock);
4621 /*
4622 * Walk the devices list backward, shutting down each in turn.
4623 * Beware that device unplug events may also start pulling
4624 * devices offline, even as the system is shutting down.
4625 */
4626 while (!list_empty(&devices_kset->list)) {
4627 dev = list_entry(devices_kset->list.prev, struct device,
4628 kobj.entry);
4629
4630 /*
4631 * hold reference count of device's parent to
4632 * prevent it from being freed because parent's
4633 * lock is to be held
4634 */
4635 parent = get_device(dev->parent);
4636 get_device(dev);
4637 /*
4638 * Make sure the device is off the kset list, in the
4639 * event that dev->*->shutdown() doesn't remove it.
4640 */
4641 list_del_init(&dev->kobj.entry);
4642 spin_unlock(&devices_kset->list_lock);
4643
4644 /* hold lock to avoid race with probe/release */
4645 if (parent)
4646 device_lock(parent);
4647 device_lock(dev);
4648
4649 /* Don't allow any more runtime suspends */
4650 pm_runtime_get_noresume(dev);
4651 pm_runtime_barrier(dev);
4652
4653 if (dev->class && dev->class->shutdown_pre) {
4654 if (initcall_debug)
4655 dev_info(dev, "shutdown_pre\n");
4656 dev->class->shutdown_pre(dev);
4657 }
4658 if (dev->bus && dev->bus->shutdown) {
4659 if (initcall_debug)
4660 dev_info(dev, "shutdown\n");
4661 dev->bus->shutdown(dev);
4662 } else if (dev->driver && dev->driver->shutdown) {
4663 if (initcall_debug)
4664 dev_info(dev, "shutdown\n");
4665 dev->driver->shutdown(dev);
4666 }
4667
4668 device_unlock(dev);
4669 if (parent)
4670 device_unlock(parent);
4671
4672 put_device(dev);
4673 put_device(parent);
4674
4675 spin_lock(&devices_kset->list_lock);
4676 }
4677 spin_unlock(&devices_kset->list_lock);
4678 }
4679
4680 /*
4681 * Device logging functions
4682 */
4683
4684 #ifdef CONFIG_PRINTK
4685 static void
set_dev_info(const struct device * dev,struct dev_printk_info * dev_info)4686 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4687 {
4688 const char *subsys;
4689
4690 memset(dev_info, 0, sizeof(*dev_info));
4691
4692 if (dev->class)
4693 subsys = dev->class->name;
4694 else if (dev->bus)
4695 subsys = dev->bus->name;
4696 else
4697 return;
4698
4699 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4700
4701 /*
4702 * Add device identifier DEVICE=:
4703 * b12:8 block dev_t
4704 * c127:3 char dev_t
4705 * n8 netdev ifindex
4706 * +sound:card0 subsystem:devname
4707 */
4708 if (MAJOR(dev->devt)) {
4709 char c;
4710
4711 if (strcmp(subsys, "block") == 0)
4712 c = 'b';
4713 else
4714 c = 'c';
4715
4716 snprintf(dev_info->device, sizeof(dev_info->device),
4717 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4718 } else if (strcmp(subsys, "net") == 0) {
4719 struct net_device *net = to_net_dev(dev);
4720
4721 snprintf(dev_info->device, sizeof(dev_info->device),
4722 "n%u", net->ifindex);
4723 } else {
4724 snprintf(dev_info->device, sizeof(dev_info->device),
4725 "+%s:%s", subsys, dev_name(dev));
4726 }
4727 }
4728
dev_vprintk_emit(int level,const struct device * dev,const char * fmt,va_list args)4729 int dev_vprintk_emit(int level, const struct device *dev,
4730 const char *fmt, va_list args)
4731 {
4732 struct dev_printk_info dev_info;
4733
4734 set_dev_info(dev, &dev_info);
4735
4736 return vprintk_emit(0, level, &dev_info, fmt, args);
4737 }
4738 EXPORT_SYMBOL(dev_vprintk_emit);
4739
dev_printk_emit(int level,const struct device * dev,const char * fmt,...)4740 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4741 {
4742 va_list args;
4743 int r;
4744
4745 va_start(args, fmt);
4746
4747 r = dev_vprintk_emit(level, dev, fmt, args);
4748
4749 va_end(args);
4750
4751 return r;
4752 }
4753 EXPORT_SYMBOL(dev_printk_emit);
4754
__dev_printk(const char * level,const struct device * dev,struct va_format * vaf)4755 static void __dev_printk(const char *level, const struct device *dev,
4756 struct va_format *vaf)
4757 {
4758 if (dev)
4759 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4760 dev_driver_string(dev), dev_name(dev), vaf);
4761 else
4762 printk("%s(NULL device *): %pV", level, vaf);
4763 }
4764
_dev_printk(const char * level,const struct device * dev,const char * fmt,...)4765 void _dev_printk(const char *level, const struct device *dev,
4766 const char *fmt, ...)
4767 {
4768 struct va_format vaf;
4769 va_list args;
4770
4771 va_start(args, fmt);
4772
4773 vaf.fmt = fmt;
4774 vaf.va = &args;
4775
4776 __dev_printk(level, dev, &vaf);
4777
4778 va_end(args);
4779 }
4780 EXPORT_SYMBOL(_dev_printk);
4781
4782 #define define_dev_printk_level(func, kern_level) \
4783 void func(const struct device *dev, const char *fmt, ...) \
4784 { \
4785 struct va_format vaf; \
4786 va_list args; \
4787 \
4788 va_start(args, fmt); \
4789 \
4790 vaf.fmt = fmt; \
4791 vaf.va = &args; \
4792 \
4793 __dev_printk(kern_level, dev, &vaf); \
4794 \
4795 va_end(args); \
4796 } \
4797 EXPORT_SYMBOL(func);
4798
4799 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4800 define_dev_printk_level(_dev_alert, KERN_ALERT);
4801 define_dev_printk_level(_dev_crit, KERN_CRIT);
4802 define_dev_printk_level(_dev_err, KERN_ERR);
4803 define_dev_printk_level(_dev_warn, KERN_WARNING);
4804 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4805 define_dev_printk_level(_dev_info, KERN_INFO);
4806
4807 #endif
4808
4809 /**
4810 * dev_err_probe - probe error check and log helper
4811 * @dev: the pointer to the struct device
4812 * @err: error value to test
4813 * @fmt: printf-style format string
4814 * @...: arguments as specified in the format string
4815 *
4816 * This helper implements common pattern present in probe functions for error
4817 * checking: print debug or error message depending if the error value is
4818 * -EPROBE_DEFER and propagate error upwards.
4819 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4820 * checked later by reading devices_deferred debugfs attribute.
4821 * It replaces code sequence::
4822 *
4823 * if (err != -EPROBE_DEFER)
4824 * dev_err(dev, ...);
4825 * else
4826 * dev_dbg(dev, ...);
4827 * return err;
4828 *
4829 * with::
4830 *
4831 * return dev_err_probe(dev, err, ...);
4832 *
4833 * Note that it is deemed acceptable to use this function for error
4834 * prints during probe even if the @err is known to never be -EPROBE_DEFER.
4835 * The benefit compared to a normal dev_err() is the standardized format
4836 * of the error code and the fact that the error code is returned.
4837 *
4838 * Returns @err.
4839 *
4840 */
dev_err_probe(const struct device * dev,int err,const char * fmt,...)4841 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4842 {
4843 struct va_format vaf;
4844 va_list args;
4845
4846 va_start(args, fmt);
4847 vaf.fmt = fmt;
4848 vaf.va = &args;
4849
4850 if (err != -EPROBE_DEFER) {
4851 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4852 } else {
4853 device_set_deferred_probe_reason(dev, &vaf);
4854 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4855 }
4856
4857 va_end(args);
4858
4859 return err;
4860 }
4861 EXPORT_SYMBOL_GPL(dev_err_probe);
4862
fwnode_is_primary(struct fwnode_handle * fwnode)4863 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4864 {
4865 return fwnode && !IS_ERR(fwnode->secondary);
4866 }
4867
4868 /**
4869 * set_primary_fwnode - Change the primary firmware node of a given device.
4870 * @dev: Device to handle.
4871 * @fwnode: New primary firmware node of the device.
4872 *
4873 * Set the device's firmware node pointer to @fwnode, but if a secondary
4874 * firmware node of the device is present, preserve it.
4875 *
4876 * Valid fwnode cases are:
4877 * - primary --> secondary --> -ENODEV
4878 * - primary --> NULL
4879 * - secondary --> -ENODEV
4880 * - NULL
4881 */
set_primary_fwnode(struct device * dev,struct fwnode_handle * fwnode)4882 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4883 {
4884 struct device *parent = dev->parent;
4885 struct fwnode_handle *fn = dev->fwnode;
4886
4887 if (fwnode) {
4888 if (fwnode_is_primary(fn))
4889 fn = fn->secondary;
4890
4891 if (fn) {
4892 WARN_ON(fwnode->secondary);
4893 fwnode->secondary = fn;
4894 }
4895 dev->fwnode = fwnode;
4896 } else {
4897 if (fwnode_is_primary(fn)) {
4898 dev->fwnode = fn->secondary;
4899 /* Set fn->secondary = NULL, so fn remains the primary fwnode */
4900 if (!(parent && fn == parent->fwnode))
4901 fn->secondary = NULL;
4902 } else {
4903 dev->fwnode = NULL;
4904 }
4905 }
4906 }
4907 EXPORT_SYMBOL_GPL(set_primary_fwnode);
4908
4909 /**
4910 * set_secondary_fwnode - Change the secondary firmware node of a given device.
4911 * @dev: Device to handle.
4912 * @fwnode: New secondary firmware node of the device.
4913 *
4914 * If a primary firmware node of the device is present, set its secondary
4915 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
4916 * @fwnode.
4917 */
set_secondary_fwnode(struct device * dev,struct fwnode_handle * fwnode)4918 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4919 {
4920 if (fwnode)
4921 fwnode->secondary = ERR_PTR(-ENODEV);
4922
4923 if (fwnode_is_primary(dev->fwnode))
4924 dev->fwnode->secondary = fwnode;
4925 else
4926 dev->fwnode = fwnode;
4927 }
4928 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4929
4930 /**
4931 * device_set_of_node_from_dev - reuse device-tree node of another device
4932 * @dev: device whose device-tree node is being set
4933 * @dev2: device whose device-tree node is being reused
4934 *
4935 * Takes another reference to the new device-tree node after first dropping
4936 * any reference held to the old node.
4937 */
device_set_of_node_from_dev(struct device * dev,const struct device * dev2)4938 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4939 {
4940 of_node_put(dev->of_node);
4941 dev->of_node = of_node_get(dev2->of_node);
4942 dev->of_node_reused = true;
4943 }
4944 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4945
device_set_node(struct device * dev,struct fwnode_handle * fwnode)4946 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
4947 {
4948 dev->fwnode = fwnode;
4949 dev->of_node = to_of_node(fwnode);
4950 }
4951 EXPORT_SYMBOL_GPL(device_set_node);
4952
device_match_name(struct device * dev,const void * name)4953 int device_match_name(struct device *dev, const void *name)
4954 {
4955 return sysfs_streq(dev_name(dev), name);
4956 }
4957 EXPORT_SYMBOL_GPL(device_match_name);
4958
device_match_of_node(struct device * dev,const void * np)4959 int device_match_of_node(struct device *dev, const void *np)
4960 {
4961 return dev->of_node == np;
4962 }
4963 EXPORT_SYMBOL_GPL(device_match_of_node);
4964
device_match_fwnode(struct device * dev,const void * fwnode)4965 int device_match_fwnode(struct device *dev, const void *fwnode)
4966 {
4967 return dev_fwnode(dev) == fwnode;
4968 }
4969 EXPORT_SYMBOL_GPL(device_match_fwnode);
4970
device_match_devt(struct device * dev,const void * pdevt)4971 int device_match_devt(struct device *dev, const void *pdevt)
4972 {
4973 return dev->devt == *(dev_t *)pdevt;
4974 }
4975 EXPORT_SYMBOL_GPL(device_match_devt);
4976
device_match_acpi_dev(struct device * dev,const void * adev)4977 int device_match_acpi_dev(struct device *dev, const void *adev)
4978 {
4979 return ACPI_COMPANION(dev) == adev;
4980 }
4981 EXPORT_SYMBOL(device_match_acpi_dev);
4982
device_match_acpi_handle(struct device * dev,const void * handle)4983 int device_match_acpi_handle(struct device *dev, const void *handle)
4984 {
4985 return ACPI_HANDLE(dev) == handle;
4986 }
4987 EXPORT_SYMBOL(device_match_acpi_handle);
4988
device_match_any(struct device * dev,const void * unused)4989 int device_match_any(struct device *dev, const void *unused)
4990 {
4991 return 1;
4992 }
4993 EXPORT_SYMBOL_GPL(device_match_any);
4994