1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright (C) 2012 Regents of the University of California
4 */
5
6 #ifndef _ASM_RISCV_PGTABLE_H
7 #define _ASM_RISCV_PGTABLE_H
8
9 #include <linux/mmzone.h>
10 #include <linux/sizes.h>
11
12 #include <asm/pgtable-bits.h>
13
14 #ifndef CONFIG_MMU
15 #define KERNEL_LINK_ADDR PAGE_OFFSET
16 #define KERN_VIRT_SIZE (UL(-1))
17 #else
18
19 #define ADDRESS_SPACE_END (UL(-1))
20
21 #ifdef CONFIG_64BIT
22 /* Leave 2GB for kernel and BPF at the end of the address space */
23 #define KERNEL_LINK_ADDR (ADDRESS_SPACE_END - SZ_2G + 1)
24 #else
25 #define KERNEL_LINK_ADDR PAGE_OFFSET
26 #endif
27
28 /* Number of entries in the page global directory */
29 #define PTRS_PER_PGD (PAGE_SIZE / sizeof(pgd_t))
30 /* Number of entries in the page table */
31 #define PTRS_PER_PTE (PAGE_SIZE / sizeof(pte_t))
32
33 /*
34 * Half of the kernel address space (half of the entries of the page global
35 * directory) is for the direct mapping.
36 */
37 #define KERN_VIRT_SIZE ((PTRS_PER_PGD / 2 * PGDIR_SIZE) / 2)
38
39 #define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1)
40 #define VMALLOC_END PAGE_OFFSET
41 #define VMALLOC_START (PAGE_OFFSET - VMALLOC_SIZE)
42
43 #define BPF_JIT_REGION_SIZE (SZ_128M)
44 #ifdef CONFIG_64BIT
45 #define BPF_JIT_REGION_START (BPF_JIT_REGION_END - BPF_JIT_REGION_SIZE)
46 #define BPF_JIT_REGION_END (MODULES_END)
47 #else
48 #define BPF_JIT_REGION_START (PAGE_OFFSET - BPF_JIT_REGION_SIZE)
49 #define BPF_JIT_REGION_END (VMALLOC_END)
50 #endif
51
52 /* Modules always live before the kernel */
53 #ifdef CONFIG_64BIT
54 /* This is used to define the end of the KASAN shadow region */
55 #define MODULES_LOWEST_VADDR (KERNEL_LINK_ADDR - SZ_2G)
56 #define MODULES_VADDR (PFN_ALIGN((unsigned long)&_end) - SZ_2G)
57 #define MODULES_END (PFN_ALIGN((unsigned long)&_start))
58 #endif
59
60 /*
61 * Roughly size the vmemmap space to be large enough to fit enough
62 * struct pages to map half the virtual address space. Then
63 * position vmemmap directly below the VMALLOC region.
64 */
65 #ifdef CONFIG_64BIT
66 #define VA_BITS (pgtable_l5_enabled ? \
67 57 : (pgtable_l4_enabled ? 48 : 39))
68 #else
69 #define VA_BITS 32
70 #endif
71
72 #define VMEMMAP_SHIFT \
73 (VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)
74 #define VMEMMAP_SIZE BIT(VMEMMAP_SHIFT)
75 #define VMEMMAP_END VMALLOC_START
76 #define VMEMMAP_START (VMALLOC_START - VMEMMAP_SIZE)
77
78 /*
79 * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel
80 * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled.
81 */
82 #define vmemmap ((struct page *)VMEMMAP_START)
83
84 #define PCI_IO_SIZE SZ_16M
85 #define PCI_IO_END VMEMMAP_START
86 #define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE)
87
88 #define FIXADDR_TOP PCI_IO_START
89 #ifdef CONFIG_64BIT
90 #define FIXADDR_SIZE PMD_SIZE
91 #else
92 #define FIXADDR_SIZE PGDIR_SIZE
93 #endif
94 #define FIXADDR_START (FIXADDR_TOP - FIXADDR_SIZE)
95
96 #endif
97
98 #ifdef CONFIG_XIP_KERNEL
99 #define XIP_OFFSET SZ_32M
100 #define XIP_OFFSET_MASK (SZ_32M - 1)
101 #else
102 #define XIP_OFFSET 0
103 #endif
104
105 #ifndef __ASSEMBLY__
106
107 #include <asm/page.h>
108 #include <asm/tlbflush.h>
109 #include <linux/mm_types.h>
110
111 #define __page_val_to_pfn(_val) (((_val) & _PAGE_PFN_MASK) >> _PAGE_PFN_SHIFT)
112
113 #ifdef CONFIG_64BIT
114 #include <asm/pgtable-64.h>
115 #else
116 #include <asm/pgtable-32.h>
117 #endif /* CONFIG_64BIT */
118
119 #include <linux/page_table_check.h>
120
121 #ifdef CONFIG_XIP_KERNEL
122 #define XIP_FIXUP(addr) ({ \
123 uintptr_t __a = (uintptr_t)(addr); \
124 (__a >= CONFIG_XIP_PHYS_ADDR && \
125 __a < CONFIG_XIP_PHYS_ADDR + XIP_OFFSET * 2) ? \
126 __a - CONFIG_XIP_PHYS_ADDR + CONFIG_PHYS_RAM_BASE - XIP_OFFSET :\
127 __a; \
128 })
129 #else
130 #define XIP_FIXUP(addr) (addr)
131 #endif /* CONFIG_XIP_KERNEL */
132
133 struct pt_alloc_ops {
134 pte_t *(*get_pte_virt)(phys_addr_t pa);
135 phys_addr_t (*alloc_pte)(uintptr_t va);
136 #ifndef __PAGETABLE_PMD_FOLDED
137 pmd_t *(*get_pmd_virt)(phys_addr_t pa);
138 phys_addr_t (*alloc_pmd)(uintptr_t va);
139 pud_t *(*get_pud_virt)(phys_addr_t pa);
140 phys_addr_t (*alloc_pud)(uintptr_t va);
141 p4d_t *(*get_p4d_virt)(phys_addr_t pa);
142 phys_addr_t (*alloc_p4d)(uintptr_t va);
143 #endif
144 };
145
146 extern struct pt_alloc_ops pt_ops __initdata;
147
148 #ifdef CONFIG_MMU
149 /* Number of PGD entries that a user-mode program can use */
150 #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
151
152 /* Page protection bits */
153 #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER)
154
155 #define PAGE_NONE __pgprot(_PAGE_PROT_NONE | _PAGE_READ)
156 #define PAGE_READ __pgprot(_PAGE_BASE | _PAGE_READ)
157 #define PAGE_WRITE __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE)
158 #define PAGE_EXEC __pgprot(_PAGE_BASE | _PAGE_EXEC)
159 #define PAGE_READ_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
160 #define PAGE_WRITE_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | \
161 _PAGE_EXEC | _PAGE_WRITE)
162
163 #define PAGE_COPY PAGE_READ
164 #define PAGE_COPY_EXEC PAGE_EXEC
165 #define PAGE_COPY_READ_EXEC PAGE_READ_EXEC
166 #define PAGE_SHARED PAGE_WRITE
167 #define PAGE_SHARED_EXEC PAGE_WRITE_EXEC
168
169 #define _PAGE_KERNEL (_PAGE_READ \
170 | _PAGE_WRITE \
171 | _PAGE_PRESENT \
172 | _PAGE_ACCESSED \
173 | _PAGE_DIRTY \
174 | _PAGE_GLOBAL)
175
176 #define PAGE_KERNEL __pgprot(_PAGE_KERNEL)
177 #define PAGE_KERNEL_READ __pgprot(_PAGE_KERNEL & ~_PAGE_WRITE)
178 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL | _PAGE_EXEC)
179 #define PAGE_KERNEL_READ_EXEC __pgprot((_PAGE_KERNEL & ~_PAGE_WRITE) \
180 | _PAGE_EXEC)
181
182 #define PAGE_TABLE __pgprot(_PAGE_TABLE)
183
184 #define _PAGE_IOREMAP ((_PAGE_KERNEL & ~_PAGE_MTMASK) | _PAGE_IO)
185 #define PAGE_KERNEL_IO __pgprot(_PAGE_IOREMAP)
186
187 extern pgd_t swapper_pg_dir[];
188
189 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmd_present(pmd_t pmd)190 static inline int pmd_present(pmd_t pmd)
191 {
192 /*
193 * Checking for _PAGE_LEAF is needed too because:
194 * When splitting a THP, split_huge_page() will temporarily clear
195 * the present bit, in this situation, pmd_present() and
196 * pmd_trans_huge() still needs to return true.
197 */
198 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE | _PAGE_LEAF));
199 }
200 #else
pmd_present(pmd_t pmd)201 static inline int pmd_present(pmd_t pmd)
202 {
203 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
204 }
205 #endif
206
pmd_none(pmd_t pmd)207 static inline int pmd_none(pmd_t pmd)
208 {
209 return (pmd_val(pmd) == 0);
210 }
211
pmd_bad(pmd_t pmd)212 static inline int pmd_bad(pmd_t pmd)
213 {
214 return !pmd_present(pmd) || (pmd_val(pmd) & _PAGE_LEAF);
215 }
216
217 #define pmd_leaf pmd_leaf
pmd_leaf(pmd_t pmd)218 static inline int pmd_leaf(pmd_t pmd)
219 {
220 return pmd_present(pmd) && (pmd_val(pmd) & _PAGE_LEAF);
221 }
222
set_pmd(pmd_t * pmdp,pmd_t pmd)223 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
224 {
225 *pmdp = pmd;
226 }
227
pmd_clear(pmd_t * pmdp)228 static inline void pmd_clear(pmd_t *pmdp)
229 {
230 set_pmd(pmdp, __pmd(0));
231 }
232
pfn_pgd(unsigned long pfn,pgprot_t prot)233 static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot)
234 {
235 unsigned long prot_val = pgprot_val(prot);
236
237 ALT_THEAD_PMA(prot_val);
238
239 return __pgd((pfn << _PAGE_PFN_SHIFT) | prot_val);
240 }
241
_pgd_pfn(pgd_t pgd)242 static inline unsigned long _pgd_pfn(pgd_t pgd)
243 {
244 return __page_val_to_pfn(pgd_val(pgd));
245 }
246
pmd_page(pmd_t pmd)247 static inline struct page *pmd_page(pmd_t pmd)
248 {
249 return pfn_to_page(__page_val_to_pfn(pmd_val(pmd)));
250 }
251
pmd_page_vaddr(pmd_t pmd)252 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
253 {
254 return (unsigned long)pfn_to_virt(__page_val_to_pfn(pmd_val(pmd)));
255 }
256
pmd_pte(pmd_t pmd)257 static inline pte_t pmd_pte(pmd_t pmd)
258 {
259 return __pte(pmd_val(pmd));
260 }
261
pud_pte(pud_t pud)262 static inline pte_t pud_pte(pud_t pud)
263 {
264 return __pte(pud_val(pud));
265 }
266
267 /* Yields the page frame number (PFN) of a page table entry */
pte_pfn(pte_t pte)268 static inline unsigned long pte_pfn(pte_t pte)
269 {
270 return __page_val_to_pfn(pte_val(pte));
271 }
272
273 #define pte_page(x) pfn_to_page(pte_pfn(x))
274
275 /* Constructs a page table entry */
pfn_pte(unsigned long pfn,pgprot_t prot)276 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
277 {
278 unsigned long prot_val = pgprot_val(prot);
279
280 ALT_THEAD_PMA(prot_val);
281
282 return __pte((pfn << _PAGE_PFN_SHIFT) | prot_val);
283 }
284
285 #define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot)
286
pte_present(pte_t pte)287 static inline int pte_present(pte_t pte)
288 {
289 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
290 }
291
pte_none(pte_t pte)292 static inline int pte_none(pte_t pte)
293 {
294 return (pte_val(pte) == 0);
295 }
296
pte_write(pte_t pte)297 static inline int pte_write(pte_t pte)
298 {
299 return pte_val(pte) & _PAGE_WRITE;
300 }
301
pte_exec(pte_t pte)302 static inline int pte_exec(pte_t pte)
303 {
304 return pte_val(pte) & _PAGE_EXEC;
305 }
306
pte_user(pte_t pte)307 static inline int pte_user(pte_t pte)
308 {
309 return pte_val(pte) & _PAGE_USER;
310 }
311
pte_huge(pte_t pte)312 static inline int pte_huge(pte_t pte)
313 {
314 return pte_present(pte) && (pte_val(pte) & _PAGE_LEAF);
315 }
316
pte_dirty(pte_t pte)317 static inline int pte_dirty(pte_t pte)
318 {
319 return pte_val(pte) & _PAGE_DIRTY;
320 }
321
pte_young(pte_t pte)322 static inline int pte_young(pte_t pte)
323 {
324 return pte_val(pte) & _PAGE_ACCESSED;
325 }
326
pte_special(pte_t pte)327 static inline int pte_special(pte_t pte)
328 {
329 return pte_val(pte) & _PAGE_SPECIAL;
330 }
331
332 /* static inline pte_t pte_rdprotect(pte_t pte) */
333
pte_wrprotect(pte_t pte)334 static inline pte_t pte_wrprotect(pte_t pte)
335 {
336 return __pte(pte_val(pte) & ~(_PAGE_WRITE));
337 }
338
339 /* static inline pte_t pte_mkread(pte_t pte) */
340
pte_mkwrite(pte_t pte)341 static inline pte_t pte_mkwrite(pte_t pte)
342 {
343 return __pte(pte_val(pte) | _PAGE_WRITE);
344 }
345
346 /* static inline pte_t pte_mkexec(pte_t pte) */
347
pte_mkdirty(pte_t pte)348 static inline pte_t pte_mkdirty(pte_t pte)
349 {
350 return __pte(pte_val(pte) | _PAGE_DIRTY);
351 }
352
pte_mkclean(pte_t pte)353 static inline pte_t pte_mkclean(pte_t pte)
354 {
355 return __pte(pte_val(pte) & ~(_PAGE_DIRTY));
356 }
357
pte_mkyoung(pte_t pte)358 static inline pte_t pte_mkyoung(pte_t pte)
359 {
360 return __pte(pte_val(pte) | _PAGE_ACCESSED);
361 }
362
pte_mkold(pte_t pte)363 static inline pte_t pte_mkold(pte_t pte)
364 {
365 return __pte(pte_val(pte) & ~(_PAGE_ACCESSED));
366 }
367
pte_mkspecial(pte_t pte)368 static inline pte_t pte_mkspecial(pte_t pte)
369 {
370 return __pte(pte_val(pte) | _PAGE_SPECIAL);
371 }
372
pte_mkhuge(pte_t pte)373 static inline pte_t pte_mkhuge(pte_t pte)
374 {
375 return pte;
376 }
377
378 #ifdef CONFIG_NUMA_BALANCING
379 /*
380 * See the comment in include/asm-generic/pgtable.h
381 */
pte_protnone(pte_t pte)382 static inline int pte_protnone(pte_t pte)
383 {
384 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)) == _PAGE_PROT_NONE;
385 }
386
pmd_protnone(pmd_t pmd)387 static inline int pmd_protnone(pmd_t pmd)
388 {
389 return pte_protnone(pmd_pte(pmd));
390 }
391 #endif
392
393 /* Modify page protection bits */
pte_modify(pte_t pte,pgprot_t newprot)394 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
395 {
396 unsigned long newprot_val = pgprot_val(newprot);
397
398 ALT_THEAD_PMA(newprot_val);
399
400 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | newprot_val);
401 }
402
403 #define pgd_ERROR(e) \
404 pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e))
405
406
407 /* Commit new configuration to MMU hardware */
update_mmu_cache(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)408 static inline void update_mmu_cache(struct vm_area_struct *vma,
409 unsigned long address, pte_t *ptep)
410 {
411 /*
412 * The kernel assumes that TLBs don't cache invalid entries, but
413 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a
414 * cache flush; it is necessary even after writing invalid entries.
415 * Relying on flush_tlb_fix_spurious_fault would suffice, but
416 * the extra traps reduce performance. So, eagerly SFENCE.VMA.
417 */
418 flush_tlb_page(vma, address);
419 }
420
update_mmu_cache_pmd(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)421 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
422 unsigned long address, pmd_t *pmdp)
423 {
424 pte_t *ptep = (pte_t *)pmdp;
425
426 update_mmu_cache(vma, address, ptep);
427 }
428
429 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t pte_a,pte_t pte_b)430 static inline int pte_same(pte_t pte_a, pte_t pte_b)
431 {
432 return pte_val(pte_a) == pte_val(pte_b);
433 }
434
435 /*
436 * Certain architectures need to do special things when PTEs within
437 * a page table are directly modified. Thus, the following hook is
438 * made available.
439 */
set_pte(pte_t * ptep,pte_t pteval)440 static inline void set_pte(pte_t *ptep, pte_t pteval)
441 {
442 *ptep = pteval;
443 }
444
445 void flush_icache_pte(pte_t pte);
446
__set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pteval)447 static inline void __set_pte_at(struct mm_struct *mm,
448 unsigned long addr, pte_t *ptep, pte_t pteval)
449 {
450 if (pte_present(pteval) && pte_exec(pteval))
451 flush_icache_pte(pteval);
452
453 set_pte(ptep, pteval);
454 }
455
set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pteval)456 static inline void set_pte_at(struct mm_struct *mm,
457 unsigned long addr, pte_t *ptep, pte_t pteval)
458 {
459 page_table_check_pte_set(mm, addr, ptep, pteval);
460 __set_pte_at(mm, addr, ptep, pteval);
461 }
462
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)463 static inline void pte_clear(struct mm_struct *mm,
464 unsigned long addr, pte_t *ptep)
465 {
466 __set_pte_at(mm, addr, ptep, __pte(0));
467 }
468
469 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long address,pte_t * ptep,pte_t entry,int dirty)470 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
471 unsigned long address, pte_t *ptep,
472 pte_t entry, int dirty)
473 {
474 if (!pte_same(*ptep, entry))
475 set_pte_at(vma->vm_mm, address, ptep, entry);
476 /*
477 * update_mmu_cache will unconditionally execute, handling both
478 * the case that the PTE changed and the spurious fault case.
479 */
480 return true;
481 }
482
483 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long address,pte_t * ptep)484 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
485 unsigned long address, pte_t *ptep)
486 {
487 pte_t pte = __pte(atomic_long_xchg((atomic_long_t *)ptep, 0));
488
489 page_table_check_pte_clear(mm, address, pte);
490
491 return pte;
492 }
493
494 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)495 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
496 unsigned long address,
497 pte_t *ptep)
498 {
499 if (!pte_young(*ptep))
500 return 0;
501 return test_and_clear_bit(_PAGE_ACCESSED_OFFSET, &pte_val(*ptep));
502 }
503
504 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep)505 static inline void ptep_set_wrprotect(struct mm_struct *mm,
506 unsigned long address, pte_t *ptep)
507 {
508 atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep);
509 }
510
511 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)512 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
513 unsigned long address, pte_t *ptep)
514 {
515 /*
516 * This comment is borrowed from x86, but applies equally to RISC-V:
517 *
518 * Clearing the accessed bit without a TLB flush
519 * doesn't cause data corruption. [ It could cause incorrect
520 * page aging and the (mistaken) reclaim of hot pages, but the
521 * chance of that should be relatively low. ]
522 *
523 * So as a performance optimization don't flush the TLB when
524 * clearing the accessed bit, it will eventually be flushed by
525 * a context switch or a VM operation anyway. [ In the rare
526 * event of it not getting flushed for a long time the delay
527 * shouldn't really matter because there's no real memory
528 * pressure for swapout to react to. ]
529 */
530 return ptep_test_and_clear_young(vma, address, ptep);
531 }
532
533 #define pgprot_noncached pgprot_noncached
pgprot_noncached(pgprot_t _prot)534 static inline pgprot_t pgprot_noncached(pgprot_t _prot)
535 {
536 unsigned long prot = pgprot_val(_prot);
537
538 prot &= ~_PAGE_MTMASK;
539 prot |= _PAGE_IO;
540
541 return __pgprot(prot);
542 }
543
544 #define pgprot_writecombine pgprot_writecombine
pgprot_writecombine(pgprot_t _prot)545 static inline pgprot_t pgprot_writecombine(pgprot_t _prot)
546 {
547 unsigned long prot = pgprot_val(_prot);
548
549 prot &= ~_PAGE_MTMASK;
550 prot |= _PAGE_NOCACHE;
551
552 return __pgprot(prot);
553 }
554
555 /*
556 * THP functions
557 */
pte_pmd(pte_t pte)558 static inline pmd_t pte_pmd(pte_t pte)
559 {
560 return __pmd(pte_val(pte));
561 }
562
pmd_mkhuge(pmd_t pmd)563 static inline pmd_t pmd_mkhuge(pmd_t pmd)
564 {
565 return pmd;
566 }
567
pmd_mkinvalid(pmd_t pmd)568 static inline pmd_t pmd_mkinvalid(pmd_t pmd)
569 {
570 return __pmd(pmd_val(pmd) & ~(_PAGE_PRESENT|_PAGE_PROT_NONE));
571 }
572
573 #define __pmd_to_phys(pmd) (__page_val_to_pfn(pmd_val(pmd)) << PAGE_SHIFT)
574
pmd_pfn(pmd_t pmd)575 static inline unsigned long pmd_pfn(pmd_t pmd)
576 {
577 return ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT);
578 }
579
580 #define __pud_to_phys(pud) (__page_val_to_pfn(pud_val(pud)) << PAGE_SHIFT)
581
pud_pfn(pud_t pud)582 static inline unsigned long pud_pfn(pud_t pud)
583 {
584 return ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT);
585 }
586
pmd_modify(pmd_t pmd,pgprot_t newprot)587 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
588 {
589 return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
590 }
591
592 #define pmd_write pmd_write
pmd_write(pmd_t pmd)593 static inline int pmd_write(pmd_t pmd)
594 {
595 return pte_write(pmd_pte(pmd));
596 }
597
pmd_dirty(pmd_t pmd)598 static inline int pmd_dirty(pmd_t pmd)
599 {
600 return pte_dirty(pmd_pte(pmd));
601 }
602
603 #define pmd_young pmd_young
pmd_young(pmd_t pmd)604 static inline int pmd_young(pmd_t pmd)
605 {
606 return pte_young(pmd_pte(pmd));
607 }
608
pmd_user(pmd_t pmd)609 static inline int pmd_user(pmd_t pmd)
610 {
611 return pte_user(pmd_pte(pmd));
612 }
613
pmd_mkold(pmd_t pmd)614 static inline pmd_t pmd_mkold(pmd_t pmd)
615 {
616 return pte_pmd(pte_mkold(pmd_pte(pmd)));
617 }
618
pmd_mkyoung(pmd_t pmd)619 static inline pmd_t pmd_mkyoung(pmd_t pmd)
620 {
621 return pte_pmd(pte_mkyoung(pmd_pte(pmd)));
622 }
623
pmd_mkwrite(pmd_t pmd)624 static inline pmd_t pmd_mkwrite(pmd_t pmd)
625 {
626 return pte_pmd(pte_mkwrite(pmd_pte(pmd)));
627 }
628
pmd_wrprotect(pmd_t pmd)629 static inline pmd_t pmd_wrprotect(pmd_t pmd)
630 {
631 return pte_pmd(pte_wrprotect(pmd_pte(pmd)));
632 }
633
pmd_mkclean(pmd_t pmd)634 static inline pmd_t pmd_mkclean(pmd_t pmd)
635 {
636 return pte_pmd(pte_mkclean(pmd_pte(pmd)));
637 }
638
pmd_mkdirty(pmd_t pmd)639 static inline pmd_t pmd_mkdirty(pmd_t pmd)
640 {
641 return pte_pmd(pte_mkdirty(pmd_pte(pmd)));
642 }
643
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t pmd)644 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
645 pmd_t *pmdp, pmd_t pmd)
646 {
647 page_table_check_pmd_set(mm, addr, pmdp, pmd);
648 return __set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd));
649 }
650
set_pud_at(struct mm_struct * mm,unsigned long addr,pud_t * pudp,pud_t pud)651 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
652 pud_t *pudp, pud_t pud)
653 {
654 page_table_check_pud_set(mm, addr, pudp, pud);
655 return __set_pte_at(mm, addr, (pte_t *)pudp, pud_pte(pud));
656 }
657
658 #ifdef CONFIG_PAGE_TABLE_CHECK
pte_user_accessible_page(pte_t pte)659 static inline bool pte_user_accessible_page(pte_t pte)
660 {
661 return pte_present(pte) && pte_user(pte);
662 }
663
pmd_user_accessible_page(pmd_t pmd)664 static inline bool pmd_user_accessible_page(pmd_t pmd)
665 {
666 return pmd_leaf(pmd) && pmd_user(pmd);
667 }
668
pud_user_accessible_page(pud_t pud)669 static inline bool pud_user_accessible_page(pud_t pud)
670 {
671 return pud_leaf(pud) && pud_user(pud);
672 }
673 #endif
674
675 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmd_trans_huge(pmd_t pmd)676 static inline int pmd_trans_huge(pmd_t pmd)
677 {
678 return pmd_leaf(pmd);
679 }
680
681 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)682 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
683 unsigned long address, pmd_t *pmdp,
684 pmd_t entry, int dirty)
685 {
686 return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty);
687 }
688
689 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)690 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
691 unsigned long address, pmd_t *pmdp)
692 {
693 return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
694 }
695
696 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)697 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
698 unsigned long address, pmd_t *pmdp)
699 {
700 pmd_t pmd = __pmd(atomic_long_xchg((atomic_long_t *)pmdp, 0));
701
702 page_table_check_pmd_clear(mm, address, pmd);
703
704 return pmd;
705 }
706
707 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)708 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
709 unsigned long address, pmd_t *pmdp)
710 {
711 ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
712 }
713
714 #define pmdp_establish pmdp_establish
pmdp_establish(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t pmd)715 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
716 unsigned long address, pmd_t *pmdp, pmd_t pmd)
717 {
718 page_table_check_pmd_set(vma->vm_mm, address, pmdp, pmd);
719 return __pmd(atomic_long_xchg((atomic_long_t *)pmdp, pmd_val(pmd)));
720 }
721 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
722
723 /*
724 * Encode and decode a swap entry
725 *
726 * Format of swap PTE:
727 * bit 0: _PAGE_PRESENT (zero)
728 * bit 1 to 3: _PAGE_LEAF (zero)
729 * bit 5: _PAGE_PROT_NONE (zero)
730 * bits 6 to 10: swap type
731 * bits 10 to XLEN-1: swap offset
732 */
733 #define __SWP_TYPE_SHIFT 6
734 #define __SWP_TYPE_BITS 5
735 #define __SWP_TYPE_MASK ((1UL << __SWP_TYPE_BITS) - 1)
736 #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
737
738 #define MAX_SWAPFILES_CHECK() \
739 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
740
741 #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
742 #define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT)
743 #define __swp_entry(type, offset) ((swp_entry_t) \
744 { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
745
746 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
747 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
748
749 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
750 #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) })
751 #define __swp_entry_to_pmd(swp) __pmd((swp).val)
752 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
753
754 /*
755 * In the RV64 Linux scheme, we give the user half of the virtual-address space
756 * and give the kernel the other (upper) half.
757 */
758 #ifdef CONFIG_64BIT
759 #define KERN_VIRT_START (-(BIT(VA_BITS)) + TASK_SIZE)
760 #else
761 #define KERN_VIRT_START FIXADDR_START
762 #endif
763
764 /*
765 * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32.
766 * Note that PGDIR_SIZE must evenly divide TASK_SIZE.
767 * Task size is:
768 * - 0x9fc00000 (~2.5GB) for RV32.
769 * - 0x4000000000 ( 256GB) for RV64 using SV39 mmu
770 * - 0x800000000000 ( 128TB) for RV64 using SV48 mmu
771 *
772 * Note that PGDIR_SIZE must evenly divide TASK_SIZE since "RISC-V
773 * Instruction Set Manual Volume II: Privileged Architecture" states that
774 * "load and store effective addresses, which are 64bits, must have bits
775 * 63–48 all equal to bit 47, or else a page-fault exception will occur."
776 */
777 #ifdef CONFIG_64BIT
778 #define TASK_SIZE_64 (PGDIR_SIZE * PTRS_PER_PGD / 2)
779 #define TASK_SIZE_MIN (PGDIR_SIZE_L3 * PTRS_PER_PGD / 2)
780
781 #ifdef CONFIG_COMPAT
782 #define TASK_SIZE_32 (_AC(0x80000000, UL) - PAGE_SIZE)
783 #define TASK_SIZE (test_thread_flag(TIF_32BIT) ? \
784 TASK_SIZE_32 : TASK_SIZE_64)
785 #else
786 #define TASK_SIZE TASK_SIZE_64
787 #endif
788
789 #else
790 #define TASK_SIZE FIXADDR_START
791 #define TASK_SIZE_MIN TASK_SIZE
792 #endif
793
794 #else /* CONFIG_MMU */
795
796 #define PAGE_SHARED __pgprot(0)
797 #define PAGE_KERNEL __pgprot(0)
798 #define swapper_pg_dir NULL
799 #define TASK_SIZE 0xffffffffUL
800 #define VMALLOC_START 0
801 #define VMALLOC_END TASK_SIZE
802
803 #endif /* !CONFIG_MMU */
804
805 #define kern_addr_valid(addr) (1) /* FIXME */
806
807 extern char _start[];
808 extern void *_dtb_early_va;
809 extern uintptr_t _dtb_early_pa;
810 #if defined(CONFIG_XIP_KERNEL) && defined(CONFIG_MMU)
811 #define dtb_early_va (*(void **)XIP_FIXUP(&_dtb_early_va))
812 #define dtb_early_pa (*(uintptr_t *)XIP_FIXUP(&_dtb_early_pa))
813 #else
814 #define dtb_early_va _dtb_early_va
815 #define dtb_early_pa _dtb_early_pa
816 #endif /* CONFIG_XIP_KERNEL */
817 extern u64 satp_mode;
818 extern bool pgtable_l4_enabled;
819
820 void paging_init(void);
821 void misc_mem_init(void);
822
823 /*
824 * ZERO_PAGE is a global shared page that is always zero,
825 * used for zero-mapped memory areas, etc.
826 */
827 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
828 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
829
830 #endif /* !__ASSEMBLY__ */
831
832 #endif /* _ASM_RISCV_PGTABLE_H */
833