1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright IBM Corporation, 2018
4 * Authors Suraj Jitindar Singh <sjitindarsingh@gmail.com>
5 * Paul Mackerras <paulus@ozlabs.org>
6 *
7 * Description: KVM functions specific to running nested KVM-HV guests
8 * on Book3S processors (specifically POWER9 and later).
9 */
10
11 #include <linux/kernel.h>
12 #include <linux/kvm_host.h>
13 #include <linux/llist.h>
14 #include <linux/pgtable.h>
15
16 #include <asm/kvm_ppc.h>
17 #include <asm/kvm_book3s.h>
18 #include <asm/mmu.h>
19 #include <asm/pgalloc.h>
20 #include <asm/pte-walk.h>
21 #include <asm/reg.h>
22 #include <asm/plpar_wrappers.h>
23 #include <asm/firmware.h>
24
25 static struct patb_entry *pseries_partition_tb;
26
27 static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp);
28 static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free);
29
kvmhv_save_hv_regs(struct kvm_vcpu * vcpu,struct hv_guest_state * hr)30 void kvmhv_save_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr)
31 {
32 struct kvmppc_vcore *vc = vcpu->arch.vcore;
33
34 hr->pcr = vc->pcr | PCR_MASK;
35 hr->dpdes = vc->dpdes;
36 hr->hfscr = vcpu->arch.hfscr;
37 hr->tb_offset = vc->tb_offset;
38 hr->dawr0 = vcpu->arch.dawr0;
39 hr->dawrx0 = vcpu->arch.dawrx0;
40 hr->ciabr = vcpu->arch.ciabr;
41 hr->purr = vcpu->arch.purr;
42 hr->spurr = vcpu->arch.spurr;
43 hr->ic = vcpu->arch.ic;
44 hr->vtb = vc->vtb;
45 hr->srr0 = vcpu->arch.shregs.srr0;
46 hr->srr1 = vcpu->arch.shregs.srr1;
47 hr->sprg[0] = vcpu->arch.shregs.sprg0;
48 hr->sprg[1] = vcpu->arch.shregs.sprg1;
49 hr->sprg[2] = vcpu->arch.shregs.sprg2;
50 hr->sprg[3] = vcpu->arch.shregs.sprg3;
51 hr->pidr = vcpu->arch.pid;
52 hr->cfar = vcpu->arch.cfar;
53 hr->ppr = vcpu->arch.ppr;
54 hr->dawr1 = vcpu->arch.dawr1;
55 hr->dawrx1 = vcpu->arch.dawrx1;
56 }
57
58 /* Use noinline_for_stack due to https://bugs.llvm.org/show_bug.cgi?id=49610 */
byteswap_pt_regs(struct pt_regs * regs)59 static noinline_for_stack void byteswap_pt_regs(struct pt_regs *regs)
60 {
61 unsigned long *addr = (unsigned long *) regs;
62
63 for (; addr < ((unsigned long *) (regs + 1)); addr++)
64 *addr = swab64(*addr);
65 }
66
byteswap_hv_regs(struct hv_guest_state * hr)67 static void byteswap_hv_regs(struct hv_guest_state *hr)
68 {
69 hr->version = swab64(hr->version);
70 hr->lpid = swab32(hr->lpid);
71 hr->vcpu_token = swab32(hr->vcpu_token);
72 hr->lpcr = swab64(hr->lpcr);
73 hr->pcr = swab64(hr->pcr) | PCR_MASK;
74 hr->amor = swab64(hr->amor);
75 hr->dpdes = swab64(hr->dpdes);
76 hr->hfscr = swab64(hr->hfscr);
77 hr->tb_offset = swab64(hr->tb_offset);
78 hr->dawr0 = swab64(hr->dawr0);
79 hr->dawrx0 = swab64(hr->dawrx0);
80 hr->ciabr = swab64(hr->ciabr);
81 hr->hdec_expiry = swab64(hr->hdec_expiry);
82 hr->purr = swab64(hr->purr);
83 hr->spurr = swab64(hr->spurr);
84 hr->ic = swab64(hr->ic);
85 hr->vtb = swab64(hr->vtb);
86 hr->hdar = swab64(hr->hdar);
87 hr->hdsisr = swab64(hr->hdsisr);
88 hr->heir = swab64(hr->heir);
89 hr->asdr = swab64(hr->asdr);
90 hr->srr0 = swab64(hr->srr0);
91 hr->srr1 = swab64(hr->srr1);
92 hr->sprg[0] = swab64(hr->sprg[0]);
93 hr->sprg[1] = swab64(hr->sprg[1]);
94 hr->sprg[2] = swab64(hr->sprg[2]);
95 hr->sprg[3] = swab64(hr->sprg[3]);
96 hr->pidr = swab64(hr->pidr);
97 hr->cfar = swab64(hr->cfar);
98 hr->ppr = swab64(hr->ppr);
99 hr->dawr1 = swab64(hr->dawr1);
100 hr->dawrx1 = swab64(hr->dawrx1);
101 }
102
save_hv_return_state(struct kvm_vcpu * vcpu,struct hv_guest_state * hr)103 static void save_hv_return_state(struct kvm_vcpu *vcpu,
104 struct hv_guest_state *hr)
105 {
106 struct kvmppc_vcore *vc = vcpu->arch.vcore;
107
108 hr->dpdes = vc->dpdes;
109 hr->purr = vcpu->arch.purr;
110 hr->spurr = vcpu->arch.spurr;
111 hr->ic = vcpu->arch.ic;
112 hr->vtb = vc->vtb;
113 hr->srr0 = vcpu->arch.shregs.srr0;
114 hr->srr1 = vcpu->arch.shregs.srr1;
115 hr->sprg[0] = vcpu->arch.shregs.sprg0;
116 hr->sprg[1] = vcpu->arch.shregs.sprg1;
117 hr->sprg[2] = vcpu->arch.shregs.sprg2;
118 hr->sprg[3] = vcpu->arch.shregs.sprg3;
119 hr->pidr = vcpu->arch.pid;
120 hr->cfar = vcpu->arch.cfar;
121 hr->ppr = vcpu->arch.ppr;
122 switch (vcpu->arch.trap) {
123 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
124 hr->hdar = vcpu->arch.fault_dar;
125 hr->hdsisr = vcpu->arch.fault_dsisr;
126 hr->asdr = vcpu->arch.fault_gpa;
127 break;
128 case BOOK3S_INTERRUPT_H_INST_STORAGE:
129 hr->asdr = vcpu->arch.fault_gpa;
130 break;
131 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
132 hr->hfscr = ((~HFSCR_INTR_CAUSE & hr->hfscr) |
133 (HFSCR_INTR_CAUSE & vcpu->arch.hfscr));
134 break;
135 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
136 hr->heir = vcpu->arch.emul_inst;
137 break;
138 }
139 }
140
restore_hv_regs(struct kvm_vcpu * vcpu,const struct hv_guest_state * hr)141 static void restore_hv_regs(struct kvm_vcpu *vcpu, const struct hv_guest_state *hr)
142 {
143 struct kvmppc_vcore *vc = vcpu->arch.vcore;
144
145 vc->pcr = hr->pcr | PCR_MASK;
146 vc->dpdes = hr->dpdes;
147 vcpu->arch.hfscr = hr->hfscr;
148 vcpu->arch.dawr0 = hr->dawr0;
149 vcpu->arch.dawrx0 = hr->dawrx0;
150 vcpu->arch.ciabr = hr->ciabr;
151 vcpu->arch.purr = hr->purr;
152 vcpu->arch.spurr = hr->spurr;
153 vcpu->arch.ic = hr->ic;
154 vc->vtb = hr->vtb;
155 vcpu->arch.shregs.srr0 = hr->srr0;
156 vcpu->arch.shregs.srr1 = hr->srr1;
157 vcpu->arch.shregs.sprg0 = hr->sprg[0];
158 vcpu->arch.shregs.sprg1 = hr->sprg[1];
159 vcpu->arch.shregs.sprg2 = hr->sprg[2];
160 vcpu->arch.shregs.sprg3 = hr->sprg[3];
161 vcpu->arch.pid = hr->pidr;
162 vcpu->arch.cfar = hr->cfar;
163 vcpu->arch.ppr = hr->ppr;
164 vcpu->arch.dawr1 = hr->dawr1;
165 vcpu->arch.dawrx1 = hr->dawrx1;
166 }
167
kvmhv_restore_hv_return_state(struct kvm_vcpu * vcpu,struct hv_guest_state * hr)168 void kvmhv_restore_hv_return_state(struct kvm_vcpu *vcpu,
169 struct hv_guest_state *hr)
170 {
171 struct kvmppc_vcore *vc = vcpu->arch.vcore;
172
173 vc->dpdes = hr->dpdes;
174 vcpu->arch.hfscr = hr->hfscr;
175 vcpu->arch.purr = hr->purr;
176 vcpu->arch.spurr = hr->spurr;
177 vcpu->arch.ic = hr->ic;
178 vc->vtb = hr->vtb;
179 vcpu->arch.fault_dar = hr->hdar;
180 vcpu->arch.fault_dsisr = hr->hdsisr;
181 vcpu->arch.fault_gpa = hr->asdr;
182 vcpu->arch.emul_inst = hr->heir;
183 vcpu->arch.shregs.srr0 = hr->srr0;
184 vcpu->arch.shregs.srr1 = hr->srr1;
185 vcpu->arch.shregs.sprg0 = hr->sprg[0];
186 vcpu->arch.shregs.sprg1 = hr->sprg[1];
187 vcpu->arch.shregs.sprg2 = hr->sprg[2];
188 vcpu->arch.shregs.sprg3 = hr->sprg[3];
189 vcpu->arch.pid = hr->pidr;
190 vcpu->arch.cfar = hr->cfar;
191 vcpu->arch.ppr = hr->ppr;
192 }
193
kvmhv_nested_mmio_needed(struct kvm_vcpu * vcpu,u64 regs_ptr)194 static void kvmhv_nested_mmio_needed(struct kvm_vcpu *vcpu, u64 regs_ptr)
195 {
196 /* No need to reflect the page fault to L1, we've handled it */
197 vcpu->arch.trap = 0;
198
199 /*
200 * Since the L2 gprs have already been written back into L1 memory when
201 * we complete the mmio, store the L1 memory location of the L2 gpr
202 * being loaded into by the mmio so that the loaded value can be
203 * written there in kvmppc_complete_mmio_load()
204 */
205 if (((vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) == KVM_MMIO_REG_GPR)
206 && (vcpu->mmio_is_write == 0)) {
207 vcpu->arch.nested_io_gpr = (gpa_t) regs_ptr +
208 offsetof(struct pt_regs,
209 gpr[vcpu->arch.io_gpr]);
210 vcpu->arch.io_gpr = KVM_MMIO_REG_NESTED_GPR;
211 }
212 }
213
kvmhv_read_guest_state_and_regs(struct kvm_vcpu * vcpu,struct hv_guest_state * l2_hv,struct pt_regs * l2_regs,u64 hv_ptr,u64 regs_ptr)214 static int kvmhv_read_guest_state_and_regs(struct kvm_vcpu *vcpu,
215 struct hv_guest_state *l2_hv,
216 struct pt_regs *l2_regs,
217 u64 hv_ptr, u64 regs_ptr)
218 {
219 int size;
220
221 if (kvm_vcpu_read_guest(vcpu, hv_ptr, &l2_hv->version,
222 sizeof(l2_hv->version)))
223 return -1;
224
225 if (kvmppc_need_byteswap(vcpu))
226 l2_hv->version = swab64(l2_hv->version);
227
228 size = hv_guest_state_size(l2_hv->version);
229 if (size < 0)
230 return -1;
231
232 return kvm_vcpu_read_guest(vcpu, hv_ptr, l2_hv, size) ||
233 kvm_vcpu_read_guest(vcpu, regs_ptr, l2_regs,
234 sizeof(struct pt_regs));
235 }
236
kvmhv_write_guest_state_and_regs(struct kvm_vcpu * vcpu,struct hv_guest_state * l2_hv,struct pt_regs * l2_regs,u64 hv_ptr,u64 regs_ptr)237 static int kvmhv_write_guest_state_and_regs(struct kvm_vcpu *vcpu,
238 struct hv_guest_state *l2_hv,
239 struct pt_regs *l2_regs,
240 u64 hv_ptr, u64 regs_ptr)
241 {
242 int size;
243
244 size = hv_guest_state_size(l2_hv->version);
245 if (size < 0)
246 return -1;
247
248 return kvm_vcpu_write_guest(vcpu, hv_ptr, l2_hv, size) ||
249 kvm_vcpu_write_guest(vcpu, regs_ptr, l2_regs,
250 sizeof(struct pt_regs));
251 }
252
load_l2_hv_regs(struct kvm_vcpu * vcpu,const struct hv_guest_state * l2_hv,const struct hv_guest_state * l1_hv,u64 * lpcr)253 static void load_l2_hv_regs(struct kvm_vcpu *vcpu,
254 const struct hv_guest_state *l2_hv,
255 const struct hv_guest_state *l1_hv, u64 *lpcr)
256 {
257 struct kvmppc_vcore *vc = vcpu->arch.vcore;
258 u64 mask;
259
260 restore_hv_regs(vcpu, l2_hv);
261
262 /*
263 * Don't let L1 change LPCR bits for the L2 except these:
264 */
265 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD | LPCR_MER;
266
267 /*
268 * Additional filtering is required depending on hardware
269 * and configuration.
270 */
271 *lpcr = kvmppc_filter_lpcr_hv(vcpu->kvm,
272 (vc->lpcr & ~mask) | (*lpcr & mask));
273
274 /*
275 * Don't let L1 enable features for L2 which we don't allow for L1,
276 * but preserve the interrupt cause field.
277 */
278 vcpu->arch.hfscr = l2_hv->hfscr & (HFSCR_INTR_CAUSE | vcpu->arch.hfscr_permitted);
279
280 /* Don't let data address watchpoint match in hypervisor state */
281 vcpu->arch.dawrx0 = l2_hv->dawrx0 & ~DAWRX_HYP;
282 vcpu->arch.dawrx1 = l2_hv->dawrx1 & ~DAWRX_HYP;
283
284 /* Don't let completed instruction address breakpt match in HV state */
285 if ((l2_hv->ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
286 vcpu->arch.ciabr = l2_hv->ciabr & ~CIABR_PRIV;
287 }
288
kvmhv_enter_nested_guest(struct kvm_vcpu * vcpu)289 long kvmhv_enter_nested_guest(struct kvm_vcpu *vcpu)
290 {
291 long int err, r;
292 struct kvm_nested_guest *l2;
293 struct pt_regs l2_regs, saved_l1_regs;
294 struct hv_guest_state l2_hv = {0}, saved_l1_hv;
295 struct kvmppc_vcore *vc = vcpu->arch.vcore;
296 u64 hv_ptr, regs_ptr;
297 u64 hdec_exp, lpcr;
298 s64 delta_purr, delta_spurr, delta_ic, delta_vtb;
299
300 if (vcpu->kvm->arch.l1_ptcr == 0)
301 return H_NOT_AVAILABLE;
302
303 if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
304 return H_BAD_MODE;
305
306 /* copy parameters in */
307 hv_ptr = kvmppc_get_gpr(vcpu, 4);
308 regs_ptr = kvmppc_get_gpr(vcpu, 5);
309 kvm_vcpu_srcu_read_lock(vcpu);
310 err = kvmhv_read_guest_state_and_regs(vcpu, &l2_hv, &l2_regs,
311 hv_ptr, regs_ptr);
312 kvm_vcpu_srcu_read_unlock(vcpu);
313 if (err)
314 return H_PARAMETER;
315
316 if (kvmppc_need_byteswap(vcpu))
317 byteswap_hv_regs(&l2_hv);
318 if (l2_hv.version > HV_GUEST_STATE_VERSION)
319 return H_P2;
320
321 if (kvmppc_need_byteswap(vcpu))
322 byteswap_pt_regs(&l2_regs);
323 if (l2_hv.vcpu_token >= NR_CPUS)
324 return H_PARAMETER;
325
326 /*
327 * L1 must have set up a suspended state to enter the L2 in a
328 * transactional state, and only in that case. These have to be
329 * filtered out here to prevent causing a TM Bad Thing in the
330 * host HRFID. We could synthesize a TM Bad Thing back to the L1
331 * here but there doesn't seem like much point.
332 */
333 if (MSR_TM_SUSPENDED(vcpu->arch.shregs.msr)) {
334 if (!MSR_TM_ACTIVE(l2_regs.msr))
335 return H_BAD_MODE;
336 } else {
337 if (l2_regs.msr & MSR_TS_MASK)
338 return H_BAD_MODE;
339 if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_TS_MASK))
340 return H_BAD_MODE;
341 }
342
343 /* translate lpid */
344 l2 = kvmhv_get_nested(vcpu->kvm, l2_hv.lpid, true);
345 if (!l2)
346 return H_PARAMETER;
347 if (!l2->l1_gr_to_hr) {
348 mutex_lock(&l2->tlb_lock);
349 kvmhv_update_ptbl_cache(l2);
350 mutex_unlock(&l2->tlb_lock);
351 }
352
353 /* save l1 values of things */
354 vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
355 saved_l1_regs = vcpu->arch.regs;
356 kvmhv_save_hv_regs(vcpu, &saved_l1_hv);
357
358 /* convert TB values/offsets to host (L0) values */
359 hdec_exp = l2_hv.hdec_expiry - vc->tb_offset;
360 vc->tb_offset += l2_hv.tb_offset;
361 vcpu->arch.dec_expires += l2_hv.tb_offset;
362
363 /* set L1 state to L2 state */
364 vcpu->arch.nested = l2;
365 vcpu->arch.nested_vcpu_id = l2_hv.vcpu_token;
366 vcpu->arch.nested_hfscr = l2_hv.hfscr;
367 vcpu->arch.regs = l2_regs;
368
369 /* Guest must always run with ME enabled, HV disabled. */
370 vcpu->arch.shregs.msr = (vcpu->arch.regs.msr | MSR_ME) & ~MSR_HV;
371
372 lpcr = l2_hv.lpcr;
373 load_l2_hv_regs(vcpu, &l2_hv, &saved_l1_hv, &lpcr);
374
375 vcpu->arch.ret = RESUME_GUEST;
376 vcpu->arch.trap = 0;
377 do {
378 r = kvmhv_run_single_vcpu(vcpu, hdec_exp, lpcr);
379 } while (is_kvmppc_resume_guest(r));
380
381 /* save L2 state for return */
382 l2_regs = vcpu->arch.regs;
383 l2_regs.msr = vcpu->arch.shregs.msr;
384 delta_purr = vcpu->arch.purr - l2_hv.purr;
385 delta_spurr = vcpu->arch.spurr - l2_hv.spurr;
386 delta_ic = vcpu->arch.ic - l2_hv.ic;
387 delta_vtb = vc->vtb - l2_hv.vtb;
388 save_hv_return_state(vcpu, &l2_hv);
389
390 /* restore L1 state */
391 vcpu->arch.nested = NULL;
392 vcpu->arch.regs = saved_l1_regs;
393 vcpu->arch.shregs.msr = saved_l1_regs.msr & ~MSR_TS_MASK;
394 /* set L1 MSR TS field according to L2 transaction state */
395 if (l2_regs.msr & MSR_TS_MASK)
396 vcpu->arch.shregs.msr |= MSR_TS_S;
397 vc->tb_offset = saved_l1_hv.tb_offset;
398 /* XXX: is this always the same delta as saved_l1_hv.tb_offset? */
399 vcpu->arch.dec_expires -= l2_hv.tb_offset;
400 restore_hv_regs(vcpu, &saved_l1_hv);
401 vcpu->arch.purr += delta_purr;
402 vcpu->arch.spurr += delta_spurr;
403 vcpu->arch.ic += delta_ic;
404 vc->vtb += delta_vtb;
405
406 kvmhv_put_nested(l2);
407
408 /* copy l2_hv_state and regs back to guest */
409 if (kvmppc_need_byteswap(vcpu)) {
410 byteswap_hv_regs(&l2_hv);
411 byteswap_pt_regs(&l2_regs);
412 }
413 kvm_vcpu_srcu_read_lock(vcpu);
414 err = kvmhv_write_guest_state_and_regs(vcpu, &l2_hv, &l2_regs,
415 hv_ptr, regs_ptr);
416 kvm_vcpu_srcu_read_unlock(vcpu);
417 if (err)
418 return H_AUTHORITY;
419
420 if (r == -EINTR)
421 return H_INTERRUPT;
422
423 if (vcpu->mmio_needed) {
424 kvmhv_nested_mmio_needed(vcpu, regs_ptr);
425 return H_TOO_HARD;
426 }
427
428 return vcpu->arch.trap;
429 }
430
kvmhv_nested_init(void)431 long kvmhv_nested_init(void)
432 {
433 long int ptb_order;
434 unsigned long ptcr;
435 long rc;
436
437 if (!kvmhv_on_pseries())
438 return 0;
439 if (!radix_enabled())
440 return -ENODEV;
441
442 /* Partition table entry is 1<<4 bytes in size, hence the 4. */
443 ptb_order = KVM_MAX_NESTED_GUESTS_SHIFT + 4;
444 /* Minimum partition table size is 1<<12 bytes */
445 if (ptb_order < 12)
446 ptb_order = 12;
447 pseries_partition_tb = kmalloc(sizeof(struct patb_entry) << ptb_order,
448 GFP_KERNEL);
449 if (!pseries_partition_tb) {
450 pr_err("kvm-hv: failed to allocated nested partition table\n");
451 return -ENOMEM;
452 }
453
454 ptcr = __pa(pseries_partition_tb) | (ptb_order - 12);
455 rc = plpar_hcall_norets(H_SET_PARTITION_TABLE, ptcr);
456 if (rc != H_SUCCESS) {
457 pr_err("kvm-hv: Parent hypervisor does not support nesting (rc=%ld)\n",
458 rc);
459 kfree(pseries_partition_tb);
460 pseries_partition_tb = NULL;
461 return -ENODEV;
462 }
463
464 return 0;
465 }
466
kvmhv_nested_exit(void)467 void kvmhv_nested_exit(void)
468 {
469 /*
470 * N.B. the kvmhv_on_pseries() test is there because it enables
471 * the compiler to remove the call to plpar_hcall_norets()
472 * when CONFIG_PPC_PSERIES=n.
473 */
474 if (kvmhv_on_pseries() && pseries_partition_tb) {
475 plpar_hcall_norets(H_SET_PARTITION_TABLE, 0);
476 kfree(pseries_partition_tb);
477 pseries_partition_tb = NULL;
478 }
479 }
480
kvmhv_flush_lpid(unsigned int lpid)481 static void kvmhv_flush_lpid(unsigned int lpid)
482 {
483 long rc;
484
485 if (!kvmhv_on_pseries()) {
486 radix__flush_all_lpid(lpid);
487 return;
488 }
489
490 if (!firmware_has_feature(FW_FEATURE_RPT_INVALIDATE))
491 rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(2, 0, 1),
492 lpid, TLBIEL_INVAL_SET_LPID);
493 else
494 rc = pseries_rpt_invalidate(lpid, H_RPTI_TARGET_CMMU,
495 H_RPTI_TYPE_NESTED |
496 H_RPTI_TYPE_TLB | H_RPTI_TYPE_PWC |
497 H_RPTI_TYPE_PAT,
498 H_RPTI_PAGE_ALL, 0, -1UL);
499 if (rc)
500 pr_err("KVM: TLB LPID invalidation hcall failed, rc=%ld\n", rc);
501 }
502
kvmhv_set_ptbl_entry(unsigned int lpid,u64 dw0,u64 dw1)503 void kvmhv_set_ptbl_entry(unsigned int lpid, u64 dw0, u64 dw1)
504 {
505 if (!kvmhv_on_pseries()) {
506 mmu_partition_table_set_entry(lpid, dw0, dw1, true);
507 return;
508 }
509
510 pseries_partition_tb[lpid].patb0 = cpu_to_be64(dw0);
511 pseries_partition_tb[lpid].patb1 = cpu_to_be64(dw1);
512 /* L0 will do the necessary barriers */
513 kvmhv_flush_lpid(lpid);
514 }
515
kvmhv_set_nested_ptbl(struct kvm_nested_guest * gp)516 static void kvmhv_set_nested_ptbl(struct kvm_nested_guest *gp)
517 {
518 unsigned long dw0;
519
520 dw0 = PATB_HR | radix__get_tree_size() |
521 __pa(gp->shadow_pgtable) | RADIX_PGD_INDEX_SIZE;
522 kvmhv_set_ptbl_entry(gp->shadow_lpid, dw0, gp->process_table);
523 }
524
525 /*
526 * Handle the H_SET_PARTITION_TABLE hcall.
527 * r4 = guest real address of partition table + log_2(size) - 12
528 * (formatted as for the PTCR).
529 */
kvmhv_set_partition_table(struct kvm_vcpu * vcpu)530 long kvmhv_set_partition_table(struct kvm_vcpu *vcpu)
531 {
532 struct kvm *kvm = vcpu->kvm;
533 unsigned long ptcr = kvmppc_get_gpr(vcpu, 4);
534 int srcu_idx;
535 long ret = H_SUCCESS;
536
537 srcu_idx = srcu_read_lock(&kvm->srcu);
538 /* Check partition size and base address. */
539 if ((ptcr & PRTS_MASK) + 12 - 4 > KVM_MAX_NESTED_GUESTS_SHIFT ||
540 !kvm_is_visible_gfn(vcpu->kvm, (ptcr & PRTB_MASK) >> PAGE_SHIFT))
541 ret = H_PARAMETER;
542 srcu_read_unlock(&kvm->srcu, srcu_idx);
543 if (ret == H_SUCCESS)
544 kvm->arch.l1_ptcr = ptcr;
545
546 return ret;
547 }
548
549 /*
550 * Handle the H_COPY_TOFROM_GUEST hcall.
551 * r4 = L1 lpid of nested guest
552 * r5 = pid
553 * r6 = eaddr to access
554 * r7 = to buffer (L1 gpa)
555 * r8 = from buffer (L1 gpa)
556 * r9 = n bytes to copy
557 */
kvmhv_copy_tofrom_guest_nested(struct kvm_vcpu * vcpu)558 long kvmhv_copy_tofrom_guest_nested(struct kvm_vcpu *vcpu)
559 {
560 struct kvm_nested_guest *gp;
561 int l1_lpid = kvmppc_get_gpr(vcpu, 4);
562 int pid = kvmppc_get_gpr(vcpu, 5);
563 gva_t eaddr = kvmppc_get_gpr(vcpu, 6);
564 gpa_t gp_to = (gpa_t) kvmppc_get_gpr(vcpu, 7);
565 gpa_t gp_from = (gpa_t) kvmppc_get_gpr(vcpu, 8);
566 void *buf;
567 unsigned long n = kvmppc_get_gpr(vcpu, 9);
568 bool is_load = !!gp_to;
569 long rc;
570
571 if (gp_to && gp_from) /* One must be NULL to determine the direction */
572 return H_PARAMETER;
573
574 if (eaddr & (0xFFFUL << 52))
575 return H_PARAMETER;
576
577 buf = kzalloc(n, GFP_KERNEL | __GFP_NOWARN);
578 if (!buf)
579 return H_NO_MEM;
580
581 gp = kvmhv_get_nested(vcpu->kvm, l1_lpid, false);
582 if (!gp) {
583 rc = H_PARAMETER;
584 goto out_free;
585 }
586
587 mutex_lock(&gp->tlb_lock);
588
589 if (is_load) {
590 /* Load from the nested guest into our buffer */
591 rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid,
592 eaddr, buf, NULL, n);
593 if (rc)
594 goto not_found;
595
596 /* Write what was loaded into our buffer back to the L1 guest */
597 kvm_vcpu_srcu_read_lock(vcpu);
598 rc = kvm_vcpu_write_guest(vcpu, gp_to, buf, n);
599 kvm_vcpu_srcu_read_unlock(vcpu);
600 if (rc)
601 goto not_found;
602 } else {
603 /* Load the data to be stored from the L1 guest into our buf */
604 kvm_vcpu_srcu_read_lock(vcpu);
605 rc = kvm_vcpu_read_guest(vcpu, gp_from, buf, n);
606 kvm_vcpu_srcu_read_unlock(vcpu);
607 if (rc)
608 goto not_found;
609
610 /* Store from our buffer into the nested guest */
611 rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid,
612 eaddr, NULL, buf, n);
613 if (rc)
614 goto not_found;
615 }
616
617 out_unlock:
618 mutex_unlock(&gp->tlb_lock);
619 kvmhv_put_nested(gp);
620 out_free:
621 kfree(buf);
622 return rc;
623 not_found:
624 rc = H_NOT_FOUND;
625 goto out_unlock;
626 }
627
628 /*
629 * Reload the partition table entry for a guest.
630 * Caller must hold gp->tlb_lock.
631 */
kvmhv_update_ptbl_cache(struct kvm_nested_guest * gp)632 static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp)
633 {
634 int ret;
635 struct patb_entry ptbl_entry;
636 unsigned long ptbl_addr;
637 struct kvm *kvm = gp->l1_host;
638
639 ret = -EFAULT;
640 ptbl_addr = (kvm->arch.l1_ptcr & PRTB_MASK) + (gp->l1_lpid << 4);
641 if (gp->l1_lpid < (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 12 - 4))) {
642 int srcu_idx = srcu_read_lock(&kvm->srcu);
643 ret = kvm_read_guest(kvm, ptbl_addr,
644 &ptbl_entry, sizeof(ptbl_entry));
645 srcu_read_unlock(&kvm->srcu, srcu_idx);
646 }
647 if (ret) {
648 gp->l1_gr_to_hr = 0;
649 gp->process_table = 0;
650 } else {
651 gp->l1_gr_to_hr = be64_to_cpu(ptbl_entry.patb0);
652 gp->process_table = be64_to_cpu(ptbl_entry.patb1);
653 }
654 kvmhv_set_nested_ptbl(gp);
655 }
656
kvmhv_vm_nested_init(struct kvm * kvm)657 void kvmhv_vm_nested_init(struct kvm *kvm)
658 {
659 idr_init(&kvm->arch.kvm_nested_guest_idr);
660 }
661
__find_nested(struct kvm * kvm,int lpid)662 static struct kvm_nested_guest *__find_nested(struct kvm *kvm, int lpid)
663 {
664 return idr_find(&kvm->arch.kvm_nested_guest_idr, lpid);
665 }
666
__prealloc_nested(struct kvm * kvm,int lpid)667 static bool __prealloc_nested(struct kvm *kvm, int lpid)
668 {
669 if (idr_alloc(&kvm->arch.kvm_nested_guest_idr,
670 NULL, lpid, lpid + 1, GFP_KERNEL) != lpid)
671 return false;
672 return true;
673 }
674
__add_nested(struct kvm * kvm,int lpid,struct kvm_nested_guest * gp)675 static void __add_nested(struct kvm *kvm, int lpid, struct kvm_nested_guest *gp)
676 {
677 if (idr_replace(&kvm->arch.kvm_nested_guest_idr, gp, lpid))
678 WARN_ON(1);
679 }
680
__remove_nested(struct kvm * kvm,int lpid)681 static void __remove_nested(struct kvm *kvm, int lpid)
682 {
683 idr_remove(&kvm->arch.kvm_nested_guest_idr, lpid);
684 }
685
kvmhv_alloc_nested(struct kvm * kvm,unsigned int lpid)686 static struct kvm_nested_guest *kvmhv_alloc_nested(struct kvm *kvm, unsigned int lpid)
687 {
688 struct kvm_nested_guest *gp;
689 long shadow_lpid;
690
691 gp = kzalloc(sizeof(*gp), GFP_KERNEL);
692 if (!gp)
693 return NULL;
694 gp->l1_host = kvm;
695 gp->l1_lpid = lpid;
696 mutex_init(&gp->tlb_lock);
697 gp->shadow_pgtable = pgd_alloc(kvm->mm);
698 if (!gp->shadow_pgtable)
699 goto out_free;
700 shadow_lpid = kvmppc_alloc_lpid();
701 if (shadow_lpid < 0)
702 goto out_free2;
703 gp->shadow_lpid = shadow_lpid;
704 gp->radix = 1;
705
706 memset(gp->prev_cpu, -1, sizeof(gp->prev_cpu));
707
708 return gp;
709
710 out_free2:
711 pgd_free(kvm->mm, gp->shadow_pgtable);
712 out_free:
713 kfree(gp);
714 return NULL;
715 }
716
717 /*
718 * Free up any resources allocated for a nested guest.
719 */
kvmhv_release_nested(struct kvm_nested_guest * gp)720 static void kvmhv_release_nested(struct kvm_nested_guest *gp)
721 {
722 struct kvm *kvm = gp->l1_host;
723
724 if (gp->shadow_pgtable) {
725 /*
726 * No vcpu is using this struct and no call to
727 * kvmhv_get_nested can find this struct,
728 * so we don't need to hold kvm->mmu_lock.
729 */
730 kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable,
731 gp->shadow_lpid);
732 pgd_free(kvm->mm, gp->shadow_pgtable);
733 }
734 kvmhv_set_ptbl_entry(gp->shadow_lpid, 0, 0);
735 kvmppc_free_lpid(gp->shadow_lpid);
736 kfree(gp);
737 }
738
kvmhv_remove_nested(struct kvm_nested_guest * gp)739 static void kvmhv_remove_nested(struct kvm_nested_guest *gp)
740 {
741 struct kvm *kvm = gp->l1_host;
742 int lpid = gp->l1_lpid;
743 long ref;
744
745 spin_lock(&kvm->mmu_lock);
746 if (gp == __find_nested(kvm, lpid)) {
747 __remove_nested(kvm, lpid);
748 --gp->refcnt;
749 }
750 ref = gp->refcnt;
751 spin_unlock(&kvm->mmu_lock);
752 if (ref == 0)
753 kvmhv_release_nested(gp);
754 }
755
756 /*
757 * Free up all nested resources allocated for this guest.
758 * This is called with no vcpus of the guest running, when
759 * switching the guest to HPT mode or when destroying the
760 * guest.
761 */
kvmhv_release_all_nested(struct kvm * kvm)762 void kvmhv_release_all_nested(struct kvm *kvm)
763 {
764 int lpid;
765 struct kvm_nested_guest *gp;
766 struct kvm_nested_guest *freelist = NULL;
767 struct kvm_memory_slot *memslot;
768 int srcu_idx, bkt;
769
770 spin_lock(&kvm->mmu_lock);
771 idr_for_each_entry(&kvm->arch.kvm_nested_guest_idr, gp, lpid) {
772 __remove_nested(kvm, lpid);
773 if (--gp->refcnt == 0) {
774 gp->next = freelist;
775 freelist = gp;
776 }
777 }
778 idr_destroy(&kvm->arch.kvm_nested_guest_idr);
779 /* idr is empty and may be reused at this point */
780 spin_unlock(&kvm->mmu_lock);
781 while ((gp = freelist) != NULL) {
782 freelist = gp->next;
783 kvmhv_release_nested(gp);
784 }
785
786 srcu_idx = srcu_read_lock(&kvm->srcu);
787 kvm_for_each_memslot(memslot, bkt, kvm_memslots(kvm))
788 kvmhv_free_memslot_nest_rmap(memslot);
789 srcu_read_unlock(&kvm->srcu, srcu_idx);
790 }
791
792 /* caller must hold gp->tlb_lock */
kvmhv_flush_nested(struct kvm_nested_guest * gp)793 static void kvmhv_flush_nested(struct kvm_nested_guest *gp)
794 {
795 struct kvm *kvm = gp->l1_host;
796
797 spin_lock(&kvm->mmu_lock);
798 kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable, gp->shadow_lpid);
799 spin_unlock(&kvm->mmu_lock);
800 kvmhv_flush_lpid(gp->shadow_lpid);
801 kvmhv_update_ptbl_cache(gp);
802 if (gp->l1_gr_to_hr == 0)
803 kvmhv_remove_nested(gp);
804 }
805
kvmhv_get_nested(struct kvm * kvm,int l1_lpid,bool create)806 struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid,
807 bool create)
808 {
809 struct kvm_nested_guest *gp, *newgp;
810
811 if (l1_lpid >= (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 12 - 4)))
812 return NULL;
813
814 spin_lock(&kvm->mmu_lock);
815 gp = __find_nested(kvm, l1_lpid);
816 if (gp)
817 ++gp->refcnt;
818 spin_unlock(&kvm->mmu_lock);
819
820 if (gp || !create)
821 return gp;
822
823 newgp = kvmhv_alloc_nested(kvm, l1_lpid);
824 if (!newgp)
825 return NULL;
826
827 if (!__prealloc_nested(kvm, l1_lpid)) {
828 kvmhv_release_nested(newgp);
829 return NULL;
830 }
831
832 spin_lock(&kvm->mmu_lock);
833 gp = __find_nested(kvm, l1_lpid);
834 if (!gp) {
835 __add_nested(kvm, l1_lpid, newgp);
836 ++newgp->refcnt;
837 gp = newgp;
838 newgp = NULL;
839 }
840 ++gp->refcnt;
841 spin_unlock(&kvm->mmu_lock);
842
843 if (newgp)
844 kvmhv_release_nested(newgp);
845
846 return gp;
847 }
848
kvmhv_put_nested(struct kvm_nested_guest * gp)849 void kvmhv_put_nested(struct kvm_nested_guest *gp)
850 {
851 struct kvm *kvm = gp->l1_host;
852 long ref;
853
854 spin_lock(&kvm->mmu_lock);
855 ref = --gp->refcnt;
856 spin_unlock(&kvm->mmu_lock);
857 if (ref == 0)
858 kvmhv_release_nested(gp);
859 }
860
find_kvm_nested_guest_pte(struct kvm * kvm,unsigned long lpid,unsigned long ea,unsigned * hshift)861 pte_t *find_kvm_nested_guest_pte(struct kvm *kvm, unsigned long lpid,
862 unsigned long ea, unsigned *hshift)
863 {
864 struct kvm_nested_guest *gp;
865 pte_t *pte;
866
867 gp = __find_nested(kvm, lpid);
868 if (!gp)
869 return NULL;
870
871 VM_WARN(!spin_is_locked(&kvm->mmu_lock),
872 "%s called with kvm mmu_lock not held \n", __func__);
873 pte = __find_linux_pte(gp->shadow_pgtable, ea, NULL, hshift);
874
875 return pte;
876 }
877
kvmhv_n_rmap_is_equal(u64 rmap_1,u64 rmap_2)878 static inline bool kvmhv_n_rmap_is_equal(u64 rmap_1, u64 rmap_2)
879 {
880 return !((rmap_1 ^ rmap_2) & (RMAP_NESTED_LPID_MASK |
881 RMAP_NESTED_GPA_MASK));
882 }
883
kvmhv_insert_nest_rmap(struct kvm * kvm,unsigned long * rmapp,struct rmap_nested ** n_rmap)884 void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp,
885 struct rmap_nested **n_rmap)
886 {
887 struct llist_node *entry = ((struct llist_head *) rmapp)->first;
888 struct rmap_nested *cursor;
889 u64 rmap, new_rmap = (*n_rmap)->rmap;
890
891 /* Are there any existing entries? */
892 if (!(*rmapp)) {
893 /* No -> use the rmap as a single entry */
894 *rmapp = new_rmap | RMAP_NESTED_IS_SINGLE_ENTRY;
895 return;
896 }
897
898 /* Do any entries match what we're trying to insert? */
899 for_each_nest_rmap_safe(cursor, entry, &rmap) {
900 if (kvmhv_n_rmap_is_equal(rmap, new_rmap))
901 return;
902 }
903
904 /* Do we need to create a list or just add the new entry? */
905 rmap = *rmapp;
906 if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */
907 *rmapp = 0UL;
908 llist_add(&((*n_rmap)->list), (struct llist_head *) rmapp);
909 if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */
910 (*n_rmap)->list.next = (struct llist_node *) rmap;
911
912 /* Set NULL so not freed by caller */
913 *n_rmap = NULL;
914 }
915
kvmhv_update_nest_rmap_rc(struct kvm * kvm,u64 n_rmap,unsigned long clr,unsigned long set,unsigned long hpa,unsigned long mask)916 static void kvmhv_update_nest_rmap_rc(struct kvm *kvm, u64 n_rmap,
917 unsigned long clr, unsigned long set,
918 unsigned long hpa, unsigned long mask)
919 {
920 unsigned long gpa;
921 unsigned int shift, lpid;
922 pte_t *ptep;
923
924 gpa = n_rmap & RMAP_NESTED_GPA_MASK;
925 lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT;
926
927 /* Find the pte */
928 ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift);
929 /*
930 * If the pte is present and the pfn is still the same, update the pte.
931 * If the pfn has changed then this is a stale rmap entry, the nested
932 * gpa actually points somewhere else now, and there is nothing to do.
933 * XXX A future optimisation would be to remove the rmap entry here.
934 */
935 if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa)) {
936 __radix_pte_update(ptep, clr, set);
937 kvmppc_radix_tlbie_page(kvm, gpa, shift, lpid);
938 }
939 }
940
941 /*
942 * For a given list of rmap entries, update the rc bits in all ptes in shadow
943 * page tables for nested guests which are referenced by the rmap list.
944 */
kvmhv_update_nest_rmap_rc_list(struct kvm * kvm,unsigned long * rmapp,unsigned long clr,unsigned long set,unsigned long hpa,unsigned long nbytes)945 void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp,
946 unsigned long clr, unsigned long set,
947 unsigned long hpa, unsigned long nbytes)
948 {
949 struct llist_node *entry = ((struct llist_head *) rmapp)->first;
950 struct rmap_nested *cursor;
951 unsigned long rmap, mask;
952
953 if ((clr | set) & ~(_PAGE_DIRTY | _PAGE_ACCESSED))
954 return;
955
956 mask = PTE_RPN_MASK & ~(nbytes - 1);
957 hpa &= mask;
958
959 for_each_nest_rmap_safe(cursor, entry, &rmap)
960 kvmhv_update_nest_rmap_rc(kvm, rmap, clr, set, hpa, mask);
961 }
962
kvmhv_remove_nest_rmap(struct kvm * kvm,u64 n_rmap,unsigned long hpa,unsigned long mask)963 static void kvmhv_remove_nest_rmap(struct kvm *kvm, u64 n_rmap,
964 unsigned long hpa, unsigned long mask)
965 {
966 struct kvm_nested_guest *gp;
967 unsigned long gpa;
968 unsigned int shift, lpid;
969 pte_t *ptep;
970
971 gpa = n_rmap & RMAP_NESTED_GPA_MASK;
972 lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT;
973 gp = __find_nested(kvm, lpid);
974 if (!gp)
975 return;
976
977 /* Find and invalidate the pte */
978 ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift);
979 /* Don't spuriously invalidate ptes if the pfn has changed */
980 if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa))
981 kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid);
982 }
983
kvmhv_remove_nest_rmap_list(struct kvm * kvm,unsigned long * rmapp,unsigned long hpa,unsigned long mask)984 static void kvmhv_remove_nest_rmap_list(struct kvm *kvm, unsigned long *rmapp,
985 unsigned long hpa, unsigned long mask)
986 {
987 struct llist_node *entry = llist_del_all((struct llist_head *) rmapp);
988 struct rmap_nested *cursor;
989 unsigned long rmap;
990
991 for_each_nest_rmap_safe(cursor, entry, &rmap) {
992 kvmhv_remove_nest_rmap(kvm, rmap, hpa, mask);
993 kfree(cursor);
994 }
995 }
996
997 /* called with kvm->mmu_lock held */
kvmhv_remove_nest_rmap_range(struct kvm * kvm,const struct kvm_memory_slot * memslot,unsigned long gpa,unsigned long hpa,unsigned long nbytes)998 void kvmhv_remove_nest_rmap_range(struct kvm *kvm,
999 const struct kvm_memory_slot *memslot,
1000 unsigned long gpa, unsigned long hpa,
1001 unsigned long nbytes)
1002 {
1003 unsigned long gfn, end_gfn;
1004 unsigned long addr_mask;
1005
1006 if (!memslot)
1007 return;
1008 gfn = (gpa >> PAGE_SHIFT) - memslot->base_gfn;
1009 end_gfn = gfn + (nbytes >> PAGE_SHIFT);
1010
1011 addr_mask = PTE_RPN_MASK & ~(nbytes - 1);
1012 hpa &= addr_mask;
1013
1014 for (; gfn < end_gfn; gfn++) {
1015 unsigned long *rmap = &memslot->arch.rmap[gfn];
1016 kvmhv_remove_nest_rmap_list(kvm, rmap, hpa, addr_mask);
1017 }
1018 }
1019
kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot * free)1020 static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free)
1021 {
1022 unsigned long page;
1023
1024 for (page = 0; page < free->npages; page++) {
1025 unsigned long rmap, *rmapp = &free->arch.rmap[page];
1026 struct rmap_nested *cursor;
1027 struct llist_node *entry;
1028
1029 entry = llist_del_all((struct llist_head *) rmapp);
1030 for_each_nest_rmap_safe(cursor, entry, &rmap)
1031 kfree(cursor);
1032 }
1033 }
1034
kvmhv_invalidate_shadow_pte(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp,long gpa,int * shift_ret)1035 static bool kvmhv_invalidate_shadow_pte(struct kvm_vcpu *vcpu,
1036 struct kvm_nested_guest *gp,
1037 long gpa, int *shift_ret)
1038 {
1039 struct kvm *kvm = vcpu->kvm;
1040 bool ret = false;
1041 pte_t *ptep;
1042 int shift;
1043
1044 spin_lock(&kvm->mmu_lock);
1045 ptep = find_kvm_nested_guest_pte(kvm, gp->l1_lpid, gpa, &shift);
1046 if (!shift)
1047 shift = PAGE_SHIFT;
1048 if (ptep && pte_present(*ptep)) {
1049 kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid);
1050 ret = true;
1051 }
1052 spin_unlock(&kvm->mmu_lock);
1053
1054 if (shift_ret)
1055 *shift_ret = shift;
1056 return ret;
1057 }
1058
get_ric(unsigned int instr)1059 static inline int get_ric(unsigned int instr)
1060 {
1061 return (instr >> 18) & 0x3;
1062 }
1063
get_prs(unsigned int instr)1064 static inline int get_prs(unsigned int instr)
1065 {
1066 return (instr >> 17) & 0x1;
1067 }
1068
get_r(unsigned int instr)1069 static inline int get_r(unsigned int instr)
1070 {
1071 return (instr >> 16) & 0x1;
1072 }
1073
get_lpid(unsigned long r_val)1074 static inline int get_lpid(unsigned long r_val)
1075 {
1076 return r_val & 0xffffffff;
1077 }
1078
get_is(unsigned long r_val)1079 static inline int get_is(unsigned long r_val)
1080 {
1081 return (r_val >> 10) & 0x3;
1082 }
1083
get_ap(unsigned long r_val)1084 static inline int get_ap(unsigned long r_val)
1085 {
1086 return (r_val >> 5) & 0x7;
1087 }
1088
get_epn(unsigned long r_val)1089 static inline long get_epn(unsigned long r_val)
1090 {
1091 return r_val >> 12;
1092 }
1093
kvmhv_emulate_tlbie_tlb_addr(struct kvm_vcpu * vcpu,int lpid,int ap,long epn)1094 static int kvmhv_emulate_tlbie_tlb_addr(struct kvm_vcpu *vcpu, int lpid,
1095 int ap, long epn)
1096 {
1097 struct kvm *kvm = vcpu->kvm;
1098 struct kvm_nested_guest *gp;
1099 long npages;
1100 int shift, shadow_shift;
1101 unsigned long addr;
1102
1103 shift = ap_to_shift(ap);
1104 addr = epn << 12;
1105 if (shift < 0)
1106 /* Invalid ap encoding */
1107 return -EINVAL;
1108
1109 addr &= ~((1UL << shift) - 1);
1110 npages = 1UL << (shift - PAGE_SHIFT);
1111
1112 gp = kvmhv_get_nested(kvm, lpid, false);
1113 if (!gp) /* No such guest -> nothing to do */
1114 return 0;
1115 mutex_lock(&gp->tlb_lock);
1116
1117 /* There may be more than one host page backing this single guest pte */
1118 do {
1119 kvmhv_invalidate_shadow_pte(vcpu, gp, addr, &shadow_shift);
1120
1121 npages -= 1UL << (shadow_shift - PAGE_SHIFT);
1122 addr += 1UL << shadow_shift;
1123 } while (npages > 0);
1124
1125 mutex_unlock(&gp->tlb_lock);
1126 kvmhv_put_nested(gp);
1127 return 0;
1128 }
1129
kvmhv_emulate_tlbie_lpid(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp,int ric)1130 static void kvmhv_emulate_tlbie_lpid(struct kvm_vcpu *vcpu,
1131 struct kvm_nested_guest *gp, int ric)
1132 {
1133 struct kvm *kvm = vcpu->kvm;
1134
1135 mutex_lock(&gp->tlb_lock);
1136 switch (ric) {
1137 case 0:
1138 /* Invalidate TLB */
1139 spin_lock(&kvm->mmu_lock);
1140 kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable,
1141 gp->shadow_lpid);
1142 kvmhv_flush_lpid(gp->shadow_lpid);
1143 spin_unlock(&kvm->mmu_lock);
1144 break;
1145 case 1:
1146 /*
1147 * Invalidate PWC
1148 * We don't cache this -> nothing to do
1149 */
1150 break;
1151 case 2:
1152 /* Invalidate TLB, PWC and caching of partition table entries */
1153 kvmhv_flush_nested(gp);
1154 break;
1155 default:
1156 break;
1157 }
1158 mutex_unlock(&gp->tlb_lock);
1159 }
1160
kvmhv_emulate_tlbie_all_lpid(struct kvm_vcpu * vcpu,int ric)1161 static void kvmhv_emulate_tlbie_all_lpid(struct kvm_vcpu *vcpu, int ric)
1162 {
1163 struct kvm *kvm = vcpu->kvm;
1164 struct kvm_nested_guest *gp;
1165 int lpid;
1166
1167 spin_lock(&kvm->mmu_lock);
1168 idr_for_each_entry(&kvm->arch.kvm_nested_guest_idr, gp, lpid) {
1169 spin_unlock(&kvm->mmu_lock);
1170 kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
1171 spin_lock(&kvm->mmu_lock);
1172 }
1173 spin_unlock(&kvm->mmu_lock);
1174 }
1175
kvmhv_emulate_priv_tlbie(struct kvm_vcpu * vcpu,unsigned int instr,unsigned long rsval,unsigned long rbval)1176 static int kvmhv_emulate_priv_tlbie(struct kvm_vcpu *vcpu, unsigned int instr,
1177 unsigned long rsval, unsigned long rbval)
1178 {
1179 struct kvm *kvm = vcpu->kvm;
1180 struct kvm_nested_guest *gp;
1181 int r, ric, prs, is, ap;
1182 int lpid;
1183 long epn;
1184 int ret = 0;
1185
1186 ric = get_ric(instr);
1187 prs = get_prs(instr);
1188 r = get_r(instr);
1189 lpid = get_lpid(rsval);
1190 is = get_is(rbval);
1191
1192 /*
1193 * These cases are invalid and are not handled:
1194 * r != 1 -> Only radix supported
1195 * prs == 1 -> Not HV privileged
1196 * ric == 3 -> No cluster bombs for radix
1197 * is == 1 -> Partition scoped translations not associated with pid
1198 * (!is) && (ric == 1 || ric == 2) -> Not supported by ISA
1199 */
1200 if ((!r) || (prs) || (ric == 3) || (is == 1) ||
1201 ((!is) && (ric == 1 || ric == 2)))
1202 return -EINVAL;
1203
1204 switch (is) {
1205 case 0:
1206 /*
1207 * We know ric == 0
1208 * Invalidate TLB for a given target address
1209 */
1210 epn = get_epn(rbval);
1211 ap = get_ap(rbval);
1212 ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap, epn);
1213 break;
1214 case 2:
1215 /* Invalidate matching LPID */
1216 gp = kvmhv_get_nested(kvm, lpid, false);
1217 if (gp) {
1218 kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
1219 kvmhv_put_nested(gp);
1220 }
1221 break;
1222 case 3:
1223 /* Invalidate ALL LPIDs */
1224 kvmhv_emulate_tlbie_all_lpid(vcpu, ric);
1225 break;
1226 default:
1227 ret = -EINVAL;
1228 break;
1229 }
1230
1231 return ret;
1232 }
1233
1234 /*
1235 * This handles the H_TLB_INVALIDATE hcall.
1236 * Parameters are (r4) tlbie instruction code, (r5) rS contents,
1237 * (r6) rB contents.
1238 */
kvmhv_do_nested_tlbie(struct kvm_vcpu * vcpu)1239 long kvmhv_do_nested_tlbie(struct kvm_vcpu *vcpu)
1240 {
1241 int ret;
1242
1243 ret = kvmhv_emulate_priv_tlbie(vcpu, kvmppc_get_gpr(vcpu, 4),
1244 kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6));
1245 if (ret)
1246 return H_PARAMETER;
1247 return H_SUCCESS;
1248 }
1249
do_tlb_invalidate_nested_all(struct kvm_vcpu * vcpu,unsigned long lpid,unsigned long ric)1250 static long do_tlb_invalidate_nested_all(struct kvm_vcpu *vcpu,
1251 unsigned long lpid, unsigned long ric)
1252 {
1253 struct kvm *kvm = vcpu->kvm;
1254 struct kvm_nested_guest *gp;
1255
1256 gp = kvmhv_get_nested(kvm, lpid, false);
1257 if (gp) {
1258 kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
1259 kvmhv_put_nested(gp);
1260 }
1261 return H_SUCCESS;
1262 }
1263
1264 /*
1265 * Number of pages above which we invalidate the entire LPID rather than
1266 * flush individual pages.
1267 */
1268 static unsigned long tlb_range_flush_page_ceiling __read_mostly = 33;
1269
do_tlb_invalidate_nested_tlb(struct kvm_vcpu * vcpu,unsigned long lpid,unsigned long pg_sizes,unsigned long start,unsigned long end)1270 static long do_tlb_invalidate_nested_tlb(struct kvm_vcpu *vcpu,
1271 unsigned long lpid,
1272 unsigned long pg_sizes,
1273 unsigned long start,
1274 unsigned long end)
1275 {
1276 int ret = H_P4;
1277 unsigned long addr, nr_pages;
1278 struct mmu_psize_def *def;
1279 unsigned long psize, ap, page_size;
1280 bool flush_lpid;
1281
1282 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
1283 def = &mmu_psize_defs[psize];
1284 if (!(pg_sizes & def->h_rpt_pgsize))
1285 continue;
1286
1287 nr_pages = (end - start) >> def->shift;
1288 flush_lpid = nr_pages > tlb_range_flush_page_ceiling;
1289 if (flush_lpid)
1290 return do_tlb_invalidate_nested_all(vcpu, lpid,
1291 RIC_FLUSH_TLB);
1292 addr = start;
1293 ap = mmu_get_ap(psize);
1294 page_size = 1UL << def->shift;
1295 do {
1296 ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap,
1297 get_epn(addr));
1298 if (ret)
1299 return H_P4;
1300 addr += page_size;
1301 } while (addr < end);
1302 }
1303 return ret;
1304 }
1305
1306 /*
1307 * Performs partition-scoped invalidations for nested guests
1308 * as part of H_RPT_INVALIDATE hcall.
1309 */
do_h_rpt_invalidate_pat(struct kvm_vcpu * vcpu,unsigned long lpid,unsigned long type,unsigned long pg_sizes,unsigned long start,unsigned long end)1310 long do_h_rpt_invalidate_pat(struct kvm_vcpu *vcpu, unsigned long lpid,
1311 unsigned long type, unsigned long pg_sizes,
1312 unsigned long start, unsigned long end)
1313 {
1314 /*
1315 * If L2 lpid isn't valid, we need to return H_PARAMETER.
1316 *
1317 * However, nested KVM issues a L2 lpid flush call when creating
1318 * partition table entries for L2. This happens even before the
1319 * corresponding shadow lpid is created in HV which happens in
1320 * H_ENTER_NESTED call. Since we can't differentiate this case from
1321 * the invalid case, we ignore such flush requests and return success.
1322 */
1323 if (!__find_nested(vcpu->kvm, lpid))
1324 return H_SUCCESS;
1325
1326 /*
1327 * A flush all request can be handled by a full lpid flush only.
1328 */
1329 if ((type & H_RPTI_TYPE_NESTED_ALL) == H_RPTI_TYPE_NESTED_ALL)
1330 return do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_ALL);
1331
1332 /*
1333 * We don't need to handle a PWC flush like process table here,
1334 * because intermediate partition scoped table in nested guest doesn't
1335 * really have PWC. Only level we have PWC is in L0 and for nested
1336 * invalidate at L0 we always do kvm_flush_lpid() which does
1337 * radix__flush_all_lpid(). For range invalidate at any level, we
1338 * are not removing the higher level page tables and hence there is
1339 * no PWC invalidate needed.
1340 *
1341 * if (type & H_RPTI_TYPE_PWC) {
1342 * ret = do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_PWC);
1343 * if (ret)
1344 * return H_P4;
1345 * }
1346 */
1347
1348 if (start == 0 && end == -1)
1349 return do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_TLB);
1350
1351 if (type & H_RPTI_TYPE_TLB)
1352 return do_tlb_invalidate_nested_tlb(vcpu, lpid, pg_sizes,
1353 start, end);
1354 return H_SUCCESS;
1355 }
1356
1357 /* Used to convert a nested guest real address to a L1 guest real address */
kvmhv_translate_addr_nested(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp,unsigned long n_gpa,unsigned long dsisr,struct kvmppc_pte * gpte_p)1358 static int kvmhv_translate_addr_nested(struct kvm_vcpu *vcpu,
1359 struct kvm_nested_guest *gp,
1360 unsigned long n_gpa, unsigned long dsisr,
1361 struct kvmppc_pte *gpte_p)
1362 {
1363 u64 fault_addr, flags = dsisr & DSISR_ISSTORE;
1364 int ret;
1365
1366 ret = kvmppc_mmu_walk_radix_tree(vcpu, n_gpa, gpte_p, gp->l1_gr_to_hr,
1367 &fault_addr);
1368
1369 if (ret) {
1370 /* We didn't find a pte */
1371 if (ret == -EINVAL) {
1372 /* Unsupported mmu config */
1373 flags |= DSISR_UNSUPP_MMU;
1374 } else if (ret == -ENOENT) {
1375 /* No translation found */
1376 flags |= DSISR_NOHPTE;
1377 } else if (ret == -EFAULT) {
1378 /* Couldn't access L1 real address */
1379 flags |= DSISR_PRTABLE_FAULT;
1380 vcpu->arch.fault_gpa = fault_addr;
1381 } else {
1382 /* Unknown error */
1383 return ret;
1384 }
1385 goto forward_to_l1;
1386 } else {
1387 /* We found a pte -> check permissions */
1388 if (dsisr & DSISR_ISSTORE) {
1389 /* Can we write? */
1390 if (!gpte_p->may_write) {
1391 flags |= DSISR_PROTFAULT;
1392 goto forward_to_l1;
1393 }
1394 } else if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) {
1395 /* Can we execute? */
1396 if (!gpte_p->may_execute) {
1397 flags |= SRR1_ISI_N_G_OR_CIP;
1398 goto forward_to_l1;
1399 }
1400 } else {
1401 /* Can we read? */
1402 if (!gpte_p->may_read && !gpte_p->may_write) {
1403 flags |= DSISR_PROTFAULT;
1404 goto forward_to_l1;
1405 }
1406 }
1407 }
1408
1409 return 0;
1410
1411 forward_to_l1:
1412 vcpu->arch.fault_dsisr = flags;
1413 if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) {
1414 vcpu->arch.shregs.msr &= SRR1_MSR_BITS;
1415 vcpu->arch.shregs.msr |= flags;
1416 }
1417 return RESUME_HOST;
1418 }
1419
kvmhv_handle_nested_set_rc(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp,unsigned long n_gpa,struct kvmppc_pte gpte,unsigned long dsisr)1420 static long kvmhv_handle_nested_set_rc(struct kvm_vcpu *vcpu,
1421 struct kvm_nested_guest *gp,
1422 unsigned long n_gpa,
1423 struct kvmppc_pte gpte,
1424 unsigned long dsisr)
1425 {
1426 struct kvm *kvm = vcpu->kvm;
1427 bool writing = !!(dsisr & DSISR_ISSTORE);
1428 u64 pgflags;
1429 long ret;
1430
1431 /* Are the rc bits set in the L1 partition scoped pte? */
1432 pgflags = _PAGE_ACCESSED;
1433 if (writing)
1434 pgflags |= _PAGE_DIRTY;
1435 if (pgflags & ~gpte.rc)
1436 return RESUME_HOST;
1437
1438 spin_lock(&kvm->mmu_lock);
1439 /* Set the rc bit in the pte of our (L0) pgtable for the L1 guest */
1440 ret = kvmppc_hv_handle_set_rc(kvm, false, writing,
1441 gpte.raddr, kvm->arch.lpid);
1442 if (!ret) {
1443 ret = -EINVAL;
1444 goto out_unlock;
1445 }
1446
1447 /* Set the rc bit in the pte of the shadow_pgtable for the nest guest */
1448 ret = kvmppc_hv_handle_set_rc(kvm, true, writing,
1449 n_gpa, gp->l1_lpid);
1450 if (!ret)
1451 ret = -EINVAL;
1452 else
1453 ret = 0;
1454
1455 out_unlock:
1456 spin_unlock(&kvm->mmu_lock);
1457 return ret;
1458 }
1459
kvmppc_radix_level_to_shift(int level)1460 static inline int kvmppc_radix_level_to_shift(int level)
1461 {
1462 switch (level) {
1463 case 2:
1464 return PUD_SHIFT;
1465 case 1:
1466 return PMD_SHIFT;
1467 default:
1468 return PAGE_SHIFT;
1469 }
1470 }
1471
kvmppc_radix_shift_to_level(int shift)1472 static inline int kvmppc_radix_shift_to_level(int shift)
1473 {
1474 if (shift == PUD_SHIFT)
1475 return 2;
1476 if (shift == PMD_SHIFT)
1477 return 1;
1478 if (shift == PAGE_SHIFT)
1479 return 0;
1480 WARN_ON_ONCE(1);
1481 return 0;
1482 }
1483
1484 /* called with gp->tlb_lock held */
__kvmhv_nested_page_fault(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp)1485 static long int __kvmhv_nested_page_fault(struct kvm_vcpu *vcpu,
1486 struct kvm_nested_guest *gp)
1487 {
1488 struct kvm *kvm = vcpu->kvm;
1489 struct kvm_memory_slot *memslot;
1490 struct rmap_nested *n_rmap;
1491 struct kvmppc_pte gpte;
1492 pte_t pte, *pte_p;
1493 unsigned long mmu_seq;
1494 unsigned long dsisr = vcpu->arch.fault_dsisr;
1495 unsigned long ea = vcpu->arch.fault_dar;
1496 unsigned long *rmapp;
1497 unsigned long n_gpa, gpa, gfn, perm = 0UL;
1498 unsigned int shift, l1_shift, level;
1499 bool writing = !!(dsisr & DSISR_ISSTORE);
1500 bool kvm_ro = false;
1501 long int ret;
1502
1503 if (!gp->l1_gr_to_hr) {
1504 kvmhv_update_ptbl_cache(gp);
1505 if (!gp->l1_gr_to_hr)
1506 return RESUME_HOST;
1507 }
1508
1509 /* Convert the nested guest real address into a L1 guest real address */
1510
1511 n_gpa = vcpu->arch.fault_gpa & ~0xF000000000000FFFULL;
1512 if (!(dsisr & DSISR_PRTABLE_FAULT))
1513 n_gpa |= ea & 0xFFF;
1514 ret = kvmhv_translate_addr_nested(vcpu, gp, n_gpa, dsisr, &gpte);
1515
1516 /*
1517 * If the hardware found a translation but we don't now have a usable
1518 * translation in the l1 partition-scoped tree, remove the shadow pte
1519 * and let the guest retry.
1520 */
1521 if (ret == RESUME_HOST &&
1522 (dsisr & (DSISR_PROTFAULT | DSISR_BADACCESS | DSISR_NOEXEC_OR_G |
1523 DSISR_BAD_COPYPASTE)))
1524 goto inval;
1525 if (ret)
1526 return ret;
1527
1528 /* Failed to set the reference/change bits */
1529 if (dsisr & DSISR_SET_RC) {
1530 ret = kvmhv_handle_nested_set_rc(vcpu, gp, n_gpa, gpte, dsisr);
1531 if (ret == RESUME_HOST)
1532 return ret;
1533 if (ret)
1534 goto inval;
1535 dsisr &= ~DSISR_SET_RC;
1536 if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE |
1537 DSISR_PROTFAULT)))
1538 return RESUME_GUEST;
1539 }
1540
1541 /*
1542 * We took an HISI or HDSI while we were running a nested guest which
1543 * means we have no partition scoped translation for that. This means
1544 * we need to insert a pte for the mapping into our shadow_pgtable.
1545 */
1546
1547 l1_shift = gpte.page_shift;
1548 if (l1_shift < PAGE_SHIFT) {
1549 /* We don't support l1 using a page size smaller than our own */
1550 pr_err("KVM: L1 guest page shift (%d) less than our own (%d)\n",
1551 l1_shift, PAGE_SHIFT);
1552 return -EINVAL;
1553 }
1554 gpa = gpte.raddr;
1555 gfn = gpa >> PAGE_SHIFT;
1556
1557 /* 1. Get the corresponding host memslot */
1558
1559 memslot = gfn_to_memslot(kvm, gfn);
1560 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
1561 if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS)) {
1562 /* unusual error -> reflect to the guest as a DSI */
1563 kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
1564 return RESUME_GUEST;
1565 }
1566
1567 /* passthrough of emulated MMIO case */
1568 return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, writing);
1569 }
1570 if (memslot->flags & KVM_MEM_READONLY) {
1571 if (writing) {
1572 /* Give the guest a DSI */
1573 kvmppc_core_queue_data_storage(vcpu, ea,
1574 DSISR_ISSTORE | DSISR_PROTFAULT);
1575 return RESUME_GUEST;
1576 }
1577 kvm_ro = true;
1578 }
1579
1580 /* 2. Find the host pte for this L1 guest real address */
1581
1582 /* Used to check for invalidations in progress */
1583 mmu_seq = kvm->mmu_invalidate_seq;
1584 smp_rmb();
1585
1586 /* See if can find translation in our partition scoped tables for L1 */
1587 pte = __pte(0);
1588 spin_lock(&kvm->mmu_lock);
1589 pte_p = find_kvm_secondary_pte(kvm, gpa, &shift);
1590 if (!shift)
1591 shift = PAGE_SHIFT;
1592 if (pte_p)
1593 pte = *pte_p;
1594 spin_unlock(&kvm->mmu_lock);
1595
1596 if (!pte_present(pte) || (writing && !(pte_val(pte) & _PAGE_WRITE))) {
1597 /* No suitable pte found -> try to insert a mapping */
1598 ret = kvmppc_book3s_instantiate_page(vcpu, gpa, memslot,
1599 writing, kvm_ro, &pte, &level);
1600 if (ret == -EAGAIN)
1601 return RESUME_GUEST;
1602 else if (ret)
1603 return ret;
1604 shift = kvmppc_radix_level_to_shift(level);
1605 }
1606 /* Align gfn to the start of the page */
1607 gfn = (gpa & ~((1UL << shift) - 1)) >> PAGE_SHIFT;
1608
1609 /* 3. Compute the pte we need to insert for nest_gpa -> host r_addr */
1610
1611 /* The permissions is the combination of the host and l1 guest ptes */
1612 perm |= gpte.may_read ? 0UL : _PAGE_READ;
1613 perm |= gpte.may_write ? 0UL : _PAGE_WRITE;
1614 perm |= gpte.may_execute ? 0UL : _PAGE_EXEC;
1615 /* Only set accessed/dirty (rc) bits if set in host and l1 guest ptes */
1616 perm |= (gpte.rc & _PAGE_ACCESSED) ? 0UL : _PAGE_ACCESSED;
1617 perm |= ((gpte.rc & _PAGE_DIRTY) && writing) ? 0UL : _PAGE_DIRTY;
1618 pte = __pte(pte_val(pte) & ~perm);
1619
1620 /* What size pte can we insert? */
1621 if (shift > l1_shift) {
1622 u64 mask;
1623 unsigned int actual_shift = PAGE_SHIFT;
1624 if (PMD_SHIFT < l1_shift)
1625 actual_shift = PMD_SHIFT;
1626 mask = (1UL << shift) - (1UL << actual_shift);
1627 pte = __pte(pte_val(pte) | (gpa & mask));
1628 shift = actual_shift;
1629 }
1630 level = kvmppc_radix_shift_to_level(shift);
1631 n_gpa &= ~((1UL << shift) - 1);
1632
1633 /* 4. Insert the pte into our shadow_pgtable */
1634
1635 n_rmap = kzalloc(sizeof(*n_rmap), GFP_KERNEL);
1636 if (!n_rmap)
1637 return RESUME_GUEST; /* Let the guest try again */
1638 n_rmap->rmap = (n_gpa & RMAP_NESTED_GPA_MASK) |
1639 (((unsigned long) gp->l1_lpid) << RMAP_NESTED_LPID_SHIFT);
1640 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1641 ret = kvmppc_create_pte(kvm, gp->shadow_pgtable, pte, n_gpa, level,
1642 mmu_seq, gp->shadow_lpid, rmapp, &n_rmap);
1643 kfree(n_rmap);
1644 if (ret == -EAGAIN)
1645 ret = RESUME_GUEST; /* Let the guest try again */
1646
1647 return ret;
1648
1649 inval:
1650 kvmhv_invalidate_shadow_pte(vcpu, gp, n_gpa, NULL);
1651 return RESUME_GUEST;
1652 }
1653
kvmhv_nested_page_fault(struct kvm_vcpu * vcpu)1654 long int kvmhv_nested_page_fault(struct kvm_vcpu *vcpu)
1655 {
1656 struct kvm_nested_guest *gp = vcpu->arch.nested;
1657 long int ret;
1658
1659 mutex_lock(&gp->tlb_lock);
1660 ret = __kvmhv_nested_page_fault(vcpu, gp);
1661 mutex_unlock(&gp->tlb_lock);
1662 return ret;
1663 }
1664
kvmhv_nested_next_lpid(struct kvm * kvm,int lpid)1665 int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid)
1666 {
1667 int ret = lpid + 1;
1668
1669 spin_lock(&kvm->mmu_lock);
1670 if (!idr_get_next(&kvm->arch.kvm_nested_guest_idr, &ret))
1671 ret = -1;
1672 spin_unlock(&kvm->mmu_lock);
1673
1674 return ret;
1675 }
1676