1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * arch/parisc/kernel/firmware.c - safe PDC access routines
4 *
5 * PDC == Processor Dependent Code
6 *
7 * See PDC documentation at
8 * https://parisc.wiki.kernel.org/index.php/Technical_Documentation
9 * for documentation describing the entry points and calling
10 * conventions defined below.
11 *
12 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
13 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
14 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
15 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
16 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
17 */
18
19 /* I think it would be in everyone's best interest to follow this
20 * guidelines when writing PDC wrappers:
21 *
22 * - the name of the pdc wrapper should match one of the macros
23 * used for the first two arguments
24 * - don't use caps for random parts of the name
25 * - use the static PDC result buffers and "copyout" to structs
26 * supplied by the caller to encapsulate alignment restrictions
27 * - hold pdc_lock while in PDC or using static result buffers
28 * - use __pa() to convert virtual (kernel) pointers to physical
29 * ones.
30 * - the name of the struct used for pdc return values should equal
31 * one of the macros used for the first two arguments to the
32 * corresponding PDC call
33 * - keep the order of arguments
34 * - don't be smart (setting trailing NUL bytes for strings, return
35 * something useful even if the call failed) unless you are sure
36 * it's not going to affect functionality or performance
37 *
38 * Example:
39 * int pdc_cache_info(struct pdc_cache_info *cache_info )
40 * {
41 * int retval;
42 *
43 * spin_lock_irq(&pdc_lock);
44 * retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
45 * convert_to_wide(pdc_result);
46 * memcpy(cache_info, pdc_result, sizeof(*cache_info));
47 * spin_unlock_irq(&pdc_lock);
48 *
49 * return retval;
50 * }
51 * prumpf 991016
52 */
53
54 #include <linux/stdarg.h>
55
56 #include <linux/delay.h>
57 #include <linux/init.h>
58 #include <linux/kernel.h>
59 #include <linux/module.h>
60 #include <linux/string.h>
61 #include <linux/spinlock.h>
62
63 #include <asm/page.h>
64 #include <asm/pdc.h>
65 #include <asm/pdcpat.h>
66 #include <asm/processor.h> /* for boot_cpu_data */
67
68 #if defined(BOOTLOADER)
69 # undef spin_lock_irqsave
70 # define spin_lock_irqsave(a, b) { b = 1; }
71 # undef spin_unlock_irqrestore
72 # define spin_unlock_irqrestore(a, b)
73 #else
74 static DEFINE_SPINLOCK(pdc_lock);
75 #endif
76
77 extern unsigned long pdc_result[NUM_PDC_RESULT];
78 extern unsigned long pdc_result2[NUM_PDC_RESULT];
79
80 #ifdef CONFIG_64BIT
81 #define WIDE_FIRMWARE 0x1
82 #define NARROW_FIRMWARE 0x2
83
84 /* Firmware needs to be initially set to narrow to determine the
85 * actual firmware width. */
86 int parisc_narrow_firmware __ro_after_init = 2;
87 #endif
88
89 /* On most currently-supported platforms, IODC I/O calls are 32-bit calls
90 * and MEM_PDC calls are always the same width as the OS.
91 * Some PAT boxes may have 64-bit IODC I/O.
92 *
93 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
94 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
95 * This allowed wide kernels to run on Cxxx boxes.
96 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
97 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
98 */
99
100 #ifdef CONFIG_64BIT
101 long real64_call(unsigned long function, ...);
102 #endif
103 long real32_call(unsigned long function, ...);
104
105 #ifdef CONFIG_64BIT
106 # define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
107 # define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
108 #else
109 # define MEM_PDC (unsigned long)PAGE0->mem_pdc
110 # define mem_pdc_call(args...) real32_call(MEM_PDC, args)
111 #endif
112
113
114 /**
115 * f_extend - Convert PDC addresses to kernel addresses.
116 * @address: Address returned from PDC.
117 *
118 * This function is used to convert PDC addresses into kernel addresses
119 * when the PDC address size and kernel address size are different.
120 */
f_extend(unsigned long address)121 static unsigned long f_extend(unsigned long address)
122 {
123 #ifdef CONFIG_64BIT
124 if(unlikely(parisc_narrow_firmware)) {
125 if((address & 0xff000000) == 0xf0000000)
126 return 0xf0f0f0f000000000UL | (u32)address;
127
128 if((address & 0xf0000000) == 0xf0000000)
129 return 0xffffffff00000000UL | (u32)address;
130 }
131 #endif
132 return address;
133 }
134
135 /**
136 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
137 * @address: The return buffer from PDC.
138 *
139 * This function is used to convert the return buffer addresses retrieved from PDC
140 * into kernel addresses when the PDC address size and kernel address size are
141 * different.
142 */
convert_to_wide(unsigned long * addr)143 static void convert_to_wide(unsigned long *addr)
144 {
145 #ifdef CONFIG_64BIT
146 int i;
147 unsigned int *p = (unsigned int *)addr;
148
149 if (unlikely(parisc_narrow_firmware)) {
150 for (i = (NUM_PDC_RESULT-1); i >= 0; --i)
151 addr[i] = p[i];
152 }
153 #endif
154 }
155
156 #ifdef CONFIG_64BIT
set_firmware_width_unlocked(void)157 void set_firmware_width_unlocked(void)
158 {
159 int ret;
160
161 ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
162 __pa(pdc_result), 0);
163 convert_to_wide(pdc_result);
164 if (pdc_result[0] != NARROW_FIRMWARE)
165 parisc_narrow_firmware = 0;
166 }
167
168 /**
169 * set_firmware_width - Determine if the firmware is wide or narrow.
170 *
171 * This function must be called before any pdc_* function that uses the
172 * convert_to_wide function.
173 */
set_firmware_width(void)174 void set_firmware_width(void)
175 {
176 unsigned long flags;
177
178 /* already initialized? */
179 if (parisc_narrow_firmware != 2)
180 return;
181
182 spin_lock_irqsave(&pdc_lock, flags);
183 set_firmware_width_unlocked();
184 spin_unlock_irqrestore(&pdc_lock, flags);
185 }
186 #else
set_firmware_width_unlocked(void)187 void set_firmware_width_unlocked(void)
188 {
189 return;
190 }
191
set_firmware_width(void)192 void set_firmware_width(void)
193 {
194 return;
195 }
196 #endif /*CONFIG_64BIT*/
197
198
199 #if !defined(BOOTLOADER)
200 /**
201 * pdc_emergency_unlock - Unlock the linux pdc lock
202 *
203 * This call unlocks the linux pdc lock in case we need some PDC functions
204 * (like pdc_add_valid) during kernel stack dump.
205 */
pdc_emergency_unlock(void)206 void pdc_emergency_unlock(void)
207 {
208 /* Spinlock DEBUG code freaks out if we unconditionally unlock */
209 if (spin_is_locked(&pdc_lock))
210 spin_unlock(&pdc_lock);
211 }
212
213
214 /**
215 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
216 * @address: Address to be verified.
217 *
218 * This PDC call attempts to read from the specified address and verifies
219 * if the address is valid.
220 *
221 * The return value is PDC_OK (0) in case accessing this address is valid.
222 */
pdc_add_valid(unsigned long address)223 int pdc_add_valid(unsigned long address)
224 {
225 int retval;
226 unsigned long flags;
227
228 spin_lock_irqsave(&pdc_lock, flags);
229 retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
230 spin_unlock_irqrestore(&pdc_lock, flags);
231
232 return retval;
233 }
234 EXPORT_SYMBOL(pdc_add_valid);
235
236 /**
237 * pdc_instr - Get instruction that invokes PDCE_CHECK in HPMC handler.
238 * @instr: Pointer to variable which will get instruction opcode.
239 *
240 * The return value is PDC_OK (0) in case call succeeded.
241 */
pdc_instr(unsigned int * instr)242 int __init pdc_instr(unsigned int *instr)
243 {
244 int retval;
245 unsigned long flags;
246
247 spin_lock_irqsave(&pdc_lock, flags);
248 retval = mem_pdc_call(PDC_INSTR, 0UL, __pa(pdc_result));
249 convert_to_wide(pdc_result);
250 *instr = pdc_result[0];
251 spin_unlock_irqrestore(&pdc_lock, flags);
252
253 return retval;
254 }
255
256 /**
257 * pdc_chassis_info - Return chassis information.
258 * @result: The return buffer.
259 * @chassis_info: The memory buffer address.
260 * @len: The size of the memory buffer address.
261 *
262 * An HVERSION dependent call for returning the chassis information.
263 */
pdc_chassis_info(struct pdc_chassis_info * chassis_info,void * led_info,unsigned long len)264 int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
265 {
266 int retval;
267 unsigned long flags;
268
269 spin_lock_irqsave(&pdc_lock, flags);
270 memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
271 memcpy(&pdc_result2, led_info, len);
272 retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
273 __pa(pdc_result), __pa(pdc_result2), len);
274 memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
275 memcpy(led_info, pdc_result2, len);
276 spin_unlock_irqrestore(&pdc_lock, flags);
277
278 return retval;
279 }
280
281 /**
282 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
283 * @retval: -1 on error, 0 on success. Other value are PDC errors
284 *
285 * Must be correctly formatted or expect system crash
286 */
287 #ifdef CONFIG_64BIT
pdc_pat_chassis_send_log(unsigned long state,unsigned long data)288 int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
289 {
290 int retval = 0;
291 unsigned long flags;
292
293 if (!is_pdc_pat())
294 return -1;
295
296 spin_lock_irqsave(&pdc_lock, flags);
297 retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
298 spin_unlock_irqrestore(&pdc_lock, flags);
299
300 return retval;
301 }
302 #endif
303
304 /**
305 * pdc_chassis_disp - Updates chassis code
306 * @retval: -1 on error, 0 on success
307 */
pdc_chassis_disp(unsigned long disp)308 int pdc_chassis_disp(unsigned long disp)
309 {
310 int retval = 0;
311 unsigned long flags;
312
313 spin_lock_irqsave(&pdc_lock, flags);
314 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
315 spin_unlock_irqrestore(&pdc_lock, flags);
316
317 return retval;
318 }
319
320 /**
321 * pdc_cpu_rendenzvous - Stop currently executing CPU
322 * @retval: -1 on error, 0 on success
323 */
__pdc_cpu_rendezvous(void)324 int __pdc_cpu_rendezvous(void)
325 {
326 if (is_pdc_pat())
327 return mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_RENDEZVOUS);
328 else
329 return mem_pdc_call(PDC_PROC, 1, 0);
330 }
331
332 /**
333 * pdc_cpu_rendezvous_lock - Lock PDC while transitioning to rendezvous state
334 */
pdc_cpu_rendezvous_lock(void)335 void pdc_cpu_rendezvous_lock(void)
336 {
337 spin_lock(&pdc_lock);
338 }
339
340 /**
341 * pdc_cpu_rendezvous_unlock - Unlock PDC after reaching rendezvous state
342 */
pdc_cpu_rendezvous_unlock(void)343 void pdc_cpu_rendezvous_unlock(void)
344 {
345 spin_unlock(&pdc_lock);
346 }
347
348 /**
349 * pdc_pat_get_PDC_entrypoint - Get PDC entry point for current CPU
350 * @retval: -1 on error, 0 on success
351 */
pdc_pat_get_PDC_entrypoint(unsigned long * pdc_entry)352 int pdc_pat_get_PDC_entrypoint(unsigned long *pdc_entry)
353 {
354 int retval = 0;
355 unsigned long flags;
356
357 if (!IS_ENABLED(CONFIG_SMP) || !is_pdc_pat()) {
358 *pdc_entry = MEM_PDC;
359 return 0;
360 }
361
362 spin_lock_irqsave(&pdc_lock, flags);
363 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_PDC_ENTRYPOINT,
364 __pa(pdc_result));
365 *pdc_entry = pdc_result[0];
366 spin_unlock_irqrestore(&pdc_lock, flags);
367
368 return retval;
369 }
370 /**
371 * pdc_chassis_warn - Fetches chassis warnings
372 * @retval: -1 on error, 0 on success
373 */
pdc_chassis_warn(unsigned long * warn)374 int pdc_chassis_warn(unsigned long *warn)
375 {
376 int retval = 0;
377 unsigned long flags;
378
379 spin_lock_irqsave(&pdc_lock, flags);
380 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
381 *warn = pdc_result[0];
382 spin_unlock_irqrestore(&pdc_lock, flags);
383
384 return retval;
385 }
386
pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg * pdc_coproc_info)387 int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
388 {
389 int ret;
390
391 ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
392 convert_to_wide(pdc_result);
393 pdc_coproc_info->ccr_functional = pdc_result[0];
394 pdc_coproc_info->ccr_present = pdc_result[1];
395 pdc_coproc_info->revision = pdc_result[17];
396 pdc_coproc_info->model = pdc_result[18];
397
398 return ret;
399 }
400
401 /**
402 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
403 * @pdc_coproc_info: Return buffer address.
404 *
405 * This PDC call returns the presence and status of all the coprocessors
406 * attached to the processor.
407 */
pdc_coproc_cfg(struct pdc_coproc_cfg * pdc_coproc_info)408 int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
409 {
410 int ret;
411 unsigned long flags;
412
413 spin_lock_irqsave(&pdc_lock, flags);
414 ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
415 spin_unlock_irqrestore(&pdc_lock, flags);
416
417 return ret;
418 }
419
420 /**
421 * pdc_iodc_read - Read data from the modules IODC.
422 * @actcnt: The actual number of bytes.
423 * @hpa: The HPA of the module for the iodc read.
424 * @index: The iodc entry point.
425 * @iodc_data: A buffer memory for the iodc options.
426 * @iodc_data_size: Size of the memory buffer.
427 *
428 * This PDC call reads from the IODC of the module specified by the hpa
429 * argument.
430 */
pdc_iodc_read(unsigned long * actcnt,unsigned long hpa,unsigned int index,void * iodc_data,unsigned int iodc_data_size)431 int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
432 void *iodc_data, unsigned int iodc_data_size)
433 {
434 int retval;
435 unsigned long flags;
436
437 spin_lock_irqsave(&pdc_lock, flags);
438 retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
439 index, __pa(pdc_result2), iodc_data_size);
440 convert_to_wide(pdc_result);
441 *actcnt = pdc_result[0];
442 memcpy(iodc_data, pdc_result2, iodc_data_size);
443 spin_unlock_irqrestore(&pdc_lock, flags);
444
445 return retval;
446 }
447 EXPORT_SYMBOL(pdc_iodc_read);
448
449 /**
450 * pdc_system_map_find_mods - Locate unarchitected modules.
451 * @pdc_mod_info: Return buffer address.
452 * @mod_path: pointer to dev path structure.
453 * @mod_index: fixed address module index.
454 *
455 * To locate and identify modules which reside at fixed I/O addresses, which
456 * do not self-identify via architected bus walks.
457 */
pdc_system_map_find_mods(struct pdc_system_map_mod_info * pdc_mod_info,struct pdc_module_path * mod_path,long mod_index)458 int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
459 struct pdc_module_path *mod_path, long mod_index)
460 {
461 int retval;
462 unsigned long flags;
463
464 spin_lock_irqsave(&pdc_lock, flags);
465 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
466 __pa(pdc_result2), mod_index);
467 convert_to_wide(pdc_result);
468 memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
469 memcpy(mod_path, pdc_result2, sizeof(*mod_path));
470 spin_unlock_irqrestore(&pdc_lock, flags);
471
472 pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
473 return retval;
474 }
475
476 /**
477 * pdc_system_map_find_addrs - Retrieve additional address ranges.
478 * @pdc_addr_info: Return buffer address.
479 * @mod_index: Fixed address module index.
480 * @addr_index: Address range index.
481 *
482 * Retrieve additional information about subsequent address ranges for modules
483 * with multiple address ranges.
484 */
pdc_system_map_find_addrs(struct pdc_system_map_addr_info * pdc_addr_info,long mod_index,long addr_index)485 int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
486 long mod_index, long addr_index)
487 {
488 int retval;
489 unsigned long flags;
490
491 spin_lock_irqsave(&pdc_lock, flags);
492 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
493 mod_index, addr_index);
494 convert_to_wide(pdc_result);
495 memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
496 spin_unlock_irqrestore(&pdc_lock, flags);
497
498 pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
499 return retval;
500 }
501
502 /**
503 * pdc_model_info - Return model information about the processor.
504 * @model: The return buffer.
505 *
506 * Returns the version numbers, identifiers, and capabilities from the processor module.
507 */
pdc_model_info(struct pdc_model * model)508 int pdc_model_info(struct pdc_model *model)
509 {
510 int retval;
511 unsigned long flags;
512
513 spin_lock_irqsave(&pdc_lock, flags);
514 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
515 convert_to_wide(pdc_result);
516 memcpy(model, pdc_result, sizeof(*model));
517 spin_unlock_irqrestore(&pdc_lock, flags);
518
519 return retval;
520 }
521
522 /**
523 * pdc_model_sysmodel - Get the system model name.
524 * @name: A char array of at least 81 characters.
525 *
526 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
527 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
528 * on HP/UX.
529 */
pdc_model_sysmodel(char * name)530 int pdc_model_sysmodel(char *name)
531 {
532 int retval;
533 unsigned long flags;
534
535 spin_lock_irqsave(&pdc_lock, flags);
536 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
537 OS_ID_HPUX, __pa(name));
538 convert_to_wide(pdc_result);
539
540 if (retval == PDC_OK) {
541 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
542 } else {
543 name[0] = 0;
544 }
545 spin_unlock_irqrestore(&pdc_lock, flags);
546
547 return retval;
548 }
549
550 /**
551 * pdc_model_versions - Identify the version number of each processor.
552 * @cpu_id: The return buffer.
553 * @id: The id of the processor to check.
554 *
555 * Returns the version number for each processor component.
556 *
557 * This comment was here before, but I do not know what it means :( -RB
558 * id: 0 = cpu revision, 1 = boot-rom-version
559 */
pdc_model_versions(unsigned long * versions,int id)560 int pdc_model_versions(unsigned long *versions, int id)
561 {
562 int retval;
563 unsigned long flags;
564
565 spin_lock_irqsave(&pdc_lock, flags);
566 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
567 convert_to_wide(pdc_result);
568 *versions = pdc_result[0];
569 spin_unlock_irqrestore(&pdc_lock, flags);
570
571 return retval;
572 }
573
574 /**
575 * pdc_model_cpuid - Returns the CPU_ID.
576 * @cpu_id: The return buffer.
577 *
578 * Returns the CPU_ID value which uniquely identifies the cpu portion of
579 * the processor module.
580 */
pdc_model_cpuid(unsigned long * cpu_id)581 int pdc_model_cpuid(unsigned long *cpu_id)
582 {
583 int retval;
584 unsigned long flags;
585
586 spin_lock_irqsave(&pdc_lock, flags);
587 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
588 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
589 convert_to_wide(pdc_result);
590 *cpu_id = pdc_result[0];
591 spin_unlock_irqrestore(&pdc_lock, flags);
592
593 return retval;
594 }
595
596 /**
597 * pdc_model_capabilities - Returns the platform capabilities.
598 * @capabilities: The return buffer.
599 *
600 * Returns information about platform support for 32- and/or 64-bit
601 * OSes, IO-PDIR coherency, and virtual aliasing.
602 */
pdc_model_capabilities(unsigned long * capabilities)603 int pdc_model_capabilities(unsigned long *capabilities)
604 {
605 int retval;
606 unsigned long flags;
607
608 spin_lock_irqsave(&pdc_lock, flags);
609 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
610 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
611 convert_to_wide(pdc_result);
612 if (retval == PDC_OK) {
613 *capabilities = pdc_result[0];
614 } else {
615 *capabilities = PDC_MODEL_OS32;
616 }
617 spin_unlock_irqrestore(&pdc_lock, flags);
618
619 return retval;
620 }
621
622 /**
623 * pdc_model_platform_info - Returns machine product and serial number.
624 * @orig_prod_num: Return buffer for original product number.
625 * @current_prod_num: Return buffer for current product number.
626 * @serial_no: Return buffer for serial number.
627 *
628 * Returns strings containing the original and current product numbers and the
629 * serial number of the system.
630 */
pdc_model_platform_info(char * orig_prod_num,char * current_prod_num,char * serial_no)631 int pdc_model_platform_info(char *orig_prod_num, char *current_prod_num,
632 char *serial_no)
633 {
634 int retval;
635 unsigned long flags;
636
637 spin_lock_irqsave(&pdc_lock, flags);
638 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_GET_PLATFORM_INFO,
639 __pa(orig_prod_num), __pa(current_prod_num), __pa(serial_no));
640 convert_to_wide(pdc_result);
641 spin_unlock_irqrestore(&pdc_lock, flags);
642
643 return retval;
644 }
645
646 /**
647 * pdc_cache_info - Return cache and TLB information.
648 * @cache_info: The return buffer.
649 *
650 * Returns information about the processor's cache and TLB.
651 */
pdc_cache_info(struct pdc_cache_info * cache_info)652 int pdc_cache_info(struct pdc_cache_info *cache_info)
653 {
654 int retval;
655 unsigned long flags;
656
657 spin_lock_irqsave(&pdc_lock, flags);
658 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
659 convert_to_wide(pdc_result);
660 memcpy(cache_info, pdc_result, sizeof(*cache_info));
661 spin_unlock_irqrestore(&pdc_lock, flags);
662
663 return retval;
664 }
665
666 /**
667 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
668 * @space_bits: Should be 0, if not, bad mojo!
669 *
670 * Returns information about Space ID hashing.
671 */
pdc_spaceid_bits(unsigned long * space_bits)672 int pdc_spaceid_bits(unsigned long *space_bits)
673 {
674 int retval;
675 unsigned long flags;
676
677 spin_lock_irqsave(&pdc_lock, flags);
678 pdc_result[0] = 0;
679 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
680 convert_to_wide(pdc_result);
681 *space_bits = pdc_result[0];
682 spin_unlock_irqrestore(&pdc_lock, flags);
683
684 return retval;
685 }
686
687 #ifndef CONFIG_PA20
688 /**
689 * pdc_btlb_info - Return block TLB information.
690 * @btlb: The return buffer.
691 *
692 * Returns information about the hardware Block TLB.
693 */
pdc_btlb_info(struct pdc_btlb_info * btlb)694 int pdc_btlb_info(struct pdc_btlb_info *btlb)
695 {
696 int retval;
697 unsigned long flags;
698
699 spin_lock_irqsave(&pdc_lock, flags);
700 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
701 memcpy(btlb, pdc_result, sizeof(*btlb));
702 spin_unlock_irqrestore(&pdc_lock, flags);
703
704 if(retval < 0) {
705 btlb->max_size = 0;
706 }
707 return retval;
708 }
709
710 /**
711 * pdc_mem_map_hpa - Find fixed module information.
712 * @address: The return buffer
713 * @mod_path: pointer to dev path structure.
714 *
715 * This call was developed for S700 workstations to allow the kernel to find
716 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
717 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
718 * call.
719 *
720 * This call is supported by all existing S700 workstations (up to Gecko).
721 */
pdc_mem_map_hpa(struct pdc_memory_map * address,struct pdc_module_path * mod_path)722 int pdc_mem_map_hpa(struct pdc_memory_map *address,
723 struct pdc_module_path *mod_path)
724 {
725 int retval;
726 unsigned long flags;
727
728 spin_lock_irqsave(&pdc_lock, flags);
729 memcpy(pdc_result2, mod_path, sizeof(*mod_path));
730 retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
731 __pa(pdc_result2));
732 memcpy(address, pdc_result, sizeof(*address));
733 spin_unlock_irqrestore(&pdc_lock, flags);
734
735 return retval;
736 }
737 #endif /* !CONFIG_PA20 */
738
739 /**
740 * pdc_lan_station_id - Get the LAN address.
741 * @lan_addr: The return buffer.
742 * @hpa: The network device HPA.
743 *
744 * Get the LAN station address when it is not directly available from the LAN hardware.
745 */
pdc_lan_station_id(char * lan_addr,unsigned long hpa)746 int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
747 {
748 int retval;
749 unsigned long flags;
750
751 spin_lock_irqsave(&pdc_lock, flags);
752 retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
753 __pa(pdc_result), hpa);
754 if (retval < 0) {
755 /* FIXME: else read MAC from NVRAM */
756 memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
757 } else {
758 memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
759 }
760 spin_unlock_irqrestore(&pdc_lock, flags);
761
762 return retval;
763 }
764 EXPORT_SYMBOL(pdc_lan_station_id);
765
766 /**
767 * pdc_stable_read - Read data from Stable Storage.
768 * @staddr: Stable Storage address to access.
769 * @memaddr: The memory address where Stable Storage data shall be copied.
770 * @count: number of bytes to transfer. count is multiple of 4.
771 *
772 * This PDC call reads from the Stable Storage address supplied in staddr
773 * and copies count bytes to the memory address memaddr.
774 * The call will fail if staddr+count > PDC_STABLE size.
775 */
pdc_stable_read(unsigned long staddr,void * memaddr,unsigned long count)776 int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
777 {
778 int retval;
779 unsigned long flags;
780
781 spin_lock_irqsave(&pdc_lock, flags);
782 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
783 __pa(pdc_result), count);
784 convert_to_wide(pdc_result);
785 memcpy(memaddr, pdc_result, count);
786 spin_unlock_irqrestore(&pdc_lock, flags);
787
788 return retval;
789 }
790 EXPORT_SYMBOL(pdc_stable_read);
791
792 /**
793 * pdc_stable_write - Write data to Stable Storage.
794 * @staddr: Stable Storage address to access.
795 * @memaddr: The memory address where Stable Storage data shall be read from.
796 * @count: number of bytes to transfer. count is multiple of 4.
797 *
798 * This PDC call reads count bytes from the supplied memaddr address,
799 * and copies count bytes to the Stable Storage address staddr.
800 * The call will fail if staddr+count > PDC_STABLE size.
801 */
pdc_stable_write(unsigned long staddr,void * memaddr,unsigned long count)802 int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
803 {
804 int retval;
805 unsigned long flags;
806
807 spin_lock_irqsave(&pdc_lock, flags);
808 memcpy(pdc_result, memaddr, count);
809 convert_to_wide(pdc_result);
810 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
811 __pa(pdc_result), count);
812 spin_unlock_irqrestore(&pdc_lock, flags);
813
814 return retval;
815 }
816 EXPORT_SYMBOL(pdc_stable_write);
817
818 /**
819 * pdc_stable_get_size - Get Stable Storage size in bytes.
820 * @size: pointer where the size will be stored.
821 *
822 * This PDC call returns the number of bytes in the processor's Stable
823 * Storage, which is the number of contiguous bytes implemented in Stable
824 * Storage starting from staddr=0. size in an unsigned 64-bit integer
825 * which is a multiple of four.
826 */
pdc_stable_get_size(unsigned long * size)827 int pdc_stable_get_size(unsigned long *size)
828 {
829 int retval;
830 unsigned long flags;
831
832 spin_lock_irqsave(&pdc_lock, flags);
833 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
834 *size = pdc_result[0];
835 spin_unlock_irqrestore(&pdc_lock, flags);
836
837 return retval;
838 }
839 EXPORT_SYMBOL(pdc_stable_get_size);
840
841 /**
842 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
843 *
844 * This PDC call is meant to be used to check the integrity of the current
845 * contents of Stable Storage.
846 */
pdc_stable_verify_contents(void)847 int pdc_stable_verify_contents(void)
848 {
849 int retval;
850 unsigned long flags;
851
852 spin_lock_irqsave(&pdc_lock, flags);
853 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
854 spin_unlock_irqrestore(&pdc_lock, flags);
855
856 return retval;
857 }
858 EXPORT_SYMBOL(pdc_stable_verify_contents);
859
860 /**
861 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
862 * the validity indicator.
863 *
864 * This PDC call will erase all contents of Stable Storage. Use with care!
865 */
pdc_stable_initialize(void)866 int pdc_stable_initialize(void)
867 {
868 int retval;
869 unsigned long flags;
870
871 spin_lock_irqsave(&pdc_lock, flags);
872 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
873 spin_unlock_irqrestore(&pdc_lock, flags);
874
875 return retval;
876 }
877 EXPORT_SYMBOL(pdc_stable_initialize);
878
879 /**
880 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
881 * @hwpath: fully bc.mod style path to the device.
882 * @initiator: the array to return the result into
883 *
884 * Get the SCSI operational parameters from PDC.
885 * Needed since HPUX never used BIOS or symbios card NVRAM.
886 * Most ncr/sym cards won't have an entry and just use whatever
887 * capabilities of the card are (eg Ultra, LVD). But there are
888 * several cases where it's useful:
889 * o set SCSI id for Multi-initiator clusters,
890 * o cable too long (ie SE scsi 10Mhz won't support 6m length),
891 * o bus width exported is less than what the interface chip supports.
892 */
pdc_get_initiator(struct hardware_path * hwpath,struct pdc_initiator * initiator)893 int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
894 {
895 int retval;
896 unsigned long flags;
897
898 spin_lock_irqsave(&pdc_lock, flags);
899
900 /* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
901 #define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
902 strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
903
904 retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
905 __pa(pdc_result), __pa(hwpath));
906 if (retval < PDC_OK)
907 goto out;
908
909 if (pdc_result[0] < 16) {
910 initiator->host_id = pdc_result[0];
911 } else {
912 initiator->host_id = -1;
913 }
914
915 /*
916 * Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns
917 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
918 */
919 switch (pdc_result[1]) {
920 case 1: initiator->factor = 50; break;
921 case 2: initiator->factor = 25; break;
922 case 5: initiator->factor = 12; break;
923 case 25: initiator->factor = 10; break;
924 case 20: initiator->factor = 12; break;
925 case 40: initiator->factor = 10; break;
926 default: initiator->factor = -1; break;
927 }
928
929 if (IS_SPROCKETS()) {
930 initiator->width = pdc_result[4];
931 initiator->mode = pdc_result[5];
932 } else {
933 initiator->width = -1;
934 initiator->mode = -1;
935 }
936
937 out:
938 spin_unlock_irqrestore(&pdc_lock, flags);
939
940 return (retval >= PDC_OK);
941 }
942 EXPORT_SYMBOL(pdc_get_initiator);
943
944
945 /**
946 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
947 * @num_entries: The return value.
948 * @hpa: The HPA for the device.
949 *
950 * This PDC function returns the number of entries in the specified cell's
951 * interrupt table.
952 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
953 */
pdc_pci_irt_size(unsigned long * num_entries,unsigned long hpa)954 int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
955 {
956 int retval;
957 unsigned long flags;
958
959 spin_lock_irqsave(&pdc_lock, flags);
960 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
961 __pa(pdc_result), hpa);
962 convert_to_wide(pdc_result);
963 *num_entries = pdc_result[0];
964 spin_unlock_irqrestore(&pdc_lock, flags);
965
966 return retval;
967 }
968
969 /**
970 * pdc_pci_irt - Get the PCI interrupt routing table.
971 * @num_entries: The number of entries in the table.
972 * @hpa: The Hard Physical Address of the device.
973 * @tbl:
974 *
975 * Get the PCI interrupt routing table for the device at the given HPA.
976 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
977 */
pdc_pci_irt(unsigned long num_entries,unsigned long hpa,void * tbl)978 int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
979 {
980 int retval;
981 unsigned long flags;
982
983 BUG_ON((unsigned long)tbl & 0x7);
984
985 spin_lock_irqsave(&pdc_lock, flags);
986 pdc_result[0] = num_entries;
987 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
988 __pa(pdc_result), hpa, __pa(tbl));
989 spin_unlock_irqrestore(&pdc_lock, flags);
990
991 return retval;
992 }
993
994
995 #if 0 /* UNTEST CODE - left here in case someone needs it */
996
997 /**
998 * pdc_pci_config_read - read PCI config space.
999 * @hpa token from PDC to indicate which PCI device
1000 * @pci_addr configuration space address to read from
1001 *
1002 * Read PCI Configuration space *before* linux PCI subsystem is running.
1003 */
1004 unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
1005 {
1006 int retval;
1007 unsigned long flags;
1008
1009 spin_lock_irqsave(&pdc_lock, flags);
1010 pdc_result[0] = 0;
1011 pdc_result[1] = 0;
1012 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
1013 __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
1014 spin_unlock_irqrestore(&pdc_lock, flags);
1015
1016 return retval ? ~0 : (unsigned int) pdc_result[0];
1017 }
1018
1019
1020 /**
1021 * pdc_pci_config_write - read PCI config space.
1022 * @hpa token from PDC to indicate which PCI device
1023 * @pci_addr configuration space address to write
1024 * @val value we want in the 32-bit register
1025 *
1026 * Write PCI Configuration space *before* linux PCI subsystem is running.
1027 */
1028 void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
1029 {
1030 int retval;
1031 unsigned long flags;
1032
1033 spin_lock_irqsave(&pdc_lock, flags);
1034 pdc_result[0] = 0;
1035 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
1036 __pa(pdc_result), hpa,
1037 cfg_addr&~3UL, 4UL, (unsigned long) val);
1038 spin_unlock_irqrestore(&pdc_lock, flags);
1039
1040 return retval;
1041 }
1042 #endif /* UNTESTED CODE */
1043
1044 /**
1045 * pdc_tod_read - Read the Time-Of-Day clock.
1046 * @tod: The return buffer:
1047 *
1048 * Read the Time-Of-Day clock
1049 */
pdc_tod_read(struct pdc_tod * tod)1050 int pdc_tod_read(struct pdc_tod *tod)
1051 {
1052 int retval;
1053 unsigned long flags;
1054
1055 spin_lock_irqsave(&pdc_lock, flags);
1056 retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
1057 convert_to_wide(pdc_result);
1058 memcpy(tod, pdc_result, sizeof(*tod));
1059 spin_unlock_irqrestore(&pdc_lock, flags);
1060
1061 return retval;
1062 }
1063 EXPORT_SYMBOL(pdc_tod_read);
1064
pdc_mem_pdt_info(struct pdc_mem_retinfo * rinfo)1065 int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo)
1066 {
1067 int retval;
1068 unsigned long flags;
1069
1070 spin_lock_irqsave(&pdc_lock, flags);
1071 retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0);
1072 convert_to_wide(pdc_result);
1073 memcpy(rinfo, pdc_result, sizeof(*rinfo));
1074 spin_unlock_irqrestore(&pdc_lock, flags);
1075
1076 return retval;
1077 }
1078
pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt * pret,unsigned long * pdt_entries_ptr)1079 int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret,
1080 unsigned long *pdt_entries_ptr)
1081 {
1082 int retval;
1083 unsigned long flags;
1084
1085 spin_lock_irqsave(&pdc_lock, flags);
1086 retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result),
1087 __pa(pdt_entries_ptr));
1088 if (retval == PDC_OK) {
1089 convert_to_wide(pdc_result);
1090 memcpy(pret, pdc_result, sizeof(*pret));
1091 }
1092 spin_unlock_irqrestore(&pdc_lock, flags);
1093
1094 #ifdef CONFIG_64BIT
1095 /*
1096 * 64-bit kernels should not call this PDT function in narrow mode.
1097 * The pdt_entries_ptr array above will now contain 32-bit values
1098 */
1099 if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware))
1100 return PDC_ERROR;
1101 #endif
1102
1103 return retval;
1104 }
1105
1106 /**
1107 * pdc_pim_toc11 - Fetch TOC PIM 1.1 data from firmware.
1108 * @ret: pointer to return buffer
1109 */
pdc_pim_toc11(struct pdc_toc_pim_11 * ret)1110 int pdc_pim_toc11(struct pdc_toc_pim_11 *ret)
1111 {
1112 int retval;
1113 unsigned long flags;
1114
1115 spin_lock_irqsave(&pdc_lock, flags);
1116 retval = mem_pdc_call(PDC_PIM, PDC_PIM_TOC, __pa(pdc_result),
1117 __pa(ret), sizeof(*ret));
1118 spin_unlock_irqrestore(&pdc_lock, flags);
1119 return retval;
1120 }
1121
1122 /**
1123 * pdc_pim_toc20 - Fetch TOC PIM 2.0 data from firmware.
1124 * @ret: pointer to return buffer
1125 */
pdc_pim_toc20(struct pdc_toc_pim_20 * ret)1126 int pdc_pim_toc20(struct pdc_toc_pim_20 *ret)
1127 {
1128 int retval;
1129 unsigned long flags;
1130
1131 spin_lock_irqsave(&pdc_lock, flags);
1132 retval = mem_pdc_call(PDC_PIM, PDC_PIM_TOC, __pa(pdc_result),
1133 __pa(ret), sizeof(*ret));
1134 spin_unlock_irqrestore(&pdc_lock, flags);
1135 return retval;
1136 }
1137
1138 /**
1139 * pdc_tod_set - Set the Time-Of-Day clock.
1140 * @sec: The number of seconds since epoch.
1141 * @usec: The number of micro seconds.
1142 *
1143 * Set the Time-Of-Day clock.
1144 */
pdc_tod_set(unsigned long sec,unsigned long usec)1145 int pdc_tod_set(unsigned long sec, unsigned long usec)
1146 {
1147 int retval;
1148 unsigned long flags;
1149
1150 spin_lock_irqsave(&pdc_lock, flags);
1151 retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
1152 spin_unlock_irqrestore(&pdc_lock, flags);
1153
1154 return retval;
1155 }
1156 EXPORT_SYMBOL(pdc_tod_set);
1157
1158 #ifdef CONFIG_64BIT
pdc_mem_mem_table(struct pdc_memory_table_raddr * r_addr,struct pdc_memory_table * tbl,unsigned long entries)1159 int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
1160 struct pdc_memory_table *tbl, unsigned long entries)
1161 {
1162 int retval;
1163 unsigned long flags;
1164
1165 spin_lock_irqsave(&pdc_lock, flags);
1166 retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
1167 convert_to_wide(pdc_result);
1168 memcpy(r_addr, pdc_result, sizeof(*r_addr));
1169 memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
1170 spin_unlock_irqrestore(&pdc_lock, flags);
1171
1172 return retval;
1173 }
1174 #endif /* CONFIG_64BIT */
1175
1176 /* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap
1177 * so I guessed at unsigned long. Someone who knows what this does, can fix
1178 * it later. :)
1179 */
pdc_do_firm_test_reset(unsigned long ftc_bitmap)1180 int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1181 {
1182 int retval;
1183 unsigned long flags;
1184
1185 spin_lock_irqsave(&pdc_lock, flags);
1186 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1187 PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1188 spin_unlock_irqrestore(&pdc_lock, flags);
1189
1190 return retval;
1191 }
1192
1193 /*
1194 * pdc_do_reset - Reset the system.
1195 *
1196 * Reset the system.
1197 */
pdc_do_reset(void)1198 int pdc_do_reset(void)
1199 {
1200 int retval;
1201 unsigned long flags;
1202
1203 spin_lock_irqsave(&pdc_lock, flags);
1204 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1205 spin_unlock_irqrestore(&pdc_lock, flags);
1206
1207 return retval;
1208 }
1209
1210 /*
1211 * pdc_soft_power_info - Enable soft power switch.
1212 * @power_reg: address of soft power register
1213 *
1214 * Return the absolute address of the soft power switch register
1215 */
pdc_soft_power_info(unsigned long * power_reg)1216 int __init pdc_soft_power_info(unsigned long *power_reg)
1217 {
1218 int retval;
1219 unsigned long flags;
1220
1221 *power_reg = (unsigned long) (-1);
1222
1223 spin_lock_irqsave(&pdc_lock, flags);
1224 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1225 if (retval == PDC_OK) {
1226 convert_to_wide(pdc_result);
1227 *power_reg = f_extend(pdc_result[0]);
1228 }
1229 spin_unlock_irqrestore(&pdc_lock, flags);
1230
1231 return retval;
1232 }
1233
1234 /*
1235 * pdc_soft_power_button - Control the soft power button behaviour
1236 * @sw_control: 0 for hardware control, 1 for software control
1237 *
1238 *
1239 * This PDC function places the soft power button under software or
1240 * hardware control.
1241 * Under software control the OS may control to when to allow to shut
1242 * down the system. Under hardware control pressing the power button
1243 * powers off the system immediately.
1244 */
pdc_soft_power_button(int sw_control)1245 int pdc_soft_power_button(int sw_control)
1246 {
1247 int retval;
1248 unsigned long flags;
1249
1250 spin_lock_irqsave(&pdc_lock, flags);
1251 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1252 spin_unlock_irqrestore(&pdc_lock, flags);
1253
1254 return retval;
1255 }
1256
1257 /*
1258 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1259 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1260 * who knows what other platform firmware might do with this OS "hook".
1261 */
pdc_io_reset(void)1262 void pdc_io_reset(void)
1263 {
1264 unsigned long flags;
1265
1266 spin_lock_irqsave(&pdc_lock, flags);
1267 mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1268 spin_unlock_irqrestore(&pdc_lock, flags);
1269 }
1270
1271 /*
1272 * pdc_io_reset_devices - Hack to Stop USB controller
1273 *
1274 * If PDC used the usb controller, the usb controller
1275 * is still running and will crash the machines during iommu
1276 * setup, because of still running DMA. This PDC call
1277 * stops the USB controller.
1278 * Normally called after calling pdc_io_reset().
1279 */
pdc_io_reset_devices(void)1280 void pdc_io_reset_devices(void)
1281 {
1282 unsigned long flags;
1283
1284 spin_lock_irqsave(&pdc_lock, flags);
1285 mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1286 spin_unlock_irqrestore(&pdc_lock, flags);
1287 }
1288
1289 #endif /* defined(BOOTLOADER) */
1290
1291 /* locked by pdc_lock */
1292 static char iodc_dbuf[4096] __page_aligned_bss;
1293
1294 /**
1295 * pdc_iodc_print - Console print using IODC.
1296 * @str: the string to output.
1297 * @count: length of str
1298 *
1299 * Note that only these special chars are architected for console IODC io:
1300 * BEL, BS, CR, and LF. Others are passed through.
1301 * Since the HP console requires CR+LF to perform a 'newline', we translate
1302 * "\n" to "\r\n".
1303 */
pdc_iodc_print(const unsigned char * str,unsigned count)1304 int pdc_iodc_print(const unsigned char *str, unsigned count)
1305 {
1306 unsigned int i;
1307 unsigned long flags;
1308
1309 count = min_t(unsigned int, count, sizeof(iodc_dbuf));
1310
1311 spin_lock_irqsave(&pdc_lock, flags);
1312 for (i = 0; i < count;) {
1313 switch(str[i]) {
1314 case '\n':
1315 iodc_dbuf[i+0] = '\r';
1316 iodc_dbuf[i+1] = '\n';
1317 i += 2;
1318 goto print;
1319 default:
1320 iodc_dbuf[i] = str[i];
1321 i++;
1322 break;
1323 }
1324 }
1325
1326 print:
1327 real32_call(PAGE0->mem_cons.iodc_io,
1328 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1329 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1330 __pa(pdc_result), 0, __pa(iodc_dbuf), i, 0);
1331 spin_unlock_irqrestore(&pdc_lock, flags);
1332
1333 return i;
1334 }
1335
1336 #if !defined(BOOTLOADER)
1337 /**
1338 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1339 *
1340 * Read a character (non-blocking) from the PDC console, returns -1 if
1341 * key is not present.
1342 */
pdc_iodc_getc(void)1343 int pdc_iodc_getc(void)
1344 {
1345 int ch;
1346 int status;
1347 unsigned long flags;
1348
1349 /* Bail if no console input device. */
1350 if (!PAGE0->mem_kbd.iodc_io)
1351 return 0;
1352
1353 /* wait for a keyboard (rs232)-input */
1354 spin_lock_irqsave(&pdc_lock, flags);
1355 real32_call(PAGE0->mem_kbd.iodc_io,
1356 (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1357 PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1358 __pa(pdc_result), 0, __pa(iodc_dbuf), 1, 0);
1359
1360 ch = *iodc_dbuf;
1361 /* like convert_to_wide() but for first return value only: */
1362 status = *(int *)&pdc_result;
1363 spin_unlock_irqrestore(&pdc_lock, flags);
1364
1365 if (status == 0)
1366 return -1;
1367
1368 return ch;
1369 }
1370
pdc_sti_call(unsigned long func,unsigned long flags,unsigned long inptr,unsigned long outputr,unsigned long glob_cfg)1371 int pdc_sti_call(unsigned long func, unsigned long flags,
1372 unsigned long inptr, unsigned long outputr,
1373 unsigned long glob_cfg)
1374 {
1375 int retval;
1376 unsigned long irqflags;
1377
1378 spin_lock_irqsave(&pdc_lock, irqflags);
1379 retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1380 spin_unlock_irqrestore(&pdc_lock, irqflags);
1381
1382 return retval;
1383 }
1384 EXPORT_SYMBOL(pdc_sti_call);
1385
1386 #ifdef CONFIG_64BIT
1387 /**
1388 * pdc_pat_cell_get_number - Returns the cell number.
1389 * @cell_info: The return buffer.
1390 *
1391 * This PDC call returns the cell number of the cell from which the call
1392 * is made.
1393 */
pdc_pat_cell_get_number(struct pdc_pat_cell_num * cell_info)1394 int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1395 {
1396 int retval;
1397 unsigned long flags;
1398
1399 spin_lock_irqsave(&pdc_lock, flags);
1400 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1401 memcpy(cell_info, pdc_result, sizeof(*cell_info));
1402 spin_unlock_irqrestore(&pdc_lock, flags);
1403
1404 return retval;
1405 }
1406
1407 /**
1408 * pdc_pat_cell_module - Retrieve the cell's module information.
1409 * @actcnt: The number of bytes written to mem_addr.
1410 * @ploc: The physical location.
1411 * @mod: The module index.
1412 * @view_type: The view of the address type.
1413 * @mem_addr: The return buffer.
1414 *
1415 * This PDC call returns information about each module attached to the cell
1416 * at the specified location.
1417 */
pdc_pat_cell_module(unsigned long * actcnt,unsigned long ploc,unsigned long mod,unsigned long view_type,void * mem_addr)1418 int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1419 unsigned long view_type, void *mem_addr)
1420 {
1421 int retval;
1422 unsigned long flags;
1423 static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1424
1425 spin_lock_irqsave(&pdc_lock, flags);
1426 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1427 ploc, mod, view_type, __pa(&result));
1428 if(!retval) {
1429 *actcnt = pdc_result[0];
1430 memcpy(mem_addr, &result, *actcnt);
1431 }
1432 spin_unlock_irqrestore(&pdc_lock, flags);
1433
1434 return retval;
1435 }
1436
1437 /**
1438 * pdc_pat_cell_info - Retrieve the cell's information.
1439 * @info: The pointer to a struct pdc_pat_cell_info_rtn_block.
1440 * @actcnt: The number of bytes which should be written to info.
1441 * @offset: offset of the structure.
1442 * @cell_number: The cell number which should be asked, or -1 for current cell.
1443 *
1444 * This PDC call returns information about the given cell (or all cells).
1445 */
pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block * info,unsigned long * actcnt,unsigned long offset,unsigned long cell_number)1446 int pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block *info,
1447 unsigned long *actcnt, unsigned long offset,
1448 unsigned long cell_number)
1449 {
1450 int retval;
1451 unsigned long flags;
1452 struct pdc_pat_cell_info_rtn_block result;
1453
1454 spin_lock_irqsave(&pdc_lock, flags);
1455 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_INFO,
1456 __pa(pdc_result), __pa(&result), *actcnt,
1457 offset, cell_number);
1458 if (!retval) {
1459 *actcnt = pdc_result[0];
1460 memcpy(info, &result, *actcnt);
1461 }
1462 spin_unlock_irqrestore(&pdc_lock, flags);
1463
1464 return retval;
1465 }
1466
1467 /**
1468 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1469 * @cpu_info: The return buffer.
1470 * @hpa: The Hard Physical Address of the CPU.
1471 *
1472 * Retrieve the cpu number for the cpu at the specified HPA.
1473 */
pdc_pat_cpu_get_number(struct pdc_pat_cpu_num * cpu_info,unsigned long hpa)1474 int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa)
1475 {
1476 int retval;
1477 unsigned long flags;
1478
1479 spin_lock_irqsave(&pdc_lock, flags);
1480 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1481 __pa(&pdc_result), hpa);
1482 memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1483 spin_unlock_irqrestore(&pdc_lock, flags);
1484
1485 return retval;
1486 }
1487
1488 /**
1489 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1490 * @num_entries: The return value.
1491 * @cell_num: The target cell.
1492 *
1493 * This PDC function returns the number of entries in the specified cell's
1494 * interrupt table.
1495 */
pdc_pat_get_irt_size(unsigned long * num_entries,unsigned long cell_num)1496 int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1497 {
1498 int retval;
1499 unsigned long flags;
1500
1501 spin_lock_irqsave(&pdc_lock, flags);
1502 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1503 __pa(pdc_result), cell_num);
1504 *num_entries = pdc_result[0];
1505 spin_unlock_irqrestore(&pdc_lock, flags);
1506
1507 return retval;
1508 }
1509
1510 /**
1511 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1512 * @r_addr: The return buffer.
1513 * @cell_num: The target cell.
1514 *
1515 * This PDC function returns the actual interrupt table for the specified cell.
1516 */
pdc_pat_get_irt(void * r_addr,unsigned long cell_num)1517 int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1518 {
1519 int retval;
1520 unsigned long flags;
1521
1522 spin_lock_irqsave(&pdc_lock, flags);
1523 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1524 __pa(r_addr), cell_num);
1525 spin_unlock_irqrestore(&pdc_lock, flags);
1526
1527 return retval;
1528 }
1529
1530 /**
1531 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1532 * @actlen: The return buffer.
1533 * @mem_addr: Pointer to the memory buffer.
1534 * @count: The number of bytes to read from the buffer.
1535 * @offset: The offset with respect to the beginning of the buffer.
1536 *
1537 */
pdc_pat_pd_get_addr_map(unsigned long * actual_len,void * mem_addr,unsigned long count,unsigned long offset)1538 int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1539 unsigned long count, unsigned long offset)
1540 {
1541 int retval;
1542 unsigned long flags;
1543
1544 spin_lock_irqsave(&pdc_lock, flags);
1545 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1546 __pa(pdc_result2), count, offset);
1547 *actual_len = pdc_result[0];
1548 memcpy(mem_addr, pdc_result2, *actual_len);
1549 spin_unlock_irqrestore(&pdc_lock, flags);
1550
1551 return retval;
1552 }
1553
1554 /**
1555 * pdc_pat_pd_get_PDC_interface_revisions - Retrieve PDC interface revisions.
1556 * @legacy_rev: The legacy revision.
1557 * @pat_rev: The PAT revision.
1558 * @pdc_cap: The PDC capabilities.
1559 *
1560 */
pdc_pat_pd_get_pdc_revisions(unsigned long * legacy_rev,unsigned long * pat_rev,unsigned long * pdc_cap)1561 int pdc_pat_pd_get_pdc_revisions(unsigned long *legacy_rev,
1562 unsigned long *pat_rev, unsigned long *pdc_cap)
1563 {
1564 int retval;
1565 unsigned long flags;
1566
1567 spin_lock_irqsave(&pdc_lock, flags);
1568 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_PDC_INTERF_REV,
1569 __pa(pdc_result));
1570 if (retval == PDC_OK) {
1571 *legacy_rev = pdc_result[0];
1572 *pat_rev = pdc_result[1];
1573 *pdc_cap = pdc_result[2];
1574 }
1575 spin_unlock_irqrestore(&pdc_lock, flags);
1576
1577 return retval;
1578 }
1579
1580
1581 /**
1582 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1583 * @pci_addr: PCI configuration space address for which the read request is being made.
1584 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1585 * @mem_addr: Pointer to return memory buffer.
1586 *
1587 */
pdc_pat_io_pci_cfg_read(unsigned long pci_addr,int pci_size,u32 * mem_addr)1588 int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1589 {
1590 int retval;
1591 unsigned long flags;
1592
1593 spin_lock_irqsave(&pdc_lock, flags);
1594 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1595 __pa(pdc_result), pci_addr, pci_size);
1596 switch(pci_size) {
1597 case 1: *(u8 *) mem_addr = (u8) pdc_result[0]; break;
1598 case 2: *(u16 *)mem_addr = (u16) pdc_result[0]; break;
1599 case 4: *(u32 *)mem_addr = (u32) pdc_result[0]; break;
1600 }
1601 spin_unlock_irqrestore(&pdc_lock, flags);
1602
1603 return retval;
1604 }
1605
1606 /**
1607 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1608 * @pci_addr: PCI configuration space address for which the write request is being made.
1609 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1610 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1611 * written to PCI Config space.
1612 *
1613 */
pdc_pat_io_pci_cfg_write(unsigned long pci_addr,int pci_size,u32 val)1614 int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1615 {
1616 int retval;
1617 unsigned long flags;
1618
1619 spin_lock_irqsave(&pdc_lock, flags);
1620 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1621 pci_addr, pci_size, val);
1622 spin_unlock_irqrestore(&pdc_lock, flags);
1623
1624 return retval;
1625 }
1626
1627 /**
1628 * pdc_pat_mem_pdc_info - Retrieve information about page deallocation table
1629 * @rinfo: memory pdt information
1630 *
1631 */
pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo * rinfo)1632 int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo)
1633 {
1634 int retval;
1635 unsigned long flags;
1636
1637 spin_lock_irqsave(&pdc_lock, flags);
1638 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO,
1639 __pa(&pdc_result));
1640 if (retval == PDC_OK)
1641 memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1642 spin_unlock_irqrestore(&pdc_lock, flags);
1643
1644 return retval;
1645 }
1646
1647 /**
1648 * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation
1649 * table of a cell
1650 * @rinfo: memory pdt information
1651 * @cell: cell number
1652 *
1653 */
pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo * rinfo,unsigned long cell)1654 int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo,
1655 unsigned long cell)
1656 {
1657 int retval;
1658 unsigned long flags;
1659
1660 spin_lock_irqsave(&pdc_lock, flags);
1661 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO,
1662 __pa(&pdc_result), cell);
1663 if (retval == PDC_OK)
1664 memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1665 spin_unlock_irqrestore(&pdc_lock, flags);
1666
1667 return retval;
1668 }
1669
1670 /**
1671 * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware
1672 * @pret: array of PDT entries
1673 * @pdt_entries_ptr: ptr to hold number of PDT entries
1674 * @max_entries: maximum number of entries to be read
1675 *
1676 */
pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo * pret,unsigned long * pdt_entries_ptr,unsigned long max_entries)1677 int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1678 unsigned long *pdt_entries_ptr, unsigned long max_entries)
1679 {
1680 int retval;
1681 unsigned long flags, entries;
1682
1683 spin_lock_irqsave(&pdc_lock, flags);
1684 /* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */
1685 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ,
1686 __pa(&pdc_result), parisc_cell_num,
1687 __pa(pdt_entries_ptr));
1688
1689 if (retval == PDC_OK) {
1690 /* build up return value as for PDC_PAT_MEM_PD_READ */
1691 entries = min(pdc_result[0], max_entries);
1692 pret->pdt_entries = entries;
1693 pret->actual_count_bytes = entries * sizeof(unsigned long);
1694 }
1695
1696 spin_unlock_irqrestore(&pdc_lock, flags);
1697 WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries);
1698
1699 return retval;
1700 }
1701 /**
1702 * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware
1703 * @pret: array of PDT entries
1704 * @pdt_entries_ptr: ptr to hold number of PDT entries
1705 * @count: number of bytes to read
1706 * @offset: offset to start (in bytes)
1707 *
1708 */
pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo * pret,unsigned long * pdt_entries_ptr,unsigned long count,unsigned long offset)1709 int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1710 unsigned long *pdt_entries_ptr, unsigned long count,
1711 unsigned long offset)
1712 {
1713 int retval;
1714 unsigned long flags, entries;
1715
1716 spin_lock_irqsave(&pdc_lock, flags);
1717 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ,
1718 __pa(&pdc_result), __pa(pdt_entries_ptr),
1719 count, offset);
1720
1721 if (retval == PDC_OK) {
1722 entries = min(pdc_result[0], count);
1723 pret->actual_count_bytes = entries;
1724 pret->pdt_entries = entries / sizeof(unsigned long);
1725 }
1726
1727 spin_unlock_irqrestore(&pdc_lock, flags);
1728
1729 return retval;
1730 }
1731
1732 /**
1733 * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware
1734 * @pret: ptr to hold returned information
1735 * @phys_addr: physical address to examine
1736 *
1737 */
pdc_pat_mem_get_dimm_phys_location(struct pdc_pat_mem_phys_mem_location * pret,unsigned long phys_addr)1738 int pdc_pat_mem_get_dimm_phys_location(
1739 struct pdc_pat_mem_phys_mem_location *pret,
1740 unsigned long phys_addr)
1741 {
1742 int retval;
1743 unsigned long flags;
1744
1745 spin_lock_irqsave(&pdc_lock, flags);
1746 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS,
1747 __pa(&pdc_result), phys_addr);
1748
1749 if (retval == PDC_OK)
1750 memcpy(pret, &pdc_result, sizeof(*pret));
1751
1752 spin_unlock_irqrestore(&pdc_lock, flags);
1753
1754 return retval;
1755 }
1756 #endif /* CONFIG_64BIT */
1757 #endif /* defined(BOOTLOADER) */
1758
1759
1760 /***************** 32-bit real-mode calls ***********/
1761 /* The struct below is used
1762 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1763 * real32_call_asm() then uses this stack in narrow real mode
1764 */
1765
1766 struct narrow_stack {
1767 /* use int, not long which is 64 bits */
1768 unsigned int arg13;
1769 unsigned int arg12;
1770 unsigned int arg11;
1771 unsigned int arg10;
1772 unsigned int arg9;
1773 unsigned int arg8;
1774 unsigned int arg7;
1775 unsigned int arg6;
1776 unsigned int arg5;
1777 unsigned int arg4;
1778 unsigned int arg3;
1779 unsigned int arg2;
1780 unsigned int arg1;
1781 unsigned int arg0;
1782 unsigned int frame_marker[8];
1783 unsigned int sp;
1784 /* in reality, there's nearly 8k of stack after this */
1785 };
1786
real32_call(unsigned long fn,...)1787 long real32_call(unsigned long fn, ...)
1788 {
1789 va_list args;
1790 extern struct narrow_stack real_stack;
1791 extern unsigned long real32_call_asm(unsigned int *,
1792 unsigned int *,
1793 unsigned int);
1794
1795 va_start(args, fn);
1796 real_stack.arg0 = va_arg(args, unsigned int);
1797 real_stack.arg1 = va_arg(args, unsigned int);
1798 real_stack.arg2 = va_arg(args, unsigned int);
1799 real_stack.arg3 = va_arg(args, unsigned int);
1800 real_stack.arg4 = va_arg(args, unsigned int);
1801 real_stack.arg5 = va_arg(args, unsigned int);
1802 real_stack.arg6 = va_arg(args, unsigned int);
1803 real_stack.arg7 = va_arg(args, unsigned int);
1804 real_stack.arg8 = va_arg(args, unsigned int);
1805 real_stack.arg9 = va_arg(args, unsigned int);
1806 real_stack.arg10 = va_arg(args, unsigned int);
1807 real_stack.arg11 = va_arg(args, unsigned int);
1808 real_stack.arg12 = va_arg(args, unsigned int);
1809 real_stack.arg13 = va_arg(args, unsigned int);
1810 va_end(args);
1811
1812 return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1813 }
1814
1815 #ifdef CONFIG_64BIT
1816 /***************** 64-bit real-mode calls ***********/
1817
1818 struct wide_stack {
1819 unsigned long arg0;
1820 unsigned long arg1;
1821 unsigned long arg2;
1822 unsigned long arg3;
1823 unsigned long arg4;
1824 unsigned long arg5;
1825 unsigned long arg6;
1826 unsigned long arg7;
1827 unsigned long arg8;
1828 unsigned long arg9;
1829 unsigned long arg10;
1830 unsigned long arg11;
1831 unsigned long arg12;
1832 unsigned long arg13;
1833 unsigned long frame_marker[2]; /* rp, previous sp */
1834 unsigned long sp;
1835 /* in reality, there's nearly 8k of stack after this */
1836 };
1837
real64_call(unsigned long fn,...)1838 long real64_call(unsigned long fn, ...)
1839 {
1840 va_list args;
1841 extern struct wide_stack real64_stack;
1842 extern unsigned long real64_call_asm(unsigned long *,
1843 unsigned long *,
1844 unsigned long);
1845
1846 va_start(args, fn);
1847 real64_stack.arg0 = va_arg(args, unsigned long);
1848 real64_stack.arg1 = va_arg(args, unsigned long);
1849 real64_stack.arg2 = va_arg(args, unsigned long);
1850 real64_stack.arg3 = va_arg(args, unsigned long);
1851 real64_stack.arg4 = va_arg(args, unsigned long);
1852 real64_stack.arg5 = va_arg(args, unsigned long);
1853 real64_stack.arg6 = va_arg(args, unsigned long);
1854 real64_stack.arg7 = va_arg(args, unsigned long);
1855 real64_stack.arg8 = va_arg(args, unsigned long);
1856 real64_stack.arg9 = va_arg(args, unsigned long);
1857 real64_stack.arg10 = va_arg(args, unsigned long);
1858 real64_stack.arg11 = va_arg(args, unsigned long);
1859 real64_stack.arg12 = va_arg(args, unsigned long);
1860 real64_stack.arg13 = va_arg(args, unsigned long);
1861 va_end(args);
1862
1863 return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1864 }
1865
1866 #endif /* CONFIG_64BIT */
1867