1 /*
2 *
3 * BRIEF MODULE DESCRIPTION
4 * A DMA channel allocator for Au1x00. API is modeled loosely off of
5 * linux/kernel/dma.c.
6 *
7 * Copyright 2000, 2008 MontaVista Software Inc.
8 * Author: MontaVista Software, Inc. <source@mvista.com>
9 * Copyright (C) 2005 Ralf Baechle (ralf@linux-mips.org)
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
19 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
22 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 * You should have received a copy of the GNU General Public License along
28 * with this program; if not, write to the Free Software Foundation, Inc.,
29 * 675 Mass Ave, Cambridge, MA 02139, USA.
30 *
31 */
32
33 #include <linux/init.h>
34 #include <linux/export.h>
35 #include <linux/kernel.h>
36 #include <linux/errno.h>
37 #include <linux/spinlock.h>
38 #include <linux/interrupt.h>
39
40 #include <asm/mach-au1x00/au1000.h>
41 #include <asm/mach-au1x00/au1000_dma.h>
42
43 /*
44 * A note on resource allocation:
45 *
46 * All drivers needing DMA channels, should allocate and release them
47 * through the public routines `request_dma()' and `free_dma()'.
48 *
49 * In order to avoid problems, all processes should allocate resources in
50 * the same sequence and release them in the reverse order.
51 *
52 * So, when allocating DMAs and IRQs, first allocate the DMA, then the IRQ.
53 * When releasing them, first release the IRQ, then release the DMA. The
54 * main reason for this order is that, if you are requesting the DMA buffer
55 * done interrupt, you won't know the irq number until the DMA channel is
56 * returned from request_dma.
57 */
58
59 /* DMA Channel register block spacing */
60 #define DMA_CHANNEL_LEN 0x00000100
61
62 DEFINE_SPINLOCK(au1000_dma_spin_lock);
63
64 struct dma_chan au1000_dma_table[NUM_AU1000_DMA_CHANNELS] = {
65 {.dev_id = -1,},
66 {.dev_id = -1,},
67 {.dev_id = -1,},
68 {.dev_id = -1,},
69 {.dev_id = -1,},
70 {.dev_id = -1,},
71 {.dev_id = -1,},
72 {.dev_id = -1,}
73 };
74 EXPORT_SYMBOL(au1000_dma_table);
75
76 /* Device FIFO addresses and default DMA modes */
77 static const struct dma_dev {
78 unsigned int fifo_addr;
79 unsigned int dma_mode;
80 } dma_dev_table[DMA_NUM_DEV] = {
81 { AU1000_UART0_PHYS_ADDR + 0x04, DMA_DW8 }, /* UART0_TX */
82 { AU1000_UART0_PHYS_ADDR + 0x00, DMA_DW8 | DMA_DR }, /* UART0_RX */
83 { 0, 0 }, /* DMA_REQ0 */
84 { 0, 0 }, /* DMA_REQ1 */
85 { AU1000_AC97_PHYS_ADDR + 0x08, DMA_DW16 }, /* AC97 TX c */
86 { AU1000_AC97_PHYS_ADDR + 0x08, DMA_DW16 | DMA_DR }, /* AC97 RX c */
87 { AU1000_UART3_PHYS_ADDR + 0x04, DMA_DW8 | DMA_NC }, /* UART3_TX */
88 { AU1000_UART3_PHYS_ADDR + 0x00, DMA_DW8 | DMA_NC | DMA_DR }, /* UART3_RX */
89 { AU1000_USB_UDC_PHYS_ADDR + 0x00, DMA_DW8 | DMA_NC | DMA_DR }, /* EP0RD */
90 { AU1000_USB_UDC_PHYS_ADDR + 0x04, DMA_DW8 | DMA_NC }, /* EP0WR */
91 { AU1000_USB_UDC_PHYS_ADDR + 0x08, DMA_DW8 | DMA_NC }, /* EP2WR */
92 { AU1000_USB_UDC_PHYS_ADDR + 0x0c, DMA_DW8 | DMA_NC }, /* EP3WR */
93 { AU1000_USB_UDC_PHYS_ADDR + 0x10, DMA_DW8 | DMA_NC | DMA_DR }, /* EP4RD */
94 { AU1000_USB_UDC_PHYS_ADDR + 0x14, DMA_DW8 | DMA_NC | DMA_DR }, /* EP5RD */
95 /* on Au1500, these 2 are DMA_REQ2/3 (GPIO208/209) instead! */
96 { AU1000_I2S_PHYS_ADDR + 0x00, DMA_DW32 | DMA_NC}, /* I2S TX */
97 { AU1000_I2S_PHYS_ADDR + 0x00, DMA_DW32 | DMA_NC | DMA_DR}, /* I2S RX */
98 };
99
au1000_dma_read_proc(char * buf,char ** start,off_t fpos,int length,int * eof,void * data)100 int au1000_dma_read_proc(char *buf, char **start, off_t fpos,
101 int length, int *eof, void *data)
102 {
103 int i, len = 0;
104 struct dma_chan *chan;
105
106 for (i = 0; i < NUM_AU1000_DMA_CHANNELS; i++) {
107 chan = get_dma_chan(i);
108 if (chan != NULL)
109 len += sprintf(buf + len, "%2d: %s\n",
110 i, chan->dev_str);
111 }
112
113 if (fpos >= len) {
114 *start = buf;
115 *eof = 1;
116 return 0;
117 }
118 *start = buf + fpos;
119 len -= fpos;
120 if (len > length)
121 return length;
122 *eof = 1;
123 return len;
124 }
125
126 /* Device FIFO addresses and default DMA modes - 2nd bank */
127 static const struct dma_dev dma_dev_table_bank2[DMA_NUM_DEV_BANK2] = {
128 { AU1100_SD0_PHYS_ADDR + 0x00, DMA_DS | DMA_DW8 }, /* coherent */
129 { AU1100_SD0_PHYS_ADDR + 0x04, DMA_DS | DMA_DW8 | DMA_DR }, /* coherent */
130 { AU1100_SD1_PHYS_ADDR + 0x00, DMA_DS | DMA_DW8 }, /* coherent */
131 { AU1100_SD1_PHYS_ADDR + 0x04, DMA_DS | DMA_DW8 | DMA_DR } /* coherent */
132 };
133
dump_au1000_dma_channel(unsigned int dmanr)134 void dump_au1000_dma_channel(unsigned int dmanr)
135 {
136 struct dma_chan *chan;
137
138 if (dmanr >= NUM_AU1000_DMA_CHANNELS)
139 return;
140 chan = &au1000_dma_table[dmanr];
141
142 printk(KERN_INFO "Au1000 DMA%d Register Dump:\n", dmanr);
143 printk(KERN_INFO " mode = 0x%08x\n",
144 __raw_readl(chan->io + DMA_MODE_SET));
145 printk(KERN_INFO " addr = 0x%08x\n",
146 __raw_readl(chan->io + DMA_PERIPHERAL_ADDR));
147 printk(KERN_INFO " start0 = 0x%08x\n",
148 __raw_readl(chan->io + DMA_BUFFER0_START));
149 printk(KERN_INFO " start1 = 0x%08x\n",
150 __raw_readl(chan->io + DMA_BUFFER1_START));
151 printk(KERN_INFO " count0 = 0x%08x\n",
152 __raw_readl(chan->io + DMA_BUFFER0_COUNT));
153 printk(KERN_INFO " count1 = 0x%08x\n",
154 __raw_readl(chan->io + DMA_BUFFER1_COUNT));
155 }
156
157 /*
158 * Finds a free channel, and binds the requested device to it.
159 * Returns the allocated channel number, or negative on error.
160 * Requests the DMA done IRQ if irqhandler != NULL.
161 */
request_au1000_dma(int dev_id,const char * dev_str,irq_handler_t irqhandler,unsigned long irqflags,void * irq_dev_id)162 int request_au1000_dma(int dev_id, const char *dev_str,
163 irq_handler_t irqhandler,
164 unsigned long irqflags,
165 void *irq_dev_id)
166 {
167 struct dma_chan *chan;
168 const struct dma_dev *dev;
169 int i, ret;
170
171 if (alchemy_get_cputype() == ALCHEMY_CPU_AU1100) {
172 if (dev_id < 0 || dev_id >= (DMA_NUM_DEV + DMA_NUM_DEV_BANK2))
173 return -EINVAL;
174 } else {
175 if (dev_id < 0 || dev_id >= DMA_NUM_DEV)
176 return -EINVAL;
177 }
178
179 for (i = 0; i < NUM_AU1000_DMA_CHANNELS; i++)
180 if (au1000_dma_table[i].dev_id < 0)
181 break;
182
183 if (i == NUM_AU1000_DMA_CHANNELS)
184 return -ENODEV;
185
186 chan = &au1000_dma_table[i];
187
188 if (dev_id >= DMA_NUM_DEV) {
189 dev_id -= DMA_NUM_DEV;
190 dev = &dma_dev_table_bank2[dev_id];
191 } else
192 dev = &dma_dev_table[dev_id];
193
194 if (irqhandler) {
195 chan->irq_dev = irq_dev_id;
196 ret = request_irq(chan->irq, irqhandler, irqflags, dev_str,
197 chan->irq_dev);
198 if (ret) {
199 chan->irq_dev = NULL;
200 return ret;
201 }
202 } else {
203 chan->irq_dev = NULL;
204 }
205
206 /* fill it in */
207 chan->io = (void __iomem *)(KSEG1ADDR(AU1000_DMA_PHYS_ADDR) +
208 i * DMA_CHANNEL_LEN);
209 chan->dev_id = dev_id;
210 chan->dev_str = dev_str;
211 chan->fifo_addr = dev->fifo_addr;
212 chan->mode = dev->dma_mode;
213
214 /* initialize the channel before returning */
215 init_dma(i);
216
217 return i;
218 }
219 EXPORT_SYMBOL(request_au1000_dma);
220
free_au1000_dma(unsigned int dmanr)221 void free_au1000_dma(unsigned int dmanr)
222 {
223 struct dma_chan *chan = get_dma_chan(dmanr);
224
225 if (!chan) {
226 printk(KERN_ERR "Error trying to free DMA%d\n", dmanr);
227 return;
228 }
229
230 disable_dma(dmanr);
231 if (chan->irq_dev)
232 free_irq(chan->irq, chan->irq_dev);
233
234 chan->irq_dev = NULL;
235 chan->dev_id = -1;
236 }
237 EXPORT_SYMBOL(free_au1000_dma);
238
au1000_dma_init(void)239 static int __init au1000_dma_init(void)
240 {
241 int base, i;
242
243 switch (alchemy_get_cputype()) {
244 case ALCHEMY_CPU_AU1000:
245 base = AU1000_DMA_INT_BASE;
246 break;
247 case ALCHEMY_CPU_AU1500:
248 base = AU1500_DMA_INT_BASE;
249 break;
250 case ALCHEMY_CPU_AU1100:
251 base = AU1100_DMA_INT_BASE;
252 break;
253 default:
254 goto out;
255 }
256
257 for (i = 0; i < NUM_AU1000_DMA_CHANNELS; i++)
258 au1000_dma_table[i].irq = base + i;
259
260 printk(KERN_INFO "Alchemy DMA initialized\n");
261
262 out:
263 return 0;
264 }
265 arch_initcall(au1000_dma_init);
266