1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/arch/arm/kernel/setup.c
4 *
5 * Copyright (C) 1995-2001 Russell King
6 */
7 #include <linux/efi.h>
8 #include <linux/export.h>
9 #include <linux/kernel.h>
10 #include <linux/stddef.h>
11 #include <linux/ioport.h>
12 #include <linux/delay.h>
13 #include <linux/utsname.h>
14 #include <linux/initrd.h>
15 #include <linux/console.h>
16 #include <linux/seq_file.h>
17 #include <linux/screen_info.h>
18 #include <linux/of_platform.h>
19 #include <linux/init.h>
20 #include <linux/kexec.h>
21 #include <linux/libfdt.h>
22 #include <linux/of_fdt.h>
23 #include <linux/cpu.h>
24 #include <linux/interrupt.h>
25 #include <linux/smp.h>
26 #include <linux/proc_fs.h>
27 #include <linux/memblock.h>
28 #include <linux/bug.h>
29 #include <linux/compiler.h>
30 #include <linux/sort.h>
31 #include <linux/psci.h>
32
33 #include <asm/unified.h>
34 #include <asm/cp15.h>
35 #include <asm/cpu.h>
36 #include <asm/cputype.h>
37 #include <asm/efi.h>
38 #include <asm/elf.h>
39 #include <asm/early_ioremap.h>
40 #include <asm/fixmap.h>
41 #include <asm/procinfo.h>
42 #include <asm/psci.h>
43 #include <asm/sections.h>
44 #include <asm/setup.h>
45 #include <asm/smp_plat.h>
46 #include <asm/mach-types.h>
47 #include <asm/cacheflush.h>
48 #include <asm/cachetype.h>
49 #include <asm/tlbflush.h>
50 #include <asm/xen/hypervisor.h>
51
52 #include <asm/prom.h>
53 #include <asm/mach/arch.h>
54 #include <asm/mach/irq.h>
55 #include <asm/mach/time.h>
56 #include <asm/system_info.h>
57 #include <asm/system_misc.h>
58 #include <asm/traps.h>
59 #include <asm/unwind.h>
60 #include <asm/memblock.h>
61 #include <asm/virt.h>
62 #include <asm/kasan.h>
63
64 #include "atags.h"
65
66
67 #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
68 char fpe_type[8];
69
fpe_setup(char * line)70 static int __init fpe_setup(char *line)
71 {
72 memcpy(fpe_type, line, 8);
73 return 1;
74 }
75
76 __setup("fpe=", fpe_setup);
77 #endif
78
79 extern void init_default_cache_policy(unsigned long);
80 extern void paging_init(const struct machine_desc *desc);
81 extern void early_mm_init(const struct machine_desc *);
82 extern void adjust_lowmem_bounds(void);
83 extern enum reboot_mode reboot_mode;
84 extern void setup_dma_zone(const struct machine_desc *desc);
85
86 unsigned int processor_id;
87 EXPORT_SYMBOL(processor_id);
88 unsigned int __machine_arch_type __read_mostly;
89 EXPORT_SYMBOL(__machine_arch_type);
90 unsigned int cacheid __read_mostly;
91 EXPORT_SYMBOL(cacheid);
92
93 unsigned int __atags_pointer __initdata;
94
95 unsigned int system_rev;
96 EXPORT_SYMBOL(system_rev);
97
98 const char *system_serial;
99 EXPORT_SYMBOL(system_serial);
100
101 unsigned int system_serial_low;
102 EXPORT_SYMBOL(system_serial_low);
103
104 unsigned int system_serial_high;
105 EXPORT_SYMBOL(system_serial_high);
106
107 unsigned int elf_hwcap __read_mostly;
108 EXPORT_SYMBOL(elf_hwcap);
109
110 unsigned int elf_hwcap2 __read_mostly;
111 EXPORT_SYMBOL(elf_hwcap2);
112
113
114 #ifdef MULTI_CPU
115 struct processor processor __ro_after_init;
116 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
117 struct processor *cpu_vtable[NR_CPUS] = {
118 [0] = &processor,
119 };
120 #endif
121 #endif
122 #ifdef MULTI_TLB
123 struct cpu_tlb_fns cpu_tlb __ro_after_init;
124 #endif
125 #ifdef MULTI_USER
126 struct cpu_user_fns cpu_user __ro_after_init;
127 #endif
128 #ifdef MULTI_CACHE
129 struct cpu_cache_fns cpu_cache __ro_after_init;
130 #endif
131 #ifdef CONFIG_OUTER_CACHE
132 struct outer_cache_fns outer_cache __ro_after_init;
133 EXPORT_SYMBOL(outer_cache);
134 #endif
135
136 /*
137 * Cached cpu_architecture() result for use by assembler code.
138 * C code should use the cpu_architecture() function instead of accessing this
139 * variable directly.
140 */
141 int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
142
143 struct stack {
144 u32 irq[4];
145 u32 abt[4];
146 u32 und[4];
147 u32 fiq[4];
148 } ____cacheline_aligned;
149
150 #ifndef CONFIG_CPU_V7M
151 static struct stack stacks[NR_CPUS];
152 #endif
153
154 char elf_platform[ELF_PLATFORM_SIZE];
155 EXPORT_SYMBOL(elf_platform);
156
157 static const char *cpu_name;
158 static const char *machine_name;
159 static char __initdata cmd_line[COMMAND_LINE_SIZE];
160 const struct machine_desc *machine_desc __initdata;
161
162 static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
163 #define ENDIANNESS ((char)endian_test.l)
164
165 DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
166
167 /*
168 * Standard memory resources
169 */
170 static struct resource mem_res[] = {
171 {
172 .name = "Video RAM",
173 .start = 0,
174 .end = 0,
175 .flags = IORESOURCE_MEM
176 },
177 {
178 .name = "Kernel code",
179 .start = 0,
180 .end = 0,
181 .flags = IORESOURCE_SYSTEM_RAM
182 },
183 {
184 .name = "Kernel data",
185 .start = 0,
186 .end = 0,
187 .flags = IORESOURCE_SYSTEM_RAM
188 }
189 };
190
191 #define video_ram mem_res[0]
192 #define kernel_code mem_res[1]
193 #define kernel_data mem_res[2]
194
195 static struct resource io_res[] = {
196 {
197 .name = "reserved",
198 .start = 0x3bc,
199 .end = 0x3be,
200 .flags = IORESOURCE_IO | IORESOURCE_BUSY
201 },
202 {
203 .name = "reserved",
204 .start = 0x378,
205 .end = 0x37f,
206 .flags = IORESOURCE_IO | IORESOURCE_BUSY
207 },
208 {
209 .name = "reserved",
210 .start = 0x278,
211 .end = 0x27f,
212 .flags = IORESOURCE_IO | IORESOURCE_BUSY
213 }
214 };
215
216 #define lp0 io_res[0]
217 #define lp1 io_res[1]
218 #define lp2 io_res[2]
219
220 static const char *proc_arch[] = {
221 "undefined/unknown",
222 "3",
223 "4",
224 "4T",
225 "5",
226 "5T",
227 "5TE",
228 "5TEJ",
229 "6TEJ",
230 "7",
231 "7M",
232 "?(12)",
233 "?(13)",
234 "?(14)",
235 "?(15)",
236 "?(16)",
237 "?(17)",
238 };
239
240 #ifdef CONFIG_CPU_V7M
__get_cpu_architecture(void)241 static int __get_cpu_architecture(void)
242 {
243 return CPU_ARCH_ARMv7M;
244 }
245 #else
__get_cpu_architecture(void)246 static int __get_cpu_architecture(void)
247 {
248 int cpu_arch;
249
250 if ((read_cpuid_id() & 0x0008f000) == 0) {
251 cpu_arch = CPU_ARCH_UNKNOWN;
252 } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
253 cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
254 } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
255 cpu_arch = (read_cpuid_id() >> 16) & 7;
256 if (cpu_arch)
257 cpu_arch += CPU_ARCH_ARMv3;
258 } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
259 /* Revised CPUID format. Read the Memory Model Feature
260 * Register 0 and check for VMSAv7 or PMSAv7 */
261 unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0);
262 if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
263 (mmfr0 & 0x000000f0) >= 0x00000030)
264 cpu_arch = CPU_ARCH_ARMv7;
265 else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
266 (mmfr0 & 0x000000f0) == 0x00000020)
267 cpu_arch = CPU_ARCH_ARMv6;
268 else
269 cpu_arch = CPU_ARCH_UNKNOWN;
270 } else
271 cpu_arch = CPU_ARCH_UNKNOWN;
272
273 return cpu_arch;
274 }
275 #endif
276
cpu_architecture(void)277 int __pure cpu_architecture(void)
278 {
279 BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
280
281 return __cpu_architecture;
282 }
283
cpu_has_aliasing_icache(unsigned int arch)284 static int cpu_has_aliasing_icache(unsigned int arch)
285 {
286 int aliasing_icache;
287 unsigned int id_reg, num_sets, line_size;
288
289 /* PIPT caches never alias. */
290 if (icache_is_pipt())
291 return 0;
292
293 /* arch specifies the register format */
294 switch (arch) {
295 case CPU_ARCH_ARMv7:
296 set_csselr(CSSELR_ICACHE | CSSELR_L1);
297 isb();
298 id_reg = read_ccsidr();
299 line_size = 4 << ((id_reg & 0x7) + 2);
300 num_sets = ((id_reg >> 13) & 0x7fff) + 1;
301 aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
302 break;
303 case CPU_ARCH_ARMv6:
304 aliasing_icache = read_cpuid_cachetype() & (1 << 11);
305 break;
306 default:
307 /* I-cache aliases will be handled by D-cache aliasing code */
308 aliasing_icache = 0;
309 }
310
311 return aliasing_icache;
312 }
313
cacheid_init(void)314 static void __init cacheid_init(void)
315 {
316 unsigned int arch = cpu_architecture();
317
318 if (arch >= CPU_ARCH_ARMv6) {
319 unsigned int cachetype = read_cpuid_cachetype();
320
321 if ((arch == CPU_ARCH_ARMv7M) && !(cachetype & 0xf000f)) {
322 cacheid = 0;
323 } else if ((cachetype & (7 << 29)) == 4 << 29) {
324 /* ARMv7 register format */
325 arch = CPU_ARCH_ARMv7;
326 cacheid = CACHEID_VIPT_NONALIASING;
327 switch (cachetype & (3 << 14)) {
328 case (1 << 14):
329 cacheid |= CACHEID_ASID_TAGGED;
330 break;
331 case (3 << 14):
332 cacheid |= CACHEID_PIPT;
333 break;
334 }
335 } else {
336 arch = CPU_ARCH_ARMv6;
337 if (cachetype & (1 << 23))
338 cacheid = CACHEID_VIPT_ALIASING;
339 else
340 cacheid = CACHEID_VIPT_NONALIASING;
341 }
342 if (cpu_has_aliasing_icache(arch))
343 cacheid |= CACHEID_VIPT_I_ALIASING;
344 } else {
345 cacheid = CACHEID_VIVT;
346 }
347
348 pr_info("CPU: %s data cache, %s instruction cache\n",
349 cache_is_vivt() ? "VIVT" :
350 cache_is_vipt_aliasing() ? "VIPT aliasing" :
351 cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
352 cache_is_vivt() ? "VIVT" :
353 icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
354 icache_is_vipt_aliasing() ? "VIPT aliasing" :
355 icache_is_pipt() ? "PIPT" :
356 cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
357 }
358
359 /*
360 * These functions re-use the assembly code in head.S, which
361 * already provide the required functionality.
362 */
363 extern struct proc_info_list *lookup_processor_type(unsigned int);
364
early_print(const char * str,...)365 void __init early_print(const char *str, ...)
366 {
367 extern void printascii(const char *);
368 char buf[256];
369 va_list ap;
370
371 va_start(ap, str);
372 vsnprintf(buf, sizeof(buf), str, ap);
373 va_end(ap);
374
375 #ifdef CONFIG_DEBUG_LL
376 printascii(buf);
377 #endif
378 printk("%s", buf);
379 }
380
381 #ifdef CONFIG_ARM_PATCH_IDIV
382
sdiv_instruction(void)383 static inline u32 __attribute_const__ sdiv_instruction(void)
384 {
385 if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
386 /* "sdiv r0, r0, r1" */
387 u32 insn = __opcode_thumb32_compose(0xfb90, 0xf0f1);
388 return __opcode_to_mem_thumb32(insn);
389 }
390
391 /* "sdiv r0, r0, r1" */
392 return __opcode_to_mem_arm(0xe710f110);
393 }
394
udiv_instruction(void)395 static inline u32 __attribute_const__ udiv_instruction(void)
396 {
397 if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
398 /* "udiv r0, r0, r1" */
399 u32 insn = __opcode_thumb32_compose(0xfbb0, 0xf0f1);
400 return __opcode_to_mem_thumb32(insn);
401 }
402
403 /* "udiv r0, r0, r1" */
404 return __opcode_to_mem_arm(0xe730f110);
405 }
406
bx_lr_instruction(void)407 static inline u32 __attribute_const__ bx_lr_instruction(void)
408 {
409 if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
410 /* "bx lr; nop" */
411 u32 insn = __opcode_thumb32_compose(0x4770, 0x46c0);
412 return __opcode_to_mem_thumb32(insn);
413 }
414
415 /* "bx lr" */
416 return __opcode_to_mem_arm(0xe12fff1e);
417 }
418
patch_aeabi_idiv(void)419 static void __init patch_aeabi_idiv(void)
420 {
421 extern void __aeabi_uidiv(void);
422 extern void __aeabi_idiv(void);
423 uintptr_t fn_addr;
424 unsigned int mask;
425
426 mask = IS_ENABLED(CONFIG_THUMB2_KERNEL) ? HWCAP_IDIVT : HWCAP_IDIVA;
427 if (!(elf_hwcap & mask))
428 return;
429
430 pr_info("CPU: div instructions available: patching division code\n");
431
432 fn_addr = ((uintptr_t)&__aeabi_uidiv) & ~1;
433 asm ("" : "+g" (fn_addr));
434 ((u32 *)fn_addr)[0] = udiv_instruction();
435 ((u32 *)fn_addr)[1] = bx_lr_instruction();
436 flush_icache_range(fn_addr, fn_addr + 8);
437
438 fn_addr = ((uintptr_t)&__aeabi_idiv) & ~1;
439 asm ("" : "+g" (fn_addr));
440 ((u32 *)fn_addr)[0] = sdiv_instruction();
441 ((u32 *)fn_addr)[1] = bx_lr_instruction();
442 flush_icache_range(fn_addr, fn_addr + 8);
443 }
444
445 #else
patch_aeabi_idiv(void)446 static inline void patch_aeabi_idiv(void) { }
447 #endif
448
cpuid_init_hwcaps(void)449 static void __init cpuid_init_hwcaps(void)
450 {
451 int block;
452 u32 isar5;
453
454 if (cpu_architecture() < CPU_ARCH_ARMv7)
455 return;
456
457 block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24);
458 if (block >= 2)
459 elf_hwcap |= HWCAP_IDIVA;
460 if (block >= 1)
461 elf_hwcap |= HWCAP_IDIVT;
462
463 /* LPAE implies atomic ldrd/strd instructions */
464 block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
465 if (block >= 5)
466 elf_hwcap |= HWCAP_LPAE;
467
468 /* check for supported v8 Crypto instructions */
469 isar5 = read_cpuid_ext(CPUID_EXT_ISAR5);
470
471 block = cpuid_feature_extract_field(isar5, 4);
472 if (block >= 2)
473 elf_hwcap2 |= HWCAP2_PMULL;
474 if (block >= 1)
475 elf_hwcap2 |= HWCAP2_AES;
476
477 block = cpuid_feature_extract_field(isar5, 8);
478 if (block >= 1)
479 elf_hwcap2 |= HWCAP2_SHA1;
480
481 block = cpuid_feature_extract_field(isar5, 12);
482 if (block >= 1)
483 elf_hwcap2 |= HWCAP2_SHA2;
484
485 block = cpuid_feature_extract_field(isar5, 16);
486 if (block >= 1)
487 elf_hwcap2 |= HWCAP2_CRC32;
488 }
489
elf_hwcap_fixup(void)490 static void __init elf_hwcap_fixup(void)
491 {
492 unsigned id = read_cpuid_id();
493
494 /*
495 * HWCAP_TLS is available only on 1136 r1p0 and later,
496 * see also kuser_get_tls_init.
497 */
498 if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
499 ((id >> 20) & 3) == 0) {
500 elf_hwcap &= ~HWCAP_TLS;
501 return;
502 }
503
504 /* Verify if CPUID scheme is implemented */
505 if ((id & 0x000f0000) != 0x000f0000)
506 return;
507
508 /*
509 * If the CPU supports LDREX/STREX and LDREXB/STREXB,
510 * avoid advertising SWP; it may not be atomic with
511 * multiprocessing cores.
512 */
513 if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 ||
514 (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 &&
515 cpuid_feature_extract(CPUID_EXT_ISAR4, 20) >= 3))
516 elf_hwcap &= ~HWCAP_SWP;
517 }
518
519 /*
520 * cpu_init - initialise one CPU.
521 *
522 * cpu_init sets up the per-CPU stacks.
523 */
cpu_init(void)524 void notrace cpu_init(void)
525 {
526 #ifndef CONFIG_CPU_V7M
527 unsigned int cpu = smp_processor_id();
528 struct stack *stk = &stacks[cpu];
529
530 if (cpu >= NR_CPUS) {
531 pr_crit("CPU%u: bad primary CPU number\n", cpu);
532 BUG();
533 }
534
535 /*
536 * This only works on resume and secondary cores. For booting on the
537 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
538 */
539 set_my_cpu_offset(per_cpu_offset(cpu));
540
541 cpu_proc_init();
542
543 /*
544 * Define the placement constraint for the inline asm directive below.
545 * In Thumb-2, msr with an immediate value is not allowed.
546 */
547 #ifdef CONFIG_THUMB2_KERNEL
548 #define PLC_l "l"
549 #define PLC_r "r"
550 #else
551 #define PLC_l "I"
552 #define PLC_r "I"
553 #endif
554
555 /*
556 * setup stacks for re-entrant exception handlers
557 */
558 __asm__ (
559 "msr cpsr_c, %1\n\t"
560 "add r14, %0, %2\n\t"
561 "mov sp, r14\n\t"
562 "msr cpsr_c, %3\n\t"
563 "add r14, %0, %4\n\t"
564 "mov sp, r14\n\t"
565 "msr cpsr_c, %5\n\t"
566 "add r14, %0, %6\n\t"
567 "mov sp, r14\n\t"
568 "msr cpsr_c, %7\n\t"
569 "add r14, %0, %8\n\t"
570 "mov sp, r14\n\t"
571 "msr cpsr_c, %9"
572 :
573 : "r" (stk),
574 PLC_r (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
575 "I" (offsetof(struct stack, irq[0])),
576 PLC_r (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
577 "I" (offsetof(struct stack, abt[0])),
578 PLC_r (PSR_F_BIT | PSR_I_BIT | UND_MODE),
579 "I" (offsetof(struct stack, und[0])),
580 PLC_r (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
581 "I" (offsetof(struct stack, fiq[0])),
582 PLC_l (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
583 : "r14");
584 #endif
585 }
586
587 u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
588
smp_setup_processor_id(void)589 void __init smp_setup_processor_id(void)
590 {
591 int i;
592 u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
593 u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
594
595 cpu_logical_map(0) = cpu;
596 for (i = 1; i < nr_cpu_ids; ++i)
597 cpu_logical_map(i) = i == cpu ? 0 : i;
598
599 /*
600 * clear __my_cpu_offset on boot CPU to avoid hang caused by
601 * using percpu variable early, for example, lockdep will
602 * access percpu variable inside lock_release
603 */
604 set_my_cpu_offset(0);
605
606 pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
607 }
608
609 struct mpidr_hash mpidr_hash;
610 #ifdef CONFIG_SMP
611 /**
612 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
613 * level in order to build a linear index from an
614 * MPIDR value. Resulting algorithm is a collision
615 * free hash carried out through shifting and ORing
616 */
smp_build_mpidr_hash(void)617 static void __init smp_build_mpidr_hash(void)
618 {
619 u32 i, affinity;
620 u32 fs[3], bits[3], ls, mask = 0;
621 /*
622 * Pre-scan the list of MPIDRS and filter out bits that do
623 * not contribute to affinity levels, ie they never toggle.
624 */
625 for_each_possible_cpu(i)
626 mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
627 pr_debug("mask of set bits 0x%x\n", mask);
628 /*
629 * Find and stash the last and first bit set at all affinity levels to
630 * check how many bits are required to represent them.
631 */
632 for (i = 0; i < 3; i++) {
633 affinity = MPIDR_AFFINITY_LEVEL(mask, i);
634 /*
635 * Find the MSB bit and LSB bits position
636 * to determine how many bits are required
637 * to express the affinity level.
638 */
639 ls = fls(affinity);
640 fs[i] = affinity ? ffs(affinity) - 1 : 0;
641 bits[i] = ls - fs[i];
642 }
643 /*
644 * An index can be created from the MPIDR by isolating the
645 * significant bits at each affinity level and by shifting
646 * them in order to compress the 24 bits values space to a
647 * compressed set of values. This is equivalent to hashing
648 * the MPIDR through shifting and ORing. It is a collision free
649 * hash though not minimal since some levels might contain a number
650 * of CPUs that is not an exact power of 2 and their bit
651 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
652 */
653 mpidr_hash.shift_aff[0] = fs[0];
654 mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
655 mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
656 (bits[1] + bits[0]);
657 mpidr_hash.mask = mask;
658 mpidr_hash.bits = bits[2] + bits[1] + bits[0];
659 pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
660 mpidr_hash.shift_aff[0],
661 mpidr_hash.shift_aff[1],
662 mpidr_hash.shift_aff[2],
663 mpidr_hash.mask,
664 mpidr_hash.bits);
665 /*
666 * 4x is an arbitrary value used to warn on a hash table much bigger
667 * than expected on most systems.
668 */
669 if (mpidr_hash_size() > 4 * num_possible_cpus())
670 pr_warn("Large number of MPIDR hash buckets detected\n");
671 sync_cache_w(&mpidr_hash);
672 }
673 #endif
674
675 /*
676 * locate processor in the list of supported processor types. The linker
677 * builds this table for us from the entries in arch/arm/mm/proc-*.S
678 */
lookup_processor(u32 midr)679 struct proc_info_list *lookup_processor(u32 midr)
680 {
681 struct proc_info_list *list = lookup_processor_type(midr);
682
683 if (!list) {
684 pr_err("CPU%u: configuration botched (ID %08x), CPU halted\n",
685 smp_processor_id(), midr);
686 while (1)
687 /* can't use cpu_relax() here as it may require MMU setup */;
688 }
689
690 return list;
691 }
692
setup_processor(void)693 static void __init setup_processor(void)
694 {
695 unsigned int midr = read_cpuid_id();
696 struct proc_info_list *list = lookup_processor(midr);
697
698 cpu_name = list->cpu_name;
699 __cpu_architecture = __get_cpu_architecture();
700
701 init_proc_vtable(list->proc);
702 #ifdef MULTI_TLB
703 cpu_tlb = *list->tlb;
704 #endif
705 #ifdef MULTI_USER
706 cpu_user = *list->user;
707 #endif
708 #ifdef MULTI_CACHE
709 cpu_cache = *list->cache;
710 #endif
711
712 pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
713 list->cpu_name, midr, midr & 15,
714 proc_arch[cpu_architecture()], get_cr());
715
716 snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
717 list->arch_name, ENDIANNESS);
718 snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
719 list->elf_name, ENDIANNESS);
720 elf_hwcap = list->elf_hwcap;
721
722 cpuid_init_hwcaps();
723 patch_aeabi_idiv();
724
725 #ifndef CONFIG_ARM_THUMB
726 elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
727 #endif
728 #ifdef CONFIG_MMU
729 init_default_cache_policy(list->__cpu_mm_mmu_flags);
730 #endif
731 erratum_a15_798181_init();
732
733 elf_hwcap_fixup();
734
735 cacheid_init();
736 cpu_init();
737 }
738
dump_machine_table(void)739 void __init dump_machine_table(void)
740 {
741 const struct machine_desc *p;
742
743 early_print("Available machine support:\n\nID (hex)\tNAME\n");
744 for_each_machine_desc(p)
745 early_print("%08x\t%s\n", p->nr, p->name);
746
747 early_print("\nPlease check your kernel config and/or bootloader.\n");
748
749 while (true)
750 /* can't use cpu_relax() here as it may require MMU setup */;
751 }
752
arm_add_memory(u64 start,u64 size)753 int __init arm_add_memory(u64 start, u64 size)
754 {
755 u64 aligned_start;
756
757 /*
758 * Ensure that start/size are aligned to a page boundary.
759 * Size is rounded down, start is rounded up.
760 */
761 aligned_start = PAGE_ALIGN(start);
762 if (aligned_start > start + size)
763 size = 0;
764 else
765 size -= aligned_start - start;
766
767 #ifndef CONFIG_PHYS_ADDR_T_64BIT
768 if (aligned_start > ULONG_MAX) {
769 pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
770 start);
771 return -EINVAL;
772 }
773
774 if (aligned_start + size > ULONG_MAX) {
775 pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
776 (long long)start);
777 /*
778 * To ensure bank->start + bank->size is representable in
779 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
780 * This means we lose a page after masking.
781 */
782 size = ULONG_MAX - aligned_start;
783 }
784 #endif
785
786 if (aligned_start < PHYS_OFFSET) {
787 if (aligned_start + size <= PHYS_OFFSET) {
788 pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
789 aligned_start, aligned_start + size);
790 return -EINVAL;
791 }
792
793 pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
794 aligned_start, (u64)PHYS_OFFSET);
795
796 size -= PHYS_OFFSET - aligned_start;
797 aligned_start = PHYS_OFFSET;
798 }
799
800 start = aligned_start;
801 size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
802
803 /*
804 * Check whether this memory region has non-zero size or
805 * invalid node number.
806 */
807 if (size == 0)
808 return -EINVAL;
809
810 memblock_add(start, size);
811 return 0;
812 }
813
814 /*
815 * Pick out the memory size. We look for mem=size@start,
816 * where start and size are "size[KkMm]"
817 */
818
early_mem(char * p)819 static int __init early_mem(char *p)
820 {
821 static int usermem __initdata = 0;
822 u64 size;
823 u64 start;
824 char *endp;
825
826 /*
827 * If the user specifies memory size, we
828 * blow away any automatically generated
829 * size.
830 */
831 if (usermem == 0) {
832 usermem = 1;
833 memblock_remove(memblock_start_of_DRAM(),
834 memblock_end_of_DRAM() - memblock_start_of_DRAM());
835 }
836
837 start = PHYS_OFFSET;
838 size = memparse(p, &endp);
839 if (*endp == '@')
840 start = memparse(endp + 1, NULL);
841
842 arm_add_memory(start, size);
843
844 return 0;
845 }
846 early_param("mem", early_mem);
847
request_standard_resources(const struct machine_desc * mdesc)848 static void __init request_standard_resources(const struct machine_desc *mdesc)
849 {
850 phys_addr_t start, end, res_end;
851 struct resource *res;
852 u64 i;
853
854 kernel_code.start = virt_to_phys(_text);
855 kernel_code.end = virt_to_phys(__init_begin - 1);
856 kernel_data.start = virt_to_phys(_sdata);
857 kernel_data.end = virt_to_phys(_end - 1);
858
859 for_each_mem_range(i, &start, &end) {
860 unsigned long boot_alias_start;
861
862 /*
863 * In memblock, end points to the first byte after the
864 * range while in resourses, end points to the last byte in
865 * the range.
866 */
867 res_end = end - 1;
868
869 /*
870 * Some systems have a special memory alias which is only
871 * used for booting. We need to advertise this region to
872 * kexec-tools so they know where bootable RAM is located.
873 */
874 boot_alias_start = phys_to_idmap(start);
875 if (arm_has_idmap_alias() && boot_alias_start != IDMAP_INVALID_ADDR) {
876 res = memblock_alloc(sizeof(*res), SMP_CACHE_BYTES);
877 if (!res)
878 panic("%s: Failed to allocate %zu bytes\n",
879 __func__, sizeof(*res));
880 res->name = "System RAM (boot alias)";
881 res->start = boot_alias_start;
882 res->end = phys_to_idmap(res_end);
883 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
884 request_resource(&iomem_resource, res);
885 }
886
887 res = memblock_alloc(sizeof(*res), SMP_CACHE_BYTES);
888 if (!res)
889 panic("%s: Failed to allocate %zu bytes\n", __func__,
890 sizeof(*res));
891 res->name = "System RAM";
892 res->start = start;
893 res->end = res_end;
894 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
895
896 request_resource(&iomem_resource, res);
897
898 if (kernel_code.start >= res->start &&
899 kernel_code.end <= res->end)
900 request_resource(res, &kernel_code);
901 if (kernel_data.start >= res->start &&
902 kernel_data.end <= res->end)
903 request_resource(res, &kernel_data);
904 }
905
906 if (mdesc->video_start) {
907 video_ram.start = mdesc->video_start;
908 video_ram.end = mdesc->video_end;
909 request_resource(&iomem_resource, &video_ram);
910 }
911
912 /*
913 * Some machines don't have the possibility of ever
914 * possessing lp0, lp1 or lp2
915 */
916 if (mdesc->reserve_lp0)
917 request_resource(&ioport_resource, &lp0);
918 if (mdesc->reserve_lp1)
919 request_resource(&ioport_resource, &lp1);
920 if (mdesc->reserve_lp2)
921 request_resource(&ioport_resource, &lp2);
922 }
923
924 #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE) || \
925 defined(CONFIG_EFI)
926 struct screen_info screen_info = {
927 .orig_video_lines = 30,
928 .orig_video_cols = 80,
929 .orig_video_mode = 0,
930 .orig_video_ega_bx = 0,
931 .orig_video_isVGA = 1,
932 .orig_video_points = 8
933 };
934 #endif
935
customize_machine(void)936 static int __init customize_machine(void)
937 {
938 /*
939 * customizes platform devices, or adds new ones
940 * On DT based machines, we fall back to populating the
941 * machine from the device tree, if no callback is provided,
942 * otherwise we would always need an init_machine callback.
943 */
944 if (machine_desc->init_machine)
945 machine_desc->init_machine();
946
947 return 0;
948 }
949 arch_initcall(customize_machine);
950
init_machine_late(void)951 static int __init init_machine_late(void)
952 {
953 struct device_node *root;
954 int ret;
955
956 if (machine_desc->init_late)
957 machine_desc->init_late();
958
959 root = of_find_node_by_path("/");
960 if (root) {
961 ret = of_property_read_string(root, "serial-number",
962 &system_serial);
963 if (ret)
964 system_serial = NULL;
965 }
966
967 if (!system_serial)
968 system_serial = kasprintf(GFP_KERNEL, "%08x%08x",
969 system_serial_high,
970 system_serial_low);
971
972 return 0;
973 }
974 late_initcall(init_machine_late);
975
976 #ifdef CONFIG_KEXEC
977 /*
978 * The crash region must be aligned to 128MB to avoid
979 * zImage relocating below the reserved region.
980 */
981 #define CRASH_ALIGN (128 << 20)
982
get_total_mem(void)983 static inline unsigned long long get_total_mem(void)
984 {
985 unsigned long total;
986
987 total = max_low_pfn - min_low_pfn;
988 return total << PAGE_SHIFT;
989 }
990
991 /**
992 * reserve_crashkernel() - reserves memory are for crash kernel
993 *
994 * This function reserves memory area given in "crashkernel=" kernel command
995 * line parameter. The memory reserved is used by a dump capture kernel when
996 * primary kernel is crashing.
997 */
reserve_crashkernel(void)998 static void __init reserve_crashkernel(void)
999 {
1000 unsigned long long crash_size, crash_base;
1001 unsigned long long total_mem;
1002 int ret;
1003
1004 total_mem = get_total_mem();
1005 ret = parse_crashkernel(boot_command_line, total_mem,
1006 &crash_size, &crash_base);
1007 /* invalid value specified or crashkernel=0 */
1008 if (ret || !crash_size)
1009 return;
1010
1011 if (crash_base <= 0) {
1012 unsigned long long crash_max = idmap_to_phys((u32)~0);
1013 unsigned long long lowmem_max = __pa(high_memory - 1) + 1;
1014 if (crash_max > lowmem_max)
1015 crash_max = lowmem_max;
1016
1017 crash_base = memblock_phys_alloc_range(crash_size, CRASH_ALIGN,
1018 CRASH_ALIGN, crash_max);
1019 if (!crash_base) {
1020 pr_err("crashkernel reservation failed - No suitable area found.\n");
1021 return;
1022 }
1023 } else {
1024 unsigned long long crash_max = crash_base + crash_size;
1025 unsigned long long start;
1026
1027 start = memblock_phys_alloc_range(crash_size, SECTION_SIZE,
1028 crash_base, crash_max);
1029 if (!start) {
1030 pr_err("crashkernel reservation failed - memory is in use.\n");
1031 return;
1032 }
1033 }
1034
1035 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
1036 (unsigned long)(crash_size >> 20),
1037 (unsigned long)(crash_base >> 20),
1038 (unsigned long)(total_mem >> 20));
1039
1040 /* The crashk resource must always be located in normal mem */
1041 crashk_res.start = crash_base;
1042 crashk_res.end = crash_base + crash_size - 1;
1043 insert_resource(&iomem_resource, &crashk_res);
1044
1045 if (arm_has_idmap_alias()) {
1046 /*
1047 * If we have a special RAM alias for use at boot, we
1048 * need to advertise to kexec tools where the alias is.
1049 */
1050 static struct resource crashk_boot_res = {
1051 .name = "Crash kernel (boot alias)",
1052 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
1053 };
1054
1055 crashk_boot_res.start = phys_to_idmap(crash_base);
1056 crashk_boot_res.end = crashk_boot_res.start + crash_size - 1;
1057 insert_resource(&iomem_resource, &crashk_boot_res);
1058 }
1059 }
1060 #else
reserve_crashkernel(void)1061 static inline void reserve_crashkernel(void) {}
1062 #endif /* CONFIG_KEXEC */
1063
hyp_mode_check(void)1064 void __init hyp_mode_check(void)
1065 {
1066 #ifdef CONFIG_ARM_VIRT_EXT
1067 sync_boot_mode();
1068
1069 if (is_hyp_mode_available()) {
1070 pr_info("CPU: All CPU(s) started in HYP mode.\n");
1071 pr_info("CPU: Virtualization extensions available.\n");
1072 } else if (is_hyp_mode_mismatched()) {
1073 pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
1074 __boot_cpu_mode & MODE_MASK);
1075 pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
1076 } else
1077 pr_info("CPU: All CPU(s) started in SVC mode.\n");
1078 #endif
1079 }
1080
1081 static void (*__arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
1082
arm_restart(struct notifier_block * nb,unsigned long action,void * data)1083 static int arm_restart(struct notifier_block *nb, unsigned long action,
1084 void *data)
1085 {
1086 __arm_pm_restart(action, data);
1087 return NOTIFY_DONE;
1088 }
1089
1090 static struct notifier_block arm_restart_nb = {
1091 .notifier_call = arm_restart,
1092 .priority = 128,
1093 };
1094
setup_arch(char ** cmdline_p)1095 void __init setup_arch(char **cmdline_p)
1096 {
1097 const struct machine_desc *mdesc = NULL;
1098 void *atags_vaddr = NULL;
1099
1100 if (__atags_pointer)
1101 atags_vaddr = FDT_VIRT_BASE(__atags_pointer);
1102
1103 setup_processor();
1104 if (atags_vaddr) {
1105 mdesc = setup_machine_fdt(atags_vaddr);
1106 if (mdesc)
1107 memblock_reserve(__atags_pointer,
1108 fdt_totalsize(atags_vaddr));
1109 }
1110 if (!mdesc)
1111 mdesc = setup_machine_tags(atags_vaddr, __machine_arch_type);
1112 if (!mdesc) {
1113 early_print("\nError: invalid dtb and unrecognized/unsupported machine ID\n");
1114 early_print(" r1=0x%08x, r2=0x%08x\n", __machine_arch_type,
1115 __atags_pointer);
1116 if (__atags_pointer)
1117 early_print(" r2[]=%*ph\n", 16, atags_vaddr);
1118 dump_machine_table();
1119 }
1120
1121 machine_desc = mdesc;
1122 machine_name = mdesc->name;
1123 dump_stack_set_arch_desc("%s", mdesc->name);
1124
1125 if (mdesc->reboot_mode != REBOOT_HARD)
1126 reboot_mode = mdesc->reboot_mode;
1127
1128 setup_initial_init_mm(_text, _etext, _edata, _end);
1129
1130 /* populate cmd_line too for later use, preserving boot_command_line */
1131 strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
1132 *cmdline_p = cmd_line;
1133
1134 early_fixmap_init();
1135 early_ioremap_init();
1136
1137 parse_early_param();
1138
1139 #ifdef CONFIG_MMU
1140 early_mm_init(mdesc);
1141 #endif
1142 setup_dma_zone(mdesc);
1143 xen_early_init();
1144 arm_efi_init();
1145 /*
1146 * Make sure the calculation for lowmem/highmem is set appropriately
1147 * before reserving/allocating any memory
1148 */
1149 adjust_lowmem_bounds();
1150 arm_memblock_init(mdesc);
1151 /* Memory may have been removed so recalculate the bounds. */
1152 adjust_lowmem_bounds();
1153
1154 early_ioremap_reset();
1155
1156 paging_init(mdesc);
1157 kasan_init();
1158 request_standard_resources(mdesc);
1159
1160 if (mdesc->restart) {
1161 __arm_pm_restart = mdesc->restart;
1162 register_restart_handler(&arm_restart_nb);
1163 }
1164
1165 unflatten_device_tree();
1166
1167 arm_dt_init_cpu_maps();
1168 psci_dt_init();
1169 #ifdef CONFIG_SMP
1170 if (is_smp()) {
1171 if (!mdesc->smp_init || !mdesc->smp_init()) {
1172 if (psci_smp_available())
1173 smp_set_ops(&psci_smp_ops);
1174 else if (mdesc->smp)
1175 smp_set_ops(mdesc->smp);
1176 }
1177 smp_init_cpus();
1178 smp_build_mpidr_hash();
1179 }
1180 #endif
1181
1182 if (!is_smp())
1183 hyp_mode_check();
1184
1185 reserve_crashkernel();
1186
1187 #ifdef CONFIG_GENERIC_IRQ_MULTI_HANDLER
1188 handle_arch_irq = mdesc->handle_irq;
1189 #endif
1190
1191 #ifdef CONFIG_VT
1192 #if defined(CONFIG_VGA_CONSOLE)
1193 conswitchp = &vga_con;
1194 #endif
1195 #endif
1196
1197 if (mdesc->init_early)
1198 mdesc->init_early();
1199 }
1200
1201
topology_init(void)1202 static int __init topology_init(void)
1203 {
1204 int cpu;
1205
1206 for_each_possible_cpu(cpu) {
1207 struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
1208 cpuinfo->cpu.hotpluggable = platform_can_hotplug_cpu(cpu);
1209 register_cpu(&cpuinfo->cpu, cpu);
1210 }
1211
1212 return 0;
1213 }
1214 subsys_initcall(topology_init);
1215
1216 #ifdef CONFIG_HAVE_PROC_CPU
proc_cpu_init(void)1217 static int __init proc_cpu_init(void)
1218 {
1219 struct proc_dir_entry *res;
1220
1221 res = proc_mkdir("cpu", NULL);
1222 if (!res)
1223 return -ENOMEM;
1224 return 0;
1225 }
1226 fs_initcall(proc_cpu_init);
1227 #endif
1228
1229 static const char *hwcap_str[] = {
1230 "swp",
1231 "half",
1232 "thumb",
1233 "26bit",
1234 "fastmult",
1235 "fpa",
1236 "vfp",
1237 "edsp",
1238 "java",
1239 "iwmmxt",
1240 "crunch",
1241 "thumbee",
1242 "neon",
1243 "vfpv3",
1244 "vfpv3d16",
1245 "tls",
1246 "vfpv4",
1247 "idiva",
1248 "idivt",
1249 "vfpd32",
1250 "lpae",
1251 "evtstrm",
1252 NULL
1253 };
1254
1255 static const char *hwcap2_str[] = {
1256 "aes",
1257 "pmull",
1258 "sha1",
1259 "sha2",
1260 "crc32",
1261 NULL
1262 };
1263
c_show(struct seq_file * m,void * v)1264 static int c_show(struct seq_file *m, void *v)
1265 {
1266 int i, j;
1267 u32 cpuid;
1268
1269 for_each_online_cpu(i) {
1270 /*
1271 * glibc reads /proc/cpuinfo to determine the number of
1272 * online processors, looking for lines beginning with
1273 * "processor". Give glibc what it expects.
1274 */
1275 seq_printf(m, "processor\t: %d\n", i);
1276 cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1277 seq_printf(m, "model name\t: %s rev %d (%s)\n",
1278 cpu_name, cpuid & 15, elf_platform);
1279
1280 #if defined(CONFIG_SMP)
1281 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1282 per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1283 (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1284 #else
1285 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1286 loops_per_jiffy / (500000/HZ),
1287 (loops_per_jiffy / (5000/HZ)) % 100);
1288 #endif
1289 /* dump out the processor features */
1290 seq_puts(m, "Features\t: ");
1291
1292 for (j = 0; hwcap_str[j]; j++)
1293 if (elf_hwcap & (1 << j))
1294 seq_printf(m, "%s ", hwcap_str[j]);
1295
1296 for (j = 0; hwcap2_str[j]; j++)
1297 if (elf_hwcap2 & (1 << j))
1298 seq_printf(m, "%s ", hwcap2_str[j]);
1299
1300 seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1301 seq_printf(m, "CPU architecture: %s\n",
1302 proc_arch[cpu_architecture()]);
1303
1304 if ((cpuid & 0x0008f000) == 0x00000000) {
1305 /* pre-ARM7 */
1306 seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
1307 } else {
1308 if ((cpuid & 0x0008f000) == 0x00007000) {
1309 /* ARM7 */
1310 seq_printf(m, "CPU variant\t: 0x%02x\n",
1311 (cpuid >> 16) & 127);
1312 } else {
1313 /* post-ARM7 */
1314 seq_printf(m, "CPU variant\t: 0x%x\n",
1315 (cpuid >> 20) & 15);
1316 }
1317 seq_printf(m, "CPU part\t: 0x%03x\n",
1318 (cpuid >> 4) & 0xfff);
1319 }
1320 seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
1321 }
1322
1323 seq_printf(m, "Hardware\t: %s\n", machine_name);
1324 seq_printf(m, "Revision\t: %04x\n", system_rev);
1325 seq_printf(m, "Serial\t\t: %s\n", system_serial);
1326
1327 return 0;
1328 }
1329
c_start(struct seq_file * m,loff_t * pos)1330 static void *c_start(struct seq_file *m, loff_t *pos)
1331 {
1332 return *pos < 1 ? (void *)1 : NULL;
1333 }
1334
c_next(struct seq_file * m,void * v,loff_t * pos)1335 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1336 {
1337 ++*pos;
1338 return NULL;
1339 }
1340
c_stop(struct seq_file * m,void * v)1341 static void c_stop(struct seq_file *m, void *v)
1342 {
1343 }
1344
1345 const struct seq_operations cpuinfo_op = {
1346 .start = c_start,
1347 .next = c_next,
1348 .stop = c_stop,
1349 .show = c_show
1350 };
1351