1 // SPDX-License-Identifier: GPL-2.0
2 #include "cpumap.h"
3 #include "debug.h"
4 #include "env.h"
5 #include "util/header.h"
6 #include <linux/ctype.h>
7 #include <linux/zalloc.h>
8 #include "cgroup.h"
9 #include <errno.h>
10 #include <sys/utsname.h>
11 #include <stdlib.h>
12 #include <string.h>
13 #include "strbuf.h"
14
15 struct perf_env perf_env;
16
17 #ifdef HAVE_LIBBPF_SUPPORT
18 #include "bpf-event.h"
19 #include "bpf-utils.h"
20 #include <bpf/libbpf.h>
21
perf_env__insert_bpf_prog_info(struct perf_env * env,struct bpf_prog_info_node * info_node)22 void perf_env__insert_bpf_prog_info(struct perf_env *env,
23 struct bpf_prog_info_node *info_node)
24 {
25 __u32 prog_id = info_node->info_linear->info.id;
26 struct bpf_prog_info_node *node;
27 struct rb_node *parent = NULL;
28 struct rb_node **p;
29
30 down_write(&env->bpf_progs.lock);
31 p = &env->bpf_progs.infos.rb_node;
32
33 while (*p != NULL) {
34 parent = *p;
35 node = rb_entry(parent, struct bpf_prog_info_node, rb_node);
36 if (prog_id < node->info_linear->info.id) {
37 p = &(*p)->rb_left;
38 } else if (prog_id > node->info_linear->info.id) {
39 p = &(*p)->rb_right;
40 } else {
41 pr_debug("duplicated bpf prog info %u\n", prog_id);
42 goto out;
43 }
44 }
45
46 rb_link_node(&info_node->rb_node, parent, p);
47 rb_insert_color(&info_node->rb_node, &env->bpf_progs.infos);
48 env->bpf_progs.infos_cnt++;
49 out:
50 up_write(&env->bpf_progs.lock);
51 }
52
perf_env__find_bpf_prog_info(struct perf_env * env,__u32 prog_id)53 struct bpf_prog_info_node *perf_env__find_bpf_prog_info(struct perf_env *env,
54 __u32 prog_id)
55 {
56 struct bpf_prog_info_node *node = NULL;
57 struct rb_node *n;
58
59 down_read(&env->bpf_progs.lock);
60 n = env->bpf_progs.infos.rb_node;
61
62 while (n) {
63 node = rb_entry(n, struct bpf_prog_info_node, rb_node);
64 if (prog_id < node->info_linear->info.id)
65 n = n->rb_left;
66 else if (prog_id > node->info_linear->info.id)
67 n = n->rb_right;
68 else
69 goto out;
70 }
71 node = NULL;
72
73 out:
74 up_read(&env->bpf_progs.lock);
75 return node;
76 }
77
perf_env__insert_btf(struct perf_env * env,struct btf_node * btf_node)78 bool perf_env__insert_btf(struct perf_env *env, struct btf_node *btf_node)
79 {
80 struct rb_node *parent = NULL;
81 __u32 btf_id = btf_node->id;
82 struct btf_node *node;
83 struct rb_node **p;
84 bool ret = true;
85
86 down_write(&env->bpf_progs.lock);
87 p = &env->bpf_progs.btfs.rb_node;
88
89 while (*p != NULL) {
90 parent = *p;
91 node = rb_entry(parent, struct btf_node, rb_node);
92 if (btf_id < node->id) {
93 p = &(*p)->rb_left;
94 } else if (btf_id > node->id) {
95 p = &(*p)->rb_right;
96 } else {
97 pr_debug("duplicated btf %u\n", btf_id);
98 ret = false;
99 goto out;
100 }
101 }
102
103 rb_link_node(&btf_node->rb_node, parent, p);
104 rb_insert_color(&btf_node->rb_node, &env->bpf_progs.btfs);
105 env->bpf_progs.btfs_cnt++;
106 out:
107 up_write(&env->bpf_progs.lock);
108 return ret;
109 }
110
perf_env__find_btf(struct perf_env * env,__u32 btf_id)111 struct btf_node *perf_env__find_btf(struct perf_env *env, __u32 btf_id)
112 {
113 struct btf_node *node = NULL;
114 struct rb_node *n;
115
116 down_read(&env->bpf_progs.lock);
117 n = env->bpf_progs.btfs.rb_node;
118
119 while (n) {
120 node = rb_entry(n, struct btf_node, rb_node);
121 if (btf_id < node->id)
122 n = n->rb_left;
123 else if (btf_id > node->id)
124 n = n->rb_right;
125 else
126 goto out;
127 }
128 node = NULL;
129
130 out:
131 up_read(&env->bpf_progs.lock);
132 return node;
133 }
134
135 /* purge data in bpf_progs.infos tree */
perf_env__purge_bpf(struct perf_env * env)136 static void perf_env__purge_bpf(struct perf_env *env)
137 {
138 struct rb_root *root;
139 struct rb_node *next;
140
141 down_write(&env->bpf_progs.lock);
142
143 root = &env->bpf_progs.infos;
144 next = rb_first(root);
145
146 while (next) {
147 struct bpf_prog_info_node *node;
148
149 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
150 next = rb_next(&node->rb_node);
151 rb_erase(&node->rb_node, root);
152 free(node->info_linear);
153 free(node);
154 }
155
156 env->bpf_progs.infos_cnt = 0;
157
158 root = &env->bpf_progs.btfs;
159 next = rb_first(root);
160
161 while (next) {
162 struct btf_node *node;
163
164 node = rb_entry(next, struct btf_node, rb_node);
165 next = rb_next(&node->rb_node);
166 rb_erase(&node->rb_node, root);
167 free(node);
168 }
169
170 env->bpf_progs.btfs_cnt = 0;
171
172 up_write(&env->bpf_progs.lock);
173 }
174 #else // HAVE_LIBBPF_SUPPORT
perf_env__purge_bpf(struct perf_env * env __maybe_unused)175 static void perf_env__purge_bpf(struct perf_env *env __maybe_unused)
176 {
177 }
178 #endif // HAVE_LIBBPF_SUPPORT
179
perf_env__exit(struct perf_env * env)180 void perf_env__exit(struct perf_env *env)
181 {
182 int i;
183
184 perf_env__purge_bpf(env);
185 perf_env__purge_cgroups(env);
186 zfree(&env->hostname);
187 zfree(&env->os_release);
188 zfree(&env->version);
189 zfree(&env->arch);
190 zfree(&env->cpu_desc);
191 zfree(&env->cpuid);
192 zfree(&env->cmdline);
193 zfree(&env->cmdline_argv);
194 zfree(&env->sibling_dies);
195 zfree(&env->sibling_cores);
196 zfree(&env->sibling_threads);
197 zfree(&env->pmu_mappings);
198 zfree(&env->cpu);
199 zfree(&env->cpu_pmu_caps);
200 zfree(&env->numa_map);
201
202 for (i = 0; i < env->nr_numa_nodes; i++)
203 perf_cpu_map__put(env->numa_nodes[i].map);
204 zfree(&env->numa_nodes);
205
206 for (i = 0; i < env->caches_cnt; i++)
207 cpu_cache_level__free(&env->caches[i]);
208 zfree(&env->caches);
209
210 for (i = 0; i < env->nr_memory_nodes; i++)
211 zfree(&env->memory_nodes[i].set);
212 zfree(&env->memory_nodes);
213
214 for (i = 0; i < env->nr_hybrid_nodes; i++) {
215 zfree(&env->hybrid_nodes[i].pmu_name);
216 zfree(&env->hybrid_nodes[i].cpus);
217 }
218 zfree(&env->hybrid_nodes);
219
220 for (i = 0; i < env->nr_hybrid_cpc_nodes; i++) {
221 zfree(&env->hybrid_cpc_nodes[i].cpu_pmu_caps);
222 zfree(&env->hybrid_cpc_nodes[i].pmu_name);
223 }
224 zfree(&env->hybrid_cpc_nodes);
225 }
226
perf_env__init(struct perf_env * env)227 void perf_env__init(struct perf_env *env)
228 {
229 #ifdef HAVE_LIBBPF_SUPPORT
230 env->bpf_progs.infos = RB_ROOT;
231 env->bpf_progs.btfs = RB_ROOT;
232 init_rwsem(&env->bpf_progs.lock);
233 #endif
234 env->kernel_is_64_bit = -1;
235 }
236
perf_env__init_kernel_mode(struct perf_env * env)237 static void perf_env__init_kernel_mode(struct perf_env *env)
238 {
239 const char *arch = perf_env__raw_arch(env);
240
241 if (!strncmp(arch, "x86_64", 6) || !strncmp(arch, "aarch64", 7) ||
242 !strncmp(arch, "arm64", 5) || !strncmp(arch, "mips64", 6) ||
243 !strncmp(arch, "parisc64", 8) || !strncmp(arch, "riscv64", 7) ||
244 !strncmp(arch, "s390x", 5) || !strncmp(arch, "sparc64", 7))
245 env->kernel_is_64_bit = 1;
246 else
247 env->kernel_is_64_bit = 0;
248 }
249
perf_env__kernel_is_64_bit(struct perf_env * env)250 int perf_env__kernel_is_64_bit(struct perf_env *env)
251 {
252 if (env->kernel_is_64_bit == -1)
253 perf_env__init_kernel_mode(env);
254
255 return env->kernel_is_64_bit;
256 }
257
perf_env__set_cmdline(struct perf_env * env,int argc,const char * argv[])258 int perf_env__set_cmdline(struct perf_env *env, int argc, const char *argv[])
259 {
260 int i;
261
262 /* do not include NULL termination */
263 env->cmdline_argv = calloc(argc, sizeof(char *));
264 if (env->cmdline_argv == NULL)
265 goto out_enomem;
266
267 /*
268 * Must copy argv contents because it gets moved around during option
269 * parsing:
270 */
271 for (i = 0; i < argc ; i++) {
272 env->cmdline_argv[i] = argv[i];
273 if (env->cmdline_argv[i] == NULL)
274 goto out_free;
275 }
276
277 env->nr_cmdline = argc;
278
279 return 0;
280 out_free:
281 zfree(&env->cmdline_argv);
282 out_enomem:
283 return -ENOMEM;
284 }
285
perf_env__read_cpu_topology_map(struct perf_env * env)286 int perf_env__read_cpu_topology_map(struct perf_env *env)
287 {
288 int idx, nr_cpus;
289
290 if (env->cpu != NULL)
291 return 0;
292
293 if (env->nr_cpus_avail == 0)
294 env->nr_cpus_avail = cpu__max_present_cpu().cpu;
295
296 nr_cpus = env->nr_cpus_avail;
297 if (nr_cpus == -1)
298 return -EINVAL;
299
300 env->cpu = calloc(nr_cpus, sizeof(env->cpu[0]));
301 if (env->cpu == NULL)
302 return -ENOMEM;
303
304 for (idx = 0; idx < nr_cpus; ++idx) {
305 struct perf_cpu cpu = { .cpu = idx };
306
307 env->cpu[idx].core_id = cpu__get_core_id(cpu);
308 env->cpu[idx].socket_id = cpu__get_socket_id(cpu);
309 env->cpu[idx].die_id = cpu__get_die_id(cpu);
310 }
311
312 env->nr_cpus_avail = nr_cpus;
313 return 0;
314 }
315
perf_env__read_pmu_mappings(struct perf_env * env)316 int perf_env__read_pmu_mappings(struct perf_env *env)
317 {
318 struct perf_pmu *pmu = NULL;
319 u32 pmu_num = 0;
320 struct strbuf sb;
321
322 while ((pmu = perf_pmu__scan(pmu))) {
323 if (!pmu->name)
324 continue;
325 pmu_num++;
326 }
327 if (!pmu_num) {
328 pr_debug("pmu mappings not available\n");
329 return -ENOENT;
330 }
331 env->nr_pmu_mappings = pmu_num;
332
333 if (strbuf_init(&sb, 128 * pmu_num) < 0)
334 return -ENOMEM;
335
336 while ((pmu = perf_pmu__scan(pmu))) {
337 if (!pmu->name)
338 continue;
339 if (strbuf_addf(&sb, "%u:%s", pmu->type, pmu->name) < 0)
340 goto error;
341 /* include a NULL character at the end */
342 if (strbuf_add(&sb, "", 1) < 0)
343 goto error;
344 }
345
346 env->pmu_mappings = strbuf_detach(&sb, NULL);
347
348 return 0;
349
350 error:
351 strbuf_release(&sb);
352 return -1;
353 }
354
perf_env__read_cpuid(struct perf_env * env)355 int perf_env__read_cpuid(struct perf_env *env)
356 {
357 char cpuid[128];
358 int err = get_cpuid(cpuid, sizeof(cpuid));
359
360 if (err)
361 return err;
362
363 free(env->cpuid);
364 env->cpuid = strdup(cpuid);
365 if (env->cpuid == NULL)
366 return ENOMEM;
367 return 0;
368 }
369
perf_env__read_arch(struct perf_env * env)370 static int perf_env__read_arch(struct perf_env *env)
371 {
372 struct utsname uts;
373
374 if (env->arch)
375 return 0;
376
377 if (!uname(&uts))
378 env->arch = strdup(uts.machine);
379
380 return env->arch ? 0 : -ENOMEM;
381 }
382
perf_env__read_nr_cpus_avail(struct perf_env * env)383 static int perf_env__read_nr_cpus_avail(struct perf_env *env)
384 {
385 if (env->nr_cpus_avail == 0)
386 env->nr_cpus_avail = cpu__max_present_cpu().cpu;
387
388 return env->nr_cpus_avail ? 0 : -ENOENT;
389 }
390
perf_env__raw_arch(struct perf_env * env)391 const char *perf_env__raw_arch(struct perf_env *env)
392 {
393 return env && !perf_env__read_arch(env) ? env->arch : "unknown";
394 }
395
perf_env__nr_cpus_avail(struct perf_env * env)396 int perf_env__nr_cpus_avail(struct perf_env *env)
397 {
398 return env && !perf_env__read_nr_cpus_avail(env) ? env->nr_cpus_avail : 0;
399 }
400
cpu_cache_level__free(struct cpu_cache_level * cache)401 void cpu_cache_level__free(struct cpu_cache_level *cache)
402 {
403 zfree(&cache->type);
404 zfree(&cache->map);
405 zfree(&cache->size);
406 }
407
408 /*
409 * Return architecture name in a normalized form.
410 * The conversion logic comes from the Makefile.
411 */
normalize_arch(char * arch)412 static const char *normalize_arch(char *arch)
413 {
414 if (!strcmp(arch, "x86_64"))
415 return "x86";
416 if (arch[0] == 'i' && arch[2] == '8' && arch[3] == '6')
417 return "x86";
418 if (!strcmp(arch, "sun4u") || !strncmp(arch, "sparc", 5))
419 return "sparc";
420 if (!strncmp(arch, "aarch64", 7) || !strncmp(arch, "arm64", 5))
421 return "arm64";
422 if (!strncmp(arch, "arm", 3) || !strcmp(arch, "sa110"))
423 return "arm";
424 if (!strncmp(arch, "s390", 4))
425 return "s390";
426 if (!strncmp(arch, "parisc", 6))
427 return "parisc";
428 if (!strncmp(arch, "powerpc", 7) || !strncmp(arch, "ppc", 3))
429 return "powerpc";
430 if (!strncmp(arch, "mips", 4))
431 return "mips";
432 if (!strncmp(arch, "sh", 2) && isdigit(arch[2]))
433 return "sh";
434
435 return arch;
436 }
437
perf_env__arch(struct perf_env * env)438 const char *perf_env__arch(struct perf_env *env)
439 {
440 char *arch_name;
441
442 if (!env || !env->arch) { /* Assume local operation */
443 static struct utsname uts = { .machine[0] = '\0', };
444 if (uts.machine[0] == '\0' && uname(&uts) < 0)
445 return NULL;
446 arch_name = uts.machine;
447 } else
448 arch_name = env->arch;
449
450 return normalize_arch(arch_name);
451 }
452
perf_env__cpuid(struct perf_env * env)453 const char *perf_env__cpuid(struct perf_env *env)
454 {
455 int status;
456
457 if (!env || !env->cpuid) { /* Assume local operation */
458 status = perf_env__read_cpuid(env);
459 if (status)
460 return NULL;
461 }
462
463 return env->cpuid;
464 }
465
perf_env__nr_pmu_mappings(struct perf_env * env)466 int perf_env__nr_pmu_mappings(struct perf_env *env)
467 {
468 int status;
469
470 if (!env || !env->nr_pmu_mappings) { /* Assume local operation */
471 status = perf_env__read_pmu_mappings(env);
472 if (status)
473 return 0;
474 }
475
476 return env->nr_pmu_mappings;
477 }
478
perf_env__pmu_mappings(struct perf_env * env)479 const char *perf_env__pmu_mappings(struct perf_env *env)
480 {
481 int status;
482
483 if (!env || !env->pmu_mappings) { /* Assume local operation */
484 status = perf_env__read_pmu_mappings(env);
485 if (status)
486 return NULL;
487 }
488
489 return env->pmu_mappings;
490 }
491
perf_env__numa_node(struct perf_env * env,struct perf_cpu cpu)492 int perf_env__numa_node(struct perf_env *env, struct perf_cpu cpu)
493 {
494 if (!env->nr_numa_map) {
495 struct numa_node *nn;
496 int i, nr = 0;
497
498 for (i = 0; i < env->nr_numa_nodes; i++) {
499 nn = &env->numa_nodes[i];
500 nr = max(nr, perf_cpu_map__max(nn->map).cpu);
501 }
502
503 nr++;
504
505 /*
506 * We initialize the numa_map array to prepare
507 * it for missing cpus, which return node -1
508 */
509 env->numa_map = malloc(nr * sizeof(int));
510 if (!env->numa_map)
511 return -1;
512
513 for (i = 0; i < nr; i++)
514 env->numa_map[i] = -1;
515
516 env->nr_numa_map = nr;
517
518 for (i = 0; i < env->nr_numa_nodes; i++) {
519 struct perf_cpu tmp;
520 int j;
521
522 nn = &env->numa_nodes[i];
523 perf_cpu_map__for_each_cpu(tmp, j, nn->map)
524 env->numa_map[tmp.cpu] = i;
525 }
526 }
527
528 return cpu.cpu >= 0 && cpu.cpu < env->nr_numa_map ? env->numa_map[cpu.cpu] : -1;
529 }
530