1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2015, Sony Mobile Communications Inc.
4 * Copyright (c) 2013, The Linux Foundation. All rights reserved.
5 */
6 #include <linux/module.h>
7 #include <linux/netlink.h>
8 #include <linux/qrtr.h>
9 #include <linux/termios.h> /* For TIOCINQ/OUTQ */
10 #include <linux/spinlock.h>
11 #include <linux/wait.h>
12
13 #include <net/sock.h>
14
15 #include "qrtr.h"
16
17 #define QRTR_PROTO_VER_1 1
18 #define QRTR_PROTO_VER_2 3
19
20 /* auto-bind range */
21 #define QRTR_MIN_EPH_SOCKET 0x4000
22 #define QRTR_MAX_EPH_SOCKET 0x7fff
23 #define QRTR_EPH_PORT_RANGE \
24 XA_LIMIT(QRTR_MIN_EPH_SOCKET, QRTR_MAX_EPH_SOCKET)
25
26 /**
27 * struct qrtr_hdr_v1 - (I|R)PCrouter packet header version 1
28 * @version: protocol version
29 * @type: packet type; one of QRTR_TYPE_*
30 * @src_node_id: source node
31 * @src_port_id: source port
32 * @confirm_rx: boolean; whether a resume-tx packet should be send in reply
33 * @size: length of packet, excluding this header
34 * @dst_node_id: destination node
35 * @dst_port_id: destination port
36 */
37 struct qrtr_hdr_v1 {
38 __le32 version;
39 __le32 type;
40 __le32 src_node_id;
41 __le32 src_port_id;
42 __le32 confirm_rx;
43 __le32 size;
44 __le32 dst_node_id;
45 __le32 dst_port_id;
46 } __packed;
47
48 /**
49 * struct qrtr_hdr_v2 - (I|R)PCrouter packet header later versions
50 * @version: protocol version
51 * @type: packet type; one of QRTR_TYPE_*
52 * @flags: bitmask of QRTR_FLAGS_*
53 * @optlen: length of optional header data
54 * @size: length of packet, excluding this header and optlen
55 * @src_node_id: source node
56 * @src_port_id: source port
57 * @dst_node_id: destination node
58 * @dst_port_id: destination port
59 */
60 struct qrtr_hdr_v2 {
61 u8 version;
62 u8 type;
63 u8 flags;
64 u8 optlen;
65 __le32 size;
66 __le16 src_node_id;
67 __le16 src_port_id;
68 __le16 dst_node_id;
69 __le16 dst_port_id;
70 };
71
72 #define QRTR_FLAGS_CONFIRM_RX BIT(0)
73
74 struct qrtr_cb {
75 u32 src_node;
76 u32 src_port;
77 u32 dst_node;
78 u32 dst_port;
79
80 u8 type;
81 u8 confirm_rx;
82 };
83
84 #define QRTR_HDR_MAX_SIZE max_t(size_t, sizeof(struct qrtr_hdr_v1), \
85 sizeof(struct qrtr_hdr_v2))
86
87 struct qrtr_sock {
88 /* WARNING: sk must be the first member */
89 struct sock sk;
90 struct sockaddr_qrtr us;
91 struct sockaddr_qrtr peer;
92 };
93
qrtr_sk(struct sock * sk)94 static inline struct qrtr_sock *qrtr_sk(struct sock *sk)
95 {
96 BUILD_BUG_ON(offsetof(struct qrtr_sock, sk) != 0);
97 return container_of(sk, struct qrtr_sock, sk);
98 }
99
100 static unsigned int qrtr_local_nid = 1;
101
102 /* for node ids */
103 static RADIX_TREE(qrtr_nodes, GFP_ATOMIC);
104 static DEFINE_SPINLOCK(qrtr_nodes_lock);
105 /* broadcast list */
106 static LIST_HEAD(qrtr_all_nodes);
107 /* lock for qrtr_all_nodes and node reference */
108 static DEFINE_MUTEX(qrtr_node_lock);
109
110 /* local port allocation management */
111 static DEFINE_XARRAY_ALLOC(qrtr_ports);
112
113 /**
114 * struct qrtr_node - endpoint node
115 * @ep_lock: lock for endpoint management and callbacks
116 * @ep: endpoint
117 * @ref: reference count for node
118 * @nid: node id
119 * @qrtr_tx_flow: tree of qrtr_tx_flow, keyed by node << 32 | port
120 * @qrtr_tx_lock: lock for qrtr_tx_flow inserts
121 * @rx_queue: receive queue
122 * @item: list item for broadcast list
123 */
124 struct qrtr_node {
125 struct mutex ep_lock;
126 struct qrtr_endpoint *ep;
127 struct kref ref;
128 unsigned int nid;
129
130 struct radix_tree_root qrtr_tx_flow;
131 struct mutex qrtr_tx_lock; /* for qrtr_tx_flow */
132
133 struct sk_buff_head rx_queue;
134 struct list_head item;
135 };
136
137 /**
138 * struct qrtr_tx_flow - tx flow control
139 * @resume_tx: waiters for a resume tx from the remote
140 * @pending: number of waiting senders
141 * @tx_failed: indicates that a message with confirm_rx flag was lost
142 */
143 struct qrtr_tx_flow {
144 struct wait_queue_head resume_tx;
145 int pending;
146 int tx_failed;
147 };
148
149 #define QRTR_TX_FLOW_HIGH 10
150 #define QRTR_TX_FLOW_LOW 5
151
152 static int qrtr_local_enqueue(struct qrtr_node *node, struct sk_buff *skb,
153 int type, struct sockaddr_qrtr *from,
154 struct sockaddr_qrtr *to);
155 static int qrtr_bcast_enqueue(struct qrtr_node *node, struct sk_buff *skb,
156 int type, struct sockaddr_qrtr *from,
157 struct sockaddr_qrtr *to);
158 static struct qrtr_sock *qrtr_port_lookup(int port);
159 static void qrtr_port_put(struct qrtr_sock *ipc);
160
161 /* Release node resources and free the node.
162 *
163 * Do not call directly, use qrtr_node_release. To be used with
164 * kref_put_mutex. As such, the node mutex is expected to be locked on call.
165 */
__qrtr_node_release(struct kref * kref)166 static void __qrtr_node_release(struct kref *kref)
167 {
168 struct qrtr_node *node = container_of(kref, struct qrtr_node, ref);
169 struct radix_tree_iter iter;
170 struct qrtr_tx_flow *flow;
171 unsigned long flags;
172 void __rcu **slot;
173
174 spin_lock_irqsave(&qrtr_nodes_lock, flags);
175 /* If the node is a bridge for other nodes, there are possibly
176 * multiple entries pointing to our released node, delete them all.
177 */
178 radix_tree_for_each_slot(slot, &qrtr_nodes, &iter, 0) {
179 if (*slot == node)
180 radix_tree_iter_delete(&qrtr_nodes, &iter, slot);
181 }
182 spin_unlock_irqrestore(&qrtr_nodes_lock, flags);
183
184 list_del(&node->item);
185 mutex_unlock(&qrtr_node_lock);
186
187 skb_queue_purge(&node->rx_queue);
188
189 /* Free tx flow counters */
190 radix_tree_for_each_slot(slot, &node->qrtr_tx_flow, &iter, 0) {
191 flow = *slot;
192 radix_tree_iter_delete(&node->qrtr_tx_flow, &iter, slot);
193 kfree(flow);
194 }
195 kfree(node);
196 }
197
198 /* Increment reference to node. */
qrtr_node_acquire(struct qrtr_node * node)199 static struct qrtr_node *qrtr_node_acquire(struct qrtr_node *node)
200 {
201 if (node)
202 kref_get(&node->ref);
203 return node;
204 }
205
206 /* Decrement reference to node and release as necessary. */
qrtr_node_release(struct qrtr_node * node)207 static void qrtr_node_release(struct qrtr_node *node)
208 {
209 if (!node)
210 return;
211 kref_put_mutex(&node->ref, __qrtr_node_release, &qrtr_node_lock);
212 }
213
214 /**
215 * qrtr_tx_resume() - reset flow control counter
216 * @node: qrtr_node that the QRTR_TYPE_RESUME_TX packet arrived on
217 * @skb: resume_tx packet
218 */
qrtr_tx_resume(struct qrtr_node * node,struct sk_buff * skb)219 static void qrtr_tx_resume(struct qrtr_node *node, struct sk_buff *skb)
220 {
221 struct qrtr_ctrl_pkt *pkt = (struct qrtr_ctrl_pkt *)skb->data;
222 u64 remote_node = le32_to_cpu(pkt->client.node);
223 u32 remote_port = le32_to_cpu(pkt->client.port);
224 struct qrtr_tx_flow *flow;
225 unsigned long key;
226
227 key = remote_node << 32 | remote_port;
228
229 rcu_read_lock();
230 flow = radix_tree_lookup(&node->qrtr_tx_flow, key);
231 rcu_read_unlock();
232 if (flow) {
233 spin_lock(&flow->resume_tx.lock);
234 flow->pending = 0;
235 spin_unlock(&flow->resume_tx.lock);
236 wake_up_interruptible_all(&flow->resume_tx);
237 }
238
239 consume_skb(skb);
240 }
241
242 /**
243 * qrtr_tx_wait() - flow control for outgoing packets
244 * @node: qrtr_node that the packet is to be send to
245 * @dest_node: node id of the destination
246 * @dest_port: port number of the destination
247 * @type: type of message
248 *
249 * The flow control scheme is based around the low and high "watermarks". When
250 * the low watermark is passed the confirm_rx flag is set on the outgoing
251 * message, which will trigger the remote to send a control message of the type
252 * QRTR_TYPE_RESUME_TX to reset the counter. If the high watermark is hit
253 * further transmision should be paused.
254 *
255 * Return: 1 if confirm_rx should be set, 0 otherwise or errno failure
256 */
qrtr_tx_wait(struct qrtr_node * node,int dest_node,int dest_port,int type)257 static int qrtr_tx_wait(struct qrtr_node *node, int dest_node, int dest_port,
258 int type)
259 {
260 unsigned long key = (u64)dest_node << 32 | dest_port;
261 struct qrtr_tx_flow *flow;
262 int confirm_rx = 0;
263 int ret;
264
265 /* Never set confirm_rx on non-data packets */
266 if (type != QRTR_TYPE_DATA)
267 return 0;
268
269 mutex_lock(&node->qrtr_tx_lock);
270 flow = radix_tree_lookup(&node->qrtr_tx_flow, key);
271 if (!flow) {
272 flow = kzalloc(sizeof(*flow), GFP_KERNEL);
273 if (flow) {
274 init_waitqueue_head(&flow->resume_tx);
275 if (radix_tree_insert(&node->qrtr_tx_flow, key, flow)) {
276 kfree(flow);
277 flow = NULL;
278 }
279 }
280 }
281 mutex_unlock(&node->qrtr_tx_lock);
282
283 /* Set confirm_rx if we where unable to find and allocate a flow */
284 if (!flow)
285 return 1;
286
287 spin_lock_irq(&flow->resume_tx.lock);
288 ret = wait_event_interruptible_locked_irq(flow->resume_tx,
289 flow->pending < QRTR_TX_FLOW_HIGH ||
290 flow->tx_failed ||
291 !node->ep);
292 if (ret < 0) {
293 confirm_rx = ret;
294 } else if (!node->ep) {
295 confirm_rx = -EPIPE;
296 } else if (flow->tx_failed) {
297 flow->tx_failed = 0;
298 confirm_rx = 1;
299 } else {
300 flow->pending++;
301 confirm_rx = flow->pending == QRTR_TX_FLOW_LOW;
302 }
303 spin_unlock_irq(&flow->resume_tx.lock);
304
305 return confirm_rx;
306 }
307
308 /**
309 * qrtr_tx_flow_failed() - flag that tx of confirm_rx flagged messages failed
310 * @node: qrtr_node that the packet is to be send to
311 * @dest_node: node id of the destination
312 * @dest_port: port number of the destination
313 *
314 * Signal that the transmission of a message with confirm_rx flag failed. The
315 * flow's "pending" counter will keep incrementing towards QRTR_TX_FLOW_HIGH,
316 * at which point transmission would stall forever waiting for the resume TX
317 * message associated with the dropped confirm_rx message.
318 * Work around this by marking the flow as having a failed transmission and
319 * cause the next transmission attempt to be sent with the confirm_rx.
320 */
qrtr_tx_flow_failed(struct qrtr_node * node,int dest_node,int dest_port)321 static void qrtr_tx_flow_failed(struct qrtr_node *node, int dest_node,
322 int dest_port)
323 {
324 unsigned long key = (u64)dest_node << 32 | dest_port;
325 struct qrtr_tx_flow *flow;
326
327 rcu_read_lock();
328 flow = radix_tree_lookup(&node->qrtr_tx_flow, key);
329 rcu_read_unlock();
330 if (flow) {
331 spin_lock_irq(&flow->resume_tx.lock);
332 flow->tx_failed = 1;
333 spin_unlock_irq(&flow->resume_tx.lock);
334 }
335 }
336
337 /* Pass an outgoing packet socket buffer to the endpoint driver. */
qrtr_node_enqueue(struct qrtr_node * node,struct sk_buff * skb,int type,struct sockaddr_qrtr * from,struct sockaddr_qrtr * to)338 static int qrtr_node_enqueue(struct qrtr_node *node, struct sk_buff *skb,
339 int type, struct sockaddr_qrtr *from,
340 struct sockaddr_qrtr *to)
341 {
342 struct qrtr_hdr_v1 *hdr;
343 size_t len = skb->len;
344 int rc, confirm_rx;
345
346 confirm_rx = qrtr_tx_wait(node, to->sq_node, to->sq_port, type);
347 if (confirm_rx < 0) {
348 kfree_skb(skb);
349 return confirm_rx;
350 }
351
352 hdr = skb_push(skb, sizeof(*hdr));
353 hdr->version = cpu_to_le32(QRTR_PROTO_VER_1);
354 hdr->type = cpu_to_le32(type);
355 hdr->src_node_id = cpu_to_le32(from->sq_node);
356 hdr->src_port_id = cpu_to_le32(from->sq_port);
357 if (to->sq_port == QRTR_PORT_CTRL) {
358 hdr->dst_node_id = cpu_to_le32(node->nid);
359 hdr->dst_port_id = cpu_to_le32(QRTR_PORT_CTRL);
360 } else {
361 hdr->dst_node_id = cpu_to_le32(to->sq_node);
362 hdr->dst_port_id = cpu_to_le32(to->sq_port);
363 }
364
365 hdr->size = cpu_to_le32(len);
366 hdr->confirm_rx = !!confirm_rx;
367
368 rc = skb_put_padto(skb, ALIGN(len, 4) + sizeof(*hdr));
369
370 if (!rc) {
371 mutex_lock(&node->ep_lock);
372 rc = -ENODEV;
373 if (node->ep)
374 rc = node->ep->xmit(node->ep, skb);
375 else
376 kfree_skb(skb);
377 mutex_unlock(&node->ep_lock);
378 }
379 /* Need to ensure that a subsequent message carries the otherwise lost
380 * confirm_rx flag if we dropped this one */
381 if (rc && confirm_rx)
382 qrtr_tx_flow_failed(node, to->sq_node, to->sq_port);
383
384 return rc;
385 }
386
387 /* Lookup node by id.
388 *
389 * callers must release with qrtr_node_release()
390 */
qrtr_node_lookup(unsigned int nid)391 static struct qrtr_node *qrtr_node_lookup(unsigned int nid)
392 {
393 struct qrtr_node *node;
394 unsigned long flags;
395
396 spin_lock_irqsave(&qrtr_nodes_lock, flags);
397 node = radix_tree_lookup(&qrtr_nodes, nid);
398 node = qrtr_node_acquire(node);
399 spin_unlock_irqrestore(&qrtr_nodes_lock, flags);
400
401 return node;
402 }
403
404 /* Assign node id to node.
405 *
406 * This is mostly useful for automatic node id assignment, based on
407 * the source id in the incoming packet.
408 */
qrtr_node_assign(struct qrtr_node * node,unsigned int nid)409 static void qrtr_node_assign(struct qrtr_node *node, unsigned int nid)
410 {
411 unsigned long flags;
412
413 if (nid == QRTR_EP_NID_AUTO)
414 return;
415
416 spin_lock_irqsave(&qrtr_nodes_lock, flags);
417 radix_tree_insert(&qrtr_nodes, nid, node);
418 if (node->nid == QRTR_EP_NID_AUTO)
419 node->nid = nid;
420 spin_unlock_irqrestore(&qrtr_nodes_lock, flags);
421 }
422
423 /**
424 * qrtr_endpoint_post() - post incoming data
425 * @ep: endpoint handle
426 * @data: data pointer
427 * @len: size of data in bytes
428 *
429 * Return: 0 on success; negative error code on failure
430 */
qrtr_endpoint_post(struct qrtr_endpoint * ep,const void * data,size_t len)431 int qrtr_endpoint_post(struct qrtr_endpoint *ep, const void *data, size_t len)
432 {
433 struct qrtr_node *node = ep->node;
434 const struct qrtr_hdr_v1 *v1;
435 const struct qrtr_hdr_v2 *v2;
436 struct qrtr_sock *ipc;
437 struct sk_buff *skb;
438 struct qrtr_cb *cb;
439 size_t size;
440 unsigned int ver;
441 size_t hdrlen;
442
443 if (len == 0 || len & 3)
444 return -EINVAL;
445
446 skb = __netdev_alloc_skb(NULL, len, GFP_ATOMIC | __GFP_NOWARN);
447 if (!skb)
448 return -ENOMEM;
449
450 cb = (struct qrtr_cb *)skb->cb;
451
452 /* Version field in v1 is little endian, so this works for both cases */
453 ver = *(u8*)data;
454
455 switch (ver) {
456 case QRTR_PROTO_VER_1:
457 if (len < sizeof(*v1))
458 goto err;
459 v1 = data;
460 hdrlen = sizeof(*v1);
461
462 cb->type = le32_to_cpu(v1->type);
463 cb->src_node = le32_to_cpu(v1->src_node_id);
464 cb->src_port = le32_to_cpu(v1->src_port_id);
465 cb->confirm_rx = !!v1->confirm_rx;
466 cb->dst_node = le32_to_cpu(v1->dst_node_id);
467 cb->dst_port = le32_to_cpu(v1->dst_port_id);
468
469 size = le32_to_cpu(v1->size);
470 break;
471 case QRTR_PROTO_VER_2:
472 if (len < sizeof(*v2))
473 goto err;
474 v2 = data;
475 hdrlen = sizeof(*v2) + v2->optlen;
476
477 cb->type = v2->type;
478 cb->confirm_rx = !!(v2->flags & QRTR_FLAGS_CONFIRM_RX);
479 cb->src_node = le16_to_cpu(v2->src_node_id);
480 cb->src_port = le16_to_cpu(v2->src_port_id);
481 cb->dst_node = le16_to_cpu(v2->dst_node_id);
482 cb->dst_port = le16_to_cpu(v2->dst_port_id);
483
484 if (cb->src_port == (u16)QRTR_PORT_CTRL)
485 cb->src_port = QRTR_PORT_CTRL;
486 if (cb->dst_port == (u16)QRTR_PORT_CTRL)
487 cb->dst_port = QRTR_PORT_CTRL;
488
489 size = le32_to_cpu(v2->size);
490 break;
491 default:
492 pr_err("qrtr: Invalid version %d\n", ver);
493 goto err;
494 }
495
496 if (!size || len != ALIGN(size, 4) + hdrlen)
497 goto err;
498
499 if (cb->dst_port != QRTR_PORT_CTRL && cb->type != QRTR_TYPE_DATA &&
500 cb->type != QRTR_TYPE_RESUME_TX)
501 goto err;
502
503 skb_put_data(skb, data + hdrlen, size);
504
505 qrtr_node_assign(node, cb->src_node);
506
507 if (cb->type == QRTR_TYPE_NEW_SERVER) {
508 /* Remote node endpoint can bridge other distant nodes */
509 const struct qrtr_ctrl_pkt *pkt;
510
511 if (size < sizeof(*pkt))
512 goto err;
513
514 pkt = data + hdrlen;
515 qrtr_node_assign(node, le32_to_cpu(pkt->server.node));
516 }
517
518 if (cb->type == QRTR_TYPE_RESUME_TX) {
519 qrtr_tx_resume(node, skb);
520 } else {
521 ipc = qrtr_port_lookup(cb->dst_port);
522 if (!ipc)
523 goto err;
524
525 if (sock_queue_rcv_skb(&ipc->sk, skb)) {
526 qrtr_port_put(ipc);
527 goto err;
528 }
529
530 qrtr_port_put(ipc);
531 }
532
533 return 0;
534
535 err:
536 kfree_skb(skb);
537 return -EINVAL;
538
539 }
540 EXPORT_SYMBOL_GPL(qrtr_endpoint_post);
541
542 /**
543 * qrtr_alloc_ctrl_packet() - allocate control packet skb
544 * @pkt: reference to qrtr_ctrl_pkt pointer
545 * @flags: the type of memory to allocate
546 *
547 * Returns newly allocated sk_buff, or NULL on failure
548 *
549 * This function allocates a sk_buff large enough to carry a qrtr_ctrl_pkt and
550 * on success returns a reference to the control packet in @pkt.
551 */
qrtr_alloc_ctrl_packet(struct qrtr_ctrl_pkt ** pkt,gfp_t flags)552 static struct sk_buff *qrtr_alloc_ctrl_packet(struct qrtr_ctrl_pkt **pkt,
553 gfp_t flags)
554 {
555 const int pkt_len = sizeof(struct qrtr_ctrl_pkt);
556 struct sk_buff *skb;
557
558 skb = alloc_skb(QRTR_HDR_MAX_SIZE + pkt_len, flags);
559 if (!skb)
560 return NULL;
561
562 skb_reserve(skb, QRTR_HDR_MAX_SIZE);
563 *pkt = skb_put_zero(skb, pkt_len);
564
565 return skb;
566 }
567
568 /**
569 * qrtr_endpoint_register() - register a new endpoint
570 * @ep: endpoint to register
571 * @nid: desired node id; may be QRTR_EP_NID_AUTO for auto-assignment
572 * Return: 0 on success; negative error code on failure
573 *
574 * The specified endpoint must have the xmit function pointer set on call.
575 */
qrtr_endpoint_register(struct qrtr_endpoint * ep,unsigned int nid)576 int qrtr_endpoint_register(struct qrtr_endpoint *ep, unsigned int nid)
577 {
578 struct qrtr_node *node;
579
580 if (!ep || !ep->xmit)
581 return -EINVAL;
582
583 node = kzalloc(sizeof(*node), GFP_KERNEL);
584 if (!node)
585 return -ENOMEM;
586
587 kref_init(&node->ref);
588 mutex_init(&node->ep_lock);
589 skb_queue_head_init(&node->rx_queue);
590 node->nid = QRTR_EP_NID_AUTO;
591 node->ep = ep;
592
593 INIT_RADIX_TREE(&node->qrtr_tx_flow, GFP_KERNEL);
594 mutex_init(&node->qrtr_tx_lock);
595
596 qrtr_node_assign(node, nid);
597
598 mutex_lock(&qrtr_node_lock);
599 list_add(&node->item, &qrtr_all_nodes);
600 mutex_unlock(&qrtr_node_lock);
601 ep->node = node;
602
603 return 0;
604 }
605 EXPORT_SYMBOL_GPL(qrtr_endpoint_register);
606
607 /**
608 * qrtr_endpoint_unregister - unregister endpoint
609 * @ep: endpoint to unregister
610 */
qrtr_endpoint_unregister(struct qrtr_endpoint * ep)611 void qrtr_endpoint_unregister(struct qrtr_endpoint *ep)
612 {
613 struct qrtr_node *node = ep->node;
614 struct sockaddr_qrtr src = {AF_QIPCRTR, node->nid, QRTR_PORT_CTRL};
615 struct sockaddr_qrtr dst = {AF_QIPCRTR, qrtr_local_nid, QRTR_PORT_CTRL};
616 struct radix_tree_iter iter;
617 struct qrtr_ctrl_pkt *pkt;
618 struct qrtr_tx_flow *flow;
619 struct sk_buff *skb;
620 unsigned long flags;
621 void __rcu **slot;
622
623 mutex_lock(&node->ep_lock);
624 node->ep = NULL;
625 mutex_unlock(&node->ep_lock);
626
627 /* Notify the local controller about the event */
628 spin_lock_irqsave(&qrtr_nodes_lock, flags);
629 radix_tree_for_each_slot(slot, &qrtr_nodes, &iter, 0) {
630 if (*slot != node)
631 continue;
632 src.sq_node = iter.index;
633 skb = qrtr_alloc_ctrl_packet(&pkt, GFP_ATOMIC);
634 if (skb) {
635 pkt->cmd = cpu_to_le32(QRTR_TYPE_BYE);
636 qrtr_local_enqueue(NULL, skb, QRTR_TYPE_BYE, &src, &dst);
637 }
638 }
639 spin_unlock_irqrestore(&qrtr_nodes_lock, flags);
640
641 /* Wake up any transmitters waiting for resume-tx from the node */
642 mutex_lock(&node->qrtr_tx_lock);
643 radix_tree_for_each_slot(slot, &node->qrtr_tx_flow, &iter, 0) {
644 flow = *slot;
645 wake_up_interruptible_all(&flow->resume_tx);
646 }
647 mutex_unlock(&node->qrtr_tx_lock);
648
649 qrtr_node_release(node);
650 ep->node = NULL;
651 }
652 EXPORT_SYMBOL_GPL(qrtr_endpoint_unregister);
653
654 /* Lookup socket by port.
655 *
656 * Callers must release with qrtr_port_put()
657 */
qrtr_port_lookup(int port)658 static struct qrtr_sock *qrtr_port_lookup(int port)
659 {
660 struct qrtr_sock *ipc;
661
662 if (port == QRTR_PORT_CTRL)
663 port = 0;
664
665 rcu_read_lock();
666 ipc = xa_load(&qrtr_ports, port);
667 if (ipc)
668 sock_hold(&ipc->sk);
669 rcu_read_unlock();
670
671 return ipc;
672 }
673
674 /* Release acquired socket. */
qrtr_port_put(struct qrtr_sock * ipc)675 static void qrtr_port_put(struct qrtr_sock *ipc)
676 {
677 sock_put(&ipc->sk);
678 }
679
680 /* Remove port assignment. */
qrtr_port_remove(struct qrtr_sock * ipc)681 static void qrtr_port_remove(struct qrtr_sock *ipc)
682 {
683 struct qrtr_ctrl_pkt *pkt;
684 struct sk_buff *skb;
685 int port = ipc->us.sq_port;
686 struct sockaddr_qrtr to;
687
688 to.sq_family = AF_QIPCRTR;
689 to.sq_node = QRTR_NODE_BCAST;
690 to.sq_port = QRTR_PORT_CTRL;
691
692 skb = qrtr_alloc_ctrl_packet(&pkt, GFP_KERNEL);
693 if (skb) {
694 pkt->cmd = cpu_to_le32(QRTR_TYPE_DEL_CLIENT);
695 pkt->client.node = cpu_to_le32(ipc->us.sq_node);
696 pkt->client.port = cpu_to_le32(ipc->us.sq_port);
697
698 skb_set_owner_w(skb, &ipc->sk);
699 qrtr_bcast_enqueue(NULL, skb, QRTR_TYPE_DEL_CLIENT, &ipc->us,
700 &to);
701 }
702
703 if (port == QRTR_PORT_CTRL)
704 port = 0;
705
706 __sock_put(&ipc->sk);
707
708 xa_erase(&qrtr_ports, port);
709
710 /* Ensure that if qrtr_port_lookup() did enter the RCU read section we
711 * wait for it to up increment the refcount */
712 synchronize_rcu();
713 }
714
715 /* Assign port number to socket.
716 *
717 * Specify port in the integer pointed to by port, and it will be adjusted
718 * on return as necesssary.
719 *
720 * Port may be:
721 * 0: Assign ephemeral port in [QRTR_MIN_EPH_SOCKET, QRTR_MAX_EPH_SOCKET]
722 * <QRTR_MIN_EPH_SOCKET: Specified; requires CAP_NET_ADMIN
723 * >QRTR_MIN_EPH_SOCKET: Specified; available to all
724 */
qrtr_port_assign(struct qrtr_sock * ipc,int * port)725 static int qrtr_port_assign(struct qrtr_sock *ipc, int *port)
726 {
727 int rc;
728
729 if (!*port) {
730 rc = xa_alloc(&qrtr_ports, port, ipc, QRTR_EPH_PORT_RANGE,
731 GFP_KERNEL);
732 } else if (*port < QRTR_MIN_EPH_SOCKET && !capable(CAP_NET_ADMIN)) {
733 rc = -EACCES;
734 } else if (*port == QRTR_PORT_CTRL) {
735 rc = xa_insert(&qrtr_ports, 0, ipc, GFP_KERNEL);
736 } else {
737 rc = xa_insert(&qrtr_ports, *port, ipc, GFP_KERNEL);
738 }
739
740 if (rc == -EBUSY)
741 return -EADDRINUSE;
742 else if (rc < 0)
743 return rc;
744
745 sock_hold(&ipc->sk);
746
747 return 0;
748 }
749
750 /* Reset all non-control ports */
qrtr_reset_ports(void)751 static void qrtr_reset_ports(void)
752 {
753 struct qrtr_sock *ipc;
754 unsigned long index;
755
756 rcu_read_lock();
757 xa_for_each_start(&qrtr_ports, index, ipc, 1) {
758 sock_hold(&ipc->sk);
759 ipc->sk.sk_err = ENETRESET;
760 sk_error_report(&ipc->sk);
761 sock_put(&ipc->sk);
762 }
763 rcu_read_unlock();
764 }
765
766 /* Bind socket to address.
767 *
768 * Socket should be locked upon call.
769 */
__qrtr_bind(struct socket * sock,const struct sockaddr_qrtr * addr,int zapped)770 static int __qrtr_bind(struct socket *sock,
771 const struct sockaddr_qrtr *addr, int zapped)
772 {
773 struct qrtr_sock *ipc = qrtr_sk(sock->sk);
774 struct sock *sk = sock->sk;
775 int port;
776 int rc;
777
778 /* rebinding ok */
779 if (!zapped && addr->sq_port == ipc->us.sq_port)
780 return 0;
781
782 port = addr->sq_port;
783 rc = qrtr_port_assign(ipc, &port);
784 if (rc)
785 return rc;
786
787 /* unbind previous, if any */
788 if (!zapped)
789 qrtr_port_remove(ipc);
790 ipc->us.sq_port = port;
791
792 sock_reset_flag(sk, SOCK_ZAPPED);
793
794 /* Notify all open ports about the new controller */
795 if (port == QRTR_PORT_CTRL)
796 qrtr_reset_ports();
797
798 return 0;
799 }
800
801 /* Auto bind to an ephemeral port. */
qrtr_autobind(struct socket * sock)802 static int qrtr_autobind(struct socket *sock)
803 {
804 struct sock *sk = sock->sk;
805 struct sockaddr_qrtr addr;
806
807 if (!sock_flag(sk, SOCK_ZAPPED))
808 return 0;
809
810 addr.sq_family = AF_QIPCRTR;
811 addr.sq_node = qrtr_local_nid;
812 addr.sq_port = 0;
813
814 return __qrtr_bind(sock, &addr, 1);
815 }
816
817 /* Bind socket to specified sockaddr. */
qrtr_bind(struct socket * sock,struct sockaddr * saddr,int len)818 static int qrtr_bind(struct socket *sock, struct sockaddr *saddr, int len)
819 {
820 DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, saddr);
821 struct qrtr_sock *ipc = qrtr_sk(sock->sk);
822 struct sock *sk = sock->sk;
823 int rc;
824
825 if (len < sizeof(*addr) || addr->sq_family != AF_QIPCRTR)
826 return -EINVAL;
827
828 if (addr->sq_node != ipc->us.sq_node)
829 return -EINVAL;
830
831 lock_sock(sk);
832 rc = __qrtr_bind(sock, addr, sock_flag(sk, SOCK_ZAPPED));
833 release_sock(sk);
834
835 return rc;
836 }
837
838 /* Queue packet to local peer socket. */
qrtr_local_enqueue(struct qrtr_node * node,struct sk_buff * skb,int type,struct sockaddr_qrtr * from,struct sockaddr_qrtr * to)839 static int qrtr_local_enqueue(struct qrtr_node *node, struct sk_buff *skb,
840 int type, struct sockaddr_qrtr *from,
841 struct sockaddr_qrtr *to)
842 {
843 struct qrtr_sock *ipc;
844 struct qrtr_cb *cb;
845
846 ipc = qrtr_port_lookup(to->sq_port);
847 if (!ipc || &ipc->sk == skb->sk) { /* do not send to self */
848 if (ipc)
849 qrtr_port_put(ipc);
850 kfree_skb(skb);
851 return -ENODEV;
852 }
853
854 cb = (struct qrtr_cb *)skb->cb;
855 cb->src_node = from->sq_node;
856 cb->src_port = from->sq_port;
857
858 if (sock_queue_rcv_skb(&ipc->sk, skb)) {
859 qrtr_port_put(ipc);
860 kfree_skb(skb);
861 return -ENOSPC;
862 }
863
864 qrtr_port_put(ipc);
865
866 return 0;
867 }
868
869 /* Queue packet for broadcast. */
qrtr_bcast_enqueue(struct qrtr_node * node,struct sk_buff * skb,int type,struct sockaddr_qrtr * from,struct sockaddr_qrtr * to)870 static int qrtr_bcast_enqueue(struct qrtr_node *node, struct sk_buff *skb,
871 int type, struct sockaddr_qrtr *from,
872 struct sockaddr_qrtr *to)
873 {
874 struct sk_buff *skbn;
875
876 mutex_lock(&qrtr_node_lock);
877 list_for_each_entry(node, &qrtr_all_nodes, item) {
878 skbn = skb_clone(skb, GFP_KERNEL);
879 if (!skbn)
880 break;
881 skb_set_owner_w(skbn, skb->sk);
882 qrtr_node_enqueue(node, skbn, type, from, to);
883 }
884 mutex_unlock(&qrtr_node_lock);
885
886 qrtr_local_enqueue(NULL, skb, type, from, to);
887
888 return 0;
889 }
890
qrtr_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)891 static int qrtr_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
892 {
893 DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, msg->msg_name);
894 int (*enqueue_fn)(struct qrtr_node *, struct sk_buff *, int,
895 struct sockaddr_qrtr *, struct sockaddr_qrtr *);
896 __le32 qrtr_type = cpu_to_le32(QRTR_TYPE_DATA);
897 struct qrtr_sock *ipc = qrtr_sk(sock->sk);
898 struct sock *sk = sock->sk;
899 struct qrtr_node *node;
900 struct sk_buff *skb;
901 size_t plen;
902 u32 type;
903 int rc;
904
905 if (msg->msg_flags & ~(MSG_DONTWAIT))
906 return -EINVAL;
907
908 if (len > 65535)
909 return -EMSGSIZE;
910
911 lock_sock(sk);
912
913 if (addr) {
914 if (msg->msg_namelen < sizeof(*addr)) {
915 release_sock(sk);
916 return -EINVAL;
917 }
918
919 if (addr->sq_family != AF_QIPCRTR) {
920 release_sock(sk);
921 return -EINVAL;
922 }
923
924 rc = qrtr_autobind(sock);
925 if (rc) {
926 release_sock(sk);
927 return rc;
928 }
929 } else if (sk->sk_state == TCP_ESTABLISHED) {
930 addr = &ipc->peer;
931 } else {
932 release_sock(sk);
933 return -ENOTCONN;
934 }
935
936 node = NULL;
937 if (addr->sq_node == QRTR_NODE_BCAST) {
938 if (addr->sq_port != QRTR_PORT_CTRL &&
939 qrtr_local_nid != QRTR_NODE_BCAST) {
940 release_sock(sk);
941 return -ENOTCONN;
942 }
943 enqueue_fn = qrtr_bcast_enqueue;
944 } else if (addr->sq_node == ipc->us.sq_node) {
945 enqueue_fn = qrtr_local_enqueue;
946 } else {
947 node = qrtr_node_lookup(addr->sq_node);
948 if (!node) {
949 release_sock(sk);
950 return -ECONNRESET;
951 }
952 enqueue_fn = qrtr_node_enqueue;
953 }
954
955 plen = (len + 3) & ~3;
956 skb = sock_alloc_send_skb(sk, plen + QRTR_HDR_MAX_SIZE,
957 msg->msg_flags & MSG_DONTWAIT, &rc);
958 if (!skb) {
959 rc = -ENOMEM;
960 goto out_node;
961 }
962
963 skb_reserve(skb, QRTR_HDR_MAX_SIZE);
964
965 rc = memcpy_from_msg(skb_put(skb, len), msg, len);
966 if (rc) {
967 kfree_skb(skb);
968 goto out_node;
969 }
970
971 if (ipc->us.sq_port == QRTR_PORT_CTRL) {
972 if (len < 4) {
973 rc = -EINVAL;
974 kfree_skb(skb);
975 goto out_node;
976 }
977
978 /* control messages already require the type as 'command' */
979 skb_copy_bits(skb, 0, &qrtr_type, 4);
980 }
981
982 type = le32_to_cpu(qrtr_type);
983 rc = enqueue_fn(node, skb, type, &ipc->us, addr);
984 if (rc >= 0)
985 rc = len;
986
987 out_node:
988 qrtr_node_release(node);
989 release_sock(sk);
990
991 return rc;
992 }
993
qrtr_send_resume_tx(struct qrtr_cb * cb)994 static int qrtr_send_resume_tx(struct qrtr_cb *cb)
995 {
996 struct sockaddr_qrtr remote = { AF_QIPCRTR, cb->src_node, cb->src_port };
997 struct sockaddr_qrtr local = { AF_QIPCRTR, cb->dst_node, cb->dst_port };
998 struct qrtr_ctrl_pkt *pkt;
999 struct qrtr_node *node;
1000 struct sk_buff *skb;
1001 int ret;
1002
1003 node = qrtr_node_lookup(remote.sq_node);
1004 if (!node)
1005 return -EINVAL;
1006
1007 skb = qrtr_alloc_ctrl_packet(&pkt, GFP_KERNEL);
1008 if (!skb)
1009 return -ENOMEM;
1010
1011 pkt->cmd = cpu_to_le32(QRTR_TYPE_RESUME_TX);
1012 pkt->client.node = cpu_to_le32(cb->dst_node);
1013 pkt->client.port = cpu_to_le32(cb->dst_port);
1014
1015 ret = qrtr_node_enqueue(node, skb, QRTR_TYPE_RESUME_TX, &local, &remote);
1016
1017 qrtr_node_release(node);
1018
1019 return ret;
1020 }
1021
qrtr_recvmsg(struct socket * sock,struct msghdr * msg,size_t size,int flags)1022 static int qrtr_recvmsg(struct socket *sock, struct msghdr *msg,
1023 size_t size, int flags)
1024 {
1025 DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, msg->msg_name);
1026 struct sock *sk = sock->sk;
1027 struct sk_buff *skb;
1028 struct qrtr_cb *cb;
1029 int copied, rc;
1030
1031 lock_sock(sk);
1032
1033 if (sock_flag(sk, SOCK_ZAPPED)) {
1034 release_sock(sk);
1035 return -EADDRNOTAVAIL;
1036 }
1037
1038 skb = skb_recv_datagram(sk, flags, &rc);
1039 if (!skb) {
1040 release_sock(sk);
1041 return rc;
1042 }
1043 cb = (struct qrtr_cb *)skb->cb;
1044
1045 copied = skb->len;
1046 if (copied > size) {
1047 copied = size;
1048 msg->msg_flags |= MSG_TRUNC;
1049 }
1050
1051 rc = skb_copy_datagram_msg(skb, 0, msg, copied);
1052 if (rc < 0)
1053 goto out;
1054 rc = copied;
1055
1056 if (addr) {
1057 /* There is an anonymous 2-byte hole after sq_family,
1058 * make sure to clear it.
1059 */
1060 memset(addr, 0, sizeof(*addr));
1061
1062 addr->sq_family = AF_QIPCRTR;
1063 addr->sq_node = cb->src_node;
1064 addr->sq_port = cb->src_port;
1065 msg->msg_namelen = sizeof(*addr);
1066 }
1067
1068 out:
1069 if (cb->confirm_rx)
1070 qrtr_send_resume_tx(cb);
1071
1072 skb_free_datagram(sk, skb);
1073 release_sock(sk);
1074
1075 return rc;
1076 }
1077
qrtr_connect(struct socket * sock,struct sockaddr * saddr,int len,int flags)1078 static int qrtr_connect(struct socket *sock, struct sockaddr *saddr,
1079 int len, int flags)
1080 {
1081 DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, saddr);
1082 struct qrtr_sock *ipc = qrtr_sk(sock->sk);
1083 struct sock *sk = sock->sk;
1084 int rc;
1085
1086 if (len < sizeof(*addr) || addr->sq_family != AF_QIPCRTR)
1087 return -EINVAL;
1088
1089 lock_sock(sk);
1090
1091 sk->sk_state = TCP_CLOSE;
1092 sock->state = SS_UNCONNECTED;
1093
1094 rc = qrtr_autobind(sock);
1095 if (rc) {
1096 release_sock(sk);
1097 return rc;
1098 }
1099
1100 ipc->peer = *addr;
1101 sock->state = SS_CONNECTED;
1102 sk->sk_state = TCP_ESTABLISHED;
1103
1104 release_sock(sk);
1105
1106 return 0;
1107 }
1108
qrtr_getname(struct socket * sock,struct sockaddr * saddr,int peer)1109 static int qrtr_getname(struct socket *sock, struct sockaddr *saddr,
1110 int peer)
1111 {
1112 struct qrtr_sock *ipc = qrtr_sk(sock->sk);
1113 struct sockaddr_qrtr qaddr;
1114 struct sock *sk = sock->sk;
1115
1116 lock_sock(sk);
1117 if (peer) {
1118 if (sk->sk_state != TCP_ESTABLISHED) {
1119 release_sock(sk);
1120 return -ENOTCONN;
1121 }
1122
1123 qaddr = ipc->peer;
1124 } else {
1125 qaddr = ipc->us;
1126 }
1127 release_sock(sk);
1128
1129 qaddr.sq_family = AF_QIPCRTR;
1130
1131 memcpy(saddr, &qaddr, sizeof(qaddr));
1132
1133 return sizeof(qaddr);
1134 }
1135
qrtr_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)1136 static int qrtr_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1137 {
1138 void __user *argp = (void __user *)arg;
1139 struct qrtr_sock *ipc = qrtr_sk(sock->sk);
1140 struct sock *sk = sock->sk;
1141 struct sockaddr_qrtr *sq;
1142 struct sk_buff *skb;
1143 struct ifreq ifr;
1144 long len = 0;
1145 int rc = 0;
1146
1147 lock_sock(sk);
1148
1149 switch (cmd) {
1150 case TIOCOUTQ:
1151 len = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
1152 if (len < 0)
1153 len = 0;
1154 rc = put_user(len, (int __user *)argp);
1155 break;
1156 case TIOCINQ:
1157 skb = skb_peek(&sk->sk_receive_queue);
1158 if (skb)
1159 len = skb->len;
1160 rc = put_user(len, (int __user *)argp);
1161 break;
1162 case SIOCGIFADDR:
1163 if (get_user_ifreq(&ifr, NULL, argp)) {
1164 rc = -EFAULT;
1165 break;
1166 }
1167
1168 sq = (struct sockaddr_qrtr *)&ifr.ifr_addr;
1169 *sq = ipc->us;
1170 if (put_user_ifreq(&ifr, argp)) {
1171 rc = -EFAULT;
1172 break;
1173 }
1174 break;
1175 case SIOCADDRT:
1176 case SIOCDELRT:
1177 case SIOCSIFADDR:
1178 case SIOCGIFDSTADDR:
1179 case SIOCSIFDSTADDR:
1180 case SIOCGIFBRDADDR:
1181 case SIOCSIFBRDADDR:
1182 case SIOCGIFNETMASK:
1183 case SIOCSIFNETMASK:
1184 rc = -EINVAL;
1185 break;
1186 default:
1187 rc = -ENOIOCTLCMD;
1188 break;
1189 }
1190
1191 release_sock(sk);
1192
1193 return rc;
1194 }
1195
qrtr_release(struct socket * sock)1196 static int qrtr_release(struct socket *sock)
1197 {
1198 struct sock *sk = sock->sk;
1199 struct qrtr_sock *ipc;
1200
1201 if (!sk)
1202 return 0;
1203
1204 lock_sock(sk);
1205
1206 ipc = qrtr_sk(sk);
1207 sk->sk_shutdown = SHUTDOWN_MASK;
1208 if (!sock_flag(sk, SOCK_DEAD))
1209 sk->sk_state_change(sk);
1210
1211 sock_set_flag(sk, SOCK_DEAD);
1212 sock_orphan(sk);
1213 sock->sk = NULL;
1214
1215 if (!sock_flag(sk, SOCK_ZAPPED))
1216 qrtr_port_remove(ipc);
1217
1218 skb_queue_purge(&sk->sk_receive_queue);
1219
1220 release_sock(sk);
1221 sock_put(sk);
1222
1223 return 0;
1224 }
1225
1226 static const struct proto_ops qrtr_proto_ops = {
1227 .owner = THIS_MODULE,
1228 .family = AF_QIPCRTR,
1229 .bind = qrtr_bind,
1230 .connect = qrtr_connect,
1231 .socketpair = sock_no_socketpair,
1232 .accept = sock_no_accept,
1233 .listen = sock_no_listen,
1234 .sendmsg = qrtr_sendmsg,
1235 .recvmsg = qrtr_recvmsg,
1236 .getname = qrtr_getname,
1237 .ioctl = qrtr_ioctl,
1238 .gettstamp = sock_gettstamp,
1239 .poll = datagram_poll,
1240 .shutdown = sock_no_shutdown,
1241 .release = qrtr_release,
1242 .mmap = sock_no_mmap,
1243 .sendpage = sock_no_sendpage,
1244 };
1245
1246 static struct proto qrtr_proto = {
1247 .name = "QIPCRTR",
1248 .owner = THIS_MODULE,
1249 .obj_size = sizeof(struct qrtr_sock),
1250 };
1251
qrtr_create(struct net * net,struct socket * sock,int protocol,int kern)1252 static int qrtr_create(struct net *net, struct socket *sock,
1253 int protocol, int kern)
1254 {
1255 struct qrtr_sock *ipc;
1256 struct sock *sk;
1257
1258 if (sock->type != SOCK_DGRAM)
1259 return -EPROTOTYPE;
1260
1261 sk = sk_alloc(net, AF_QIPCRTR, GFP_KERNEL, &qrtr_proto, kern);
1262 if (!sk)
1263 return -ENOMEM;
1264
1265 sock_set_flag(sk, SOCK_ZAPPED);
1266
1267 sock_init_data(sock, sk);
1268 sock->ops = &qrtr_proto_ops;
1269
1270 ipc = qrtr_sk(sk);
1271 ipc->us.sq_family = AF_QIPCRTR;
1272 ipc->us.sq_node = qrtr_local_nid;
1273 ipc->us.sq_port = 0;
1274
1275 return 0;
1276 }
1277
1278 static const struct net_proto_family qrtr_family = {
1279 .owner = THIS_MODULE,
1280 .family = AF_QIPCRTR,
1281 .create = qrtr_create,
1282 };
1283
qrtr_proto_init(void)1284 static int __init qrtr_proto_init(void)
1285 {
1286 int rc;
1287
1288 rc = proto_register(&qrtr_proto, 1);
1289 if (rc)
1290 return rc;
1291
1292 rc = sock_register(&qrtr_family);
1293 if (rc)
1294 goto err_proto;
1295
1296 rc = qrtr_ns_init();
1297 if (rc)
1298 goto err_sock;
1299
1300 return 0;
1301
1302 err_sock:
1303 sock_unregister(qrtr_family.family);
1304 err_proto:
1305 proto_unregister(&qrtr_proto);
1306 return rc;
1307 }
1308 postcore_initcall(qrtr_proto_init);
1309
qrtr_proto_fini(void)1310 static void __exit qrtr_proto_fini(void)
1311 {
1312 qrtr_ns_remove();
1313 sock_unregister(qrtr_family.family);
1314 proto_unregister(&qrtr_proto);
1315 }
1316 module_exit(qrtr_proto_fini);
1317
1318 MODULE_DESCRIPTION("Qualcomm IPC-router driver");
1319 MODULE_LICENSE("GPL v2");
1320 MODULE_ALIAS_NETPROTO(PF_QIPCRTR);
1321