1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 *
21 * Fixes:
22 * Alan Cox : Numerous verify_area() calls
23 * Alan Cox : Set the ACK bit on a reset
24 * Alan Cox : Stopped it crashing if it closed while
25 * sk->inuse=1 and was trying to connect
26 * (tcp_err()).
27 * Alan Cox : All icmp error handling was broken
28 * pointers passed where wrong and the
29 * socket was looked up backwards. Nobody
30 * tested any icmp error code obviously.
31 * Alan Cox : tcp_err() now handled properly. It
32 * wakes people on errors. poll
33 * behaves and the icmp error race
34 * has gone by moving it into sock.c
35 * Alan Cox : tcp_send_reset() fixed to work for
36 * everything not just packets for
37 * unknown sockets.
38 * Alan Cox : tcp option processing.
39 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * syn rule wrong]
41 * Herp Rosmanith : More reset fixes
42 * Alan Cox : No longer acks invalid rst frames.
43 * Acking any kind of RST is right out.
44 * Alan Cox : Sets an ignore me flag on an rst
45 * receive otherwise odd bits of prattle
46 * escape still
47 * Alan Cox : Fixed another acking RST frame bug.
48 * Should stop LAN workplace lockups.
49 * Alan Cox : Some tidyups using the new skb list
50 * facilities
51 * Alan Cox : sk->keepopen now seems to work
52 * Alan Cox : Pulls options out correctly on accepts
53 * Alan Cox : Fixed assorted sk->rqueue->next errors
54 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * bit to skb ops.
56 * Alan Cox : Tidied tcp_data to avoid a potential
57 * nasty.
58 * Alan Cox : Added some better commenting, as the
59 * tcp is hard to follow
60 * Alan Cox : Removed incorrect check for 20 * psh
61 * Michael O'Reilly : ack < copied bug fix.
62 * Johannes Stille : Misc tcp fixes (not all in yet).
63 * Alan Cox : FIN with no memory -> CRASH
64 * Alan Cox : Added socket option proto entries.
65 * Also added awareness of them to accept.
66 * Alan Cox : Added TCP options (SOL_TCP)
67 * Alan Cox : Switched wakeup calls to callbacks,
68 * so the kernel can layer network
69 * sockets.
70 * Alan Cox : Use ip_tos/ip_ttl settings.
71 * Alan Cox : Handle FIN (more) properly (we hope).
72 * Alan Cox : RST frames sent on unsynchronised
73 * state ack error.
74 * Alan Cox : Put in missing check for SYN bit.
75 * Alan Cox : Added tcp_select_window() aka NET2E
76 * window non shrink trick.
77 * Alan Cox : Added a couple of small NET2E timer
78 * fixes
79 * Charles Hedrick : TCP fixes
80 * Toomas Tamm : TCP window fixes
81 * Alan Cox : Small URG fix to rlogin ^C ack fight
82 * Charles Hedrick : Rewrote most of it to actually work
83 * Linus : Rewrote tcp_read() and URG handling
84 * completely
85 * Gerhard Koerting: Fixed some missing timer handling
86 * Matthew Dillon : Reworked TCP machine states as per RFC
87 * Gerhard Koerting: PC/TCP workarounds
88 * Adam Caldwell : Assorted timer/timing errors
89 * Matthew Dillon : Fixed another RST bug
90 * Alan Cox : Move to kernel side addressing changes.
91 * Alan Cox : Beginning work on TCP fastpathing
92 * (not yet usable)
93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
94 * Alan Cox : TCP fast path debugging
95 * Alan Cox : Window clamping
96 * Michael Riepe : Bug in tcp_check()
97 * Matt Dillon : More TCP improvements and RST bug fixes
98 * Matt Dillon : Yet more small nasties remove from the
99 * TCP code (Be very nice to this man if
100 * tcp finally works 100%) 8)
101 * Alan Cox : BSD accept semantics.
102 * Alan Cox : Reset on closedown bug.
103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
104 * Michael Pall : Handle poll() after URG properly in
105 * all cases.
106 * Michael Pall : Undo the last fix in tcp_read_urg()
107 * (multi URG PUSH broke rlogin).
108 * Michael Pall : Fix the multi URG PUSH problem in
109 * tcp_readable(), poll() after URG
110 * works now.
111 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * BSD api.
113 * Alan Cox : Changed the semantics of sk->socket to
114 * fix a race and a signal problem with
115 * accept() and async I/O.
116 * Alan Cox : Relaxed the rules on tcp_sendto().
117 * Yury Shevchuk : Really fixed accept() blocking problem.
118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
119 * clients/servers which listen in on
120 * fixed ports.
121 * Alan Cox : Cleaned the above up and shrank it to
122 * a sensible code size.
123 * Alan Cox : Self connect lockup fix.
124 * Alan Cox : No connect to multicast.
125 * Ross Biro : Close unaccepted children on master
126 * socket close.
127 * Alan Cox : Reset tracing code.
128 * Alan Cox : Spurious resets on shutdown.
129 * Alan Cox : Giant 15 minute/60 second timer error
130 * Alan Cox : Small whoops in polling before an
131 * accept.
132 * Alan Cox : Kept the state trace facility since
133 * it's handy for debugging.
134 * Alan Cox : More reset handler fixes.
135 * Alan Cox : Started rewriting the code based on
136 * the RFC's for other useful protocol
137 * references see: Comer, KA9Q NOS, and
138 * for a reference on the difference
139 * between specifications and how BSD
140 * works see the 4.4lite source.
141 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * close.
143 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
144 * Linus Torvalds : Fixed BSD port reuse to work first syn
145 * Alan Cox : Reimplemented timers as per the RFC
146 * and using multiple timers for sanity.
147 * Alan Cox : Small bug fixes, and a lot of new
148 * comments.
149 * Alan Cox : Fixed dual reader crash by locking
150 * the buffers (much like datagram.c)
151 * Alan Cox : Fixed stuck sockets in probe. A probe
152 * now gets fed up of retrying without
153 * (even a no space) answer.
154 * Alan Cox : Extracted closing code better
155 * Alan Cox : Fixed the closing state machine to
156 * resemble the RFC.
157 * Alan Cox : More 'per spec' fixes.
158 * Jorge Cwik : Even faster checksumming.
159 * Alan Cox : tcp_data() doesn't ack illegal PSH
160 * only frames. At least one pc tcp stack
161 * generates them.
162 * Alan Cox : Cache last socket.
163 * Alan Cox : Per route irtt.
164 * Matt Day : poll()->select() match BSD precisely on error
165 * Alan Cox : New buffers
166 * Marc Tamsky : Various sk->prot->retransmits and
167 * sk->retransmits misupdating fixed.
168 * Fixed tcp_write_timeout: stuck close,
169 * and TCP syn retries gets used now.
170 * Mark Yarvis : In tcp_read_wakeup(), don't send an
171 * ack if state is TCP_CLOSED.
172 * Alan Cox : Look up device on a retransmit - routes may
173 * change. Doesn't yet cope with MSS shrink right
174 * but it's a start!
175 * Marc Tamsky : Closing in closing fixes.
176 * Mike Shaver : RFC1122 verifications.
177 * Alan Cox : rcv_saddr errors.
178 * Alan Cox : Block double connect().
179 * Alan Cox : Small hooks for enSKIP.
180 * Alexey Kuznetsov: Path MTU discovery.
181 * Alan Cox : Support soft errors.
182 * Alan Cox : Fix MTU discovery pathological case
183 * when the remote claims no mtu!
184 * Marc Tamsky : TCP_CLOSE fix.
185 * Colin (G3TNE) : Send a reset on syn ack replies in
186 * window but wrong (fixes NT lpd problems)
187 * Pedro Roque : Better TCP window handling, delayed ack.
188 * Joerg Reuter : No modification of locked buffers in
189 * tcp_do_retransmit()
190 * Eric Schenk : Changed receiver side silly window
191 * avoidance algorithm to BSD style
192 * algorithm. This doubles throughput
193 * against machines running Solaris,
194 * and seems to result in general
195 * improvement.
196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
197 * Willy Konynenberg : Transparent proxying support.
198 * Mike McLagan : Routing by source
199 * Keith Owens : Do proper merging with partial SKB's in
200 * tcp_do_sendmsg to avoid burstiness.
201 * Eric Schenk : Fix fast close down bug with
202 * shutdown() followed by close().
203 * Andi Kleen : Make poll agree with SIGIO
204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
205 * lingertime == 0 (RFC 793 ABORT Call)
206 * Hirokazu Takahashi : Use copy_from_user() instead of
207 * csum_and_copy_from_user() if possible.
208 *
209 * Description of States:
210 *
211 * TCP_SYN_SENT sent a connection request, waiting for ack
212 *
213 * TCP_SYN_RECV received a connection request, sent ack,
214 * waiting for final ack in three-way handshake.
215 *
216 * TCP_ESTABLISHED connection established
217 *
218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
219 * transmission of remaining buffered data
220 *
221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
222 * to shutdown
223 *
224 * TCP_CLOSING both sides have shutdown but we still have
225 * data we have to finish sending
226 *
227 * TCP_TIME_WAIT timeout to catch resent junk before entering
228 * closed, can only be entered from FIN_WAIT2
229 * or CLOSING. Required because the other end
230 * may not have gotten our last ACK causing it
231 * to retransmit the data packet (which we ignore)
232 *
233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
234 * us to finish writing our data and to shutdown
235 * (we have to close() to move on to LAST_ACK)
236 *
237 * TCP_LAST_ACK out side has shutdown after remote has
238 * shutdown. There may still be data in our
239 * buffer that we have to finish sending
240 *
241 * TCP_CLOSE socket is finished
242 */
243
244 #define pr_fmt(fmt) "TCP: " fmt
245
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282
283 /* Track pending CMSGs. */
284 enum {
285 TCP_CMSG_INQ = 1,
286 TCP_CMSG_TS = 2
287 };
288
289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
291
292 long sysctl_tcp_mem[3] __read_mostly;
293 EXPORT_SYMBOL(sysctl_tcp_mem);
294
295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */
296 EXPORT_SYMBOL(tcp_memory_allocated);
297
298 #if IS_ENABLED(CONFIG_SMC)
299 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
300 EXPORT_SYMBOL(tcp_have_smc);
301 #endif
302
303 /*
304 * Current number of TCP sockets.
305 */
306 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
307 EXPORT_SYMBOL(tcp_sockets_allocated);
308
309 /*
310 * TCP splice context
311 */
312 struct tcp_splice_state {
313 struct pipe_inode_info *pipe;
314 size_t len;
315 unsigned int flags;
316 };
317
318 /*
319 * Pressure flag: try to collapse.
320 * Technical note: it is used by multiple contexts non atomically.
321 * All the __sk_mem_schedule() is of this nature: accounting
322 * is strict, actions are advisory and have some latency.
323 */
324 unsigned long tcp_memory_pressure __read_mostly;
325 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
326
tcp_enter_memory_pressure(struct sock * sk)327 void tcp_enter_memory_pressure(struct sock *sk)
328 {
329 unsigned long val;
330
331 if (READ_ONCE(tcp_memory_pressure))
332 return;
333 val = jiffies;
334
335 if (!val)
336 val--;
337 if (!cmpxchg(&tcp_memory_pressure, 0, val))
338 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
339 }
340 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
341
tcp_leave_memory_pressure(struct sock * sk)342 void tcp_leave_memory_pressure(struct sock *sk)
343 {
344 unsigned long val;
345
346 if (!READ_ONCE(tcp_memory_pressure))
347 return;
348 val = xchg(&tcp_memory_pressure, 0);
349 if (val)
350 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
351 jiffies_to_msecs(jiffies - val));
352 }
353 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
354
355 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)356 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
357 {
358 u8 res = 0;
359
360 if (seconds > 0) {
361 int period = timeout;
362
363 res = 1;
364 while (seconds > period && res < 255) {
365 res++;
366 timeout <<= 1;
367 if (timeout > rto_max)
368 timeout = rto_max;
369 period += timeout;
370 }
371 }
372 return res;
373 }
374
375 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)376 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
377 {
378 int period = 0;
379
380 if (retrans > 0) {
381 period = timeout;
382 while (--retrans) {
383 timeout <<= 1;
384 if (timeout > rto_max)
385 timeout = rto_max;
386 period += timeout;
387 }
388 }
389 return period;
390 }
391
tcp_compute_delivery_rate(const struct tcp_sock * tp)392 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
393 {
394 u32 rate = READ_ONCE(tp->rate_delivered);
395 u32 intv = READ_ONCE(tp->rate_interval_us);
396 u64 rate64 = 0;
397
398 if (rate && intv) {
399 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
400 do_div(rate64, intv);
401 }
402 return rate64;
403 }
404
405 /* Address-family independent initialization for a tcp_sock.
406 *
407 * NOTE: A lot of things set to zero explicitly by call to
408 * sk_alloc() so need not be done here.
409 */
tcp_init_sock(struct sock * sk)410 void tcp_init_sock(struct sock *sk)
411 {
412 struct inet_connection_sock *icsk = inet_csk(sk);
413 struct tcp_sock *tp = tcp_sk(sk);
414
415 tp->out_of_order_queue = RB_ROOT;
416 sk->tcp_rtx_queue = RB_ROOT;
417 tcp_init_xmit_timers(sk);
418 INIT_LIST_HEAD(&tp->tsq_node);
419 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
420
421 icsk->icsk_rto = TCP_TIMEOUT_INIT;
422 icsk->icsk_rto_min = TCP_RTO_MIN;
423 icsk->icsk_delack_max = TCP_DELACK_MAX;
424 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
425 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
426
427 /* So many TCP implementations out there (incorrectly) count the
428 * initial SYN frame in their delayed-ACK and congestion control
429 * algorithms that we must have the following bandaid to talk
430 * efficiently to them. -DaveM
431 */
432 tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
433
434 /* There's a bubble in the pipe until at least the first ACK. */
435 tp->app_limited = ~0U;
436
437 /* See draft-stevens-tcpca-spec-01 for discussion of the
438 * initialization of these values.
439 */
440 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
441 tp->snd_cwnd_clamp = ~0;
442 tp->mss_cache = TCP_MSS_DEFAULT;
443
444 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
445 tcp_assign_congestion_control(sk);
446
447 tp->tsoffset = 0;
448 tp->rack.reo_wnd_steps = 1;
449
450 sk->sk_write_space = sk_stream_write_space;
451 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
452
453 icsk->icsk_sync_mss = tcp_sync_mss;
454
455 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
456 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
457
458 sk_sockets_allocated_inc(sk);
459 }
460 EXPORT_SYMBOL(tcp_init_sock);
461
tcp_tx_timestamp(struct sock * sk,u16 tsflags)462 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
463 {
464 struct sk_buff *skb = tcp_write_queue_tail(sk);
465
466 if (tsflags && skb) {
467 struct skb_shared_info *shinfo = skb_shinfo(skb);
468 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
469
470 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
471 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
472 tcb->txstamp_ack = 1;
473 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
474 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
475 }
476 }
477
tcp_stream_is_readable(struct sock * sk,int target)478 static bool tcp_stream_is_readable(struct sock *sk, int target)
479 {
480 if (tcp_epollin_ready(sk, target))
481 return true;
482 return sk_is_readable(sk);
483 }
484
485 /*
486 * Wait for a TCP event.
487 *
488 * Note that we don't need to lock the socket, as the upper poll layers
489 * take care of normal races (between the test and the event) and we don't
490 * go look at any of the socket buffers directly.
491 */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)492 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
493 {
494 __poll_t mask;
495 struct sock *sk = sock->sk;
496 const struct tcp_sock *tp = tcp_sk(sk);
497 int state;
498
499 sock_poll_wait(file, sock, wait);
500
501 state = inet_sk_state_load(sk);
502 if (state == TCP_LISTEN)
503 return inet_csk_listen_poll(sk);
504
505 /* Socket is not locked. We are protected from async events
506 * by poll logic and correct handling of state changes
507 * made by other threads is impossible in any case.
508 */
509
510 mask = 0;
511
512 /*
513 * EPOLLHUP is certainly not done right. But poll() doesn't
514 * have a notion of HUP in just one direction, and for a
515 * socket the read side is more interesting.
516 *
517 * Some poll() documentation says that EPOLLHUP is incompatible
518 * with the EPOLLOUT/POLLWR flags, so somebody should check this
519 * all. But careful, it tends to be safer to return too many
520 * bits than too few, and you can easily break real applications
521 * if you don't tell them that something has hung up!
522 *
523 * Check-me.
524 *
525 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
526 * our fs/select.c). It means that after we received EOF,
527 * poll always returns immediately, making impossible poll() on write()
528 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
529 * if and only if shutdown has been made in both directions.
530 * Actually, it is interesting to look how Solaris and DUX
531 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
532 * then we could set it on SND_SHUTDOWN. BTW examples given
533 * in Stevens' books assume exactly this behaviour, it explains
534 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
535 *
536 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
537 * blocking on fresh not-connected or disconnected socket. --ANK
538 */
539 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
540 mask |= EPOLLHUP;
541 if (sk->sk_shutdown & RCV_SHUTDOWN)
542 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
543
544 /* Connected or passive Fast Open socket? */
545 if (state != TCP_SYN_SENT &&
546 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
547 int target = sock_rcvlowat(sk, 0, INT_MAX);
548 u16 urg_data = READ_ONCE(tp->urg_data);
549
550 if (unlikely(urg_data) &&
551 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
552 !sock_flag(sk, SOCK_URGINLINE))
553 target++;
554
555 if (tcp_stream_is_readable(sk, target))
556 mask |= EPOLLIN | EPOLLRDNORM;
557
558 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
559 if (__sk_stream_is_writeable(sk, 1)) {
560 mask |= EPOLLOUT | EPOLLWRNORM;
561 } else { /* send SIGIO later */
562 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
563 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
564
565 /* Race breaker. If space is freed after
566 * wspace test but before the flags are set,
567 * IO signal will be lost. Memory barrier
568 * pairs with the input side.
569 */
570 smp_mb__after_atomic();
571 if (__sk_stream_is_writeable(sk, 1))
572 mask |= EPOLLOUT | EPOLLWRNORM;
573 }
574 } else
575 mask |= EPOLLOUT | EPOLLWRNORM;
576
577 if (urg_data & TCP_URG_VALID)
578 mask |= EPOLLPRI;
579 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
580 /* Active TCP fastopen socket with defer_connect
581 * Return EPOLLOUT so application can call write()
582 * in order for kernel to generate SYN+data
583 */
584 mask |= EPOLLOUT | EPOLLWRNORM;
585 }
586 /* This barrier is coupled with smp_wmb() in tcp_reset() */
587 smp_rmb();
588 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
589 mask |= EPOLLERR;
590
591 return mask;
592 }
593 EXPORT_SYMBOL(tcp_poll);
594
tcp_ioctl(struct sock * sk,int cmd,unsigned long arg)595 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
596 {
597 struct tcp_sock *tp = tcp_sk(sk);
598 int answ;
599 bool slow;
600
601 switch (cmd) {
602 case SIOCINQ:
603 if (sk->sk_state == TCP_LISTEN)
604 return -EINVAL;
605
606 slow = lock_sock_fast(sk);
607 answ = tcp_inq(sk);
608 unlock_sock_fast(sk, slow);
609 break;
610 case SIOCATMARK:
611 answ = READ_ONCE(tp->urg_data) &&
612 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
613 break;
614 case SIOCOUTQ:
615 if (sk->sk_state == TCP_LISTEN)
616 return -EINVAL;
617
618 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
619 answ = 0;
620 else
621 answ = READ_ONCE(tp->write_seq) - tp->snd_una;
622 break;
623 case SIOCOUTQNSD:
624 if (sk->sk_state == TCP_LISTEN)
625 return -EINVAL;
626
627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
628 answ = 0;
629 else
630 answ = READ_ONCE(tp->write_seq) -
631 READ_ONCE(tp->snd_nxt);
632 break;
633 default:
634 return -ENOIOCTLCMD;
635 }
636
637 return put_user(answ, (int __user *)arg);
638 }
639 EXPORT_SYMBOL(tcp_ioctl);
640
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)641 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
642 {
643 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
644 tp->pushed_seq = tp->write_seq;
645 }
646
forced_push(const struct tcp_sock * tp)647 static inline bool forced_push(const struct tcp_sock *tp)
648 {
649 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
650 }
651
tcp_skb_entail(struct sock * sk,struct sk_buff * skb)652 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
653 {
654 struct tcp_sock *tp = tcp_sk(sk);
655 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
656
657 tcb->seq = tcb->end_seq = tp->write_seq;
658 tcb->tcp_flags = TCPHDR_ACK;
659 __skb_header_release(skb);
660 tcp_add_write_queue_tail(sk, skb);
661 sk_wmem_queued_add(sk, skb->truesize);
662 sk_mem_charge(sk, skb->truesize);
663 if (tp->nonagle & TCP_NAGLE_PUSH)
664 tp->nonagle &= ~TCP_NAGLE_PUSH;
665
666 tcp_slow_start_after_idle_check(sk);
667 }
668
tcp_mark_urg(struct tcp_sock * tp,int flags)669 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
670 {
671 if (flags & MSG_OOB)
672 tp->snd_up = tp->write_seq;
673 }
674
675 /* If a not yet filled skb is pushed, do not send it if
676 * we have data packets in Qdisc or NIC queues :
677 * Because TX completion will happen shortly, it gives a chance
678 * to coalesce future sendmsg() payload into this skb, without
679 * need for a timer, and with no latency trade off.
680 * As packets containing data payload have a bigger truesize
681 * than pure acks (dataless) packets, the last checks prevent
682 * autocorking if we only have an ACK in Qdisc/NIC queues,
683 * or if TX completion was delayed after we processed ACK packet.
684 */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)685 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
686 int size_goal)
687 {
688 return skb->len < size_goal &&
689 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
690 !tcp_rtx_queue_empty(sk) &&
691 refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
692 tcp_skb_can_collapse_to(skb);
693 }
694
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)695 void tcp_push(struct sock *sk, int flags, int mss_now,
696 int nonagle, int size_goal)
697 {
698 struct tcp_sock *tp = tcp_sk(sk);
699 struct sk_buff *skb;
700
701 skb = tcp_write_queue_tail(sk);
702 if (!skb)
703 return;
704 if (!(flags & MSG_MORE) || forced_push(tp))
705 tcp_mark_push(tp, skb);
706
707 tcp_mark_urg(tp, flags);
708
709 if (tcp_should_autocork(sk, skb, size_goal)) {
710
711 /* avoid atomic op if TSQ_THROTTLED bit is already set */
712 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
713 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
714 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
715 }
716 /* It is possible TX completion already happened
717 * before we set TSQ_THROTTLED.
718 */
719 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
720 return;
721 }
722
723 if (flags & MSG_MORE)
724 nonagle = TCP_NAGLE_CORK;
725
726 __tcp_push_pending_frames(sk, mss_now, nonagle);
727 }
728
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)729 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
730 unsigned int offset, size_t len)
731 {
732 struct tcp_splice_state *tss = rd_desc->arg.data;
733 int ret;
734
735 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
736 min(rd_desc->count, len), tss->flags);
737 if (ret > 0)
738 rd_desc->count -= ret;
739 return ret;
740 }
741
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)742 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
743 {
744 /* Store TCP splice context information in read_descriptor_t. */
745 read_descriptor_t rd_desc = {
746 .arg.data = tss,
747 .count = tss->len,
748 };
749
750 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
751 }
752
753 /**
754 * tcp_splice_read - splice data from TCP socket to a pipe
755 * @sock: socket to splice from
756 * @ppos: position (not valid)
757 * @pipe: pipe to splice to
758 * @len: number of bytes to splice
759 * @flags: splice modifier flags
760 *
761 * Description:
762 * Will read pages from given socket and fill them into a pipe.
763 *
764 **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)765 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
766 struct pipe_inode_info *pipe, size_t len,
767 unsigned int flags)
768 {
769 struct sock *sk = sock->sk;
770 struct tcp_splice_state tss = {
771 .pipe = pipe,
772 .len = len,
773 .flags = flags,
774 };
775 long timeo;
776 ssize_t spliced;
777 int ret;
778
779 sock_rps_record_flow(sk);
780 /*
781 * We can't seek on a socket input
782 */
783 if (unlikely(*ppos))
784 return -ESPIPE;
785
786 ret = spliced = 0;
787
788 lock_sock(sk);
789
790 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
791 while (tss.len) {
792 ret = __tcp_splice_read(sk, &tss);
793 if (ret < 0)
794 break;
795 else if (!ret) {
796 if (spliced)
797 break;
798 if (sock_flag(sk, SOCK_DONE))
799 break;
800 if (sk->sk_err) {
801 ret = sock_error(sk);
802 break;
803 }
804 if (sk->sk_shutdown & RCV_SHUTDOWN)
805 break;
806 if (sk->sk_state == TCP_CLOSE) {
807 /*
808 * This occurs when user tries to read
809 * from never connected socket.
810 */
811 ret = -ENOTCONN;
812 break;
813 }
814 if (!timeo) {
815 ret = -EAGAIN;
816 break;
817 }
818 /* if __tcp_splice_read() got nothing while we have
819 * an skb in receive queue, we do not want to loop.
820 * This might happen with URG data.
821 */
822 if (!skb_queue_empty(&sk->sk_receive_queue))
823 break;
824 sk_wait_data(sk, &timeo, NULL);
825 if (signal_pending(current)) {
826 ret = sock_intr_errno(timeo);
827 break;
828 }
829 continue;
830 }
831 tss.len -= ret;
832 spliced += ret;
833
834 if (!timeo)
835 break;
836 release_sock(sk);
837 lock_sock(sk);
838
839 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
840 (sk->sk_shutdown & RCV_SHUTDOWN) ||
841 signal_pending(current))
842 break;
843 }
844
845 release_sock(sk);
846
847 if (spliced)
848 return spliced;
849
850 return ret;
851 }
852 EXPORT_SYMBOL(tcp_splice_read);
853
tcp_stream_alloc_skb(struct sock * sk,int size,gfp_t gfp,bool force_schedule)854 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
855 bool force_schedule)
856 {
857 struct sk_buff *skb;
858
859 if (unlikely(tcp_under_memory_pressure(sk)))
860 sk_mem_reclaim_partial(sk);
861
862 skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp);
863 if (likely(skb)) {
864 bool mem_scheduled;
865
866 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
867 if (force_schedule) {
868 mem_scheduled = true;
869 sk_forced_mem_schedule(sk, skb->truesize);
870 } else {
871 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
872 }
873 if (likely(mem_scheduled)) {
874 skb_reserve(skb, MAX_TCP_HEADER);
875 skb->ip_summed = CHECKSUM_PARTIAL;
876 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
877 return skb;
878 }
879 __kfree_skb(skb);
880 } else {
881 sk->sk_prot->enter_memory_pressure(sk);
882 sk_stream_moderate_sndbuf(sk);
883 }
884 return NULL;
885 }
886
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)887 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
888 int large_allowed)
889 {
890 struct tcp_sock *tp = tcp_sk(sk);
891 u32 new_size_goal, size_goal;
892
893 if (!large_allowed)
894 return mss_now;
895
896 /* Note : tcp_tso_autosize() will eventually split this later */
897 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
898
899 /* We try hard to avoid divides here */
900 size_goal = tp->gso_segs * mss_now;
901 if (unlikely(new_size_goal < size_goal ||
902 new_size_goal >= size_goal + mss_now)) {
903 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
904 sk->sk_gso_max_segs);
905 size_goal = tp->gso_segs * mss_now;
906 }
907
908 return max(size_goal, mss_now);
909 }
910
tcp_send_mss(struct sock * sk,int * size_goal,int flags)911 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
912 {
913 int mss_now;
914
915 mss_now = tcp_current_mss(sk);
916 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
917
918 return mss_now;
919 }
920
921 /* In some cases, both sendpage() and sendmsg() could have added
922 * an skb to the write queue, but failed adding payload on it.
923 * We need to remove it to consume less memory, but more
924 * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
925 * users.
926 */
tcp_remove_empty_skb(struct sock * sk)927 void tcp_remove_empty_skb(struct sock *sk)
928 {
929 struct sk_buff *skb = tcp_write_queue_tail(sk);
930
931 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
932 tcp_unlink_write_queue(skb, sk);
933 if (tcp_write_queue_empty(sk))
934 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
935 tcp_wmem_free_skb(sk, skb);
936 }
937 }
938
939 /* skb changing from pure zc to mixed, must charge zc */
tcp_downgrade_zcopy_pure(struct sock * sk,struct sk_buff * skb)940 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
941 {
942 if (unlikely(skb_zcopy_pure(skb))) {
943 u32 extra = skb->truesize -
944 SKB_TRUESIZE(skb_end_offset(skb));
945
946 if (!sk_wmem_schedule(sk, extra))
947 return -ENOMEM;
948
949 sk_mem_charge(sk, extra);
950 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
951 }
952 return 0;
953 }
954
tcp_wmem_schedule(struct sock * sk,int copy)955 static int tcp_wmem_schedule(struct sock *sk, int copy)
956 {
957 int left;
958
959 if (likely(sk_wmem_schedule(sk, copy)))
960 return copy;
961
962 /* We could be in trouble if we have nothing queued.
963 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
964 * to guarantee some progress.
965 */
966 left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued;
967 if (left > 0)
968 sk_forced_mem_schedule(sk, min(left, copy));
969 return min(copy, sk->sk_forward_alloc);
970 }
971
tcp_build_frag(struct sock * sk,int size_goal,int flags,struct page * page,int offset,size_t * size)972 static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
973 struct page *page, int offset, size_t *size)
974 {
975 struct sk_buff *skb = tcp_write_queue_tail(sk);
976 struct tcp_sock *tp = tcp_sk(sk);
977 bool can_coalesce;
978 int copy, i;
979
980 if (!skb || (copy = size_goal - skb->len) <= 0 ||
981 !tcp_skb_can_collapse_to(skb)) {
982 new_segment:
983 if (!sk_stream_memory_free(sk))
984 return NULL;
985
986 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
987 tcp_rtx_and_write_queues_empty(sk));
988 if (!skb)
989 return NULL;
990
991 #ifdef CONFIG_TLS_DEVICE
992 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
993 #endif
994 tcp_skb_entail(sk, skb);
995 copy = size_goal;
996 }
997
998 if (copy > *size)
999 copy = *size;
1000
1001 i = skb_shinfo(skb)->nr_frags;
1002 can_coalesce = skb_can_coalesce(skb, i, page, offset);
1003 if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) {
1004 tcp_mark_push(tp, skb);
1005 goto new_segment;
1006 }
1007 if (tcp_downgrade_zcopy_pure(sk, skb))
1008 return NULL;
1009
1010 copy = tcp_wmem_schedule(sk, copy);
1011 if (!copy)
1012 return NULL;
1013
1014 if (can_coalesce) {
1015 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1016 } else {
1017 get_page(page);
1018 skb_fill_page_desc_noacc(skb, i, page, offset, copy);
1019 }
1020
1021 if (!(flags & MSG_NO_SHARED_FRAGS))
1022 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1023
1024 skb->len += copy;
1025 skb->data_len += copy;
1026 skb->truesize += copy;
1027 sk_wmem_queued_add(sk, copy);
1028 sk_mem_charge(sk, copy);
1029 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1030 TCP_SKB_CB(skb)->end_seq += copy;
1031 tcp_skb_pcount_set(skb, 0);
1032
1033 *size = copy;
1034 return skb;
1035 }
1036
do_tcp_sendpages(struct sock * sk,struct page * page,int offset,size_t size,int flags)1037 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
1038 size_t size, int flags)
1039 {
1040 struct tcp_sock *tp = tcp_sk(sk);
1041 int mss_now, size_goal;
1042 int err;
1043 ssize_t copied;
1044 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1045
1046 if (IS_ENABLED(CONFIG_DEBUG_VM) &&
1047 WARN_ONCE(!sendpage_ok(page),
1048 "page must not be a Slab one and have page_count > 0"))
1049 return -EINVAL;
1050
1051 /* Wait for a connection to finish. One exception is TCP Fast Open
1052 * (passive side) where data is allowed to be sent before a connection
1053 * is fully established.
1054 */
1055 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1056 !tcp_passive_fastopen(sk)) {
1057 err = sk_stream_wait_connect(sk, &timeo);
1058 if (err != 0)
1059 goto out_err;
1060 }
1061
1062 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1063
1064 mss_now = tcp_send_mss(sk, &size_goal, flags);
1065 copied = 0;
1066
1067 err = -EPIPE;
1068 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1069 goto out_err;
1070
1071 while (size > 0) {
1072 struct sk_buff *skb;
1073 size_t copy = size;
1074
1075 skb = tcp_build_frag(sk, size_goal, flags, page, offset, ©);
1076 if (!skb)
1077 goto wait_for_space;
1078
1079 if (!copied)
1080 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1081
1082 copied += copy;
1083 offset += copy;
1084 size -= copy;
1085 if (!size)
1086 goto out;
1087
1088 if (skb->len < size_goal || (flags & MSG_OOB))
1089 continue;
1090
1091 if (forced_push(tp)) {
1092 tcp_mark_push(tp, skb);
1093 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1094 } else if (skb == tcp_send_head(sk))
1095 tcp_push_one(sk, mss_now);
1096 continue;
1097
1098 wait_for_space:
1099 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1100 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1101 TCP_NAGLE_PUSH, size_goal);
1102
1103 err = sk_stream_wait_memory(sk, &timeo);
1104 if (err != 0)
1105 goto do_error;
1106
1107 mss_now = tcp_send_mss(sk, &size_goal, flags);
1108 }
1109
1110 out:
1111 if (copied) {
1112 tcp_tx_timestamp(sk, sk->sk_tsflags);
1113 if (!(flags & MSG_SENDPAGE_NOTLAST))
1114 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1115 }
1116 return copied;
1117
1118 do_error:
1119 tcp_remove_empty_skb(sk);
1120 if (copied)
1121 goto out;
1122 out_err:
1123 /* make sure we wake any epoll edge trigger waiter */
1124 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1125 sk->sk_write_space(sk);
1126 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1127 }
1128 return sk_stream_error(sk, flags, err);
1129 }
1130 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1131
tcp_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)1132 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1133 size_t size, int flags)
1134 {
1135 if (!(sk->sk_route_caps & NETIF_F_SG))
1136 return sock_no_sendpage_locked(sk, page, offset, size, flags);
1137
1138 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1139
1140 return do_tcp_sendpages(sk, page, offset, size, flags);
1141 }
1142 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1143
tcp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1144 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1145 size_t size, int flags)
1146 {
1147 int ret;
1148
1149 lock_sock(sk);
1150 ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1151 release_sock(sk);
1152
1153 return ret;
1154 }
1155 EXPORT_SYMBOL(tcp_sendpage);
1156
tcp_free_fastopen_req(struct tcp_sock * tp)1157 void tcp_free_fastopen_req(struct tcp_sock *tp)
1158 {
1159 if (tp->fastopen_req) {
1160 kfree(tp->fastopen_req);
1161 tp->fastopen_req = NULL;
1162 }
1163 }
1164
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size,struct ubuf_info * uarg)1165 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1166 int *copied, size_t size,
1167 struct ubuf_info *uarg)
1168 {
1169 struct tcp_sock *tp = tcp_sk(sk);
1170 struct inet_sock *inet = inet_sk(sk);
1171 struct sockaddr *uaddr = msg->msg_name;
1172 int err, flags;
1173
1174 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1175 TFO_CLIENT_ENABLE) ||
1176 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1177 uaddr->sa_family == AF_UNSPEC))
1178 return -EOPNOTSUPP;
1179 if (tp->fastopen_req)
1180 return -EALREADY; /* Another Fast Open is in progress */
1181
1182 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1183 sk->sk_allocation);
1184 if (unlikely(!tp->fastopen_req))
1185 return -ENOBUFS;
1186 tp->fastopen_req->data = msg;
1187 tp->fastopen_req->size = size;
1188 tp->fastopen_req->uarg = uarg;
1189
1190 if (inet->defer_connect) {
1191 err = tcp_connect(sk);
1192 /* Same failure procedure as in tcp_v4/6_connect */
1193 if (err) {
1194 tcp_set_state(sk, TCP_CLOSE);
1195 inet->inet_dport = 0;
1196 sk->sk_route_caps = 0;
1197 }
1198 }
1199 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1200 err = __inet_stream_connect(sk->sk_socket, uaddr,
1201 msg->msg_namelen, flags, 1);
1202 /* fastopen_req could already be freed in __inet_stream_connect
1203 * if the connection times out or gets rst
1204 */
1205 if (tp->fastopen_req) {
1206 *copied = tp->fastopen_req->copied;
1207 tcp_free_fastopen_req(tp);
1208 inet->defer_connect = 0;
1209 }
1210 return err;
1211 }
1212
tcp_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1213 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1214 {
1215 struct tcp_sock *tp = tcp_sk(sk);
1216 struct ubuf_info *uarg = NULL;
1217 struct sk_buff *skb;
1218 struct sockcm_cookie sockc;
1219 int flags, err, copied = 0;
1220 int mss_now = 0, size_goal, copied_syn = 0;
1221 int process_backlog = 0;
1222 bool zc = false;
1223 long timeo;
1224
1225 flags = msg->msg_flags;
1226
1227 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1228 skb = tcp_write_queue_tail(sk);
1229 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1230 if (!uarg) {
1231 err = -ENOBUFS;
1232 goto out_err;
1233 }
1234
1235 zc = sk->sk_route_caps & NETIF_F_SG;
1236 if (!zc)
1237 uarg->zerocopy = 0;
1238 }
1239
1240 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1241 !tp->repair) {
1242 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1243 if (err == -EINPROGRESS && copied_syn > 0)
1244 goto out;
1245 else if (err)
1246 goto out_err;
1247 }
1248
1249 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1250
1251 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1252
1253 /* Wait for a connection to finish. One exception is TCP Fast Open
1254 * (passive side) where data is allowed to be sent before a connection
1255 * is fully established.
1256 */
1257 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1258 !tcp_passive_fastopen(sk)) {
1259 err = sk_stream_wait_connect(sk, &timeo);
1260 if (err != 0)
1261 goto do_error;
1262 }
1263
1264 if (unlikely(tp->repair)) {
1265 if (tp->repair_queue == TCP_RECV_QUEUE) {
1266 copied = tcp_send_rcvq(sk, msg, size);
1267 goto out_nopush;
1268 }
1269
1270 err = -EINVAL;
1271 if (tp->repair_queue == TCP_NO_QUEUE)
1272 goto out_err;
1273
1274 /* 'common' sending to sendq */
1275 }
1276
1277 sockcm_init(&sockc, sk);
1278 if (msg->msg_controllen) {
1279 err = sock_cmsg_send(sk, msg, &sockc);
1280 if (unlikely(err)) {
1281 err = -EINVAL;
1282 goto out_err;
1283 }
1284 }
1285
1286 /* This should be in poll */
1287 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1288
1289 /* Ok commence sending. */
1290 copied = 0;
1291
1292 restart:
1293 mss_now = tcp_send_mss(sk, &size_goal, flags);
1294
1295 err = -EPIPE;
1296 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1297 goto do_error;
1298
1299 while (msg_data_left(msg)) {
1300 int copy = 0;
1301
1302 skb = tcp_write_queue_tail(sk);
1303 if (skb)
1304 copy = size_goal - skb->len;
1305
1306 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1307 bool first_skb;
1308
1309 new_segment:
1310 if (!sk_stream_memory_free(sk))
1311 goto wait_for_space;
1312
1313 if (unlikely(process_backlog >= 16)) {
1314 process_backlog = 0;
1315 if (sk_flush_backlog(sk))
1316 goto restart;
1317 }
1318 first_skb = tcp_rtx_and_write_queues_empty(sk);
1319 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
1320 first_skb);
1321 if (!skb)
1322 goto wait_for_space;
1323
1324 process_backlog++;
1325
1326 tcp_skb_entail(sk, skb);
1327 copy = size_goal;
1328
1329 /* All packets are restored as if they have
1330 * already been sent. skb_mstamp_ns isn't set to
1331 * avoid wrong rtt estimation.
1332 */
1333 if (tp->repair)
1334 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1335 }
1336
1337 /* Try to append data to the end of skb. */
1338 if (copy > msg_data_left(msg))
1339 copy = msg_data_left(msg);
1340
1341 if (!zc) {
1342 bool merge = true;
1343 int i = skb_shinfo(skb)->nr_frags;
1344 struct page_frag *pfrag = sk_page_frag(sk);
1345
1346 if (!sk_page_frag_refill(sk, pfrag))
1347 goto wait_for_space;
1348
1349 if (!skb_can_coalesce(skb, i, pfrag->page,
1350 pfrag->offset)) {
1351 if (i >= READ_ONCE(sysctl_max_skb_frags)) {
1352 tcp_mark_push(tp, skb);
1353 goto new_segment;
1354 }
1355 merge = false;
1356 }
1357
1358 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1359
1360 if (tcp_downgrade_zcopy_pure(sk, skb))
1361 goto wait_for_space;
1362
1363 copy = tcp_wmem_schedule(sk, copy);
1364 if (!copy)
1365 goto wait_for_space;
1366
1367 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1368 pfrag->page,
1369 pfrag->offset,
1370 copy);
1371 if (err)
1372 goto do_error;
1373
1374 /* Update the skb. */
1375 if (merge) {
1376 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1377 } else {
1378 skb_fill_page_desc(skb, i, pfrag->page,
1379 pfrag->offset, copy);
1380 page_ref_inc(pfrag->page);
1381 }
1382 pfrag->offset += copy;
1383 } else {
1384 /* First append to a fragless skb builds initial
1385 * pure zerocopy skb
1386 */
1387 if (!skb->len)
1388 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1389
1390 if (!skb_zcopy_pure(skb)) {
1391 copy = tcp_wmem_schedule(sk, copy);
1392 if (!copy)
1393 goto wait_for_space;
1394 }
1395
1396 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1397 if (err == -EMSGSIZE || err == -EEXIST) {
1398 tcp_mark_push(tp, skb);
1399 goto new_segment;
1400 }
1401 if (err < 0)
1402 goto do_error;
1403 copy = err;
1404 }
1405
1406 if (!copied)
1407 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1408
1409 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1410 TCP_SKB_CB(skb)->end_seq += copy;
1411 tcp_skb_pcount_set(skb, 0);
1412
1413 copied += copy;
1414 if (!msg_data_left(msg)) {
1415 if (unlikely(flags & MSG_EOR))
1416 TCP_SKB_CB(skb)->eor = 1;
1417 goto out;
1418 }
1419
1420 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1421 continue;
1422
1423 if (forced_push(tp)) {
1424 tcp_mark_push(tp, skb);
1425 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1426 } else if (skb == tcp_send_head(sk))
1427 tcp_push_one(sk, mss_now);
1428 continue;
1429
1430 wait_for_space:
1431 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1432 if (copied)
1433 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1434 TCP_NAGLE_PUSH, size_goal);
1435
1436 err = sk_stream_wait_memory(sk, &timeo);
1437 if (err != 0)
1438 goto do_error;
1439
1440 mss_now = tcp_send_mss(sk, &size_goal, flags);
1441 }
1442
1443 out:
1444 if (copied) {
1445 tcp_tx_timestamp(sk, sockc.tsflags);
1446 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1447 }
1448 out_nopush:
1449 net_zcopy_put(uarg);
1450 return copied + copied_syn;
1451
1452 do_error:
1453 tcp_remove_empty_skb(sk);
1454
1455 if (copied + copied_syn)
1456 goto out;
1457 out_err:
1458 net_zcopy_put_abort(uarg, true);
1459 err = sk_stream_error(sk, flags, err);
1460 /* make sure we wake any epoll edge trigger waiter */
1461 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1462 sk->sk_write_space(sk);
1463 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1464 }
1465 return err;
1466 }
1467 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1468
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1469 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1470 {
1471 int ret;
1472
1473 lock_sock(sk);
1474 ret = tcp_sendmsg_locked(sk, msg, size);
1475 release_sock(sk);
1476
1477 return ret;
1478 }
1479 EXPORT_SYMBOL(tcp_sendmsg);
1480
1481 /*
1482 * Handle reading urgent data. BSD has very simple semantics for
1483 * this, no blocking and very strange errors 8)
1484 */
1485
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1486 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1487 {
1488 struct tcp_sock *tp = tcp_sk(sk);
1489
1490 /* No URG data to read. */
1491 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1492 tp->urg_data == TCP_URG_READ)
1493 return -EINVAL; /* Yes this is right ! */
1494
1495 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1496 return -ENOTCONN;
1497
1498 if (tp->urg_data & TCP_URG_VALID) {
1499 int err = 0;
1500 char c = tp->urg_data;
1501
1502 if (!(flags & MSG_PEEK))
1503 WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1504
1505 /* Read urgent data. */
1506 msg->msg_flags |= MSG_OOB;
1507
1508 if (len > 0) {
1509 if (!(flags & MSG_TRUNC))
1510 err = memcpy_to_msg(msg, &c, 1);
1511 len = 1;
1512 } else
1513 msg->msg_flags |= MSG_TRUNC;
1514
1515 return err ? -EFAULT : len;
1516 }
1517
1518 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1519 return 0;
1520
1521 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1522 * the available implementations agree in this case:
1523 * this call should never block, independent of the
1524 * blocking state of the socket.
1525 * Mike <pall@rz.uni-karlsruhe.de>
1526 */
1527 return -EAGAIN;
1528 }
1529
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1530 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1531 {
1532 struct sk_buff *skb;
1533 int copied = 0, err = 0;
1534
1535 /* XXX -- need to support SO_PEEK_OFF */
1536
1537 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1538 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1539 if (err)
1540 return err;
1541 copied += skb->len;
1542 }
1543
1544 skb_queue_walk(&sk->sk_write_queue, skb) {
1545 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1546 if (err)
1547 break;
1548
1549 copied += skb->len;
1550 }
1551
1552 return err ?: copied;
1553 }
1554
1555 /* Clean up the receive buffer for full frames taken by the user,
1556 * then send an ACK if necessary. COPIED is the number of bytes
1557 * tcp_recvmsg has given to the user so far, it speeds up the
1558 * calculation of whether or not we must ACK for the sake of
1559 * a window update.
1560 */
tcp_cleanup_rbuf(struct sock * sk,int copied)1561 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1562 {
1563 struct tcp_sock *tp = tcp_sk(sk);
1564 bool time_to_ack = false;
1565
1566 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1567
1568 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1569 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1570 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1571
1572 if (inet_csk_ack_scheduled(sk)) {
1573 const struct inet_connection_sock *icsk = inet_csk(sk);
1574
1575 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1576 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1577 /*
1578 * If this read emptied read buffer, we send ACK, if
1579 * connection is not bidirectional, user drained
1580 * receive buffer and there was a small segment
1581 * in queue.
1582 */
1583 (copied > 0 &&
1584 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1585 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1586 !inet_csk_in_pingpong_mode(sk))) &&
1587 !atomic_read(&sk->sk_rmem_alloc)))
1588 time_to_ack = true;
1589 }
1590
1591 /* We send an ACK if we can now advertise a non-zero window
1592 * which has been raised "significantly".
1593 *
1594 * Even if window raised up to infinity, do not send window open ACK
1595 * in states, where we will not receive more. It is useless.
1596 */
1597 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1598 __u32 rcv_window_now = tcp_receive_window(tp);
1599
1600 /* Optimize, __tcp_select_window() is not cheap. */
1601 if (2*rcv_window_now <= tp->window_clamp) {
1602 __u32 new_window = __tcp_select_window(sk);
1603
1604 /* Send ACK now, if this read freed lots of space
1605 * in our buffer. Certainly, new_window is new window.
1606 * We can advertise it now, if it is not less than current one.
1607 * "Lots" means "at least twice" here.
1608 */
1609 if (new_window && new_window >= 2 * rcv_window_now)
1610 time_to_ack = true;
1611 }
1612 }
1613 if (time_to_ack)
1614 tcp_send_ack(sk);
1615 }
1616
tcp_eat_recv_skb(struct sock * sk,struct sk_buff * skb)1617 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1618 {
1619 __skb_unlink(skb, &sk->sk_receive_queue);
1620 if (likely(skb->destructor == sock_rfree)) {
1621 sock_rfree(skb);
1622 skb->destructor = NULL;
1623 skb->sk = NULL;
1624 return skb_attempt_defer_free(skb);
1625 }
1626 __kfree_skb(skb);
1627 }
1628
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1629 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1630 {
1631 struct sk_buff *skb;
1632 u32 offset;
1633
1634 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1635 offset = seq - TCP_SKB_CB(skb)->seq;
1636 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1637 pr_err_once("%s: found a SYN, please report !\n", __func__);
1638 offset--;
1639 }
1640 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1641 *off = offset;
1642 return skb;
1643 }
1644 /* This looks weird, but this can happen if TCP collapsing
1645 * splitted a fat GRO packet, while we released socket lock
1646 * in skb_splice_bits()
1647 */
1648 tcp_eat_recv_skb(sk, skb);
1649 }
1650 return NULL;
1651 }
1652
1653 /*
1654 * This routine provides an alternative to tcp_recvmsg() for routines
1655 * that would like to handle copying from skbuffs directly in 'sendfile'
1656 * fashion.
1657 * Note:
1658 * - It is assumed that the socket was locked by the caller.
1659 * - The routine does not block.
1660 * - At present, there is no support for reading OOB data
1661 * or for 'peeking' the socket using this routine
1662 * (although both would be easy to implement).
1663 */
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1664 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1665 sk_read_actor_t recv_actor)
1666 {
1667 struct sk_buff *skb;
1668 struct tcp_sock *tp = tcp_sk(sk);
1669 u32 seq = tp->copied_seq;
1670 u32 offset;
1671 int copied = 0;
1672
1673 if (sk->sk_state == TCP_LISTEN)
1674 return -ENOTCONN;
1675 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1676 if (offset < skb->len) {
1677 int used;
1678 size_t len;
1679
1680 len = skb->len - offset;
1681 /* Stop reading if we hit a patch of urgent data */
1682 if (unlikely(tp->urg_data)) {
1683 u32 urg_offset = tp->urg_seq - seq;
1684 if (urg_offset < len)
1685 len = urg_offset;
1686 if (!len)
1687 break;
1688 }
1689 used = recv_actor(desc, skb, offset, len);
1690 if (used <= 0) {
1691 if (!copied)
1692 copied = used;
1693 break;
1694 }
1695 if (WARN_ON_ONCE(used > len))
1696 used = len;
1697 seq += used;
1698 copied += used;
1699 offset += used;
1700
1701 /* If recv_actor drops the lock (e.g. TCP splice
1702 * receive) the skb pointer might be invalid when
1703 * getting here: tcp_collapse might have deleted it
1704 * while aggregating skbs from the socket queue.
1705 */
1706 skb = tcp_recv_skb(sk, seq - 1, &offset);
1707 if (!skb)
1708 break;
1709 /* TCP coalescing might have appended data to the skb.
1710 * Try to splice more frags
1711 */
1712 if (offset + 1 != skb->len)
1713 continue;
1714 }
1715 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1716 tcp_eat_recv_skb(sk, skb);
1717 ++seq;
1718 break;
1719 }
1720 tcp_eat_recv_skb(sk, skb);
1721 if (!desc->count)
1722 break;
1723 WRITE_ONCE(tp->copied_seq, seq);
1724 }
1725 WRITE_ONCE(tp->copied_seq, seq);
1726
1727 tcp_rcv_space_adjust(sk);
1728
1729 /* Clean up data we have read: This will do ACK frames. */
1730 if (copied > 0) {
1731 tcp_recv_skb(sk, seq, &offset);
1732 tcp_cleanup_rbuf(sk, copied);
1733 }
1734 return copied;
1735 }
1736 EXPORT_SYMBOL(tcp_read_sock);
1737
tcp_peek_len(struct socket * sock)1738 int tcp_peek_len(struct socket *sock)
1739 {
1740 return tcp_inq(sock->sk);
1741 }
1742 EXPORT_SYMBOL(tcp_peek_len);
1743
1744 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
tcp_set_rcvlowat(struct sock * sk,int val)1745 int tcp_set_rcvlowat(struct sock *sk, int val)
1746 {
1747 int cap;
1748
1749 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1750 cap = sk->sk_rcvbuf >> 1;
1751 else
1752 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1753 val = min(val, cap);
1754 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1755
1756 /* Check if we need to signal EPOLLIN right now */
1757 tcp_data_ready(sk);
1758
1759 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1760 return 0;
1761
1762 val <<= 1;
1763 if (val > sk->sk_rcvbuf) {
1764 WRITE_ONCE(sk->sk_rcvbuf, val);
1765 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1766 }
1767 return 0;
1768 }
1769 EXPORT_SYMBOL(tcp_set_rcvlowat);
1770
tcp_update_recv_tstamps(struct sk_buff * skb,struct scm_timestamping_internal * tss)1771 void tcp_update_recv_tstamps(struct sk_buff *skb,
1772 struct scm_timestamping_internal *tss)
1773 {
1774 if (skb->tstamp)
1775 tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1776 else
1777 tss->ts[0] = (struct timespec64) {0};
1778
1779 if (skb_hwtstamps(skb)->hwtstamp)
1780 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1781 else
1782 tss->ts[2] = (struct timespec64) {0};
1783 }
1784
1785 #ifdef CONFIG_MMU
1786 static const struct vm_operations_struct tcp_vm_ops = {
1787 };
1788
tcp_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1789 int tcp_mmap(struct file *file, struct socket *sock,
1790 struct vm_area_struct *vma)
1791 {
1792 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1793 return -EPERM;
1794 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1795
1796 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1797 vma->vm_flags |= VM_MIXEDMAP;
1798
1799 vma->vm_ops = &tcp_vm_ops;
1800 return 0;
1801 }
1802 EXPORT_SYMBOL(tcp_mmap);
1803
skb_advance_to_frag(struct sk_buff * skb,u32 offset_skb,u32 * offset_frag)1804 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1805 u32 *offset_frag)
1806 {
1807 skb_frag_t *frag;
1808
1809 if (unlikely(offset_skb >= skb->len))
1810 return NULL;
1811
1812 offset_skb -= skb_headlen(skb);
1813 if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1814 return NULL;
1815
1816 frag = skb_shinfo(skb)->frags;
1817 while (offset_skb) {
1818 if (skb_frag_size(frag) > offset_skb) {
1819 *offset_frag = offset_skb;
1820 return frag;
1821 }
1822 offset_skb -= skb_frag_size(frag);
1823 ++frag;
1824 }
1825 *offset_frag = 0;
1826 return frag;
1827 }
1828
can_map_frag(const skb_frag_t * frag)1829 static bool can_map_frag(const skb_frag_t *frag)
1830 {
1831 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag);
1832 }
1833
find_next_mappable_frag(const skb_frag_t * frag,int remaining_in_skb)1834 static int find_next_mappable_frag(const skb_frag_t *frag,
1835 int remaining_in_skb)
1836 {
1837 int offset = 0;
1838
1839 if (likely(can_map_frag(frag)))
1840 return 0;
1841
1842 while (offset < remaining_in_skb && !can_map_frag(frag)) {
1843 offset += skb_frag_size(frag);
1844 ++frag;
1845 }
1846 return offset;
1847 }
1848
tcp_zerocopy_set_hint_for_skb(struct sock * sk,struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 offset)1849 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1850 struct tcp_zerocopy_receive *zc,
1851 struct sk_buff *skb, u32 offset)
1852 {
1853 u32 frag_offset, partial_frag_remainder = 0;
1854 int mappable_offset;
1855 skb_frag_t *frag;
1856
1857 /* worst case: skip to next skb. try to improve on this case below */
1858 zc->recv_skip_hint = skb->len - offset;
1859
1860 /* Find the frag containing this offset (and how far into that frag) */
1861 frag = skb_advance_to_frag(skb, offset, &frag_offset);
1862 if (!frag)
1863 return;
1864
1865 if (frag_offset) {
1866 struct skb_shared_info *info = skb_shinfo(skb);
1867
1868 /* We read part of the last frag, must recvmsg() rest of skb. */
1869 if (frag == &info->frags[info->nr_frags - 1])
1870 return;
1871
1872 /* Else, we must at least read the remainder in this frag. */
1873 partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1874 zc->recv_skip_hint -= partial_frag_remainder;
1875 ++frag;
1876 }
1877
1878 /* partial_frag_remainder: If part way through a frag, must read rest.
1879 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1880 * in partial_frag_remainder.
1881 */
1882 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1883 zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1884 }
1885
1886 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1887 int flags, struct scm_timestamping_internal *tss,
1888 int *cmsg_flags);
receive_fallback_to_copy(struct sock * sk,struct tcp_zerocopy_receive * zc,int inq,struct scm_timestamping_internal * tss)1889 static int receive_fallback_to_copy(struct sock *sk,
1890 struct tcp_zerocopy_receive *zc, int inq,
1891 struct scm_timestamping_internal *tss)
1892 {
1893 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1894 struct msghdr msg = {};
1895 struct iovec iov;
1896 int err;
1897
1898 zc->length = 0;
1899 zc->recv_skip_hint = 0;
1900
1901 if (copy_address != zc->copybuf_address)
1902 return -EINVAL;
1903
1904 err = import_single_range(READ, (void __user *)copy_address,
1905 inq, &iov, &msg.msg_iter);
1906 if (err)
1907 return err;
1908
1909 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1910 tss, &zc->msg_flags);
1911 if (err < 0)
1912 return err;
1913
1914 zc->copybuf_len = err;
1915 if (likely(zc->copybuf_len)) {
1916 struct sk_buff *skb;
1917 u32 offset;
1918
1919 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1920 if (skb)
1921 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1922 }
1923 return 0;
1924 }
1925
tcp_copy_straggler_data(struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 copylen,u32 * offset,u32 * seq)1926 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1927 struct sk_buff *skb, u32 copylen,
1928 u32 *offset, u32 *seq)
1929 {
1930 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1931 struct msghdr msg = {};
1932 struct iovec iov;
1933 int err;
1934
1935 if (copy_address != zc->copybuf_address)
1936 return -EINVAL;
1937
1938 err = import_single_range(READ, (void __user *)copy_address,
1939 copylen, &iov, &msg.msg_iter);
1940 if (err)
1941 return err;
1942 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1943 if (err)
1944 return err;
1945 zc->recv_skip_hint -= copylen;
1946 *offset += copylen;
1947 *seq += copylen;
1948 return (__s32)copylen;
1949 }
1950
tcp_zc_handle_leftover(struct tcp_zerocopy_receive * zc,struct sock * sk,struct sk_buff * skb,u32 * seq,s32 copybuf_len,struct scm_timestamping_internal * tss)1951 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1952 struct sock *sk,
1953 struct sk_buff *skb,
1954 u32 *seq,
1955 s32 copybuf_len,
1956 struct scm_timestamping_internal *tss)
1957 {
1958 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1959
1960 if (!copylen)
1961 return 0;
1962 /* skb is null if inq < PAGE_SIZE. */
1963 if (skb) {
1964 offset = *seq - TCP_SKB_CB(skb)->seq;
1965 } else {
1966 skb = tcp_recv_skb(sk, *seq, &offset);
1967 if (TCP_SKB_CB(skb)->has_rxtstamp) {
1968 tcp_update_recv_tstamps(skb, tss);
1969 zc->msg_flags |= TCP_CMSG_TS;
1970 }
1971 }
1972
1973 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1974 seq);
1975 return zc->copybuf_len < 0 ? 0 : copylen;
1976 }
1977
tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct * vma,struct page ** pending_pages,unsigned long pages_remaining,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map,int err)1978 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1979 struct page **pending_pages,
1980 unsigned long pages_remaining,
1981 unsigned long *address,
1982 u32 *length,
1983 u32 *seq,
1984 struct tcp_zerocopy_receive *zc,
1985 u32 total_bytes_to_map,
1986 int err)
1987 {
1988 /* At least one page did not map. Try zapping if we skipped earlier. */
1989 if (err == -EBUSY &&
1990 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1991 u32 maybe_zap_len;
1992
1993 maybe_zap_len = total_bytes_to_map - /* All bytes to map */
1994 *length + /* Mapped or pending */
1995 (pages_remaining * PAGE_SIZE); /* Failed map. */
1996 zap_page_range(vma, *address, maybe_zap_len);
1997 err = 0;
1998 }
1999
2000 if (!err) {
2001 unsigned long leftover_pages = pages_remaining;
2002 int bytes_mapped;
2003
2004 /* We called zap_page_range, try to reinsert. */
2005 err = vm_insert_pages(vma, *address,
2006 pending_pages,
2007 &pages_remaining);
2008 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
2009 *seq += bytes_mapped;
2010 *address += bytes_mapped;
2011 }
2012 if (err) {
2013 /* Either we were unable to zap, OR we zapped, retried an
2014 * insert, and still had an issue. Either ways, pages_remaining
2015 * is the number of pages we were unable to map, and we unroll
2016 * some state we speculatively touched before.
2017 */
2018 const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
2019
2020 *length -= bytes_not_mapped;
2021 zc->recv_skip_hint += bytes_not_mapped;
2022 }
2023 return err;
2024 }
2025
tcp_zerocopy_vm_insert_batch(struct vm_area_struct * vma,struct page ** pages,unsigned int pages_to_map,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map)2026 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2027 struct page **pages,
2028 unsigned int pages_to_map,
2029 unsigned long *address,
2030 u32 *length,
2031 u32 *seq,
2032 struct tcp_zerocopy_receive *zc,
2033 u32 total_bytes_to_map)
2034 {
2035 unsigned long pages_remaining = pages_to_map;
2036 unsigned int pages_mapped;
2037 unsigned int bytes_mapped;
2038 int err;
2039
2040 err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2041 pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2042 bytes_mapped = PAGE_SIZE * pages_mapped;
2043 /* Even if vm_insert_pages fails, it may have partially succeeded in
2044 * mapping (some but not all of the pages).
2045 */
2046 *seq += bytes_mapped;
2047 *address += bytes_mapped;
2048
2049 if (likely(!err))
2050 return 0;
2051
2052 /* Error: maybe zap and retry + rollback state for failed inserts. */
2053 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2054 pages_remaining, address, length, seq, zc, total_bytes_to_map,
2055 err);
2056 }
2057
2058 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS)
tcp_zc_finalize_rx_tstamp(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2059 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2060 struct tcp_zerocopy_receive *zc,
2061 struct scm_timestamping_internal *tss)
2062 {
2063 unsigned long msg_control_addr;
2064 struct msghdr cmsg_dummy;
2065
2066 msg_control_addr = (unsigned long)zc->msg_control;
2067 cmsg_dummy.msg_control = (void *)msg_control_addr;
2068 cmsg_dummy.msg_controllen =
2069 (__kernel_size_t)zc->msg_controllen;
2070 cmsg_dummy.msg_flags = in_compat_syscall()
2071 ? MSG_CMSG_COMPAT : 0;
2072 cmsg_dummy.msg_control_is_user = true;
2073 zc->msg_flags = 0;
2074 if (zc->msg_control == msg_control_addr &&
2075 zc->msg_controllen == cmsg_dummy.msg_controllen) {
2076 tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2077 zc->msg_control = (__u64)
2078 ((uintptr_t)cmsg_dummy.msg_control);
2079 zc->msg_controllen =
2080 (__u64)cmsg_dummy.msg_controllen;
2081 zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2082 }
2083 }
2084
2085 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
tcp_zerocopy_receive(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2086 static int tcp_zerocopy_receive(struct sock *sk,
2087 struct tcp_zerocopy_receive *zc,
2088 struct scm_timestamping_internal *tss)
2089 {
2090 u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2091 unsigned long address = (unsigned long)zc->address;
2092 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2093 s32 copybuf_len = zc->copybuf_len;
2094 struct tcp_sock *tp = tcp_sk(sk);
2095 const skb_frag_t *frags = NULL;
2096 unsigned int pages_to_map = 0;
2097 struct vm_area_struct *vma;
2098 struct sk_buff *skb = NULL;
2099 u32 seq = tp->copied_seq;
2100 u32 total_bytes_to_map;
2101 int inq = tcp_inq(sk);
2102 int ret;
2103
2104 zc->copybuf_len = 0;
2105 zc->msg_flags = 0;
2106
2107 if (address & (PAGE_SIZE - 1) || address != zc->address)
2108 return -EINVAL;
2109
2110 if (sk->sk_state == TCP_LISTEN)
2111 return -ENOTCONN;
2112
2113 sock_rps_record_flow(sk);
2114
2115 if (inq && inq <= copybuf_len)
2116 return receive_fallback_to_copy(sk, zc, inq, tss);
2117
2118 if (inq < PAGE_SIZE) {
2119 zc->length = 0;
2120 zc->recv_skip_hint = inq;
2121 if (!inq && sock_flag(sk, SOCK_DONE))
2122 return -EIO;
2123 return 0;
2124 }
2125
2126 mmap_read_lock(current->mm);
2127
2128 vma = vma_lookup(current->mm, address);
2129 if (!vma || vma->vm_ops != &tcp_vm_ops) {
2130 mmap_read_unlock(current->mm);
2131 return -EINVAL;
2132 }
2133 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2134 avail_len = min_t(u32, vma_len, inq);
2135 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2136 if (total_bytes_to_map) {
2137 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2138 zap_page_range(vma, address, total_bytes_to_map);
2139 zc->length = total_bytes_to_map;
2140 zc->recv_skip_hint = 0;
2141 } else {
2142 zc->length = avail_len;
2143 zc->recv_skip_hint = avail_len;
2144 }
2145 ret = 0;
2146 while (length + PAGE_SIZE <= zc->length) {
2147 int mappable_offset;
2148 struct page *page;
2149
2150 if (zc->recv_skip_hint < PAGE_SIZE) {
2151 u32 offset_frag;
2152
2153 if (skb) {
2154 if (zc->recv_skip_hint > 0)
2155 break;
2156 skb = skb->next;
2157 offset = seq - TCP_SKB_CB(skb)->seq;
2158 } else {
2159 skb = tcp_recv_skb(sk, seq, &offset);
2160 }
2161
2162 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2163 tcp_update_recv_tstamps(skb, tss);
2164 zc->msg_flags |= TCP_CMSG_TS;
2165 }
2166 zc->recv_skip_hint = skb->len - offset;
2167 frags = skb_advance_to_frag(skb, offset, &offset_frag);
2168 if (!frags || offset_frag)
2169 break;
2170 }
2171
2172 mappable_offset = find_next_mappable_frag(frags,
2173 zc->recv_skip_hint);
2174 if (mappable_offset) {
2175 zc->recv_skip_hint = mappable_offset;
2176 break;
2177 }
2178 page = skb_frag_page(frags);
2179 prefetchw(page);
2180 pages[pages_to_map++] = page;
2181 length += PAGE_SIZE;
2182 zc->recv_skip_hint -= PAGE_SIZE;
2183 frags++;
2184 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2185 zc->recv_skip_hint < PAGE_SIZE) {
2186 /* Either full batch, or we're about to go to next skb
2187 * (and we cannot unroll failed ops across skbs).
2188 */
2189 ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2190 pages_to_map,
2191 &address, &length,
2192 &seq, zc,
2193 total_bytes_to_map);
2194 if (ret)
2195 goto out;
2196 pages_to_map = 0;
2197 }
2198 }
2199 if (pages_to_map) {
2200 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2201 &address, &length, &seq,
2202 zc, total_bytes_to_map);
2203 }
2204 out:
2205 mmap_read_unlock(current->mm);
2206 /* Try to copy straggler data. */
2207 if (!ret)
2208 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2209
2210 if (length + copylen) {
2211 WRITE_ONCE(tp->copied_seq, seq);
2212 tcp_rcv_space_adjust(sk);
2213
2214 /* Clean up data we have read: This will do ACK frames. */
2215 tcp_recv_skb(sk, seq, &offset);
2216 tcp_cleanup_rbuf(sk, length + copylen);
2217 ret = 0;
2218 if (length == zc->length)
2219 zc->recv_skip_hint = 0;
2220 } else {
2221 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2222 ret = -EIO;
2223 }
2224 zc->length = length;
2225 return ret;
2226 }
2227 #endif
2228
2229 /* Similar to __sock_recv_timestamp, but does not require an skb */
tcp_recv_timestamp(struct msghdr * msg,const struct sock * sk,struct scm_timestamping_internal * tss)2230 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2231 struct scm_timestamping_internal *tss)
2232 {
2233 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2234 bool has_timestamping = false;
2235
2236 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2237 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2238 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2239 if (new_tstamp) {
2240 struct __kernel_timespec kts = {
2241 .tv_sec = tss->ts[0].tv_sec,
2242 .tv_nsec = tss->ts[0].tv_nsec,
2243 };
2244 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2245 sizeof(kts), &kts);
2246 } else {
2247 struct __kernel_old_timespec ts_old = {
2248 .tv_sec = tss->ts[0].tv_sec,
2249 .tv_nsec = tss->ts[0].tv_nsec,
2250 };
2251 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2252 sizeof(ts_old), &ts_old);
2253 }
2254 } else {
2255 if (new_tstamp) {
2256 struct __kernel_sock_timeval stv = {
2257 .tv_sec = tss->ts[0].tv_sec,
2258 .tv_usec = tss->ts[0].tv_nsec / 1000,
2259 };
2260 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2261 sizeof(stv), &stv);
2262 } else {
2263 struct __kernel_old_timeval tv = {
2264 .tv_sec = tss->ts[0].tv_sec,
2265 .tv_usec = tss->ts[0].tv_nsec / 1000,
2266 };
2267 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2268 sizeof(tv), &tv);
2269 }
2270 }
2271 }
2272
2273 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2274 has_timestamping = true;
2275 else
2276 tss->ts[0] = (struct timespec64) {0};
2277 }
2278
2279 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2280 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2281 has_timestamping = true;
2282 else
2283 tss->ts[2] = (struct timespec64) {0};
2284 }
2285
2286 if (has_timestamping) {
2287 tss->ts[1] = (struct timespec64) {0};
2288 if (sock_flag(sk, SOCK_TSTAMP_NEW))
2289 put_cmsg_scm_timestamping64(msg, tss);
2290 else
2291 put_cmsg_scm_timestamping(msg, tss);
2292 }
2293 }
2294
tcp_inq_hint(struct sock * sk)2295 static int tcp_inq_hint(struct sock *sk)
2296 {
2297 const struct tcp_sock *tp = tcp_sk(sk);
2298 u32 copied_seq = READ_ONCE(tp->copied_seq);
2299 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2300 int inq;
2301
2302 inq = rcv_nxt - copied_seq;
2303 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2304 lock_sock(sk);
2305 inq = tp->rcv_nxt - tp->copied_seq;
2306 release_sock(sk);
2307 }
2308 /* After receiving a FIN, tell the user-space to continue reading
2309 * by returning a non-zero inq.
2310 */
2311 if (inq == 0 && sock_flag(sk, SOCK_DONE))
2312 inq = 1;
2313 return inq;
2314 }
2315
2316 /*
2317 * This routine copies from a sock struct into the user buffer.
2318 *
2319 * Technical note: in 2.3 we work on _locked_ socket, so that
2320 * tricks with *seq access order and skb->users are not required.
2321 * Probably, code can be easily improved even more.
2322 */
2323
tcp_recvmsg_locked(struct sock * sk,struct msghdr * msg,size_t len,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)2324 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2325 int flags, struct scm_timestamping_internal *tss,
2326 int *cmsg_flags)
2327 {
2328 struct tcp_sock *tp = tcp_sk(sk);
2329 int copied = 0;
2330 u32 peek_seq;
2331 u32 *seq;
2332 unsigned long used;
2333 int err;
2334 int target; /* Read at least this many bytes */
2335 long timeo;
2336 struct sk_buff *skb, *last;
2337 u32 urg_hole = 0;
2338
2339 err = -ENOTCONN;
2340 if (sk->sk_state == TCP_LISTEN)
2341 goto out;
2342
2343 if (tp->recvmsg_inq) {
2344 *cmsg_flags = TCP_CMSG_INQ;
2345 msg->msg_get_inq = 1;
2346 }
2347 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2348
2349 /* Urgent data needs to be handled specially. */
2350 if (flags & MSG_OOB)
2351 goto recv_urg;
2352
2353 if (unlikely(tp->repair)) {
2354 err = -EPERM;
2355 if (!(flags & MSG_PEEK))
2356 goto out;
2357
2358 if (tp->repair_queue == TCP_SEND_QUEUE)
2359 goto recv_sndq;
2360
2361 err = -EINVAL;
2362 if (tp->repair_queue == TCP_NO_QUEUE)
2363 goto out;
2364
2365 /* 'common' recv queue MSG_PEEK-ing */
2366 }
2367
2368 seq = &tp->copied_seq;
2369 if (flags & MSG_PEEK) {
2370 peek_seq = tp->copied_seq;
2371 seq = &peek_seq;
2372 }
2373
2374 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2375
2376 do {
2377 u32 offset;
2378
2379 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2380 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2381 if (copied)
2382 break;
2383 if (signal_pending(current)) {
2384 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2385 break;
2386 }
2387 }
2388
2389 /* Next get a buffer. */
2390
2391 last = skb_peek_tail(&sk->sk_receive_queue);
2392 skb_queue_walk(&sk->sk_receive_queue, skb) {
2393 last = skb;
2394 /* Now that we have two receive queues this
2395 * shouldn't happen.
2396 */
2397 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2398 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2399 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2400 flags))
2401 break;
2402
2403 offset = *seq - TCP_SKB_CB(skb)->seq;
2404 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2405 pr_err_once("%s: found a SYN, please report !\n", __func__);
2406 offset--;
2407 }
2408 if (offset < skb->len)
2409 goto found_ok_skb;
2410 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2411 goto found_fin_ok;
2412 WARN(!(flags & MSG_PEEK),
2413 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2414 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2415 }
2416
2417 /* Well, if we have backlog, try to process it now yet. */
2418
2419 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2420 break;
2421
2422 if (copied) {
2423 if (!timeo ||
2424 sk->sk_err ||
2425 sk->sk_state == TCP_CLOSE ||
2426 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2427 signal_pending(current))
2428 break;
2429 } else {
2430 if (sock_flag(sk, SOCK_DONE))
2431 break;
2432
2433 if (sk->sk_err) {
2434 copied = sock_error(sk);
2435 break;
2436 }
2437
2438 if (sk->sk_shutdown & RCV_SHUTDOWN)
2439 break;
2440
2441 if (sk->sk_state == TCP_CLOSE) {
2442 /* This occurs when user tries to read
2443 * from never connected socket.
2444 */
2445 copied = -ENOTCONN;
2446 break;
2447 }
2448
2449 if (!timeo) {
2450 copied = -EAGAIN;
2451 break;
2452 }
2453
2454 if (signal_pending(current)) {
2455 copied = sock_intr_errno(timeo);
2456 break;
2457 }
2458 }
2459
2460 if (copied >= target) {
2461 /* Do not sleep, just process backlog. */
2462 __sk_flush_backlog(sk);
2463 } else {
2464 tcp_cleanup_rbuf(sk, copied);
2465 sk_wait_data(sk, &timeo, last);
2466 }
2467
2468 if ((flags & MSG_PEEK) &&
2469 (peek_seq - copied - urg_hole != tp->copied_seq)) {
2470 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2471 current->comm,
2472 task_pid_nr(current));
2473 peek_seq = tp->copied_seq;
2474 }
2475 continue;
2476
2477 found_ok_skb:
2478 /* Ok so how much can we use? */
2479 used = skb->len - offset;
2480 if (len < used)
2481 used = len;
2482
2483 /* Do we have urgent data here? */
2484 if (unlikely(tp->urg_data)) {
2485 u32 urg_offset = tp->urg_seq - *seq;
2486 if (urg_offset < used) {
2487 if (!urg_offset) {
2488 if (!sock_flag(sk, SOCK_URGINLINE)) {
2489 WRITE_ONCE(*seq, *seq + 1);
2490 urg_hole++;
2491 offset++;
2492 used--;
2493 if (!used)
2494 goto skip_copy;
2495 }
2496 } else
2497 used = urg_offset;
2498 }
2499 }
2500
2501 if (!(flags & MSG_TRUNC)) {
2502 err = skb_copy_datagram_msg(skb, offset, msg, used);
2503 if (err) {
2504 /* Exception. Bailout! */
2505 if (!copied)
2506 copied = -EFAULT;
2507 break;
2508 }
2509 }
2510
2511 WRITE_ONCE(*seq, *seq + used);
2512 copied += used;
2513 len -= used;
2514
2515 tcp_rcv_space_adjust(sk);
2516
2517 skip_copy:
2518 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2519 WRITE_ONCE(tp->urg_data, 0);
2520 tcp_fast_path_check(sk);
2521 }
2522
2523 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2524 tcp_update_recv_tstamps(skb, tss);
2525 *cmsg_flags |= TCP_CMSG_TS;
2526 }
2527
2528 if (used + offset < skb->len)
2529 continue;
2530
2531 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2532 goto found_fin_ok;
2533 if (!(flags & MSG_PEEK))
2534 tcp_eat_recv_skb(sk, skb);
2535 continue;
2536
2537 found_fin_ok:
2538 /* Process the FIN. */
2539 WRITE_ONCE(*seq, *seq + 1);
2540 if (!(flags & MSG_PEEK))
2541 tcp_eat_recv_skb(sk, skb);
2542 break;
2543 } while (len > 0);
2544
2545 /* According to UNIX98, msg_name/msg_namelen are ignored
2546 * on connected socket. I was just happy when found this 8) --ANK
2547 */
2548
2549 /* Clean up data we have read: This will do ACK frames. */
2550 tcp_cleanup_rbuf(sk, copied);
2551 return copied;
2552
2553 out:
2554 return err;
2555
2556 recv_urg:
2557 err = tcp_recv_urg(sk, msg, len, flags);
2558 goto out;
2559
2560 recv_sndq:
2561 err = tcp_peek_sndq(sk, msg, len);
2562 goto out;
2563 }
2564
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2565 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2566 int *addr_len)
2567 {
2568 int cmsg_flags = 0, ret;
2569 struct scm_timestamping_internal tss;
2570
2571 if (unlikely(flags & MSG_ERRQUEUE))
2572 return inet_recv_error(sk, msg, len, addr_len);
2573
2574 if (sk_can_busy_loop(sk) &&
2575 skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2576 sk->sk_state == TCP_ESTABLISHED)
2577 sk_busy_loop(sk, flags & MSG_DONTWAIT);
2578
2579 lock_sock(sk);
2580 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2581 release_sock(sk);
2582
2583 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2584 if (cmsg_flags & TCP_CMSG_TS)
2585 tcp_recv_timestamp(msg, sk, &tss);
2586 if (msg->msg_get_inq) {
2587 msg->msg_inq = tcp_inq_hint(sk);
2588 if (cmsg_flags & TCP_CMSG_INQ)
2589 put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2590 sizeof(msg->msg_inq), &msg->msg_inq);
2591 }
2592 }
2593 return ret;
2594 }
2595 EXPORT_SYMBOL(tcp_recvmsg);
2596
tcp_set_state(struct sock * sk,int state)2597 void tcp_set_state(struct sock *sk, int state)
2598 {
2599 int oldstate = sk->sk_state;
2600
2601 /* We defined a new enum for TCP states that are exported in BPF
2602 * so as not force the internal TCP states to be frozen. The
2603 * following checks will detect if an internal state value ever
2604 * differs from the BPF value. If this ever happens, then we will
2605 * need to remap the internal value to the BPF value before calling
2606 * tcp_call_bpf_2arg.
2607 */
2608 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2609 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2610 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2611 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2612 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2613 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2614 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2615 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2616 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2617 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2618 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2619 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2620 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2621
2622 /* bpf uapi header bpf.h defines an anonymous enum with values
2623 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2624 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2625 * But clang built vmlinux does not have this enum in DWARF
2626 * since clang removes the above code before generating IR/debuginfo.
2627 * Let us explicitly emit the type debuginfo to ensure the
2628 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2629 * regardless of which compiler is used.
2630 */
2631 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2632
2633 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2634 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2635
2636 switch (state) {
2637 case TCP_ESTABLISHED:
2638 if (oldstate != TCP_ESTABLISHED)
2639 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2640 break;
2641
2642 case TCP_CLOSE:
2643 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2644 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2645
2646 sk->sk_prot->unhash(sk);
2647 if (inet_csk(sk)->icsk_bind_hash &&
2648 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2649 inet_put_port(sk);
2650 fallthrough;
2651 default:
2652 if (oldstate == TCP_ESTABLISHED)
2653 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2654 }
2655
2656 /* Change state AFTER socket is unhashed to avoid closed
2657 * socket sitting in hash tables.
2658 */
2659 inet_sk_state_store(sk, state);
2660 }
2661 EXPORT_SYMBOL_GPL(tcp_set_state);
2662
2663 /*
2664 * State processing on a close. This implements the state shift for
2665 * sending our FIN frame. Note that we only send a FIN for some
2666 * states. A shutdown() may have already sent the FIN, or we may be
2667 * closed.
2668 */
2669
2670 static const unsigned char new_state[16] = {
2671 /* current state: new state: action: */
2672 [0 /* (Invalid) */] = TCP_CLOSE,
2673 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2674 [TCP_SYN_SENT] = TCP_CLOSE,
2675 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2676 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2677 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2678 [TCP_TIME_WAIT] = TCP_CLOSE,
2679 [TCP_CLOSE] = TCP_CLOSE,
2680 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2681 [TCP_LAST_ACK] = TCP_LAST_ACK,
2682 [TCP_LISTEN] = TCP_CLOSE,
2683 [TCP_CLOSING] = TCP_CLOSING,
2684 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2685 };
2686
tcp_close_state(struct sock * sk)2687 static int tcp_close_state(struct sock *sk)
2688 {
2689 int next = (int)new_state[sk->sk_state];
2690 int ns = next & TCP_STATE_MASK;
2691
2692 tcp_set_state(sk, ns);
2693
2694 return next & TCP_ACTION_FIN;
2695 }
2696
2697 /*
2698 * Shutdown the sending side of a connection. Much like close except
2699 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2700 */
2701
tcp_shutdown(struct sock * sk,int how)2702 void tcp_shutdown(struct sock *sk, int how)
2703 {
2704 /* We need to grab some memory, and put together a FIN,
2705 * and then put it into the queue to be sent.
2706 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2707 */
2708 if (!(how & SEND_SHUTDOWN))
2709 return;
2710
2711 /* If we've already sent a FIN, or it's a closed state, skip this. */
2712 if ((1 << sk->sk_state) &
2713 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2714 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2715 /* Clear out any half completed packets. FIN if needed. */
2716 if (tcp_close_state(sk))
2717 tcp_send_fin(sk);
2718 }
2719 }
2720 EXPORT_SYMBOL(tcp_shutdown);
2721
tcp_orphan_count_sum(void)2722 int tcp_orphan_count_sum(void)
2723 {
2724 int i, total = 0;
2725
2726 for_each_possible_cpu(i)
2727 total += per_cpu(tcp_orphan_count, i);
2728
2729 return max(total, 0);
2730 }
2731
2732 static int tcp_orphan_cache;
2733 static struct timer_list tcp_orphan_timer;
2734 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2735
tcp_orphan_update(struct timer_list * unused)2736 static void tcp_orphan_update(struct timer_list *unused)
2737 {
2738 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2739 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2740 }
2741
tcp_too_many_orphans(int shift)2742 static bool tcp_too_many_orphans(int shift)
2743 {
2744 return READ_ONCE(tcp_orphan_cache) << shift >
2745 READ_ONCE(sysctl_tcp_max_orphans);
2746 }
2747
tcp_check_oom(struct sock * sk,int shift)2748 bool tcp_check_oom(struct sock *sk, int shift)
2749 {
2750 bool too_many_orphans, out_of_socket_memory;
2751
2752 too_many_orphans = tcp_too_many_orphans(shift);
2753 out_of_socket_memory = tcp_out_of_memory(sk);
2754
2755 if (too_many_orphans)
2756 net_info_ratelimited("too many orphaned sockets\n");
2757 if (out_of_socket_memory)
2758 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2759 return too_many_orphans || out_of_socket_memory;
2760 }
2761
__tcp_close(struct sock * sk,long timeout)2762 void __tcp_close(struct sock *sk, long timeout)
2763 {
2764 struct sk_buff *skb;
2765 int data_was_unread = 0;
2766 int state;
2767
2768 sk->sk_shutdown = SHUTDOWN_MASK;
2769
2770 if (sk->sk_state == TCP_LISTEN) {
2771 tcp_set_state(sk, TCP_CLOSE);
2772
2773 /* Special case. */
2774 inet_csk_listen_stop(sk);
2775
2776 goto adjudge_to_death;
2777 }
2778
2779 /* We need to flush the recv. buffs. We do this only on the
2780 * descriptor close, not protocol-sourced closes, because the
2781 * reader process may not have drained the data yet!
2782 */
2783 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2784 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2785
2786 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2787 len--;
2788 data_was_unread += len;
2789 __kfree_skb(skb);
2790 }
2791
2792 sk_mem_reclaim(sk);
2793
2794 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2795 if (sk->sk_state == TCP_CLOSE)
2796 goto adjudge_to_death;
2797
2798 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2799 * data was lost. To witness the awful effects of the old behavior of
2800 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2801 * GET in an FTP client, suspend the process, wait for the client to
2802 * advertise a zero window, then kill -9 the FTP client, wheee...
2803 * Note: timeout is always zero in such a case.
2804 */
2805 if (unlikely(tcp_sk(sk)->repair)) {
2806 sk->sk_prot->disconnect(sk, 0);
2807 } else if (data_was_unread) {
2808 /* Unread data was tossed, zap the connection. */
2809 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2810 tcp_set_state(sk, TCP_CLOSE);
2811 tcp_send_active_reset(sk, sk->sk_allocation);
2812 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2813 /* Check zero linger _after_ checking for unread data. */
2814 sk->sk_prot->disconnect(sk, 0);
2815 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2816 } else if (tcp_close_state(sk)) {
2817 /* We FIN if the application ate all the data before
2818 * zapping the connection.
2819 */
2820
2821 /* RED-PEN. Formally speaking, we have broken TCP state
2822 * machine. State transitions:
2823 *
2824 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2825 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2826 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2827 *
2828 * are legal only when FIN has been sent (i.e. in window),
2829 * rather than queued out of window. Purists blame.
2830 *
2831 * F.e. "RFC state" is ESTABLISHED,
2832 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2833 *
2834 * The visible declinations are that sometimes
2835 * we enter time-wait state, when it is not required really
2836 * (harmless), do not send active resets, when they are
2837 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2838 * they look as CLOSING or LAST_ACK for Linux)
2839 * Probably, I missed some more holelets.
2840 * --ANK
2841 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2842 * in a single packet! (May consider it later but will
2843 * probably need API support or TCP_CORK SYN-ACK until
2844 * data is written and socket is closed.)
2845 */
2846 tcp_send_fin(sk);
2847 }
2848
2849 sk_stream_wait_close(sk, timeout);
2850
2851 adjudge_to_death:
2852 state = sk->sk_state;
2853 sock_hold(sk);
2854 sock_orphan(sk);
2855
2856 local_bh_disable();
2857 bh_lock_sock(sk);
2858 /* remove backlog if any, without releasing ownership. */
2859 __release_sock(sk);
2860
2861 this_cpu_inc(tcp_orphan_count);
2862
2863 /* Have we already been destroyed by a softirq or backlog? */
2864 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2865 goto out;
2866
2867 /* This is a (useful) BSD violating of the RFC. There is a
2868 * problem with TCP as specified in that the other end could
2869 * keep a socket open forever with no application left this end.
2870 * We use a 1 minute timeout (about the same as BSD) then kill
2871 * our end. If they send after that then tough - BUT: long enough
2872 * that we won't make the old 4*rto = almost no time - whoops
2873 * reset mistake.
2874 *
2875 * Nope, it was not mistake. It is really desired behaviour
2876 * f.e. on http servers, when such sockets are useless, but
2877 * consume significant resources. Let's do it with special
2878 * linger2 option. --ANK
2879 */
2880
2881 if (sk->sk_state == TCP_FIN_WAIT2) {
2882 struct tcp_sock *tp = tcp_sk(sk);
2883 if (tp->linger2 < 0) {
2884 tcp_set_state(sk, TCP_CLOSE);
2885 tcp_send_active_reset(sk, GFP_ATOMIC);
2886 __NET_INC_STATS(sock_net(sk),
2887 LINUX_MIB_TCPABORTONLINGER);
2888 } else {
2889 const int tmo = tcp_fin_time(sk);
2890
2891 if (tmo > TCP_TIMEWAIT_LEN) {
2892 inet_csk_reset_keepalive_timer(sk,
2893 tmo - TCP_TIMEWAIT_LEN);
2894 } else {
2895 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2896 goto out;
2897 }
2898 }
2899 }
2900 if (sk->sk_state != TCP_CLOSE) {
2901 sk_mem_reclaim(sk);
2902 if (tcp_check_oom(sk, 0)) {
2903 tcp_set_state(sk, TCP_CLOSE);
2904 tcp_send_active_reset(sk, GFP_ATOMIC);
2905 __NET_INC_STATS(sock_net(sk),
2906 LINUX_MIB_TCPABORTONMEMORY);
2907 } else if (!check_net(sock_net(sk))) {
2908 /* Not possible to send reset; just close */
2909 tcp_set_state(sk, TCP_CLOSE);
2910 }
2911 }
2912
2913 if (sk->sk_state == TCP_CLOSE) {
2914 struct request_sock *req;
2915
2916 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2917 lockdep_sock_is_held(sk));
2918 /* We could get here with a non-NULL req if the socket is
2919 * aborted (e.g., closed with unread data) before 3WHS
2920 * finishes.
2921 */
2922 if (req)
2923 reqsk_fastopen_remove(sk, req, false);
2924 inet_csk_destroy_sock(sk);
2925 }
2926 /* Otherwise, socket is reprieved until protocol close. */
2927
2928 out:
2929 bh_unlock_sock(sk);
2930 local_bh_enable();
2931 }
2932
tcp_close(struct sock * sk,long timeout)2933 void tcp_close(struct sock *sk, long timeout)
2934 {
2935 lock_sock(sk);
2936 __tcp_close(sk, timeout);
2937 release_sock(sk);
2938 sock_put(sk);
2939 }
2940 EXPORT_SYMBOL(tcp_close);
2941
2942 /* These states need RST on ABORT according to RFC793 */
2943
tcp_need_reset(int state)2944 static inline bool tcp_need_reset(int state)
2945 {
2946 return (1 << state) &
2947 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2948 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2949 }
2950
tcp_rtx_queue_purge(struct sock * sk)2951 static void tcp_rtx_queue_purge(struct sock *sk)
2952 {
2953 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2954
2955 tcp_sk(sk)->highest_sack = NULL;
2956 while (p) {
2957 struct sk_buff *skb = rb_to_skb(p);
2958
2959 p = rb_next(p);
2960 /* Since we are deleting whole queue, no need to
2961 * list_del(&skb->tcp_tsorted_anchor)
2962 */
2963 tcp_rtx_queue_unlink(skb, sk);
2964 tcp_wmem_free_skb(sk, skb);
2965 }
2966 }
2967
tcp_write_queue_purge(struct sock * sk)2968 void tcp_write_queue_purge(struct sock *sk)
2969 {
2970 struct sk_buff *skb;
2971
2972 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2973 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2974 tcp_skb_tsorted_anchor_cleanup(skb);
2975 tcp_wmem_free_skb(sk, skb);
2976 }
2977 tcp_rtx_queue_purge(sk);
2978 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2979 sk_mem_reclaim(sk);
2980 tcp_clear_all_retrans_hints(tcp_sk(sk));
2981 tcp_sk(sk)->packets_out = 0;
2982 inet_csk(sk)->icsk_backoff = 0;
2983 }
2984
tcp_disconnect(struct sock * sk,int flags)2985 int tcp_disconnect(struct sock *sk, int flags)
2986 {
2987 struct inet_sock *inet = inet_sk(sk);
2988 struct inet_connection_sock *icsk = inet_csk(sk);
2989 struct tcp_sock *tp = tcp_sk(sk);
2990 int old_state = sk->sk_state;
2991 u32 seq;
2992
2993 if (old_state != TCP_CLOSE)
2994 tcp_set_state(sk, TCP_CLOSE);
2995
2996 /* ABORT function of RFC793 */
2997 if (old_state == TCP_LISTEN) {
2998 inet_csk_listen_stop(sk);
2999 } else if (unlikely(tp->repair)) {
3000 sk->sk_err = ECONNABORTED;
3001 } else if (tcp_need_reset(old_state) ||
3002 (tp->snd_nxt != tp->write_seq &&
3003 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
3004 /* The last check adjusts for discrepancy of Linux wrt. RFC
3005 * states
3006 */
3007 tcp_send_active_reset(sk, gfp_any());
3008 sk->sk_err = ECONNRESET;
3009 } else if (old_state == TCP_SYN_SENT)
3010 sk->sk_err = ECONNRESET;
3011
3012 tcp_clear_xmit_timers(sk);
3013 __skb_queue_purge(&sk->sk_receive_queue);
3014 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3015 WRITE_ONCE(tp->urg_data, 0);
3016 tcp_write_queue_purge(sk);
3017 tcp_fastopen_active_disable_ofo_check(sk);
3018 skb_rbtree_purge(&tp->out_of_order_queue);
3019
3020 inet->inet_dport = 0;
3021
3022 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
3023 inet_reset_saddr(sk);
3024
3025 sk->sk_shutdown = 0;
3026 sock_reset_flag(sk, SOCK_DONE);
3027 tp->srtt_us = 0;
3028 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3029 tp->rcv_rtt_last_tsecr = 0;
3030
3031 seq = tp->write_seq + tp->max_window + 2;
3032 if (!seq)
3033 seq = 1;
3034 WRITE_ONCE(tp->write_seq, seq);
3035
3036 icsk->icsk_backoff = 0;
3037 icsk->icsk_probes_out = 0;
3038 icsk->icsk_probes_tstamp = 0;
3039 icsk->icsk_rto = TCP_TIMEOUT_INIT;
3040 icsk->icsk_rto_min = TCP_RTO_MIN;
3041 icsk->icsk_delack_max = TCP_DELACK_MAX;
3042 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3043 tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3044 tp->snd_cwnd_cnt = 0;
3045 tp->window_clamp = 0;
3046 tp->delivered = 0;
3047 tp->delivered_ce = 0;
3048 if (icsk->icsk_ca_ops->release)
3049 icsk->icsk_ca_ops->release(sk);
3050 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3051 icsk->icsk_ca_initialized = 0;
3052 tcp_set_ca_state(sk, TCP_CA_Open);
3053 tp->is_sack_reneg = 0;
3054 tcp_clear_retrans(tp);
3055 tp->total_retrans = 0;
3056 inet_csk_delack_init(sk);
3057 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3058 * issue in __tcp_select_window()
3059 */
3060 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3061 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3062 __sk_dst_reset(sk);
3063 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3064 tcp_saved_syn_free(tp);
3065 tp->compressed_ack = 0;
3066 tp->segs_in = 0;
3067 tp->segs_out = 0;
3068 tp->bytes_sent = 0;
3069 tp->bytes_acked = 0;
3070 tp->bytes_received = 0;
3071 tp->bytes_retrans = 0;
3072 tp->data_segs_in = 0;
3073 tp->data_segs_out = 0;
3074 tp->duplicate_sack[0].start_seq = 0;
3075 tp->duplicate_sack[0].end_seq = 0;
3076 tp->dsack_dups = 0;
3077 tp->reord_seen = 0;
3078 tp->retrans_out = 0;
3079 tp->sacked_out = 0;
3080 tp->tlp_high_seq = 0;
3081 tp->last_oow_ack_time = 0;
3082 /* There's a bubble in the pipe until at least the first ACK. */
3083 tp->app_limited = ~0U;
3084 tp->rack.mstamp = 0;
3085 tp->rack.advanced = 0;
3086 tp->rack.reo_wnd_steps = 1;
3087 tp->rack.last_delivered = 0;
3088 tp->rack.reo_wnd_persist = 0;
3089 tp->rack.dsack_seen = 0;
3090 tp->syn_data_acked = 0;
3091 tp->rx_opt.saw_tstamp = 0;
3092 tp->rx_opt.dsack = 0;
3093 tp->rx_opt.num_sacks = 0;
3094 tp->rcv_ooopack = 0;
3095
3096
3097 /* Clean up fastopen related fields */
3098 tcp_free_fastopen_req(tp);
3099 inet->defer_connect = 0;
3100 tp->fastopen_client_fail = 0;
3101
3102 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3103
3104 if (sk->sk_frag.page) {
3105 put_page(sk->sk_frag.page);
3106 sk->sk_frag.page = NULL;
3107 sk->sk_frag.offset = 0;
3108 }
3109 sk_error_report(sk);
3110 return 0;
3111 }
3112 EXPORT_SYMBOL(tcp_disconnect);
3113
tcp_can_repair_sock(const struct sock * sk)3114 static inline bool tcp_can_repair_sock(const struct sock *sk)
3115 {
3116 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3117 (sk->sk_state != TCP_LISTEN);
3118 }
3119
tcp_repair_set_window(struct tcp_sock * tp,sockptr_t optbuf,int len)3120 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3121 {
3122 struct tcp_repair_window opt;
3123
3124 if (!tp->repair)
3125 return -EPERM;
3126
3127 if (len != sizeof(opt))
3128 return -EINVAL;
3129
3130 if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3131 return -EFAULT;
3132
3133 if (opt.max_window < opt.snd_wnd)
3134 return -EINVAL;
3135
3136 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3137 return -EINVAL;
3138
3139 if (after(opt.rcv_wup, tp->rcv_nxt))
3140 return -EINVAL;
3141
3142 tp->snd_wl1 = opt.snd_wl1;
3143 tp->snd_wnd = opt.snd_wnd;
3144 tp->max_window = opt.max_window;
3145
3146 tp->rcv_wnd = opt.rcv_wnd;
3147 tp->rcv_wup = opt.rcv_wup;
3148
3149 return 0;
3150 }
3151
tcp_repair_options_est(struct sock * sk,sockptr_t optbuf,unsigned int len)3152 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3153 unsigned int len)
3154 {
3155 struct tcp_sock *tp = tcp_sk(sk);
3156 struct tcp_repair_opt opt;
3157 size_t offset = 0;
3158
3159 while (len >= sizeof(opt)) {
3160 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3161 return -EFAULT;
3162
3163 offset += sizeof(opt);
3164 len -= sizeof(opt);
3165
3166 switch (opt.opt_code) {
3167 case TCPOPT_MSS:
3168 tp->rx_opt.mss_clamp = opt.opt_val;
3169 tcp_mtup_init(sk);
3170 break;
3171 case TCPOPT_WINDOW:
3172 {
3173 u16 snd_wscale = opt.opt_val & 0xFFFF;
3174 u16 rcv_wscale = opt.opt_val >> 16;
3175
3176 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3177 return -EFBIG;
3178
3179 tp->rx_opt.snd_wscale = snd_wscale;
3180 tp->rx_opt.rcv_wscale = rcv_wscale;
3181 tp->rx_opt.wscale_ok = 1;
3182 }
3183 break;
3184 case TCPOPT_SACK_PERM:
3185 if (opt.opt_val != 0)
3186 return -EINVAL;
3187
3188 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3189 break;
3190 case TCPOPT_TIMESTAMP:
3191 if (opt.opt_val != 0)
3192 return -EINVAL;
3193
3194 tp->rx_opt.tstamp_ok = 1;
3195 break;
3196 }
3197 }
3198
3199 return 0;
3200 }
3201
3202 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3203 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3204
tcp_enable_tx_delay(void)3205 static void tcp_enable_tx_delay(void)
3206 {
3207 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3208 static int __tcp_tx_delay_enabled = 0;
3209
3210 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3211 static_branch_enable(&tcp_tx_delay_enabled);
3212 pr_info("TCP_TX_DELAY enabled\n");
3213 }
3214 }
3215 }
3216
3217 /* When set indicates to always queue non-full frames. Later the user clears
3218 * this option and we transmit any pending partial frames in the queue. This is
3219 * meant to be used alongside sendfile() to get properly filled frames when the
3220 * user (for example) must write out headers with a write() call first and then
3221 * use sendfile to send out the data parts.
3222 *
3223 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3224 * TCP_NODELAY.
3225 */
__tcp_sock_set_cork(struct sock * sk,bool on)3226 void __tcp_sock_set_cork(struct sock *sk, bool on)
3227 {
3228 struct tcp_sock *tp = tcp_sk(sk);
3229
3230 if (on) {
3231 tp->nonagle |= TCP_NAGLE_CORK;
3232 } else {
3233 tp->nonagle &= ~TCP_NAGLE_CORK;
3234 if (tp->nonagle & TCP_NAGLE_OFF)
3235 tp->nonagle |= TCP_NAGLE_PUSH;
3236 tcp_push_pending_frames(sk);
3237 }
3238 }
3239
tcp_sock_set_cork(struct sock * sk,bool on)3240 void tcp_sock_set_cork(struct sock *sk, bool on)
3241 {
3242 lock_sock(sk);
3243 __tcp_sock_set_cork(sk, on);
3244 release_sock(sk);
3245 }
3246 EXPORT_SYMBOL(tcp_sock_set_cork);
3247
3248 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3249 * remembered, but it is not activated until cork is cleared.
3250 *
3251 * However, when TCP_NODELAY is set we make an explicit push, which overrides
3252 * even TCP_CORK for currently queued segments.
3253 */
__tcp_sock_set_nodelay(struct sock * sk,bool on)3254 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3255 {
3256 if (on) {
3257 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3258 tcp_push_pending_frames(sk);
3259 } else {
3260 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3261 }
3262 }
3263
tcp_sock_set_nodelay(struct sock * sk)3264 void tcp_sock_set_nodelay(struct sock *sk)
3265 {
3266 lock_sock(sk);
3267 __tcp_sock_set_nodelay(sk, true);
3268 release_sock(sk);
3269 }
3270 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3271
__tcp_sock_set_quickack(struct sock * sk,int val)3272 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3273 {
3274 if (!val) {
3275 inet_csk_enter_pingpong_mode(sk);
3276 return;
3277 }
3278
3279 inet_csk_exit_pingpong_mode(sk);
3280 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3281 inet_csk_ack_scheduled(sk)) {
3282 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3283 tcp_cleanup_rbuf(sk, 1);
3284 if (!(val & 1))
3285 inet_csk_enter_pingpong_mode(sk);
3286 }
3287 }
3288
tcp_sock_set_quickack(struct sock * sk,int val)3289 void tcp_sock_set_quickack(struct sock *sk, int val)
3290 {
3291 lock_sock(sk);
3292 __tcp_sock_set_quickack(sk, val);
3293 release_sock(sk);
3294 }
3295 EXPORT_SYMBOL(tcp_sock_set_quickack);
3296
tcp_sock_set_syncnt(struct sock * sk,int val)3297 int tcp_sock_set_syncnt(struct sock *sk, int val)
3298 {
3299 if (val < 1 || val > MAX_TCP_SYNCNT)
3300 return -EINVAL;
3301
3302 lock_sock(sk);
3303 inet_csk(sk)->icsk_syn_retries = val;
3304 release_sock(sk);
3305 return 0;
3306 }
3307 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3308
tcp_sock_set_user_timeout(struct sock * sk,u32 val)3309 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3310 {
3311 lock_sock(sk);
3312 inet_csk(sk)->icsk_user_timeout = val;
3313 release_sock(sk);
3314 }
3315 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3316
tcp_sock_set_keepidle_locked(struct sock * sk,int val)3317 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3318 {
3319 struct tcp_sock *tp = tcp_sk(sk);
3320
3321 if (val < 1 || val > MAX_TCP_KEEPIDLE)
3322 return -EINVAL;
3323
3324 tp->keepalive_time = val * HZ;
3325 if (sock_flag(sk, SOCK_KEEPOPEN) &&
3326 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3327 u32 elapsed = keepalive_time_elapsed(tp);
3328
3329 if (tp->keepalive_time > elapsed)
3330 elapsed = tp->keepalive_time - elapsed;
3331 else
3332 elapsed = 0;
3333 inet_csk_reset_keepalive_timer(sk, elapsed);
3334 }
3335
3336 return 0;
3337 }
3338
tcp_sock_set_keepidle(struct sock * sk,int val)3339 int tcp_sock_set_keepidle(struct sock *sk, int val)
3340 {
3341 int err;
3342
3343 lock_sock(sk);
3344 err = tcp_sock_set_keepidle_locked(sk, val);
3345 release_sock(sk);
3346 return err;
3347 }
3348 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3349
tcp_sock_set_keepintvl(struct sock * sk,int val)3350 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3351 {
3352 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3353 return -EINVAL;
3354
3355 lock_sock(sk);
3356 tcp_sk(sk)->keepalive_intvl = val * HZ;
3357 release_sock(sk);
3358 return 0;
3359 }
3360 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3361
tcp_sock_set_keepcnt(struct sock * sk,int val)3362 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3363 {
3364 if (val < 1 || val > MAX_TCP_KEEPCNT)
3365 return -EINVAL;
3366
3367 lock_sock(sk);
3368 tcp_sk(sk)->keepalive_probes = val;
3369 release_sock(sk);
3370 return 0;
3371 }
3372 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3373
tcp_set_window_clamp(struct sock * sk,int val)3374 int tcp_set_window_clamp(struct sock *sk, int val)
3375 {
3376 struct tcp_sock *tp = tcp_sk(sk);
3377
3378 if (!val) {
3379 if (sk->sk_state != TCP_CLOSE)
3380 return -EINVAL;
3381 tp->window_clamp = 0;
3382 } else {
3383 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3384 SOCK_MIN_RCVBUF / 2 : val;
3385 tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3386 }
3387 return 0;
3388 }
3389
3390 /*
3391 * Socket option code for TCP.
3392 */
do_tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3393 static int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3394 sockptr_t optval, unsigned int optlen)
3395 {
3396 struct tcp_sock *tp = tcp_sk(sk);
3397 struct inet_connection_sock *icsk = inet_csk(sk);
3398 struct net *net = sock_net(sk);
3399 int val;
3400 int err = 0;
3401
3402 /* These are data/string values, all the others are ints */
3403 switch (optname) {
3404 case TCP_CONGESTION: {
3405 char name[TCP_CA_NAME_MAX];
3406
3407 if (optlen < 1)
3408 return -EINVAL;
3409
3410 val = strncpy_from_sockptr(name, optval,
3411 min_t(long, TCP_CA_NAME_MAX-1, optlen));
3412 if (val < 0)
3413 return -EFAULT;
3414 name[val] = 0;
3415
3416 lock_sock(sk);
3417 err = tcp_set_congestion_control(sk, name, true,
3418 ns_capable(sock_net(sk)->user_ns,
3419 CAP_NET_ADMIN));
3420 release_sock(sk);
3421 return err;
3422 }
3423 case TCP_ULP: {
3424 char name[TCP_ULP_NAME_MAX];
3425
3426 if (optlen < 1)
3427 return -EINVAL;
3428
3429 val = strncpy_from_sockptr(name, optval,
3430 min_t(long, TCP_ULP_NAME_MAX - 1,
3431 optlen));
3432 if (val < 0)
3433 return -EFAULT;
3434 name[val] = 0;
3435
3436 lock_sock(sk);
3437 err = tcp_set_ulp(sk, name);
3438 release_sock(sk);
3439 return err;
3440 }
3441 case TCP_FASTOPEN_KEY: {
3442 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3443 __u8 *backup_key = NULL;
3444
3445 /* Allow a backup key as well to facilitate key rotation
3446 * First key is the active one.
3447 */
3448 if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3449 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3450 return -EINVAL;
3451
3452 if (copy_from_sockptr(key, optval, optlen))
3453 return -EFAULT;
3454
3455 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3456 backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3457
3458 return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3459 }
3460 default:
3461 /* fallthru */
3462 break;
3463 }
3464
3465 if (optlen < sizeof(int))
3466 return -EINVAL;
3467
3468 if (copy_from_sockptr(&val, optval, sizeof(val)))
3469 return -EFAULT;
3470
3471 lock_sock(sk);
3472
3473 switch (optname) {
3474 case TCP_MAXSEG:
3475 /* Values greater than interface MTU won't take effect. However
3476 * at the point when this call is done we typically don't yet
3477 * know which interface is going to be used
3478 */
3479 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3480 err = -EINVAL;
3481 break;
3482 }
3483 tp->rx_opt.user_mss = val;
3484 break;
3485
3486 case TCP_NODELAY:
3487 __tcp_sock_set_nodelay(sk, val);
3488 break;
3489
3490 case TCP_THIN_LINEAR_TIMEOUTS:
3491 if (val < 0 || val > 1)
3492 err = -EINVAL;
3493 else
3494 tp->thin_lto = val;
3495 break;
3496
3497 case TCP_THIN_DUPACK:
3498 if (val < 0 || val > 1)
3499 err = -EINVAL;
3500 break;
3501
3502 case TCP_REPAIR:
3503 if (!tcp_can_repair_sock(sk))
3504 err = -EPERM;
3505 else if (val == TCP_REPAIR_ON) {
3506 tp->repair = 1;
3507 sk->sk_reuse = SK_FORCE_REUSE;
3508 tp->repair_queue = TCP_NO_QUEUE;
3509 } else if (val == TCP_REPAIR_OFF) {
3510 tp->repair = 0;
3511 sk->sk_reuse = SK_NO_REUSE;
3512 tcp_send_window_probe(sk);
3513 } else if (val == TCP_REPAIR_OFF_NO_WP) {
3514 tp->repair = 0;
3515 sk->sk_reuse = SK_NO_REUSE;
3516 } else
3517 err = -EINVAL;
3518
3519 break;
3520
3521 case TCP_REPAIR_QUEUE:
3522 if (!tp->repair)
3523 err = -EPERM;
3524 else if ((unsigned int)val < TCP_QUEUES_NR)
3525 tp->repair_queue = val;
3526 else
3527 err = -EINVAL;
3528 break;
3529
3530 case TCP_QUEUE_SEQ:
3531 if (sk->sk_state != TCP_CLOSE) {
3532 err = -EPERM;
3533 } else if (tp->repair_queue == TCP_SEND_QUEUE) {
3534 if (!tcp_rtx_queue_empty(sk))
3535 err = -EPERM;
3536 else
3537 WRITE_ONCE(tp->write_seq, val);
3538 } else if (tp->repair_queue == TCP_RECV_QUEUE) {
3539 if (tp->rcv_nxt != tp->copied_seq) {
3540 err = -EPERM;
3541 } else {
3542 WRITE_ONCE(tp->rcv_nxt, val);
3543 WRITE_ONCE(tp->copied_seq, val);
3544 }
3545 } else {
3546 err = -EINVAL;
3547 }
3548 break;
3549
3550 case TCP_REPAIR_OPTIONS:
3551 if (!tp->repair)
3552 err = -EINVAL;
3553 else if (sk->sk_state == TCP_ESTABLISHED)
3554 err = tcp_repair_options_est(sk, optval, optlen);
3555 else
3556 err = -EPERM;
3557 break;
3558
3559 case TCP_CORK:
3560 __tcp_sock_set_cork(sk, val);
3561 break;
3562
3563 case TCP_KEEPIDLE:
3564 err = tcp_sock_set_keepidle_locked(sk, val);
3565 break;
3566 case TCP_KEEPINTVL:
3567 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3568 err = -EINVAL;
3569 else
3570 tp->keepalive_intvl = val * HZ;
3571 break;
3572 case TCP_KEEPCNT:
3573 if (val < 1 || val > MAX_TCP_KEEPCNT)
3574 err = -EINVAL;
3575 else
3576 tp->keepalive_probes = val;
3577 break;
3578 case TCP_SYNCNT:
3579 if (val < 1 || val > MAX_TCP_SYNCNT)
3580 err = -EINVAL;
3581 else
3582 icsk->icsk_syn_retries = val;
3583 break;
3584
3585 case TCP_SAVE_SYN:
3586 /* 0: disable, 1: enable, 2: start from ether_header */
3587 if (val < 0 || val > 2)
3588 err = -EINVAL;
3589 else
3590 tp->save_syn = val;
3591 break;
3592
3593 case TCP_LINGER2:
3594 if (val < 0)
3595 tp->linger2 = -1;
3596 else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3597 tp->linger2 = TCP_FIN_TIMEOUT_MAX;
3598 else
3599 tp->linger2 = val * HZ;
3600 break;
3601
3602 case TCP_DEFER_ACCEPT:
3603 /* Translate value in seconds to number of retransmits */
3604 icsk->icsk_accept_queue.rskq_defer_accept =
3605 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3606 TCP_RTO_MAX / HZ);
3607 break;
3608
3609 case TCP_WINDOW_CLAMP:
3610 err = tcp_set_window_clamp(sk, val);
3611 break;
3612
3613 case TCP_QUICKACK:
3614 __tcp_sock_set_quickack(sk, val);
3615 break;
3616
3617 #ifdef CONFIG_TCP_MD5SIG
3618 case TCP_MD5SIG:
3619 case TCP_MD5SIG_EXT:
3620 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3621 break;
3622 #endif
3623 case TCP_USER_TIMEOUT:
3624 /* Cap the max time in ms TCP will retry or probe the window
3625 * before giving up and aborting (ETIMEDOUT) a connection.
3626 */
3627 if (val < 0)
3628 err = -EINVAL;
3629 else
3630 icsk->icsk_user_timeout = val;
3631 break;
3632
3633 case TCP_FASTOPEN:
3634 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3635 TCPF_LISTEN))) {
3636 tcp_fastopen_init_key_once(net);
3637
3638 fastopen_queue_tune(sk, val);
3639 } else {
3640 err = -EINVAL;
3641 }
3642 break;
3643 case TCP_FASTOPEN_CONNECT:
3644 if (val > 1 || val < 0) {
3645 err = -EINVAL;
3646 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3647 TFO_CLIENT_ENABLE) {
3648 if (sk->sk_state == TCP_CLOSE)
3649 tp->fastopen_connect = val;
3650 else
3651 err = -EINVAL;
3652 } else {
3653 err = -EOPNOTSUPP;
3654 }
3655 break;
3656 case TCP_FASTOPEN_NO_COOKIE:
3657 if (val > 1 || val < 0)
3658 err = -EINVAL;
3659 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3660 err = -EINVAL;
3661 else
3662 tp->fastopen_no_cookie = val;
3663 break;
3664 case TCP_TIMESTAMP:
3665 if (!tp->repair)
3666 err = -EPERM;
3667 else
3668 tp->tsoffset = val - tcp_time_stamp_raw();
3669 break;
3670 case TCP_REPAIR_WINDOW:
3671 err = tcp_repair_set_window(tp, optval, optlen);
3672 break;
3673 case TCP_NOTSENT_LOWAT:
3674 tp->notsent_lowat = val;
3675 sk->sk_write_space(sk);
3676 break;
3677 case TCP_INQ:
3678 if (val > 1 || val < 0)
3679 err = -EINVAL;
3680 else
3681 tp->recvmsg_inq = val;
3682 break;
3683 case TCP_TX_DELAY:
3684 if (val)
3685 tcp_enable_tx_delay();
3686 tp->tcp_tx_delay = val;
3687 break;
3688 default:
3689 err = -ENOPROTOOPT;
3690 break;
3691 }
3692
3693 release_sock(sk);
3694 return err;
3695 }
3696
tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3697 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3698 unsigned int optlen)
3699 {
3700 const struct inet_connection_sock *icsk = inet_csk(sk);
3701
3702 if (level != SOL_TCP)
3703 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
3704 optval, optlen);
3705 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3706 }
3707 EXPORT_SYMBOL(tcp_setsockopt);
3708
tcp_get_info_chrono_stats(const struct tcp_sock * tp,struct tcp_info * info)3709 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3710 struct tcp_info *info)
3711 {
3712 u64 stats[__TCP_CHRONO_MAX], total = 0;
3713 enum tcp_chrono i;
3714
3715 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3716 stats[i] = tp->chrono_stat[i - 1];
3717 if (i == tp->chrono_type)
3718 stats[i] += tcp_jiffies32 - tp->chrono_start;
3719 stats[i] *= USEC_PER_SEC / HZ;
3720 total += stats[i];
3721 }
3722
3723 info->tcpi_busy_time = total;
3724 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3725 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3726 }
3727
3728 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)3729 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3730 {
3731 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3732 const struct inet_connection_sock *icsk = inet_csk(sk);
3733 unsigned long rate;
3734 u32 now;
3735 u64 rate64;
3736 bool slow;
3737
3738 memset(info, 0, sizeof(*info));
3739 if (sk->sk_type != SOCK_STREAM)
3740 return;
3741
3742 info->tcpi_state = inet_sk_state_load(sk);
3743
3744 /* Report meaningful fields for all TCP states, including listeners */
3745 rate = READ_ONCE(sk->sk_pacing_rate);
3746 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3747 info->tcpi_pacing_rate = rate64;
3748
3749 rate = READ_ONCE(sk->sk_max_pacing_rate);
3750 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3751 info->tcpi_max_pacing_rate = rate64;
3752
3753 info->tcpi_reordering = tp->reordering;
3754 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3755
3756 if (info->tcpi_state == TCP_LISTEN) {
3757 /* listeners aliased fields :
3758 * tcpi_unacked -> Number of children ready for accept()
3759 * tcpi_sacked -> max backlog
3760 */
3761 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3762 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3763 return;
3764 }
3765
3766 slow = lock_sock_fast(sk);
3767
3768 info->tcpi_ca_state = icsk->icsk_ca_state;
3769 info->tcpi_retransmits = icsk->icsk_retransmits;
3770 info->tcpi_probes = icsk->icsk_probes_out;
3771 info->tcpi_backoff = icsk->icsk_backoff;
3772
3773 if (tp->rx_opt.tstamp_ok)
3774 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3775 if (tcp_is_sack(tp))
3776 info->tcpi_options |= TCPI_OPT_SACK;
3777 if (tp->rx_opt.wscale_ok) {
3778 info->tcpi_options |= TCPI_OPT_WSCALE;
3779 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3780 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3781 }
3782
3783 if (tp->ecn_flags & TCP_ECN_OK)
3784 info->tcpi_options |= TCPI_OPT_ECN;
3785 if (tp->ecn_flags & TCP_ECN_SEEN)
3786 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3787 if (tp->syn_data_acked)
3788 info->tcpi_options |= TCPI_OPT_SYN_DATA;
3789
3790 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3791 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3792 info->tcpi_snd_mss = tp->mss_cache;
3793 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3794
3795 info->tcpi_unacked = tp->packets_out;
3796 info->tcpi_sacked = tp->sacked_out;
3797
3798 info->tcpi_lost = tp->lost_out;
3799 info->tcpi_retrans = tp->retrans_out;
3800
3801 now = tcp_jiffies32;
3802 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3803 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3804 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3805
3806 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3807 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3808 info->tcpi_rtt = tp->srtt_us >> 3;
3809 info->tcpi_rttvar = tp->mdev_us >> 2;
3810 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3811 info->tcpi_advmss = tp->advmss;
3812
3813 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3814 info->tcpi_rcv_space = tp->rcvq_space.space;
3815
3816 info->tcpi_total_retrans = tp->total_retrans;
3817
3818 info->tcpi_bytes_acked = tp->bytes_acked;
3819 info->tcpi_bytes_received = tp->bytes_received;
3820 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3821 tcp_get_info_chrono_stats(tp, info);
3822
3823 info->tcpi_segs_out = tp->segs_out;
3824
3825 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3826 info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3827 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3828
3829 info->tcpi_min_rtt = tcp_min_rtt(tp);
3830 info->tcpi_data_segs_out = tp->data_segs_out;
3831
3832 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3833 rate64 = tcp_compute_delivery_rate(tp);
3834 if (rate64)
3835 info->tcpi_delivery_rate = rate64;
3836 info->tcpi_delivered = tp->delivered;
3837 info->tcpi_delivered_ce = tp->delivered_ce;
3838 info->tcpi_bytes_sent = tp->bytes_sent;
3839 info->tcpi_bytes_retrans = tp->bytes_retrans;
3840 info->tcpi_dsack_dups = tp->dsack_dups;
3841 info->tcpi_reord_seen = tp->reord_seen;
3842 info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3843 info->tcpi_snd_wnd = tp->snd_wnd;
3844 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3845 unlock_sock_fast(sk, slow);
3846 }
3847 EXPORT_SYMBOL_GPL(tcp_get_info);
3848
tcp_opt_stats_get_size(void)3849 static size_t tcp_opt_stats_get_size(void)
3850 {
3851 return
3852 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3853 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3854 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3855 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3856 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3857 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3858 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3859 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3860 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3861 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3862 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3863 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3864 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3865 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3866 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3867 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3868 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3869 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3870 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3871 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3872 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3873 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3874 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3875 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3876 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3877 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3878 0;
3879 }
3880
3881 /* Returns TTL or hop limit of an incoming packet from skb. */
tcp_skb_ttl_or_hop_limit(const struct sk_buff * skb)3882 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3883 {
3884 if (skb->protocol == htons(ETH_P_IP))
3885 return ip_hdr(skb)->ttl;
3886 else if (skb->protocol == htons(ETH_P_IPV6))
3887 return ipv6_hdr(skb)->hop_limit;
3888 else
3889 return 0;
3890 }
3891
tcp_get_timestamping_opt_stats(const struct sock * sk,const struct sk_buff * orig_skb,const struct sk_buff * ack_skb)3892 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3893 const struct sk_buff *orig_skb,
3894 const struct sk_buff *ack_skb)
3895 {
3896 const struct tcp_sock *tp = tcp_sk(sk);
3897 struct sk_buff *stats;
3898 struct tcp_info info;
3899 unsigned long rate;
3900 u64 rate64;
3901
3902 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3903 if (!stats)
3904 return NULL;
3905
3906 tcp_get_info_chrono_stats(tp, &info);
3907 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3908 info.tcpi_busy_time, TCP_NLA_PAD);
3909 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3910 info.tcpi_rwnd_limited, TCP_NLA_PAD);
3911 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3912 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3913 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3914 tp->data_segs_out, TCP_NLA_PAD);
3915 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3916 tp->total_retrans, TCP_NLA_PAD);
3917
3918 rate = READ_ONCE(sk->sk_pacing_rate);
3919 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3920 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3921
3922 rate64 = tcp_compute_delivery_rate(tp);
3923 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3924
3925 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
3926 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3927 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3928
3929 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3930 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3931 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3932 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3933 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3934
3935 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3936 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3937
3938 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3939 TCP_NLA_PAD);
3940 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3941 TCP_NLA_PAD);
3942 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3943 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3944 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3945 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3946 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3947 max_t(int, 0, tp->write_seq - tp->snd_nxt));
3948 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3949 TCP_NLA_PAD);
3950 if (ack_skb)
3951 nla_put_u8(stats, TCP_NLA_TTL,
3952 tcp_skb_ttl_or_hop_limit(ack_skb));
3953
3954 return stats;
3955 }
3956
do_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3957 static int do_tcp_getsockopt(struct sock *sk, int level,
3958 int optname, char __user *optval, int __user *optlen)
3959 {
3960 struct inet_connection_sock *icsk = inet_csk(sk);
3961 struct tcp_sock *tp = tcp_sk(sk);
3962 struct net *net = sock_net(sk);
3963 int val, len;
3964
3965 if (get_user(len, optlen))
3966 return -EFAULT;
3967
3968 len = min_t(unsigned int, len, sizeof(int));
3969
3970 if (len < 0)
3971 return -EINVAL;
3972
3973 switch (optname) {
3974 case TCP_MAXSEG:
3975 val = tp->mss_cache;
3976 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3977 val = tp->rx_opt.user_mss;
3978 if (tp->repair)
3979 val = tp->rx_opt.mss_clamp;
3980 break;
3981 case TCP_NODELAY:
3982 val = !!(tp->nonagle&TCP_NAGLE_OFF);
3983 break;
3984 case TCP_CORK:
3985 val = !!(tp->nonagle&TCP_NAGLE_CORK);
3986 break;
3987 case TCP_KEEPIDLE:
3988 val = keepalive_time_when(tp) / HZ;
3989 break;
3990 case TCP_KEEPINTVL:
3991 val = keepalive_intvl_when(tp) / HZ;
3992 break;
3993 case TCP_KEEPCNT:
3994 val = keepalive_probes(tp);
3995 break;
3996 case TCP_SYNCNT:
3997 val = icsk->icsk_syn_retries ? :
3998 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
3999 break;
4000 case TCP_LINGER2:
4001 val = tp->linger2;
4002 if (val >= 0)
4003 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4004 break;
4005 case TCP_DEFER_ACCEPT:
4006 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
4007 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
4008 break;
4009 case TCP_WINDOW_CLAMP:
4010 val = tp->window_clamp;
4011 break;
4012 case TCP_INFO: {
4013 struct tcp_info info;
4014
4015 if (get_user(len, optlen))
4016 return -EFAULT;
4017
4018 tcp_get_info(sk, &info);
4019
4020 len = min_t(unsigned int, len, sizeof(info));
4021 if (put_user(len, optlen))
4022 return -EFAULT;
4023 if (copy_to_user(optval, &info, len))
4024 return -EFAULT;
4025 return 0;
4026 }
4027 case TCP_CC_INFO: {
4028 const struct tcp_congestion_ops *ca_ops;
4029 union tcp_cc_info info;
4030 size_t sz = 0;
4031 int attr;
4032
4033 if (get_user(len, optlen))
4034 return -EFAULT;
4035
4036 ca_ops = icsk->icsk_ca_ops;
4037 if (ca_ops && ca_ops->get_info)
4038 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4039
4040 len = min_t(unsigned int, len, sz);
4041 if (put_user(len, optlen))
4042 return -EFAULT;
4043 if (copy_to_user(optval, &info, len))
4044 return -EFAULT;
4045 return 0;
4046 }
4047 case TCP_QUICKACK:
4048 val = !inet_csk_in_pingpong_mode(sk);
4049 break;
4050
4051 case TCP_CONGESTION:
4052 if (get_user(len, optlen))
4053 return -EFAULT;
4054 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4055 if (put_user(len, optlen))
4056 return -EFAULT;
4057 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
4058 return -EFAULT;
4059 return 0;
4060
4061 case TCP_ULP:
4062 if (get_user(len, optlen))
4063 return -EFAULT;
4064 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4065 if (!icsk->icsk_ulp_ops) {
4066 if (put_user(0, optlen))
4067 return -EFAULT;
4068 return 0;
4069 }
4070 if (put_user(len, optlen))
4071 return -EFAULT;
4072 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
4073 return -EFAULT;
4074 return 0;
4075
4076 case TCP_FASTOPEN_KEY: {
4077 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4078 unsigned int key_len;
4079
4080 if (get_user(len, optlen))
4081 return -EFAULT;
4082
4083 key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4084 TCP_FASTOPEN_KEY_LENGTH;
4085 len = min_t(unsigned int, len, key_len);
4086 if (put_user(len, optlen))
4087 return -EFAULT;
4088 if (copy_to_user(optval, key, len))
4089 return -EFAULT;
4090 return 0;
4091 }
4092 case TCP_THIN_LINEAR_TIMEOUTS:
4093 val = tp->thin_lto;
4094 break;
4095
4096 case TCP_THIN_DUPACK:
4097 val = 0;
4098 break;
4099
4100 case TCP_REPAIR:
4101 val = tp->repair;
4102 break;
4103
4104 case TCP_REPAIR_QUEUE:
4105 if (tp->repair)
4106 val = tp->repair_queue;
4107 else
4108 return -EINVAL;
4109 break;
4110
4111 case TCP_REPAIR_WINDOW: {
4112 struct tcp_repair_window opt;
4113
4114 if (get_user(len, optlen))
4115 return -EFAULT;
4116
4117 if (len != sizeof(opt))
4118 return -EINVAL;
4119
4120 if (!tp->repair)
4121 return -EPERM;
4122
4123 opt.snd_wl1 = tp->snd_wl1;
4124 opt.snd_wnd = tp->snd_wnd;
4125 opt.max_window = tp->max_window;
4126 opt.rcv_wnd = tp->rcv_wnd;
4127 opt.rcv_wup = tp->rcv_wup;
4128
4129 if (copy_to_user(optval, &opt, len))
4130 return -EFAULT;
4131 return 0;
4132 }
4133 case TCP_QUEUE_SEQ:
4134 if (tp->repair_queue == TCP_SEND_QUEUE)
4135 val = tp->write_seq;
4136 else if (tp->repair_queue == TCP_RECV_QUEUE)
4137 val = tp->rcv_nxt;
4138 else
4139 return -EINVAL;
4140 break;
4141
4142 case TCP_USER_TIMEOUT:
4143 val = icsk->icsk_user_timeout;
4144 break;
4145
4146 case TCP_FASTOPEN:
4147 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
4148 break;
4149
4150 case TCP_FASTOPEN_CONNECT:
4151 val = tp->fastopen_connect;
4152 break;
4153
4154 case TCP_FASTOPEN_NO_COOKIE:
4155 val = tp->fastopen_no_cookie;
4156 break;
4157
4158 case TCP_TX_DELAY:
4159 val = tp->tcp_tx_delay;
4160 break;
4161
4162 case TCP_TIMESTAMP:
4163 val = tcp_time_stamp_raw() + tp->tsoffset;
4164 break;
4165 case TCP_NOTSENT_LOWAT:
4166 val = tp->notsent_lowat;
4167 break;
4168 case TCP_INQ:
4169 val = tp->recvmsg_inq;
4170 break;
4171 case TCP_SAVE_SYN:
4172 val = tp->save_syn;
4173 break;
4174 case TCP_SAVED_SYN: {
4175 if (get_user(len, optlen))
4176 return -EFAULT;
4177
4178 lock_sock(sk);
4179 if (tp->saved_syn) {
4180 if (len < tcp_saved_syn_len(tp->saved_syn)) {
4181 if (put_user(tcp_saved_syn_len(tp->saved_syn),
4182 optlen)) {
4183 release_sock(sk);
4184 return -EFAULT;
4185 }
4186 release_sock(sk);
4187 return -EINVAL;
4188 }
4189 len = tcp_saved_syn_len(tp->saved_syn);
4190 if (put_user(len, optlen)) {
4191 release_sock(sk);
4192 return -EFAULT;
4193 }
4194 if (copy_to_user(optval, tp->saved_syn->data, len)) {
4195 release_sock(sk);
4196 return -EFAULT;
4197 }
4198 tcp_saved_syn_free(tp);
4199 release_sock(sk);
4200 } else {
4201 release_sock(sk);
4202 len = 0;
4203 if (put_user(len, optlen))
4204 return -EFAULT;
4205 }
4206 return 0;
4207 }
4208 #ifdef CONFIG_MMU
4209 case TCP_ZEROCOPY_RECEIVE: {
4210 struct scm_timestamping_internal tss;
4211 struct tcp_zerocopy_receive zc = {};
4212 int err;
4213
4214 if (get_user(len, optlen))
4215 return -EFAULT;
4216 if (len < 0 ||
4217 len < offsetofend(struct tcp_zerocopy_receive, length))
4218 return -EINVAL;
4219 if (unlikely(len > sizeof(zc))) {
4220 err = check_zeroed_user(optval + sizeof(zc),
4221 len - sizeof(zc));
4222 if (err < 1)
4223 return err == 0 ? -EINVAL : err;
4224 len = sizeof(zc);
4225 if (put_user(len, optlen))
4226 return -EFAULT;
4227 }
4228 if (copy_from_user(&zc, optval, len))
4229 return -EFAULT;
4230 if (zc.reserved)
4231 return -EINVAL;
4232 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS))
4233 return -EINVAL;
4234 lock_sock(sk);
4235 err = tcp_zerocopy_receive(sk, &zc, &tss);
4236 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4237 &zc, &len, err);
4238 release_sock(sk);
4239 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4240 goto zerocopy_rcv_cmsg;
4241 switch (len) {
4242 case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4243 goto zerocopy_rcv_cmsg;
4244 case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4245 case offsetofend(struct tcp_zerocopy_receive, msg_control):
4246 case offsetofend(struct tcp_zerocopy_receive, flags):
4247 case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4248 case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4249 case offsetofend(struct tcp_zerocopy_receive, err):
4250 goto zerocopy_rcv_sk_err;
4251 case offsetofend(struct tcp_zerocopy_receive, inq):
4252 goto zerocopy_rcv_inq;
4253 case offsetofend(struct tcp_zerocopy_receive, length):
4254 default:
4255 goto zerocopy_rcv_out;
4256 }
4257 zerocopy_rcv_cmsg:
4258 if (zc.msg_flags & TCP_CMSG_TS)
4259 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4260 else
4261 zc.msg_flags = 0;
4262 zerocopy_rcv_sk_err:
4263 if (!err)
4264 zc.err = sock_error(sk);
4265 zerocopy_rcv_inq:
4266 zc.inq = tcp_inq_hint(sk);
4267 zerocopy_rcv_out:
4268 if (!err && copy_to_user(optval, &zc, len))
4269 err = -EFAULT;
4270 return err;
4271 }
4272 #endif
4273 default:
4274 return -ENOPROTOOPT;
4275 }
4276
4277 if (put_user(len, optlen))
4278 return -EFAULT;
4279 if (copy_to_user(optval, &val, len))
4280 return -EFAULT;
4281 return 0;
4282 }
4283
tcp_bpf_bypass_getsockopt(int level,int optname)4284 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4285 {
4286 /* TCP do_tcp_getsockopt has optimized getsockopt implementation
4287 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4288 */
4289 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4290 return true;
4291
4292 return false;
4293 }
4294 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4295
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)4296 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4297 int __user *optlen)
4298 {
4299 struct inet_connection_sock *icsk = inet_csk(sk);
4300
4301 if (level != SOL_TCP)
4302 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
4303 optval, optlen);
4304 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
4305 }
4306 EXPORT_SYMBOL(tcp_getsockopt);
4307
4308 #ifdef CONFIG_TCP_MD5SIG
4309 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4310 static DEFINE_MUTEX(tcp_md5sig_mutex);
4311 static bool tcp_md5sig_pool_populated = false;
4312
__tcp_alloc_md5sig_pool(void)4313 static void __tcp_alloc_md5sig_pool(void)
4314 {
4315 struct crypto_ahash *hash;
4316 int cpu;
4317
4318 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4319 if (IS_ERR(hash))
4320 return;
4321
4322 for_each_possible_cpu(cpu) {
4323 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4324 struct ahash_request *req;
4325
4326 if (!scratch) {
4327 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4328 sizeof(struct tcphdr),
4329 GFP_KERNEL,
4330 cpu_to_node(cpu));
4331 if (!scratch)
4332 return;
4333 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4334 }
4335 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4336 continue;
4337
4338 req = ahash_request_alloc(hash, GFP_KERNEL);
4339 if (!req)
4340 return;
4341
4342 ahash_request_set_callback(req, 0, NULL, NULL);
4343
4344 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4345 }
4346 /* before setting tcp_md5sig_pool_populated, we must commit all writes
4347 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4348 */
4349 smp_wmb();
4350 tcp_md5sig_pool_populated = true;
4351 }
4352
tcp_alloc_md5sig_pool(void)4353 bool tcp_alloc_md5sig_pool(void)
4354 {
4355 if (unlikely(!tcp_md5sig_pool_populated)) {
4356 mutex_lock(&tcp_md5sig_mutex);
4357
4358 if (!tcp_md5sig_pool_populated) {
4359 __tcp_alloc_md5sig_pool();
4360 if (tcp_md5sig_pool_populated)
4361 static_branch_inc(&tcp_md5_needed);
4362 }
4363
4364 mutex_unlock(&tcp_md5sig_mutex);
4365 }
4366 return tcp_md5sig_pool_populated;
4367 }
4368 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4369
4370
4371 /**
4372 * tcp_get_md5sig_pool - get md5sig_pool for this user
4373 *
4374 * We use percpu structure, so if we succeed, we exit with preemption
4375 * and BH disabled, to make sure another thread or softirq handling
4376 * wont try to get same context.
4377 */
tcp_get_md5sig_pool(void)4378 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4379 {
4380 local_bh_disable();
4381
4382 if (tcp_md5sig_pool_populated) {
4383 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4384 smp_rmb();
4385 return this_cpu_ptr(&tcp_md5sig_pool);
4386 }
4387 local_bh_enable();
4388 return NULL;
4389 }
4390 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4391
tcp_md5_hash_skb_data(struct tcp_md5sig_pool * hp,const struct sk_buff * skb,unsigned int header_len)4392 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4393 const struct sk_buff *skb, unsigned int header_len)
4394 {
4395 struct scatterlist sg;
4396 const struct tcphdr *tp = tcp_hdr(skb);
4397 struct ahash_request *req = hp->md5_req;
4398 unsigned int i;
4399 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4400 skb_headlen(skb) - header_len : 0;
4401 const struct skb_shared_info *shi = skb_shinfo(skb);
4402 struct sk_buff *frag_iter;
4403
4404 sg_init_table(&sg, 1);
4405
4406 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4407 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4408 if (crypto_ahash_update(req))
4409 return 1;
4410
4411 for (i = 0; i < shi->nr_frags; ++i) {
4412 const skb_frag_t *f = &shi->frags[i];
4413 unsigned int offset = skb_frag_off(f);
4414 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4415
4416 sg_set_page(&sg, page, skb_frag_size(f),
4417 offset_in_page(offset));
4418 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4419 if (crypto_ahash_update(req))
4420 return 1;
4421 }
4422
4423 skb_walk_frags(skb, frag_iter)
4424 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4425 return 1;
4426
4427 return 0;
4428 }
4429 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4430
tcp_md5_hash_key(struct tcp_md5sig_pool * hp,const struct tcp_md5sig_key * key)4431 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4432 {
4433 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4434 struct scatterlist sg;
4435
4436 sg_init_one(&sg, key->key, keylen);
4437 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4438
4439 /* We use data_race() because tcp_md5_do_add() might change key->key under us */
4440 return data_race(crypto_ahash_update(hp->md5_req));
4441 }
4442 EXPORT_SYMBOL(tcp_md5_hash_key);
4443
4444 /* Called with rcu_read_lock() */
4445 enum skb_drop_reason
tcp_inbound_md5_hash(const struct sock * sk,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int dif,int sdif)4446 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4447 const void *saddr, const void *daddr,
4448 int family, int dif, int sdif)
4449 {
4450 /*
4451 * This gets called for each TCP segment that arrives
4452 * so we want to be efficient.
4453 * We have 3 drop cases:
4454 * o No MD5 hash and one expected.
4455 * o MD5 hash and we're not expecting one.
4456 * o MD5 hash and its wrong.
4457 */
4458 const __u8 *hash_location = NULL;
4459 struct tcp_md5sig_key *hash_expected;
4460 const struct tcphdr *th = tcp_hdr(skb);
4461 struct tcp_sock *tp = tcp_sk(sk);
4462 int genhash, l3index;
4463 u8 newhash[16];
4464
4465 /* sdif set, means packet ingressed via a device
4466 * in an L3 domain and dif is set to the l3mdev
4467 */
4468 l3index = sdif ? dif : 0;
4469
4470 hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family);
4471 hash_location = tcp_parse_md5sig_option(th);
4472
4473 /* We've parsed the options - do we have a hash? */
4474 if (!hash_expected && !hash_location)
4475 return SKB_NOT_DROPPED_YET;
4476
4477 if (hash_expected && !hash_location) {
4478 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4479 return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4480 }
4481
4482 if (!hash_expected && hash_location) {
4483 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4484 return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4485 }
4486
4487 /* Check the signature.
4488 * To support dual stack listeners, we need to handle
4489 * IPv4-mapped case.
4490 */
4491 if (family == AF_INET)
4492 genhash = tcp_v4_md5_hash_skb(newhash,
4493 hash_expected,
4494 NULL, skb);
4495 else
4496 genhash = tp->af_specific->calc_md5_hash(newhash,
4497 hash_expected,
4498 NULL, skb);
4499
4500 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4501 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4502 if (family == AF_INET) {
4503 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n",
4504 saddr, ntohs(th->source),
4505 daddr, ntohs(th->dest),
4506 genhash ? " tcp_v4_calc_md5_hash failed"
4507 : "", l3index);
4508 } else {
4509 net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n",
4510 genhash ? "failed" : "mismatch",
4511 saddr, ntohs(th->source),
4512 daddr, ntohs(th->dest), l3index);
4513 }
4514 return SKB_DROP_REASON_TCP_MD5FAILURE;
4515 }
4516 return SKB_NOT_DROPPED_YET;
4517 }
4518 EXPORT_SYMBOL(tcp_inbound_md5_hash);
4519
4520 #endif
4521
tcp_done(struct sock * sk)4522 void tcp_done(struct sock *sk)
4523 {
4524 struct request_sock *req;
4525
4526 /* We might be called with a new socket, after
4527 * inet_csk_prepare_forced_close() has been called
4528 * so we can not use lockdep_sock_is_held(sk)
4529 */
4530 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4531
4532 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4533 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4534
4535 tcp_set_state(sk, TCP_CLOSE);
4536 tcp_clear_xmit_timers(sk);
4537 if (req)
4538 reqsk_fastopen_remove(sk, req, false);
4539
4540 sk->sk_shutdown = SHUTDOWN_MASK;
4541
4542 if (!sock_flag(sk, SOCK_DEAD))
4543 sk->sk_state_change(sk);
4544 else
4545 inet_csk_destroy_sock(sk);
4546 }
4547 EXPORT_SYMBOL_GPL(tcp_done);
4548
tcp_abort(struct sock * sk,int err)4549 int tcp_abort(struct sock *sk, int err)
4550 {
4551 if (!sk_fullsock(sk)) {
4552 if (sk->sk_state == TCP_NEW_SYN_RECV) {
4553 struct request_sock *req = inet_reqsk(sk);
4554
4555 local_bh_disable();
4556 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4557 local_bh_enable();
4558 return 0;
4559 }
4560 return -EOPNOTSUPP;
4561 }
4562
4563 /* Don't race with userspace socket closes such as tcp_close. */
4564 lock_sock(sk);
4565
4566 if (sk->sk_state == TCP_LISTEN) {
4567 tcp_set_state(sk, TCP_CLOSE);
4568 inet_csk_listen_stop(sk);
4569 }
4570
4571 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
4572 local_bh_disable();
4573 bh_lock_sock(sk);
4574
4575 if (!sock_flag(sk, SOCK_DEAD)) {
4576 sk->sk_err = err;
4577 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4578 smp_wmb();
4579 sk_error_report(sk);
4580 if (tcp_need_reset(sk->sk_state))
4581 tcp_send_active_reset(sk, GFP_ATOMIC);
4582 tcp_done(sk);
4583 }
4584
4585 bh_unlock_sock(sk);
4586 local_bh_enable();
4587 tcp_write_queue_purge(sk);
4588 release_sock(sk);
4589 return 0;
4590 }
4591 EXPORT_SYMBOL_GPL(tcp_abort);
4592
4593 extern struct tcp_congestion_ops tcp_reno;
4594
4595 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)4596 static int __init set_thash_entries(char *str)
4597 {
4598 ssize_t ret;
4599
4600 if (!str)
4601 return 0;
4602
4603 ret = kstrtoul(str, 0, &thash_entries);
4604 if (ret)
4605 return 0;
4606
4607 return 1;
4608 }
4609 __setup("thash_entries=", set_thash_entries);
4610
tcp_init_mem(void)4611 static void __init tcp_init_mem(void)
4612 {
4613 unsigned long limit = nr_free_buffer_pages() / 16;
4614
4615 limit = max(limit, 128UL);
4616 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
4617 sysctl_tcp_mem[1] = limit; /* 6.25 % */
4618 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
4619 }
4620
tcp_init(void)4621 void __init tcp_init(void)
4622 {
4623 int max_rshare, max_wshare, cnt;
4624 unsigned long limit;
4625 unsigned int i;
4626
4627 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4628 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4629 sizeof_field(struct sk_buff, cb));
4630
4631 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4632
4633 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4634 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4635
4636 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4637 thash_entries, 21, /* one slot per 2 MB*/
4638 0, 64 * 1024);
4639 tcp_hashinfo.bind_bucket_cachep =
4640 kmem_cache_create("tcp_bind_bucket",
4641 sizeof(struct inet_bind_bucket), 0,
4642 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4643 SLAB_ACCOUNT,
4644 NULL);
4645
4646 /* Size and allocate the main established and bind bucket
4647 * hash tables.
4648 *
4649 * The methodology is similar to that of the buffer cache.
4650 */
4651 tcp_hashinfo.ehash =
4652 alloc_large_system_hash("TCP established",
4653 sizeof(struct inet_ehash_bucket),
4654 thash_entries,
4655 17, /* one slot per 128 KB of memory */
4656 0,
4657 NULL,
4658 &tcp_hashinfo.ehash_mask,
4659 0,
4660 thash_entries ? 0 : 512 * 1024);
4661 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4662 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4663
4664 if (inet_ehash_locks_alloc(&tcp_hashinfo))
4665 panic("TCP: failed to alloc ehash_locks");
4666 tcp_hashinfo.bhash =
4667 alloc_large_system_hash("TCP bind",
4668 sizeof(struct inet_bind_hashbucket),
4669 tcp_hashinfo.ehash_mask + 1,
4670 17, /* one slot per 128 KB of memory */
4671 0,
4672 &tcp_hashinfo.bhash_size,
4673 NULL,
4674 0,
4675 64 * 1024);
4676 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4677 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4678 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4679 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4680 }
4681
4682
4683 cnt = tcp_hashinfo.ehash_mask + 1;
4684 sysctl_tcp_max_orphans = cnt / 2;
4685
4686 tcp_init_mem();
4687 /* Set per-socket limits to no more than 1/128 the pressure threshold */
4688 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4689 max_wshare = min(4UL*1024*1024, limit);
4690 max_rshare = min(6UL*1024*1024, limit);
4691
4692 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
4693 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4694 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4695
4696 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
4697 init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4698 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4699
4700 pr_info("Hash tables configured (established %u bind %u)\n",
4701 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4702
4703 tcp_v4_init();
4704 tcp_metrics_init();
4705 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4706 tcp_tasklet_init();
4707 mptcp_init();
4708 }
4709