1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/memremap.h>
57 #include <linux/mm_inline.h>
58 #include <linux/swap_cgroup.h>
59 #include <linux/cpu.h>
60 #include <linux/oom.h>
61 #include <linux/lockdep.h>
62 #include <linux/file.h>
63 #include <linux/resume_user_mode.h>
64 #include <linux/psi.h>
65 #include <linux/seq_buf.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 #include "swap.h"
71
72 #include <linux/uaccess.h>
73
74 #include <trace/events/vmscan.h>
75
76 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77 EXPORT_SYMBOL(memory_cgrp_subsys);
78
79 struct mem_cgroup *root_mem_cgroup __read_mostly;
80
81 /* Active memory cgroup to use from an interrupt context */
82 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
83 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
84
85 /* Socket memory accounting disabled? */
86 static bool cgroup_memory_nosocket __ro_after_init;
87
88 /* Kernel memory accounting disabled? */
89 static bool cgroup_memory_nokmem __ro_after_init;
90
91 /* Whether the swap controller is active */
92 #ifdef CONFIG_MEMCG_SWAP
93 static bool cgroup_memory_noswap __ro_after_init;
94 #else
95 #define cgroup_memory_noswap 1
96 #endif
97
98 #ifdef CONFIG_CGROUP_WRITEBACK
99 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
100 #endif
101
102 /* Whether legacy memory+swap accounting is active */
do_memsw_account(void)103 static bool do_memsw_account(void)
104 {
105 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
106 }
107
108 #define THRESHOLDS_EVENTS_TARGET 128
109 #define SOFTLIMIT_EVENTS_TARGET 1024
110
111 /*
112 * Cgroups above their limits are maintained in a RB-Tree, independent of
113 * their hierarchy representation
114 */
115
116 struct mem_cgroup_tree_per_node {
117 struct rb_root rb_root;
118 struct rb_node *rb_rightmost;
119 spinlock_t lock;
120 };
121
122 struct mem_cgroup_tree {
123 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
124 };
125
126 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
127
128 /* for OOM */
129 struct mem_cgroup_eventfd_list {
130 struct list_head list;
131 struct eventfd_ctx *eventfd;
132 };
133
134 /*
135 * cgroup_event represents events which userspace want to receive.
136 */
137 struct mem_cgroup_event {
138 /*
139 * memcg which the event belongs to.
140 */
141 struct mem_cgroup *memcg;
142 /*
143 * eventfd to signal userspace about the event.
144 */
145 struct eventfd_ctx *eventfd;
146 /*
147 * Each of these stored in a list by the cgroup.
148 */
149 struct list_head list;
150 /*
151 * register_event() callback will be used to add new userspace
152 * waiter for changes related to this event. Use eventfd_signal()
153 * on eventfd to send notification to userspace.
154 */
155 int (*register_event)(struct mem_cgroup *memcg,
156 struct eventfd_ctx *eventfd, const char *args);
157 /*
158 * unregister_event() callback will be called when userspace closes
159 * the eventfd or on cgroup removing. This callback must be set,
160 * if you want provide notification functionality.
161 */
162 void (*unregister_event)(struct mem_cgroup *memcg,
163 struct eventfd_ctx *eventfd);
164 /*
165 * All fields below needed to unregister event when
166 * userspace closes eventfd.
167 */
168 poll_table pt;
169 wait_queue_head_t *wqh;
170 wait_queue_entry_t wait;
171 struct work_struct remove;
172 };
173
174 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
175 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
176
177 /* Stuffs for move charges at task migration. */
178 /*
179 * Types of charges to be moved.
180 */
181 #define MOVE_ANON 0x1U
182 #define MOVE_FILE 0x2U
183 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
184
185 /* "mc" and its members are protected by cgroup_mutex */
186 static struct move_charge_struct {
187 spinlock_t lock; /* for from, to */
188 struct mm_struct *mm;
189 struct mem_cgroup *from;
190 struct mem_cgroup *to;
191 unsigned long flags;
192 unsigned long precharge;
193 unsigned long moved_charge;
194 unsigned long moved_swap;
195 struct task_struct *moving_task; /* a task moving charges */
196 wait_queue_head_t waitq; /* a waitq for other context */
197 } mc = {
198 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
199 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
200 };
201
202 /*
203 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
204 * limit reclaim to prevent infinite loops, if they ever occur.
205 */
206 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
207 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
208
209 /* for encoding cft->private value on file */
210 enum res_type {
211 _MEM,
212 _MEMSWAP,
213 _KMEM,
214 _TCP,
215 };
216
217 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
218 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
219 #define MEMFILE_ATTR(val) ((val) & 0xffff)
220
221 /*
222 * Iteration constructs for visiting all cgroups (under a tree). If
223 * loops are exited prematurely (break), mem_cgroup_iter_break() must
224 * be used for reference counting.
225 */
226 #define for_each_mem_cgroup_tree(iter, root) \
227 for (iter = mem_cgroup_iter(root, NULL, NULL); \
228 iter != NULL; \
229 iter = mem_cgroup_iter(root, iter, NULL))
230
231 #define for_each_mem_cgroup(iter) \
232 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
233 iter != NULL; \
234 iter = mem_cgroup_iter(NULL, iter, NULL))
235
task_is_dying(void)236 static inline bool task_is_dying(void)
237 {
238 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
239 (current->flags & PF_EXITING);
240 }
241
242 /* Some nice accessors for the vmpressure. */
memcg_to_vmpressure(struct mem_cgroup * memcg)243 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
244 {
245 if (!memcg)
246 memcg = root_mem_cgroup;
247 return &memcg->vmpressure;
248 }
249
vmpressure_to_memcg(struct vmpressure * vmpr)250 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
251 {
252 return container_of(vmpr, struct mem_cgroup, vmpressure);
253 }
254
255 #ifdef CONFIG_MEMCG_KMEM
256 static DEFINE_SPINLOCK(objcg_lock);
257
mem_cgroup_kmem_disabled(void)258 bool mem_cgroup_kmem_disabled(void)
259 {
260 return cgroup_memory_nokmem;
261 }
262
263 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
264 unsigned int nr_pages);
265
obj_cgroup_release(struct percpu_ref * ref)266 static void obj_cgroup_release(struct percpu_ref *ref)
267 {
268 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
269 unsigned int nr_bytes;
270 unsigned int nr_pages;
271 unsigned long flags;
272
273 /*
274 * At this point all allocated objects are freed, and
275 * objcg->nr_charged_bytes can't have an arbitrary byte value.
276 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
277 *
278 * The following sequence can lead to it:
279 * 1) CPU0: objcg == stock->cached_objcg
280 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
281 * PAGE_SIZE bytes are charged
282 * 3) CPU1: a process from another memcg is allocating something,
283 * the stock if flushed,
284 * objcg->nr_charged_bytes = PAGE_SIZE - 92
285 * 5) CPU0: we do release this object,
286 * 92 bytes are added to stock->nr_bytes
287 * 6) CPU0: stock is flushed,
288 * 92 bytes are added to objcg->nr_charged_bytes
289 *
290 * In the result, nr_charged_bytes == PAGE_SIZE.
291 * This page will be uncharged in obj_cgroup_release().
292 */
293 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
294 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
295 nr_pages = nr_bytes >> PAGE_SHIFT;
296
297 if (nr_pages)
298 obj_cgroup_uncharge_pages(objcg, nr_pages);
299
300 spin_lock_irqsave(&objcg_lock, flags);
301 list_del(&objcg->list);
302 spin_unlock_irqrestore(&objcg_lock, flags);
303
304 percpu_ref_exit(ref);
305 kfree_rcu(objcg, rcu);
306 }
307
obj_cgroup_alloc(void)308 static struct obj_cgroup *obj_cgroup_alloc(void)
309 {
310 struct obj_cgroup *objcg;
311 int ret;
312
313 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
314 if (!objcg)
315 return NULL;
316
317 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
318 GFP_KERNEL);
319 if (ret) {
320 kfree(objcg);
321 return NULL;
322 }
323 INIT_LIST_HEAD(&objcg->list);
324 return objcg;
325 }
326
memcg_reparent_objcgs(struct mem_cgroup * memcg,struct mem_cgroup * parent)327 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
328 struct mem_cgroup *parent)
329 {
330 struct obj_cgroup *objcg, *iter;
331
332 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
333
334 spin_lock_irq(&objcg_lock);
335
336 /* 1) Ready to reparent active objcg. */
337 list_add(&objcg->list, &memcg->objcg_list);
338 /* 2) Reparent active objcg and already reparented objcgs to parent. */
339 list_for_each_entry(iter, &memcg->objcg_list, list)
340 WRITE_ONCE(iter->memcg, parent);
341 /* 3) Move already reparented objcgs to the parent's list */
342 list_splice(&memcg->objcg_list, &parent->objcg_list);
343
344 spin_unlock_irq(&objcg_lock);
345
346 percpu_ref_kill(&objcg->refcnt);
347 }
348
349 /*
350 * A lot of the calls to the cache allocation functions are expected to be
351 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
352 * conditional to this static branch, we'll have to allow modules that does
353 * kmem_cache_alloc and the such to see this symbol as well
354 */
355 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
356 EXPORT_SYMBOL(memcg_kmem_enabled_key);
357 #endif
358
359 /**
360 * mem_cgroup_css_from_page - css of the memcg associated with a page
361 * @page: page of interest
362 *
363 * If memcg is bound to the default hierarchy, css of the memcg associated
364 * with @page is returned. The returned css remains associated with @page
365 * until it is released.
366 *
367 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
368 * is returned.
369 */
mem_cgroup_css_from_page(struct page * page)370 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
371 {
372 struct mem_cgroup *memcg;
373
374 memcg = page_memcg(page);
375
376 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
377 memcg = root_mem_cgroup;
378
379 return &memcg->css;
380 }
381
382 /**
383 * page_cgroup_ino - return inode number of the memcg a page is charged to
384 * @page: the page
385 *
386 * Look up the closest online ancestor of the memory cgroup @page is charged to
387 * and return its inode number or 0 if @page is not charged to any cgroup. It
388 * is safe to call this function without holding a reference to @page.
389 *
390 * Note, this function is inherently racy, because there is nothing to prevent
391 * the cgroup inode from getting torn down and potentially reallocated a moment
392 * after page_cgroup_ino() returns, so it only should be used by callers that
393 * do not care (such as procfs interfaces).
394 */
page_cgroup_ino(struct page * page)395 ino_t page_cgroup_ino(struct page *page)
396 {
397 struct mem_cgroup *memcg;
398 unsigned long ino = 0;
399
400 rcu_read_lock();
401 memcg = page_memcg_check(page);
402
403 while (memcg && !(memcg->css.flags & CSS_ONLINE))
404 memcg = parent_mem_cgroup(memcg);
405 if (memcg)
406 ino = cgroup_ino(memcg->css.cgroup);
407 rcu_read_unlock();
408 return ino;
409 }
410
__mem_cgroup_insert_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz,unsigned long new_usage_in_excess)411 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
412 struct mem_cgroup_tree_per_node *mctz,
413 unsigned long new_usage_in_excess)
414 {
415 struct rb_node **p = &mctz->rb_root.rb_node;
416 struct rb_node *parent = NULL;
417 struct mem_cgroup_per_node *mz_node;
418 bool rightmost = true;
419
420 if (mz->on_tree)
421 return;
422
423 mz->usage_in_excess = new_usage_in_excess;
424 if (!mz->usage_in_excess)
425 return;
426 while (*p) {
427 parent = *p;
428 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
429 tree_node);
430 if (mz->usage_in_excess < mz_node->usage_in_excess) {
431 p = &(*p)->rb_left;
432 rightmost = false;
433 } else {
434 p = &(*p)->rb_right;
435 }
436 }
437
438 if (rightmost)
439 mctz->rb_rightmost = &mz->tree_node;
440
441 rb_link_node(&mz->tree_node, parent, p);
442 rb_insert_color(&mz->tree_node, &mctz->rb_root);
443 mz->on_tree = true;
444 }
445
__mem_cgroup_remove_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz)446 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
447 struct mem_cgroup_tree_per_node *mctz)
448 {
449 if (!mz->on_tree)
450 return;
451
452 if (&mz->tree_node == mctz->rb_rightmost)
453 mctz->rb_rightmost = rb_prev(&mz->tree_node);
454
455 rb_erase(&mz->tree_node, &mctz->rb_root);
456 mz->on_tree = false;
457 }
458
mem_cgroup_remove_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz)459 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
460 struct mem_cgroup_tree_per_node *mctz)
461 {
462 unsigned long flags;
463
464 spin_lock_irqsave(&mctz->lock, flags);
465 __mem_cgroup_remove_exceeded(mz, mctz);
466 spin_unlock_irqrestore(&mctz->lock, flags);
467 }
468
soft_limit_excess(struct mem_cgroup * memcg)469 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
470 {
471 unsigned long nr_pages = page_counter_read(&memcg->memory);
472 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
473 unsigned long excess = 0;
474
475 if (nr_pages > soft_limit)
476 excess = nr_pages - soft_limit;
477
478 return excess;
479 }
480
mem_cgroup_update_tree(struct mem_cgroup * memcg,int nid)481 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
482 {
483 unsigned long excess;
484 struct mem_cgroup_per_node *mz;
485 struct mem_cgroup_tree_per_node *mctz;
486
487 mctz = soft_limit_tree.rb_tree_per_node[nid];
488 if (!mctz)
489 return;
490 /*
491 * Necessary to update all ancestors when hierarchy is used.
492 * because their event counter is not touched.
493 */
494 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
495 mz = memcg->nodeinfo[nid];
496 excess = soft_limit_excess(memcg);
497 /*
498 * We have to update the tree if mz is on RB-tree or
499 * mem is over its softlimit.
500 */
501 if (excess || mz->on_tree) {
502 unsigned long flags;
503
504 spin_lock_irqsave(&mctz->lock, flags);
505 /* if on-tree, remove it */
506 if (mz->on_tree)
507 __mem_cgroup_remove_exceeded(mz, mctz);
508 /*
509 * Insert again. mz->usage_in_excess will be updated.
510 * If excess is 0, no tree ops.
511 */
512 __mem_cgroup_insert_exceeded(mz, mctz, excess);
513 spin_unlock_irqrestore(&mctz->lock, flags);
514 }
515 }
516 }
517
mem_cgroup_remove_from_trees(struct mem_cgroup * memcg)518 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
519 {
520 struct mem_cgroup_tree_per_node *mctz;
521 struct mem_cgroup_per_node *mz;
522 int nid;
523
524 for_each_node(nid) {
525 mz = memcg->nodeinfo[nid];
526 mctz = soft_limit_tree.rb_tree_per_node[nid];
527 if (mctz)
528 mem_cgroup_remove_exceeded(mz, mctz);
529 }
530 }
531
532 static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node * mctz)533 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
534 {
535 struct mem_cgroup_per_node *mz;
536
537 retry:
538 mz = NULL;
539 if (!mctz->rb_rightmost)
540 goto done; /* Nothing to reclaim from */
541
542 mz = rb_entry(mctz->rb_rightmost,
543 struct mem_cgroup_per_node, tree_node);
544 /*
545 * Remove the node now but someone else can add it back,
546 * we will to add it back at the end of reclaim to its correct
547 * position in the tree.
548 */
549 __mem_cgroup_remove_exceeded(mz, mctz);
550 if (!soft_limit_excess(mz->memcg) ||
551 !css_tryget(&mz->memcg->css))
552 goto retry;
553 done:
554 return mz;
555 }
556
557 static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node * mctz)558 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
559 {
560 struct mem_cgroup_per_node *mz;
561
562 spin_lock_irq(&mctz->lock);
563 mz = __mem_cgroup_largest_soft_limit_node(mctz);
564 spin_unlock_irq(&mctz->lock);
565 return mz;
566 }
567
568 /*
569 * memcg and lruvec stats flushing
570 *
571 * Many codepaths leading to stats update or read are performance sensitive and
572 * adding stats flushing in such codepaths is not desirable. So, to optimize the
573 * flushing the kernel does:
574 *
575 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
576 * rstat update tree grow unbounded.
577 *
578 * 2) Flush the stats synchronously on reader side only when there are more than
579 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
580 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
581 * only for 2 seconds due to (1).
582 */
583 static void flush_memcg_stats_dwork(struct work_struct *w);
584 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
585 static DEFINE_SPINLOCK(stats_flush_lock);
586 static DEFINE_PER_CPU(unsigned int, stats_updates);
587 static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
588 static u64 flush_next_time;
589
590 #define FLUSH_TIME (2UL*HZ)
591
592 /*
593 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
594 * not rely on this as part of an acquired spinlock_t lock. These functions are
595 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
596 * is sufficient.
597 */
memcg_stats_lock(void)598 static void memcg_stats_lock(void)
599 {
600 #ifdef CONFIG_PREEMPT_RT
601 preempt_disable();
602 #else
603 VM_BUG_ON(!irqs_disabled());
604 #endif
605 }
606
__memcg_stats_lock(void)607 static void __memcg_stats_lock(void)
608 {
609 #ifdef CONFIG_PREEMPT_RT
610 preempt_disable();
611 #endif
612 }
613
memcg_stats_unlock(void)614 static void memcg_stats_unlock(void)
615 {
616 #ifdef CONFIG_PREEMPT_RT
617 preempt_enable();
618 #endif
619 }
620
memcg_rstat_updated(struct mem_cgroup * memcg,int val)621 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
622 {
623 unsigned int x;
624
625 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
626
627 x = __this_cpu_add_return(stats_updates, abs(val));
628 if (x > MEMCG_CHARGE_BATCH) {
629 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
630 __this_cpu_write(stats_updates, 0);
631 }
632 }
633
__mem_cgroup_flush_stats(void)634 static void __mem_cgroup_flush_stats(void)
635 {
636 unsigned long flag;
637
638 if (!spin_trylock_irqsave(&stats_flush_lock, flag))
639 return;
640
641 flush_next_time = jiffies_64 + 2*FLUSH_TIME;
642 cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
643 atomic_set(&stats_flush_threshold, 0);
644 spin_unlock_irqrestore(&stats_flush_lock, flag);
645 }
646
mem_cgroup_flush_stats(void)647 void mem_cgroup_flush_stats(void)
648 {
649 if (atomic_read(&stats_flush_threshold) > num_online_cpus())
650 __mem_cgroup_flush_stats();
651 }
652
mem_cgroup_flush_stats_delayed(void)653 void mem_cgroup_flush_stats_delayed(void)
654 {
655 if (time_after64(jiffies_64, flush_next_time))
656 mem_cgroup_flush_stats();
657 }
658
flush_memcg_stats_dwork(struct work_struct * w)659 static void flush_memcg_stats_dwork(struct work_struct *w)
660 {
661 __mem_cgroup_flush_stats();
662 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
663 }
664
665 /**
666 * __mod_memcg_state - update cgroup memory statistics
667 * @memcg: the memory cgroup
668 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
669 * @val: delta to add to the counter, can be negative
670 */
__mod_memcg_state(struct mem_cgroup * memcg,int idx,int val)671 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
672 {
673 if (mem_cgroup_disabled())
674 return;
675
676 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
677 memcg_rstat_updated(memcg, val);
678 }
679
680 /* idx can be of type enum memcg_stat_item or node_stat_item. */
memcg_page_state_local(struct mem_cgroup * memcg,int idx)681 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
682 {
683 long x = 0;
684 int cpu;
685
686 for_each_possible_cpu(cpu)
687 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
688 #ifdef CONFIG_SMP
689 if (x < 0)
690 x = 0;
691 #endif
692 return x;
693 }
694
__mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)695 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
696 int val)
697 {
698 struct mem_cgroup_per_node *pn;
699 struct mem_cgroup *memcg;
700
701 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
702 memcg = pn->memcg;
703
704 /*
705 * The caller from rmap relay on disabled preemption becase they never
706 * update their counter from in-interrupt context. For these two
707 * counters we check that the update is never performed from an
708 * interrupt context while other caller need to have disabled interrupt.
709 */
710 __memcg_stats_lock();
711 if (IS_ENABLED(CONFIG_DEBUG_VM) && !IS_ENABLED(CONFIG_PREEMPT_RT)) {
712 switch (idx) {
713 case NR_ANON_MAPPED:
714 case NR_FILE_MAPPED:
715 case NR_ANON_THPS:
716 case NR_SHMEM_PMDMAPPED:
717 case NR_FILE_PMDMAPPED:
718 WARN_ON_ONCE(!in_task());
719 break;
720 default:
721 WARN_ON_ONCE(!irqs_disabled());
722 }
723 }
724
725 /* Update memcg */
726 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
727
728 /* Update lruvec */
729 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
730
731 memcg_rstat_updated(memcg, val);
732 memcg_stats_unlock();
733 }
734
735 /**
736 * __mod_lruvec_state - update lruvec memory statistics
737 * @lruvec: the lruvec
738 * @idx: the stat item
739 * @val: delta to add to the counter, can be negative
740 *
741 * The lruvec is the intersection of the NUMA node and a cgroup. This
742 * function updates the all three counters that are affected by a
743 * change of state at this level: per-node, per-cgroup, per-lruvec.
744 */
__mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)745 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
746 int val)
747 {
748 /* Update node */
749 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
750
751 /* Update memcg and lruvec */
752 if (!mem_cgroup_disabled())
753 __mod_memcg_lruvec_state(lruvec, idx, val);
754 }
755
__mod_lruvec_page_state(struct page * page,enum node_stat_item idx,int val)756 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
757 int val)
758 {
759 struct page *head = compound_head(page); /* rmap on tail pages */
760 struct mem_cgroup *memcg;
761 pg_data_t *pgdat = page_pgdat(page);
762 struct lruvec *lruvec;
763
764 rcu_read_lock();
765 memcg = page_memcg(head);
766 /* Untracked pages have no memcg, no lruvec. Update only the node */
767 if (!memcg) {
768 rcu_read_unlock();
769 __mod_node_page_state(pgdat, idx, val);
770 return;
771 }
772
773 lruvec = mem_cgroup_lruvec(memcg, pgdat);
774 __mod_lruvec_state(lruvec, idx, val);
775 rcu_read_unlock();
776 }
777 EXPORT_SYMBOL(__mod_lruvec_page_state);
778
__mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)779 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
780 {
781 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
782 struct mem_cgroup *memcg;
783 struct lruvec *lruvec;
784
785 rcu_read_lock();
786 memcg = mem_cgroup_from_obj(p);
787
788 /*
789 * Untracked pages have no memcg, no lruvec. Update only the
790 * node. If we reparent the slab objects to the root memcg,
791 * when we free the slab object, we need to update the per-memcg
792 * vmstats to keep it correct for the root memcg.
793 */
794 if (!memcg) {
795 __mod_node_page_state(pgdat, idx, val);
796 } else {
797 lruvec = mem_cgroup_lruvec(memcg, pgdat);
798 __mod_lruvec_state(lruvec, idx, val);
799 }
800 rcu_read_unlock();
801 }
802
803 /**
804 * __count_memcg_events - account VM events in a cgroup
805 * @memcg: the memory cgroup
806 * @idx: the event item
807 * @count: the number of events that occurred
808 */
__count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)809 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
810 unsigned long count)
811 {
812 if (mem_cgroup_disabled())
813 return;
814
815 memcg_stats_lock();
816 __this_cpu_add(memcg->vmstats_percpu->events[idx], count);
817 memcg_rstat_updated(memcg, count);
818 memcg_stats_unlock();
819 }
820
memcg_events(struct mem_cgroup * memcg,int event)821 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
822 {
823 return READ_ONCE(memcg->vmstats.events[event]);
824 }
825
memcg_events_local(struct mem_cgroup * memcg,int event)826 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
827 {
828 long x = 0;
829 int cpu;
830
831 for_each_possible_cpu(cpu)
832 x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
833 return x;
834 }
835
mem_cgroup_charge_statistics(struct mem_cgroup * memcg,int nr_pages)836 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
837 int nr_pages)
838 {
839 /* pagein of a big page is an event. So, ignore page size */
840 if (nr_pages > 0)
841 __count_memcg_events(memcg, PGPGIN, 1);
842 else {
843 __count_memcg_events(memcg, PGPGOUT, 1);
844 nr_pages = -nr_pages; /* for event */
845 }
846
847 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
848 }
849
mem_cgroup_event_ratelimit(struct mem_cgroup * memcg,enum mem_cgroup_events_target target)850 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
851 enum mem_cgroup_events_target target)
852 {
853 unsigned long val, next;
854
855 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
856 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
857 /* from time_after() in jiffies.h */
858 if ((long)(next - val) < 0) {
859 switch (target) {
860 case MEM_CGROUP_TARGET_THRESH:
861 next = val + THRESHOLDS_EVENTS_TARGET;
862 break;
863 case MEM_CGROUP_TARGET_SOFTLIMIT:
864 next = val + SOFTLIMIT_EVENTS_TARGET;
865 break;
866 default:
867 break;
868 }
869 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
870 return true;
871 }
872 return false;
873 }
874
875 /*
876 * Check events in order.
877 *
878 */
memcg_check_events(struct mem_cgroup * memcg,int nid)879 static void memcg_check_events(struct mem_cgroup *memcg, int nid)
880 {
881 if (IS_ENABLED(CONFIG_PREEMPT_RT))
882 return;
883
884 /* threshold event is triggered in finer grain than soft limit */
885 if (unlikely(mem_cgroup_event_ratelimit(memcg,
886 MEM_CGROUP_TARGET_THRESH))) {
887 bool do_softlimit;
888
889 do_softlimit = mem_cgroup_event_ratelimit(memcg,
890 MEM_CGROUP_TARGET_SOFTLIMIT);
891 mem_cgroup_threshold(memcg);
892 if (unlikely(do_softlimit))
893 mem_cgroup_update_tree(memcg, nid);
894 }
895 }
896
mem_cgroup_from_task(struct task_struct * p)897 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
898 {
899 /*
900 * mm_update_next_owner() may clear mm->owner to NULL
901 * if it races with swapoff, page migration, etc.
902 * So this can be called with p == NULL.
903 */
904 if (unlikely(!p))
905 return NULL;
906
907 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
908 }
909 EXPORT_SYMBOL(mem_cgroup_from_task);
910
active_memcg(void)911 static __always_inline struct mem_cgroup *active_memcg(void)
912 {
913 if (!in_task())
914 return this_cpu_read(int_active_memcg);
915 else
916 return current->active_memcg;
917 }
918
919 /**
920 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
921 * @mm: mm from which memcg should be extracted. It can be NULL.
922 *
923 * Obtain a reference on mm->memcg and returns it if successful. If mm
924 * is NULL, then the memcg is chosen as follows:
925 * 1) The active memcg, if set.
926 * 2) current->mm->memcg, if available
927 * 3) root memcg
928 * If mem_cgroup is disabled, NULL is returned.
929 */
get_mem_cgroup_from_mm(struct mm_struct * mm)930 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
931 {
932 struct mem_cgroup *memcg;
933
934 if (mem_cgroup_disabled())
935 return NULL;
936
937 /*
938 * Page cache insertions can happen without an
939 * actual mm context, e.g. during disk probing
940 * on boot, loopback IO, acct() writes etc.
941 *
942 * No need to css_get on root memcg as the reference
943 * counting is disabled on the root level in the
944 * cgroup core. See CSS_NO_REF.
945 */
946 if (unlikely(!mm)) {
947 memcg = active_memcg();
948 if (unlikely(memcg)) {
949 /* remote memcg must hold a ref */
950 css_get(&memcg->css);
951 return memcg;
952 }
953 mm = current->mm;
954 if (unlikely(!mm))
955 return root_mem_cgroup;
956 }
957
958 rcu_read_lock();
959 do {
960 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
961 if (unlikely(!memcg))
962 memcg = root_mem_cgroup;
963 } while (!css_tryget(&memcg->css));
964 rcu_read_unlock();
965 return memcg;
966 }
967 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
968
memcg_kmem_bypass(void)969 static __always_inline bool memcg_kmem_bypass(void)
970 {
971 /* Allow remote memcg charging from any context. */
972 if (unlikely(active_memcg()))
973 return false;
974
975 /* Memcg to charge can't be determined. */
976 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
977 return true;
978
979 return false;
980 }
981
982 /**
983 * mem_cgroup_iter - iterate over memory cgroup hierarchy
984 * @root: hierarchy root
985 * @prev: previously returned memcg, NULL on first invocation
986 * @reclaim: cookie for shared reclaim walks, NULL for full walks
987 *
988 * Returns references to children of the hierarchy below @root, or
989 * @root itself, or %NULL after a full round-trip.
990 *
991 * Caller must pass the return value in @prev on subsequent
992 * invocations for reference counting, or use mem_cgroup_iter_break()
993 * to cancel a hierarchy walk before the round-trip is complete.
994 *
995 * Reclaimers can specify a node in @reclaim to divide up the memcgs
996 * in the hierarchy among all concurrent reclaimers operating on the
997 * same node.
998 */
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)999 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1000 struct mem_cgroup *prev,
1001 struct mem_cgroup_reclaim_cookie *reclaim)
1002 {
1003 struct mem_cgroup_reclaim_iter *iter;
1004 struct cgroup_subsys_state *css = NULL;
1005 struct mem_cgroup *memcg = NULL;
1006 struct mem_cgroup *pos = NULL;
1007
1008 if (mem_cgroup_disabled())
1009 return NULL;
1010
1011 if (!root)
1012 root = root_mem_cgroup;
1013
1014 rcu_read_lock();
1015
1016 if (reclaim) {
1017 struct mem_cgroup_per_node *mz;
1018
1019 mz = root->nodeinfo[reclaim->pgdat->node_id];
1020 iter = &mz->iter;
1021
1022 /*
1023 * On start, join the current reclaim iteration cycle.
1024 * Exit when a concurrent walker completes it.
1025 */
1026 if (!prev)
1027 reclaim->generation = iter->generation;
1028 else if (reclaim->generation != iter->generation)
1029 goto out_unlock;
1030
1031 while (1) {
1032 pos = READ_ONCE(iter->position);
1033 if (!pos || css_tryget(&pos->css))
1034 break;
1035 /*
1036 * css reference reached zero, so iter->position will
1037 * be cleared by ->css_released. However, we should not
1038 * rely on this happening soon, because ->css_released
1039 * is called from a work queue, and by busy-waiting we
1040 * might block it. So we clear iter->position right
1041 * away.
1042 */
1043 (void)cmpxchg(&iter->position, pos, NULL);
1044 }
1045 } else if (prev) {
1046 pos = prev;
1047 }
1048
1049 if (pos)
1050 css = &pos->css;
1051
1052 for (;;) {
1053 css = css_next_descendant_pre(css, &root->css);
1054 if (!css) {
1055 /*
1056 * Reclaimers share the hierarchy walk, and a
1057 * new one might jump in right at the end of
1058 * the hierarchy - make sure they see at least
1059 * one group and restart from the beginning.
1060 */
1061 if (!prev)
1062 continue;
1063 break;
1064 }
1065
1066 /*
1067 * Verify the css and acquire a reference. The root
1068 * is provided by the caller, so we know it's alive
1069 * and kicking, and don't take an extra reference.
1070 */
1071 if (css == &root->css || css_tryget(css)) {
1072 memcg = mem_cgroup_from_css(css);
1073 break;
1074 }
1075 }
1076
1077 if (reclaim) {
1078 /*
1079 * The position could have already been updated by a competing
1080 * thread, so check that the value hasn't changed since we read
1081 * it to avoid reclaiming from the same cgroup twice.
1082 */
1083 (void)cmpxchg(&iter->position, pos, memcg);
1084
1085 if (pos)
1086 css_put(&pos->css);
1087
1088 if (!memcg)
1089 iter->generation++;
1090 }
1091
1092 out_unlock:
1093 rcu_read_unlock();
1094 if (prev && prev != root)
1095 css_put(&prev->css);
1096
1097 return memcg;
1098 }
1099
1100 /**
1101 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1102 * @root: hierarchy root
1103 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1104 */
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1105 void mem_cgroup_iter_break(struct mem_cgroup *root,
1106 struct mem_cgroup *prev)
1107 {
1108 if (!root)
1109 root = root_mem_cgroup;
1110 if (prev && prev != root)
1111 css_put(&prev->css);
1112 }
1113
__invalidate_reclaim_iterators(struct mem_cgroup * from,struct mem_cgroup * dead_memcg)1114 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1115 struct mem_cgroup *dead_memcg)
1116 {
1117 struct mem_cgroup_reclaim_iter *iter;
1118 struct mem_cgroup_per_node *mz;
1119 int nid;
1120
1121 for_each_node(nid) {
1122 mz = from->nodeinfo[nid];
1123 iter = &mz->iter;
1124 cmpxchg(&iter->position, dead_memcg, NULL);
1125 }
1126 }
1127
invalidate_reclaim_iterators(struct mem_cgroup * dead_memcg)1128 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1129 {
1130 struct mem_cgroup *memcg = dead_memcg;
1131 struct mem_cgroup *last;
1132
1133 do {
1134 __invalidate_reclaim_iterators(memcg, dead_memcg);
1135 last = memcg;
1136 } while ((memcg = parent_mem_cgroup(memcg)));
1137
1138 /*
1139 * When cgruop1 non-hierarchy mode is used,
1140 * parent_mem_cgroup() does not walk all the way up to the
1141 * cgroup root (root_mem_cgroup). So we have to handle
1142 * dead_memcg from cgroup root separately.
1143 */
1144 if (last != root_mem_cgroup)
1145 __invalidate_reclaim_iterators(root_mem_cgroup,
1146 dead_memcg);
1147 }
1148
1149 /**
1150 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1151 * @memcg: hierarchy root
1152 * @fn: function to call for each task
1153 * @arg: argument passed to @fn
1154 *
1155 * This function iterates over tasks attached to @memcg or to any of its
1156 * descendants and calls @fn for each task. If @fn returns a non-zero
1157 * value, the function breaks the iteration loop and returns the value.
1158 * Otherwise, it will iterate over all tasks and return 0.
1159 *
1160 * This function must not be called for the root memory cgroup.
1161 */
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1162 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1163 int (*fn)(struct task_struct *, void *), void *arg)
1164 {
1165 struct mem_cgroup *iter;
1166 int ret = 0;
1167
1168 BUG_ON(memcg == root_mem_cgroup);
1169
1170 for_each_mem_cgroup_tree(iter, memcg) {
1171 struct css_task_iter it;
1172 struct task_struct *task;
1173
1174 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1175 while (!ret && (task = css_task_iter_next(&it)))
1176 ret = fn(task, arg);
1177 css_task_iter_end(&it);
1178 if (ret) {
1179 mem_cgroup_iter_break(memcg, iter);
1180 break;
1181 }
1182 }
1183 return ret;
1184 }
1185
1186 #ifdef CONFIG_DEBUG_VM
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)1187 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1188 {
1189 struct mem_cgroup *memcg;
1190
1191 if (mem_cgroup_disabled())
1192 return;
1193
1194 memcg = folio_memcg(folio);
1195
1196 if (!memcg)
1197 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != root_mem_cgroup, folio);
1198 else
1199 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1200 }
1201 #endif
1202
1203 /**
1204 * folio_lruvec_lock - Lock the lruvec for a folio.
1205 * @folio: Pointer to the folio.
1206 *
1207 * These functions are safe to use under any of the following conditions:
1208 * - folio locked
1209 * - folio_test_lru false
1210 * - folio_memcg_lock()
1211 * - folio frozen (refcount of 0)
1212 *
1213 * Return: The lruvec this folio is on with its lock held.
1214 */
folio_lruvec_lock(struct folio * folio)1215 struct lruvec *folio_lruvec_lock(struct folio *folio)
1216 {
1217 struct lruvec *lruvec = folio_lruvec(folio);
1218
1219 spin_lock(&lruvec->lru_lock);
1220 lruvec_memcg_debug(lruvec, folio);
1221
1222 return lruvec;
1223 }
1224
1225 /**
1226 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1227 * @folio: Pointer to the folio.
1228 *
1229 * These functions are safe to use under any of the following conditions:
1230 * - folio locked
1231 * - folio_test_lru false
1232 * - folio_memcg_lock()
1233 * - folio frozen (refcount of 0)
1234 *
1235 * Return: The lruvec this folio is on with its lock held and interrupts
1236 * disabled.
1237 */
folio_lruvec_lock_irq(struct folio * folio)1238 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1239 {
1240 struct lruvec *lruvec = folio_lruvec(folio);
1241
1242 spin_lock_irq(&lruvec->lru_lock);
1243 lruvec_memcg_debug(lruvec, folio);
1244
1245 return lruvec;
1246 }
1247
1248 /**
1249 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1250 * @folio: Pointer to the folio.
1251 * @flags: Pointer to irqsave flags.
1252 *
1253 * These functions are safe to use under any of the following conditions:
1254 * - folio locked
1255 * - folio_test_lru false
1256 * - folio_memcg_lock()
1257 * - folio frozen (refcount of 0)
1258 *
1259 * Return: The lruvec this folio is on with its lock held and interrupts
1260 * disabled.
1261 */
folio_lruvec_lock_irqsave(struct folio * folio,unsigned long * flags)1262 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1263 unsigned long *flags)
1264 {
1265 struct lruvec *lruvec = folio_lruvec(folio);
1266
1267 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1268 lruvec_memcg_debug(lruvec, folio);
1269
1270 return lruvec;
1271 }
1272
1273 /**
1274 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1275 * @lruvec: mem_cgroup per zone lru vector
1276 * @lru: index of lru list the page is sitting on
1277 * @zid: zone id of the accounted pages
1278 * @nr_pages: positive when adding or negative when removing
1279 *
1280 * This function must be called under lru_lock, just before a page is added
1281 * to or just after a page is removed from an lru list.
1282 */
mem_cgroup_update_lru_size(struct lruvec * lruvec,enum lru_list lru,int zid,int nr_pages)1283 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1284 int zid, int nr_pages)
1285 {
1286 struct mem_cgroup_per_node *mz;
1287 unsigned long *lru_size;
1288 long size;
1289
1290 if (mem_cgroup_disabled())
1291 return;
1292
1293 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1294 lru_size = &mz->lru_zone_size[zid][lru];
1295
1296 if (nr_pages < 0)
1297 *lru_size += nr_pages;
1298
1299 size = *lru_size;
1300 if (WARN_ONCE(size < 0,
1301 "%s(%p, %d, %d): lru_size %ld\n",
1302 __func__, lruvec, lru, nr_pages, size)) {
1303 VM_BUG_ON(1);
1304 *lru_size = 0;
1305 }
1306
1307 if (nr_pages > 0)
1308 *lru_size += nr_pages;
1309 }
1310
1311 /**
1312 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1313 * @memcg: the memory cgroup
1314 *
1315 * Returns the maximum amount of memory @mem can be charged with, in
1316 * pages.
1317 */
mem_cgroup_margin(struct mem_cgroup * memcg)1318 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1319 {
1320 unsigned long margin = 0;
1321 unsigned long count;
1322 unsigned long limit;
1323
1324 count = page_counter_read(&memcg->memory);
1325 limit = READ_ONCE(memcg->memory.max);
1326 if (count < limit)
1327 margin = limit - count;
1328
1329 if (do_memsw_account()) {
1330 count = page_counter_read(&memcg->memsw);
1331 limit = READ_ONCE(memcg->memsw.max);
1332 if (count < limit)
1333 margin = min(margin, limit - count);
1334 else
1335 margin = 0;
1336 }
1337
1338 return margin;
1339 }
1340
1341 /*
1342 * A routine for checking "mem" is under move_account() or not.
1343 *
1344 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1345 * moving cgroups. This is for waiting at high-memory pressure
1346 * caused by "move".
1347 */
mem_cgroup_under_move(struct mem_cgroup * memcg)1348 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1349 {
1350 struct mem_cgroup *from;
1351 struct mem_cgroup *to;
1352 bool ret = false;
1353 /*
1354 * Unlike task_move routines, we access mc.to, mc.from not under
1355 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1356 */
1357 spin_lock(&mc.lock);
1358 from = mc.from;
1359 to = mc.to;
1360 if (!from)
1361 goto unlock;
1362
1363 ret = mem_cgroup_is_descendant(from, memcg) ||
1364 mem_cgroup_is_descendant(to, memcg);
1365 unlock:
1366 spin_unlock(&mc.lock);
1367 return ret;
1368 }
1369
mem_cgroup_wait_acct_move(struct mem_cgroup * memcg)1370 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1371 {
1372 if (mc.moving_task && current != mc.moving_task) {
1373 if (mem_cgroup_under_move(memcg)) {
1374 DEFINE_WAIT(wait);
1375 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1376 /* moving charge context might have finished. */
1377 if (mc.moving_task)
1378 schedule();
1379 finish_wait(&mc.waitq, &wait);
1380 return true;
1381 }
1382 }
1383 return false;
1384 }
1385
1386 struct memory_stat {
1387 const char *name;
1388 unsigned int idx;
1389 };
1390
1391 static const struct memory_stat memory_stats[] = {
1392 { "anon", NR_ANON_MAPPED },
1393 { "file", NR_FILE_PAGES },
1394 { "kernel", MEMCG_KMEM },
1395 { "kernel_stack", NR_KERNEL_STACK_KB },
1396 { "pagetables", NR_PAGETABLE },
1397 { "percpu", MEMCG_PERCPU_B },
1398 { "sock", MEMCG_SOCK },
1399 { "vmalloc", MEMCG_VMALLOC },
1400 { "shmem", NR_SHMEM },
1401 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1402 { "zswap", MEMCG_ZSWAP_B },
1403 { "zswapped", MEMCG_ZSWAPPED },
1404 #endif
1405 { "file_mapped", NR_FILE_MAPPED },
1406 { "file_dirty", NR_FILE_DIRTY },
1407 { "file_writeback", NR_WRITEBACK },
1408 #ifdef CONFIG_SWAP
1409 { "swapcached", NR_SWAPCACHE },
1410 #endif
1411 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1412 { "anon_thp", NR_ANON_THPS },
1413 { "file_thp", NR_FILE_THPS },
1414 { "shmem_thp", NR_SHMEM_THPS },
1415 #endif
1416 { "inactive_anon", NR_INACTIVE_ANON },
1417 { "active_anon", NR_ACTIVE_ANON },
1418 { "inactive_file", NR_INACTIVE_FILE },
1419 { "active_file", NR_ACTIVE_FILE },
1420 { "unevictable", NR_UNEVICTABLE },
1421 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1422 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1423
1424 /* The memory events */
1425 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1426 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1427 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1428 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1429 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1430 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1431 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1432 };
1433
1434 /* Translate stat items to the correct unit for memory.stat output */
memcg_page_state_unit(int item)1435 static int memcg_page_state_unit(int item)
1436 {
1437 switch (item) {
1438 case MEMCG_PERCPU_B:
1439 case MEMCG_ZSWAP_B:
1440 case NR_SLAB_RECLAIMABLE_B:
1441 case NR_SLAB_UNRECLAIMABLE_B:
1442 case WORKINGSET_REFAULT_ANON:
1443 case WORKINGSET_REFAULT_FILE:
1444 case WORKINGSET_ACTIVATE_ANON:
1445 case WORKINGSET_ACTIVATE_FILE:
1446 case WORKINGSET_RESTORE_ANON:
1447 case WORKINGSET_RESTORE_FILE:
1448 case WORKINGSET_NODERECLAIM:
1449 return 1;
1450 case NR_KERNEL_STACK_KB:
1451 return SZ_1K;
1452 default:
1453 return PAGE_SIZE;
1454 }
1455 }
1456
memcg_page_state_output(struct mem_cgroup * memcg,int item)1457 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1458 int item)
1459 {
1460 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1461 }
1462
memory_stat_format(struct mem_cgroup * memcg)1463 static char *memory_stat_format(struct mem_cgroup *memcg)
1464 {
1465 struct seq_buf s;
1466 int i;
1467
1468 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1469 if (!s.buffer)
1470 return NULL;
1471
1472 /*
1473 * Provide statistics on the state of the memory subsystem as
1474 * well as cumulative event counters that show past behavior.
1475 *
1476 * This list is ordered following a combination of these gradients:
1477 * 1) generic big picture -> specifics and details
1478 * 2) reflecting userspace activity -> reflecting kernel heuristics
1479 *
1480 * Current memory state:
1481 */
1482 mem_cgroup_flush_stats();
1483
1484 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1485 u64 size;
1486
1487 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1488 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1489
1490 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1491 size += memcg_page_state_output(memcg,
1492 NR_SLAB_RECLAIMABLE_B);
1493 seq_buf_printf(&s, "slab %llu\n", size);
1494 }
1495 }
1496
1497 /* Accumulated memory events */
1498
1499 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1500 memcg_events(memcg, PGFAULT));
1501 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1502 memcg_events(memcg, PGMAJFAULT));
1503 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1504 memcg_events(memcg, PGREFILL));
1505 seq_buf_printf(&s, "pgscan %lu\n",
1506 memcg_events(memcg, PGSCAN_KSWAPD) +
1507 memcg_events(memcg, PGSCAN_DIRECT));
1508 seq_buf_printf(&s, "pgsteal %lu\n",
1509 memcg_events(memcg, PGSTEAL_KSWAPD) +
1510 memcg_events(memcg, PGSTEAL_DIRECT));
1511 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1512 memcg_events(memcg, PGACTIVATE));
1513 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1514 memcg_events(memcg, PGDEACTIVATE));
1515 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1516 memcg_events(memcg, PGLAZYFREE));
1517 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1518 memcg_events(memcg, PGLAZYFREED));
1519
1520 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1521 seq_buf_printf(&s, "%s %lu\n", vm_event_name(ZSWPIN),
1522 memcg_events(memcg, ZSWPIN));
1523 seq_buf_printf(&s, "%s %lu\n", vm_event_name(ZSWPOUT),
1524 memcg_events(memcg, ZSWPOUT));
1525 #endif
1526
1527 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1528 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1529 memcg_events(memcg, THP_FAULT_ALLOC));
1530 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1531 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1532 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1533
1534 /* The above should easily fit into one page */
1535 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1536
1537 return s.buffer;
1538 }
1539
1540 #define K(x) ((x) << (PAGE_SHIFT-10))
1541 /**
1542 * mem_cgroup_print_oom_context: Print OOM information relevant to
1543 * memory controller.
1544 * @memcg: The memory cgroup that went over limit
1545 * @p: Task that is going to be killed
1546 *
1547 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1548 * enabled
1549 */
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1550 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1551 {
1552 rcu_read_lock();
1553
1554 if (memcg) {
1555 pr_cont(",oom_memcg=");
1556 pr_cont_cgroup_path(memcg->css.cgroup);
1557 } else
1558 pr_cont(",global_oom");
1559 if (p) {
1560 pr_cont(",task_memcg=");
1561 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1562 }
1563 rcu_read_unlock();
1564 }
1565
1566 /**
1567 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1568 * memory controller.
1569 * @memcg: The memory cgroup that went over limit
1570 */
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1571 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1572 {
1573 char *buf;
1574
1575 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1576 K((u64)page_counter_read(&memcg->memory)),
1577 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1578 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1579 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1580 K((u64)page_counter_read(&memcg->swap)),
1581 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1582 else {
1583 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1584 K((u64)page_counter_read(&memcg->memsw)),
1585 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1586 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1587 K((u64)page_counter_read(&memcg->kmem)),
1588 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1589 }
1590
1591 pr_info("Memory cgroup stats for ");
1592 pr_cont_cgroup_path(memcg->css.cgroup);
1593 pr_cont(":");
1594 buf = memory_stat_format(memcg);
1595 if (!buf)
1596 return;
1597 pr_info("%s", buf);
1598 kfree(buf);
1599 }
1600
1601 /*
1602 * Return the memory (and swap, if configured) limit for a memcg.
1603 */
mem_cgroup_get_max(struct mem_cgroup * memcg)1604 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1605 {
1606 unsigned long max = READ_ONCE(memcg->memory.max);
1607
1608 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1609 if (mem_cgroup_swappiness(memcg))
1610 max += min(READ_ONCE(memcg->swap.max),
1611 (unsigned long)total_swap_pages);
1612 } else { /* v1 */
1613 if (mem_cgroup_swappiness(memcg)) {
1614 /* Calculate swap excess capacity from memsw limit */
1615 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1616
1617 max += min(swap, (unsigned long)total_swap_pages);
1618 }
1619 }
1620 return max;
1621 }
1622
mem_cgroup_size(struct mem_cgroup * memcg)1623 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1624 {
1625 return page_counter_read(&memcg->memory);
1626 }
1627
mem_cgroup_out_of_memory(struct mem_cgroup * memcg,gfp_t gfp_mask,int order)1628 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1629 int order)
1630 {
1631 struct oom_control oc = {
1632 .zonelist = NULL,
1633 .nodemask = NULL,
1634 .memcg = memcg,
1635 .gfp_mask = gfp_mask,
1636 .order = order,
1637 };
1638 bool ret = true;
1639
1640 if (mutex_lock_killable(&oom_lock))
1641 return true;
1642
1643 if (mem_cgroup_margin(memcg) >= (1 << order))
1644 goto unlock;
1645
1646 /*
1647 * A few threads which were not waiting at mutex_lock_killable() can
1648 * fail to bail out. Therefore, check again after holding oom_lock.
1649 */
1650 ret = task_is_dying() || out_of_memory(&oc);
1651
1652 unlock:
1653 mutex_unlock(&oom_lock);
1654 return ret;
1655 }
1656
mem_cgroup_soft_reclaim(struct mem_cgroup * root_memcg,pg_data_t * pgdat,gfp_t gfp_mask,unsigned long * total_scanned)1657 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1658 pg_data_t *pgdat,
1659 gfp_t gfp_mask,
1660 unsigned long *total_scanned)
1661 {
1662 struct mem_cgroup *victim = NULL;
1663 int total = 0;
1664 int loop = 0;
1665 unsigned long excess;
1666 unsigned long nr_scanned;
1667 struct mem_cgroup_reclaim_cookie reclaim = {
1668 .pgdat = pgdat,
1669 };
1670
1671 excess = soft_limit_excess(root_memcg);
1672
1673 while (1) {
1674 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1675 if (!victim) {
1676 loop++;
1677 if (loop >= 2) {
1678 /*
1679 * If we have not been able to reclaim
1680 * anything, it might because there are
1681 * no reclaimable pages under this hierarchy
1682 */
1683 if (!total)
1684 break;
1685 /*
1686 * We want to do more targeted reclaim.
1687 * excess >> 2 is not to excessive so as to
1688 * reclaim too much, nor too less that we keep
1689 * coming back to reclaim from this cgroup
1690 */
1691 if (total >= (excess >> 2) ||
1692 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1693 break;
1694 }
1695 continue;
1696 }
1697 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1698 pgdat, &nr_scanned);
1699 *total_scanned += nr_scanned;
1700 if (!soft_limit_excess(root_memcg))
1701 break;
1702 }
1703 mem_cgroup_iter_break(root_memcg, victim);
1704 return total;
1705 }
1706
1707 #ifdef CONFIG_LOCKDEP
1708 static struct lockdep_map memcg_oom_lock_dep_map = {
1709 .name = "memcg_oom_lock",
1710 };
1711 #endif
1712
1713 static DEFINE_SPINLOCK(memcg_oom_lock);
1714
1715 /*
1716 * Check OOM-Killer is already running under our hierarchy.
1717 * If someone is running, return false.
1718 */
mem_cgroup_oom_trylock(struct mem_cgroup * memcg)1719 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1720 {
1721 struct mem_cgroup *iter, *failed = NULL;
1722
1723 spin_lock(&memcg_oom_lock);
1724
1725 for_each_mem_cgroup_tree(iter, memcg) {
1726 if (iter->oom_lock) {
1727 /*
1728 * this subtree of our hierarchy is already locked
1729 * so we cannot give a lock.
1730 */
1731 failed = iter;
1732 mem_cgroup_iter_break(memcg, iter);
1733 break;
1734 } else
1735 iter->oom_lock = true;
1736 }
1737
1738 if (failed) {
1739 /*
1740 * OK, we failed to lock the whole subtree so we have
1741 * to clean up what we set up to the failing subtree
1742 */
1743 for_each_mem_cgroup_tree(iter, memcg) {
1744 if (iter == failed) {
1745 mem_cgroup_iter_break(memcg, iter);
1746 break;
1747 }
1748 iter->oom_lock = false;
1749 }
1750 } else
1751 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1752
1753 spin_unlock(&memcg_oom_lock);
1754
1755 return !failed;
1756 }
1757
mem_cgroup_oom_unlock(struct mem_cgroup * memcg)1758 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1759 {
1760 struct mem_cgroup *iter;
1761
1762 spin_lock(&memcg_oom_lock);
1763 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1764 for_each_mem_cgroup_tree(iter, memcg)
1765 iter->oom_lock = false;
1766 spin_unlock(&memcg_oom_lock);
1767 }
1768
mem_cgroup_mark_under_oom(struct mem_cgroup * memcg)1769 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1770 {
1771 struct mem_cgroup *iter;
1772
1773 spin_lock(&memcg_oom_lock);
1774 for_each_mem_cgroup_tree(iter, memcg)
1775 iter->under_oom++;
1776 spin_unlock(&memcg_oom_lock);
1777 }
1778
mem_cgroup_unmark_under_oom(struct mem_cgroup * memcg)1779 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1780 {
1781 struct mem_cgroup *iter;
1782
1783 /*
1784 * Be careful about under_oom underflows because a child memcg
1785 * could have been added after mem_cgroup_mark_under_oom.
1786 */
1787 spin_lock(&memcg_oom_lock);
1788 for_each_mem_cgroup_tree(iter, memcg)
1789 if (iter->under_oom > 0)
1790 iter->under_oom--;
1791 spin_unlock(&memcg_oom_lock);
1792 }
1793
1794 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1795
1796 struct oom_wait_info {
1797 struct mem_cgroup *memcg;
1798 wait_queue_entry_t wait;
1799 };
1800
memcg_oom_wake_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * arg)1801 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1802 unsigned mode, int sync, void *arg)
1803 {
1804 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1805 struct mem_cgroup *oom_wait_memcg;
1806 struct oom_wait_info *oom_wait_info;
1807
1808 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1809 oom_wait_memcg = oom_wait_info->memcg;
1810
1811 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1812 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1813 return 0;
1814 return autoremove_wake_function(wait, mode, sync, arg);
1815 }
1816
memcg_oom_recover(struct mem_cgroup * memcg)1817 static void memcg_oom_recover(struct mem_cgroup *memcg)
1818 {
1819 /*
1820 * For the following lockless ->under_oom test, the only required
1821 * guarantee is that it must see the state asserted by an OOM when
1822 * this function is called as a result of userland actions
1823 * triggered by the notification of the OOM. This is trivially
1824 * achieved by invoking mem_cgroup_mark_under_oom() before
1825 * triggering notification.
1826 */
1827 if (memcg && memcg->under_oom)
1828 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1829 }
1830
1831 /*
1832 * Returns true if successfully killed one or more processes. Though in some
1833 * corner cases it can return true even without killing any process.
1834 */
mem_cgroup_oom(struct mem_cgroup * memcg,gfp_t mask,int order)1835 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1836 {
1837 bool locked, ret;
1838
1839 if (order > PAGE_ALLOC_COSTLY_ORDER)
1840 return false;
1841
1842 memcg_memory_event(memcg, MEMCG_OOM);
1843
1844 /*
1845 * We are in the middle of the charge context here, so we
1846 * don't want to block when potentially sitting on a callstack
1847 * that holds all kinds of filesystem and mm locks.
1848 *
1849 * cgroup1 allows disabling the OOM killer and waiting for outside
1850 * handling until the charge can succeed; remember the context and put
1851 * the task to sleep at the end of the page fault when all locks are
1852 * released.
1853 *
1854 * On the other hand, in-kernel OOM killer allows for an async victim
1855 * memory reclaim (oom_reaper) and that means that we are not solely
1856 * relying on the oom victim to make a forward progress and we can
1857 * invoke the oom killer here.
1858 *
1859 * Please note that mem_cgroup_out_of_memory might fail to find a
1860 * victim and then we have to bail out from the charge path.
1861 */
1862 if (memcg->oom_kill_disable) {
1863 if (current->in_user_fault) {
1864 css_get(&memcg->css);
1865 current->memcg_in_oom = memcg;
1866 current->memcg_oom_gfp_mask = mask;
1867 current->memcg_oom_order = order;
1868 }
1869 return false;
1870 }
1871
1872 mem_cgroup_mark_under_oom(memcg);
1873
1874 locked = mem_cgroup_oom_trylock(memcg);
1875
1876 if (locked)
1877 mem_cgroup_oom_notify(memcg);
1878
1879 mem_cgroup_unmark_under_oom(memcg);
1880 ret = mem_cgroup_out_of_memory(memcg, mask, order);
1881
1882 if (locked)
1883 mem_cgroup_oom_unlock(memcg);
1884
1885 return ret;
1886 }
1887
1888 /**
1889 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1890 * @handle: actually kill/wait or just clean up the OOM state
1891 *
1892 * This has to be called at the end of a page fault if the memcg OOM
1893 * handler was enabled.
1894 *
1895 * Memcg supports userspace OOM handling where failed allocations must
1896 * sleep on a waitqueue until the userspace task resolves the
1897 * situation. Sleeping directly in the charge context with all kinds
1898 * of locks held is not a good idea, instead we remember an OOM state
1899 * in the task and mem_cgroup_oom_synchronize() has to be called at
1900 * the end of the page fault to complete the OOM handling.
1901 *
1902 * Returns %true if an ongoing memcg OOM situation was detected and
1903 * completed, %false otherwise.
1904 */
mem_cgroup_oom_synchronize(bool handle)1905 bool mem_cgroup_oom_synchronize(bool handle)
1906 {
1907 struct mem_cgroup *memcg = current->memcg_in_oom;
1908 struct oom_wait_info owait;
1909 bool locked;
1910
1911 /* OOM is global, do not handle */
1912 if (!memcg)
1913 return false;
1914
1915 if (!handle)
1916 goto cleanup;
1917
1918 owait.memcg = memcg;
1919 owait.wait.flags = 0;
1920 owait.wait.func = memcg_oom_wake_function;
1921 owait.wait.private = current;
1922 INIT_LIST_HEAD(&owait.wait.entry);
1923
1924 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1925 mem_cgroup_mark_under_oom(memcg);
1926
1927 locked = mem_cgroup_oom_trylock(memcg);
1928
1929 if (locked)
1930 mem_cgroup_oom_notify(memcg);
1931
1932 if (locked && !memcg->oom_kill_disable) {
1933 mem_cgroup_unmark_under_oom(memcg);
1934 finish_wait(&memcg_oom_waitq, &owait.wait);
1935 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1936 current->memcg_oom_order);
1937 } else {
1938 schedule();
1939 mem_cgroup_unmark_under_oom(memcg);
1940 finish_wait(&memcg_oom_waitq, &owait.wait);
1941 }
1942
1943 if (locked) {
1944 mem_cgroup_oom_unlock(memcg);
1945 /*
1946 * There is no guarantee that an OOM-lock contender
1947 * sees the wakeups triggered by the OOM kill
1948 * uncharges. Wake any sleepers explicitly.
1949 */
1950 memcg_oom_recover(memcg);
1951 }
1952 cleanup:
1953 current->memcg_in_oom = NULL;
1954 css_put(&memcg->css);
1955 return true;
1956 }
1957
1958 /**
1959 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1960 * @victim: task to be killed by the OOM killer
1961 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1962 *
1963 * Returns a pointer to a memory cgroup, which has to be cleaned up
1964 * by killing all belonging OOM-killable tasks.
1965 *
1966 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1967 */
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)1968 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1969 struct mem_cgroup *oom_domain)
1970 {
1971 struct mem_cgroup *oom_group = NULL;
1972 struct mem_cgroup *memcg;
1973
1974 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1975 return NULL;
1976
1977 if (!oom_domain)
1978 oom_domain = root_mem_cgroup;
1979
1980 rcu_read_lock();
1981
1982 memcg = mem_cgroup_from_task(victim);
1983 if (memcg == root_mem_cgroup)
1984 goto out;
1985
1986 /*
1987 * If the victim task has been asynchronously moved to a different
1988 * memory cgroup, we might end up killing tasks outside oom_domain.
1989 * In this case it's better to ignore memory.group.oom.
1990 */
1991 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1992 goto out;
1993
1994 /*
1995 * Traverse the memory cgroup hierarchy from the victim task's
1996 * cgroup up to the OOMing cgroup (or root) to find the
1997 * highest-level memory cgroup with oom.group set.
1998 */
1999 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2000 if (memcg->oom_group)
2001 oom_group = memcg;
2002
2003 if (memcg == oom_domain)
2004 break;
2005 }
2006
2007 if (oom_group)
2008 css_get(&oom_group->css);
2009 out:
2010 rcu_read_unlock();
2011
2012 return oom_group;
2013 }
2014
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)2015 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2016 {
2017 pr_info("Tasks in ");
2018 pr_cont_cgroup_path(memcg->css.cgroup);
2019 pr_cont(" are going to be killed due to memory.oom.group set\n");
2020 }
2021
2022 /**
2023 * folio_memcg_lock - Bind a folio to its memcg.
2024 * @folio: The folio.
2025 *
2026 * This function prevents unlocked LRU folios from being moved to
2027 * another cgroup.
2028 *
2029 * It ensures lifetime of the bound memcg. The caller is responsible
2030 * for the lifetime of the folio.
2031 */
folio_memcg_lock(struct folio * folio)2032 void folio_memcg_lock(struct folio *folio)
2033 {
2034 struct mem_cgroup *memcg;
2035 unsigned long flags;
2036
2037 /*
2038 * The RCU lock is held throughout the transaction. The fast
2039 * path can get away without acquiring the memcg->move_lock
2040 * because page moving starts with an RCU grace period.
2041 */
2042 rcu_read_lock();
2043
2044 if (mem_cgroup_disabled())
2045 return;
2046 again:
2047 memcg = folio_memcg(folio);
2048 if (unlikely(!memcg))
2049 return;
2050
2051 #ifdef CONFIG_PROVE_LOCKING
2052 local_irq_save(flags);
2053 might_lock(&memcg->move_lock);
2054 local_irq_restore(flags);
2055 #endif
2056
2057 if (atomic_read(&memcg->moving_account) <= 0)
2058 return;
2059
2060 spin_lock_irqsave(&memcg->move_lock, flags);
2061 if (memcg != folio_memcg(folio)) {
2062 spin_unlock_irqrestore(&memcg->move_lock, flags);
2063 goto again;
2064 }
2065
2066 /*
2067 * When charge migration first begins, we can have multiple
2068 * critical sections holding the fast-path RCU lock and one
2069 * holding the slowpath move_lock. Track the task who has the
2070 * move_lock for unlock_page_memcg().
2071 */
2072 memcg->move_lock_task = current;
2073 memcg->move_lock_flags = flags;
2074 }
2075
lock_page_memcg(struct page * page)2076 void lock_page_memcg(struct page *page)
2077 {
2078 folio_memcg_lock(page_folio(page));
2079 }
2080
__folio_memcg_unlock(struct mem_cgroup * memcg)2081 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2082 {
2083 if (memcg && memcg->move_lock_task == current) {
2084 unsigned long flags = memcg->move_lock_flags;
2085
2086 memcg->move_lock_task = NULL;
2087 memcg->move_lock_flags = 0;
2088
2089 spin_unlock_irqrestore(&memcg->move_lock, flags);
2090 }
2091
2092 rcu_read_unlock();
2093 }
2094
2095 /**
2096 * folio_memcg_unlock - Release the binding between a folio and its memcg.
2097 * @folio: The folio.
2098 *
2099 * This releases the binding created by folio_memcg_lock(). This does
2100 * not change the accounting of this folio to its memcg, but it does
2101 * permit others to change it.
2102 */
folio_memcg_unlock(struct folio * folio)2103 void folio_memcg_unlock(struct folio *folio)
2104 {
2105 __folio_memcg_unlock(folio_memcg(folio));
2106 }
2107
unlock_page_memcg(struct page * page)2108 void unlock_page_memcg(struct page *page)
2109 {
2110 folio_memcg_unlock(page_folio(page));
2111 }
2112
2113 struct memcg_stock_pcp {
2114 local_lock_t stock_lock;
2115 struct mem_cgroup *cached; /* this never be root cgroup */
2116 unsigned int nr_pages;
2117
2118 #ifdef CONFIG_MEMCG_KMEM
2119 struct obj_cgroup *cached_objcg;
2120 struct pglist_data *cached_pgdat;
2121 unsigned int nr_bytes;
2122 int nr_slab_reclaimable_b;
2123 int nr_slab_unreclaimable_b;
2124 #endif
2125
2126 struct work_struct work;
2127 unsigned long flags;
2128 #define FLUSHING_CACHED_CHARGE 0
2129 };
2130 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2131 .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2132 };
2133 static DEFINE_MUTEX(percpu_charge_mutex);
2134
2135 #ifdef CONFIG_MEMCG_KMEM
2136 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2137 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2138 struct mem_cgroup *root_memcg);
2139 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2140
2141 #else
drain_obj_stock(struct memcg_stock_pcp * stock)2142 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2143 {
2144 return NULL;
2145 }
obj_stock_flush_required(struct memcg_stock_pcp * stock,struct mem_cgroup * root_memcg)2146 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2147 struct mem_cgroup *root_memcg)
2148 {
2149 return false;
2150 }
memcg_account_kmem(struct mem_cgroup * memcg,int nr_pages)2151 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2152 {
2153 }
2154 #endif
2155
2156 /**
2157 * consume_stock: Try to consume stocked charge on this cpu.
2158 * @memcg: memcg to consume from.
2159 * @nr_pages: how many pages to charge.
2160 *
2161 * The charges will only happen if @memcg matches the current cpu's memcg
2162 * stock, and at least @nr_pages are available in that stock. Failure to
2163 * service an allocation will refill the stock.
2164 *
2165 * returns true if successful, false otherwise.
2166 */
consume_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2167 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2168 {
2169 struct memcg_stock_pcp *stock;
2170 unsigned long flags;
2171 bool ret = false;
2172
2173 if (nr_pages > MEMCG_CHARGE_BATCH)
2174 return ret;
2175
2176 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2177
2178 stock = this_cpu_ptr(&memcg_stock);
2179 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2180 stock->nr_pages -= nr_pages;
2181 ret = true;
2182 }
2183
2184 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2185
2186 return ret;
2187 }
2188
2189 /*
2190 * Returns stocks cached in percpu and reset cached information.
2191 */
drain_stock(struct memcg_stock_pcp * stock)2192 static void drain_stock(struct memcg_stock_pcp *stock)
2193 {
2194 struct mem_cgroup *old = stock->cached;
2195
2196 if (!old)
2197 return;
2198
2199 if (stock->nr_pages) {
2200 page_counter_uncharge(&old->memory, stock->nr_pages);
2201 if (do_memsw_account())
2202 page_counter_uncharge(&old->memsw, stock->nr_pages);
2203 stock->nr_pages = 0;
2204 }
2205
2206 css_put(&old->css);
2207 stock->cached = NULL;
2208 }
2209
drain_local_stock(struct work_struct * dummy)2210 static void drain_local_stock(struct work_struct *dummy)
2211 {
2212 struct memcg_stock_pcp *stock;
2213 struct obj_cgroup *old = NULL;
2214 unsigned long flags;
2215
2216 /*
2217 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2218 * drain_stock races is that we always operate on local CPU stock
2219 * here with IRQ disabled
2220 */
2221 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2222
2223 stock = this_cpu_ptr(&memcg_stock);
2224 old = drain_obj_stock(stock);
2225 drain_stock(stock);
2226 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2227
2228 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2229 if (old)
2230 obj_cgroup_put(old);
2231 }
2232
2233 /*
2234 * Cache charges(val) to local per_cpu area.
2235 * This will be consumed by consume_stock() function, later.
2236 */
__refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2237 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2238 {
2239 struct memcg_stock_pcp *stock;
2240
2241 stock = this_cpu_ptr(&memcg_stock);
2242 if (stock->cached != memcg) { /* reset if necessary */
2243 drain_stock(stock);
2244 css_get(&memcg->css);
2245 stock->cached = memcg;
2246 }
2247 stock->nr_pages += nr_pages;
2248
2249 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2250 drain_stock(stock);
2251 }
2252
refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2253 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2254 {
2255 unsigned long flags;
2256
2257 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2258 __refill_stock(memcg, nr_pages);
2259 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2260 }
2261
2262 /*
2263 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2264 * of the hierarchy under it.
2265 */
drain_all_stock(struct mem_cgroup * root_memcg)2266 static void drain_all_stock(struct mem_cgroup *root_memcg)
2267 {
2268 int cpu, curcpu;
2269
2270 /* If someone's already draining, avoid adding running more workers. */
2271 if (!mutex_trylock(&percpu_charge_mutex))
2272 return;
2273 /*
2274 * Notify other cpus that system-wide "drain" is running
2275 * We do not care about races with the cpu hotplug because cpu down
2276 * as well as workers from this path always operate on the local
2277 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2278 */
2279 migrate_disable();
2280 curcpu = smp_processor_id();
2281 for_each_online_cpu(cpu) {
2282 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2283 struct mem_cgroup *memcg;
2284 bool flush = false;
2285
2286 rcu_read_lock();
2287 memcg = stock->cached;
2288 if (memcg && stock->nr_pages &&
2289 mem_cgroup_is_descendant(memcg, root_memcg))
2290 flush = true;
2291 else if (obj_stock_flush_required(stock, root_memcg))
2292 flush = true;
2293 rcu_read_unlock();
2294
2295 if (flush &&
2296 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2297 if (cpu == curcpu)
2298 drain_local_stock(&stock->work);
2299 else
2300 schedule_work_on(cpu, &stock->work);
2301 }
2302 }
2303 migrate_enable();
2304 mutex_unlock(&percpu_charge_mutex);
2305 }
2306
memcg_hotplug_cpu_dead(unsigned int cpu)2307 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2308 {
2309 struct memcg_stock_pcp *stock;
2310
2311 stock = &per_cpu(memcg_stock, cpu);
2312 drain_stock(stock);
2313
2314 return 0;
2315 }
2316
reclaim_high(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)2317 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2318 unsigned int nr_pages,
2319 gfp_t gfp_mask)
2320 {
2321 unsigned long nr_reclaimed = 0;
2322
2323 do {
2324 unsigned long pflags;
2325
2326 if (page_counter_read(&memcg->memory) <=
2327 READ_ONCE(memcg->memory.high))
2328 continue;
2329
2330 memcg_memory_event(memcg, MEMCG_HIGH);
2331
2332 psi_memstall_enter(&pflags);
2333 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2334 gfp_mask, true);
2335 psi_memstall_leave(&pflags);
2336 } while ((memcg = parent_mem_cgroup(memcg)) &&
2337 !mem_cgroup_is_root(memcg));
2338
2339 return nr_reclaimed;
2340 }
2341
high_work_func(struct work_struct * work)2342 static void high_work_func(struct work_struct *work)
2343 {
2344 struct mem_cgroup *memcg;
2345
2346 memcg = container_of(work, struct mem_cgroup, high_work);
2347 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2348 }
2349
2350 /*
2351 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2352 * enough to still cause a significant slowdown in most cases, while still
2353 * allowing diagnostics and tracing to proceed without becoming stuck.
2354 */
2355 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2356
2357 /*
2358 * When calculating the delay, we use these either side of the exponentiation to
2359 * maintain precision and scale to a reasonable number of jiffies (see the table
2360 * below.
2361 *
2362 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2363 * overage ratio to a delay.
2364 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2365 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2366 * to produce a reasonable delay curve.
2367 *
2368 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2369 * reasonable delay curve compared to precision-adjusted overage, not
2370 * penalising heavily at first, but still making sure that growth beyond the
2371 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2372 * example, with a high of 100 megabytes:
2373 *
2374 * +-------+------------------------+
2375 * | usage | time to allocate in ms |
2376 * +-------+------------------------+
2377 * | 100M | 0 |
2378 * | 101M | 6 |
2379 * | 102M | 25 |
2380 * | 103M | 57 |
2381 * | 104M | 102 |
2382 * | 105M | 159 |
2383 * | 106M | 230 |
2384 * | 107M | 313 |
2385 * | 108M | 409 |
2386 * | 109M | 518 |
2387 * | 110M | 639 |
2388 * | 111M | 774 |
2389 * | 112M | 921 |
2390 * | 113M | 1081 |
2391 * | 114M | 1254 |
2392 * | 115M | 1439 |
2393 * | 116M | 1638 |
2394 * | 117M | 1849 |
2395 * | 118M | 2000 |
2396 * | 119M | 2000 |
2397 * | 120M | 2000 |
2398 * +-------+------------------------+
2399 */
2400 #define MEMCG_DELAY_PRECISION_SHIFT 20
2401 #define MEMCG_DELAY_SCALING_SHIFT 14
2402
calculate_overage(unsigned long usage,unsigned long high)2403 static u64 calculate_overage(unsigned long usage, unsigned long high)
2404 {
2405 u64 overage;
2406
2407 if (usage <= high)
2408 return 0;
2409
2410 /*
2411 * Prevent division by 0 in overage calculation by acting as if
2412 * it was a threshold of 1 page
2413 */
2414 high = max(high, 1UL);
2415
2416 overage = usage - high;
2417 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2418 return div64_u64(overage, high);
2419 }
2420
mem_find_max_overage(struct mem_cgroup * memcg)2421 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2422 {
2423 u64 overage, max_overage = 0;
2424
2425 do {
2426 overage = calculate_overage(page_counter_read(&memcg->memory),
2427 READ_ONCE(memcg->memory.high));
2428 max_overage = max(overage, max_overage);
2429 } while ((memcg = parent_mem_cgroup(memcg)) &&
2430 !mem_cgroup_is_root(memcg));
2431
2432 return max_overage;
2433 }
2434
swap_find_max_overage(struct mem_cgroup * memcg)2435 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2436 {
2437 u64 overage, max_overage = 0;
2438
2439 do {
2440 overage = calculate_overage(page_counter_read(&memcg->swap),
2441 READ_ONCE(memcg->swap.high));
2442 if (overage)
2443 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2444 max_overage = max(overage, max_overage);
2445 } while ((memcg = parent_mem_cgroup(memcg)) &&
2446 !mem_cgroup_is_root(memcg));
2447
2448 return max_overage;
2449 }
2450
2451 /*
2452 * Get the number of jiffies that we should penalise a mischievous cgroup which
2453 * is exceeding its memory.high by checking both it and its ancestors.
2454 */
calculate_high_delay(struct mem_cgroup * memcg,unsigned int nr_pages,u64 max_overage)2455 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2456 unsigned int nr_pages,
2457 u64 max_overage)
2458 {
2459 unsigned long penalty_jiffies;
2460
2461 if (!max_overage)
2462 return 0;
2463
2464 /*
2465 * We use overage compared to memory.high to calculate the number of
2466 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2467 * fairly lenient on small overages, and increasingly harsh when the
2468 * memcg in question makes it clear that it has no intention of stopping
2469 * its crazy behaviour, so we exponentially increase the delay based on
2470 * overage amount.
2471 */
2472 penalty_jiffies = max_overage * max_overage * HZ;
2473 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2474 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2475
2476 /*
2477 * Factor in the task's own contribution to the overage, such that four
2478 * N-sized allocations are throttled approximately the same as one
2479 * 4N-sized allocation.
2480 *
2481 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2482 * larger the current charge patch is than that.
2483 */
2484 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2485 }
2486
2487 /*
2488 * Scheduled by try_charge() to be executed from the userland return path
2489 * and reclaims memory over the high limit.
2490 */
mem_cgroup_handle_over_high(void)2491 void mem_cgroup_handle_over_high(void)
2492 {
2493 unsigned long penalty_jiffies;
2494 unsigned long pflags;
2495 unsigned long nr_reclaimed;
2496 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2497 int nr_retries = MAX_RECLAIM_RETRIES;
2498 struct mem_cgroup *memcg;
2499 bool in_retry = false;
2500
2501 if (likely(!nr_pages))
2502 return;
2503
2504 memcg = get_mem_cgroup_from_mm(current->mm);
2505 current->memcg_nr_pages_over_high = 0;
2506
2507 retry_reclaim:
2508 /*
2509 * The allocating task should reclaim at least the batch size, but for
2510 * subsequent retries we only want to do what's necessary to prevent oom
2511 * or breaching resource isolation.
2512 *
2513 * This is distinct from memory.max or page allocator behaviour because
2514 * memory.high is currently batched, whereas memory.max and the page
2515 * allocator run every time an allocation is made.
2516 */
2517 nr_reclaimed = reclaim_high(memcg,
2518 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2519 GFP_KERNEL);
2520
2521 /*
2522 * memory.high is breached and reclaim is unable to keep up. Throttle
2523 * allocators proactively to slow down excessive growth.
2524 */
2525 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2526 mem_find_max_overage(memcg));
2527
2528 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2529 swap_find_max_overage(memcg));
2530
2531 /*
2532 * Clamp the max delay per usermode return so as to still keep the
2533 * application moving forwards and also permit diagnostics, albeit
2534 * extremely slowly.
2535 */
2536 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2537
2538 /*
2539 * Don't sleep if the amount of jiffies this memcg owes us is so low
2540 * that it's not even worth doing, in an attempt to be nice to those who
2541 * go only a small amount over their memory.high value and maybe haven't
2542 * been aggressively reclaimed enough yet.
2543 */
2544 if (penalty_jiffies <= HZ / 100)
2545 goto out;
2546
2547 /*
2548 * If reclaim is making forward progress but we're still over
2549 * memory.high, we want to encourage that rather than doing allocator
2550 * throttling.
2551 */
2552 if (nr_reclaimed || nr_retries--) {
2553 in_retry = true;
2554 goto retry_reclaim;
2555 }
2556
2557 /*
2558 * If we exit early, we're guaranteed to die (since
2559 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2560 * need to account for any ill-begotten jiffies to pay them off later.
2561 */
2562 psi_memstall_enter(&pflags);
2563 schedule_timeout_killable(penalty_jiffies);
2564 psi_memstall_leave(&pflags);
2565
2566 out:
2567 css_put(&memcg->css);
2568 }
2569
try_charge_memcg(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2570 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2571 unsigned int nr_pages)
2572 {
2573 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2574 int nr_retries = MAX_RECLAIM_RETRIES;
2575 struct mem_cgroup *mem_over_limit;
2576 struct page_counter *counter;
2577 unsigned long nr_reclaimed;
2578 bool passed_oom = false;
2579 bool may_swap = true;
2580 bool drained = false;
2581 unsigned long pflags;
2582
2583 retry:
2584 if (consume_stock(memcg, nr_pages))
2585 return 0;
2586
2587 if (!do_memsw_account() ||
2588 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2589 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2590 goto done_restock;
2591 if (do_memsw_account())
2592 page_counter_uncharge(&memcg->memsw, batch);
2593 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2594 } else {
2595 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2596 may_swap = false;
2597 }
2598
2599 if (batch > nr_pages) {
2600 batch = nr_pages;
2601 goto retry;
2602 }
2603
2604 /*
2605 * Prevent unbounded recursion when reclaim operations need to
2606 * allocate memory. This might exceed the limits temporarily,
2607 * but we prefer facilitating memory reclaim and getting back
2608 * under the limit over triggering OOM kills in these cases.
2609 */
2610 if (unlikely(current->flags & PF_MEMALLOC))
2611 goto force;
2612
2613 if (unlikely(task_in_memcg_oom(current)))
2614 goto nomem;
2615
2616 if (!gfpflags_allow_blocking(gfp_mask))
2617 goto nomem;
2618
2619 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2620
2621 psi_memstall_enter(&pflags);
2622 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2623 gfp_mask, may_swap);
2624 psi_memstall_leave(&pflags);
2625
2626 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2627 goto retry;
2628
2629 if (!drained) {
2630 drain_all_stock(mem_over_limit);
2631 drained = true;
2632 goto retry;
2633 }
2634
2635 if (gfp_mask & __GFP_NORETRY)
2636 goto nomem;
2637 /*
2638 * Even though the limit is exceeded at this point, reclaim
2639 * may have been able to free some pages. Retry the charge
2640 * before killing the task.
2641 *
2642 * Only for regular pages, though: huge pages are rather
2643 * unlikely to succeed so close to the limit, and we fall back
2644 * to regular pages anyway in case of failure.
2645 */
2646 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2647 goto retry;
2648 /*
2649 * At task move, charge accounts can be doubly counted. So, it's
2650 * better to wait until the end of task_move if something is going on.
2651 */
2652 if (mem_cgroup_wait_acct_move(mem_over_limit))
2653 goto retry;
2654
2655 if (nr_retries--)
2656 goto retry;
2657
2658 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2659 goto nomem;
2660
2661 /* Avoid endless loop for tasks bypassed by the oom killer */
2662 if (passed_oom && task_is_dying())
2663 goto nomem;
2664
2665 /*
2666 * keep retrying as long as the memcg oom killer is able to make
2667 * a forward progress or bypass the charge if the oom killer
2668 * couldn't make any progress.
2669 */
2670 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2671 get_order(nr_pages * PAGE_SIZE))) {
2672 passed_oom = true;
2673 nr_retries = MAX_RECLAIM_RETRIES;
2674 goto retry;
2675 }
2676 nomem:
2677 /*
2678 * Memcg doesn't have a dedicated reserve for atomic
2679 * allocations. But like the global atomic pool, we need to
2680 * put the burden of reclaim on regular allocation requests
2681 * and let these go through as privileged allocations.
2682 */
2683 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2684 return -ENOMEM;
2685 force:
2686 /*
2687 * The allocation either can't fail or will lead to more memory
2688 * being freed very soon. Allow memory usage go over the limit
2689 * temporarily by force charging it.
2690 */
2691 page_counter_charge(&memcg->memory, nr_pages);
2692 if (do_memsw_account())
2693 page_counter_charge(&memcg->memsw, nr_pages);
2694
2695 return 0;
2696
2697 done_restock:
2698 if (batch > nr_pages)
2699 refill_stock(memcg, batch - nr_pages);
2700
2701 /*
2702 * If the hierarchy is above the normal consumption range, schedule
2703 * reclaim on returning to userland. We can perform reclaim here
2704 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2705 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2706 * not recorded as it most likely matches current's and won't
2707 * change in the meantime. As high limit is checked again before
2708 * reclaim, the cost of mismatch is negligible.
2709 */
2710 do {
2711 bool mem_high, swap_high;
2712
2713 mem_high = page_counter_read(&memcg->memory) >
2714 READ_ONCE(memcg->memory.high);
2715 swap_high = page_counter_read(&memcg->swap) >
2716 READ_ONCE(memcg->swap.high);
2717
2718 /* Don't bother a random interrupted task */
2719 if (!in_task()) {
2720 if (mem_high) {
2721 schedule_work(&memcg->high_work);
2722 break;
2723 }
2724 continue;
2725 }
2726
2727 if (mem_high || swap_high) {
2728 /*
2729 * The allocating tasks in this cgroup will need to do
2730 * reclaim or be throttled to prevent further growth
2731 * of the memory or swap footprints.
2732 *
2733 * Target some best-effort fairness between the tasks,
2734 * and distribute reclaim work and delay penalties
2735 * based on how much each task is actually allocating.
2736 */
2737 current->memcg_nr_pages_over_high += batch;
2738 set_notify_resume(current);
2739 break;
2740 }
2741 } while ((memcg = parent_mem_cgroup(memcg)));
2742
2743 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2744 !(current->flags & PF_MEMALLOC) &&
2745 gfpflags_allow_blocking(gfp_mask)) {
2746 mem_cgroup_handle_over_high();
2747 }
2748 return 0;
2749 }
2750
try_charge(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2751 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2752 unsigned int nr_pages)
2753 {
2754 if (mem_cgroup_is_root(memcg))
2755 return 0;
2756
2757 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2758 }
2759
cancel_charge(struct mem_cgroup * memcg,unsigned int nr_pages)2760 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2761 {
2762 if (mem_cgroup_is_root(memcg))
2763 return;
2764
2765 page_counter_uncharge(&memcg->memory, nr_pages);
2766 if (do_memsw_account())
2767 page_counter_uncharge(&memcg->memsw, nr_pages);
2768 }
2769
commit_charge(struct folio * folio,struct mem_cgroup * memcg)2770 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2771 {
2772 VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2773 /*
2774 * Any of the following ensures page's memcg stability:
2775 *
2776 * - the page lock
2777 * - LRU isolation
2778 * - lock_page_memcg()
2779 * - exclusive reference
2780 */
2781 folio->memcg_data = (unsigned long)memcg;
2782 }
2783
2784 #ifdef CONFIG_MEMCG_KMEM
2785 /*
2786 * The allocated objcg pointers array is not accounted directly.
2787 * Moreover, it should not come from DMA buffer and is not readily
2788 * reclaimable. So those GFP bits should be masked off.
2789 */
2790 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2791
2792 /*
2793 * mod_objcg_mlstate() may be called with irq enabled, so
2794 * mod_memcg_lruvec_state() should be used.
2795 */
mod_objcg_mlstate(struct obj_cgroup * objcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2796 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2797 struct pglist_data *pgdat,
2798 enum node_stat_item idx, int nr)
2799 {
2800 struct mem_cgroup *memcg;
2801 struct lruvec *lruvec;
2802
2803 rcu_read_lock();
2804 memcg = obj_cgroup_memcg(objcg);
2805 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2806 mod_memcg_lruvec_state(lruvec, idx, nr);
2807 rcu_read_unlock();
2808 }
2809
memcg_alloc_slab_cgroups(struct slab * slab,struct kmem_cache * s,gfp_t gfp,bool new_slab)2810 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2811 gfp_t gfp, bool new_slab)
2812 {
2813 unsigned int objects = objs_per_slab(s, slab);
2814 unsigned long memcg_data;
2815 void *vec;
2816
2817 gfp &= ~OBJCGS_CLEAR_MASK;
2818 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2819 slab_nid(slab));
2820 if (!vec)
2821 return -ENOMEM;
2822
2823 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2824 if (new_slab) {
2825 /*
2826 * If the slab is brand new and nobody can yet access its
2827 * memcg_data, no synchronization is required and memcg_data can
2828 * be simply assigned.
2829 */
2830 slab->memcg_data = memcg_data;
2831 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2832 /*
2833 * If the slab is already in use, somebody can allocate and
2834 * assign obj_cgroups in parallel. In this case the existing
2835 * objcg vector should be reused.
2836 */
2837 kfree(vec);
2838 return 0;
2839 }
2840
2841 kmemleak_not_leak(vec);
2842 return 0;
2843 }
2844
2845 /*
2846 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2847 *
2848 * A passed kernel object can be a slab object or a generic kernel page, so
2849 * different mechanisms for getting the memory cgroup pointer should be used.
2850 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2851 * can not know for sure how the kernel object is implemented.
2852 * mem_cgroup_from_obj() can be safely used in such cases.
2853 *
2854 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2855 * cgroup_mutex, etc.
2856 */
mem_cgroup_from_obj(void * p)2857 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2858 {
2859 struct folio *folio;
2860
2861 if (mem_cgroup_disabled())
2862 return NULL;
2863
2864 folio = virt_to_folio(p);
2865
2866 /*
2867 * Slab objects are accounted individually, not per-page.
2868 * Memcg membership data for each individual object is saved in
2869 * slab->memcg_data.
2870 */
2871 if (folio_test_slab(folio)) {
2872 struct obj_cgroup **objcgs;
2873 struct slab *slab;
2874 unsigned int off;
2875
2876 slab = folio_slab(folio);
2877 objcgs = slab_objcgs(slab);
2878 if (!objcgs)
2879 return NULL;
2880
2881 off = obj_to_index(slab->slab_cache, slab, p);
2882 if (objcgs[off])
2883 return obj_cgroup_memcg(objcgs[off]);
2884
2885 return NULL;
2886 }
2887
2888 /*
2889 * page_memcg_check() is used here, because in theory we can encounter
2890 * a folio where the slab flag has been cleared already, but
2891 * slab->memcg_data has not been freed yet
2892 * page_memcg_check(page) will guarantee that a proper memory
2893 * cgroup pointer or NULL will be returned.
2894 */
2895 return page_memcg_check(folio_page(folio, 0));
2896 }
2897
__get_obj_cgroup_from_memcg(struct mem_cgroup * memcg)2898 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
2899 {
2900 struct obj_cgroup *objcg = NULL;
2901
2902 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2903 objcg = rcu_dereference(memcg->objcg);
2904 if (objcg && obj_cgroup_tryget(objcg))
2905 break;
2906 objcg = NULL;
2907 }
2908 return objcg;
2909 }
2910
get_obj_cgroup_from_current(void)2911 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2912 {
2913 struct obj_cgroup *objcg = NULL;
2914 struct mem_cgroup *memcg;
2915
2916 if (memcg_kmem_bypass())
2917 return NULL;
2918
2919 rcu_read_lock();
2920 if (unlikely(active_memcg()))
2921 memcg = active_memcg();
2922 else
2923 memcg = mem_cgroup_from_task(current);
2924 objcg = __get_obj_cgroup_from_memcg(memcg);
2925 rcu_read_unlock();
2926 return objcg;
2927 }
2928
get_obj_cgroup_from_page(struct page * page)2929 struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
2930 {
2931 struct obj_cgroup *objcg;
2932
2933 if (!memcg_kmem_enabled() || memcg_kmem_bypass())
2934 return NULL;
2935
2936 if (PageMemcgKmem(page)) {
2937 objcg = __folio_objcg(page_folio(page));
2938 obj_cgroup_get(objcg);
2939 } else {
2940 struct mem_cgroup *memcg;
2941
2942 rcu_read_lock();
2943 memcg = __folio_memcg(page_folio(page));
2944 if (memcg)
2945 objcg = __get_obj_cgroup_from_memcg(memcg);
2946 else
2947 objcg = NULL;
2948 rcu_read_unlock();
2949 }
2950 return objcg;
2951 }
2952
memcg_account_kmem(struct mem_cgroup * memcg,int nr_pages)2953 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2954 {
2955 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
2956 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
2957 if (nr_pages > 0)
2958 page_counter_charge(&memcg->kmem, nr_pages);
2959 else
2960 page_counter_uncharge(&memcg->kmem, -nr_pages);
2961 }
2962 }
2963
2964
2965 /*
2966 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2967 * @objcg: object cgroup to uncharge
2968 * @nr_pages: number of pages to uncharge
2969 */
obj_cgroup_uncharge_pages(struct obj_cgroup * objcg,unsigned int nr_pages)2970 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2971 unsigned int nr_pages)
2972 {
2973 struct mem_cgroup *memcg;
2974
2975 memcg = get_mem_cgroup_from_objcg(objcg);
2976
2977 memcg_account_kmem(memcg, -nr_pages);
2978 refill_stock(memcg, nr_pages);
2979
2980 css_put(&memcg->css);
2981 }
2982
2983 /*
2984 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2985 * @objcg: object cgroup to charge
2986 * @gfp: reclaim mode
2987 * @nr_pages: number of pages to charge
2988 *
2989 * Returns 0 on success, an error code on failure.
2990 */
obj_cgroup_charge_pages(struct obj_cgroup * objcg,gfp_t gfp,unsigned int nr_pages)2991 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2992 unsigned int nr_pages)
2993 {
2994 struct mem_cgroup *memcg;
2995 int ret;
2996
2997 memcg = get_mem_cgroup_from_objcg(objcg);
2998
2999 ret = try_charge_memcg(memcg, gfp, nr_pages);
3000 if (ret)
3001 goto out;
3002
3003 memcg_account_kmem(memcg, nr_pages);
3004 out:
3005 css_put(&memcg->css);
3006
3007 return ret;
3008 }
3009
3010 /**
3011 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3012 * @page: page to charge
3013 * @gfp: reclaim mode
3014 * @order: allocation order
3015 *
3016 * Returns 0 on success, an error code on failure.
3017 */
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)3018 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3019 {
3020 struct obj_cgroup *objcg;
3021 int ret = 0;
3022
3023 objcg = get_obj_cgroup_from_current();
3024 if (objcg) {
3025 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3026 if (!ret) {
3027 page->memcg_data = (unsigned long)objcg |
3028 MEMCG_DATA_KMEM;
3029 return 0;
3030 }
3031 obj_cgroup_put(objcg);
3032 }
3033 return ret;
3034 }
3035
3036 /**
3037 * __memcg_kmem_uncharge_page: uncharge a kmem page
3038 * @page: page to uncharge
3039 * @order: allocation order
3040 */
__memcg_kmem_uncharge_page(struct page * page,int order)3041 void __memcg_kmem_uncharge_page(struct page *page, int order)
3042 {
3043 struct folio *folio = page_folio(page);
3044 struct obj_cgroup *objcg;
3045 unsigned int nr_pages = 1 << order;
3046
3047 if (!folio_memcg_kmem(folio))
3048 return;
3049
3050 objcg = __folio_objcg(folio);
3051 obj_cgroup_uncharge_pages(objcg, nr_pages);
3052 folio->memcg_data = 0;
3053 obj_cgroup_put(objcg);
3054 }
3055
mod_objcg_state(struct obj_cgroup * objcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)3056 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3057 enum node_stat_item idx, int nr)
3058 {
3059 struct memcg_stock_pcp *stock;
3060 struct obj_cgroup *old = NULL;
3061 unsigned long flags;
3062 int *bytes;
3063
3064 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3065 stock = this_cpu_ptr(&memcg_stock);
3066
3067 /*
3068 * Save vmstat data in stock and skip vmstat array update unless
3069 * accumulating over a page of vmstat data or when pgdat or idx
3070 * changes.
3071 */
3072 if (stock->cached_objcg != objcg) {
3073 old = drain_obj_stock(stock);
3074 obj_cgroup_get(objcg);
3075 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3076 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3077 stock->cached_objcg = objcg;
3078 stock->cached_pgdat = pgdat;
3079 } else if (stock->cached_pgdat != pgdat) {
3080 /* Flush the existing cached vmstat data */
3081 struct pglist_data *oldpg = stock->cached_pgdat;
3082
3083 if (stock->nr_slab_reclaimable_b) {
3084 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3085 stock->nr_slab_reclaimable_b);
3086 stock->nr_slab_reclaimable_b = 0;
3087 }
3088 if (stock->nr_slab_unreclaimable_b) {
3089 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3090 stock->nr_slab_unreclaimable_b);
3091 stock->nr_slab_unreclaimable_b = 0;
3092 }
3093 stock->cached_pgdat = pgdat;
3094 }
3095
3096 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3097 : &stock->nr_slab_unreclaimable_b;
3098 /*
3099 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3100 * cached locally at least once before pushing it out.
3101 */
3102 if (!*bytes) {
3103 *bytes = nr;
3104 nr = 0;
3105 } else {
3106 *bytes += nr;
3107 if (abs(*bytes) > PAGE_SIZE) {
3108 nr = *bytes;
3109 *bytes = 0;
3110 } else {
3111 nr = 0;
3112 }
3113 }
3114 if (nr)
3115 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3116
3117 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3118 if (old)
3119 obj_cgroup_put(old);
3120 }
3121
consume_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes)3122 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3123 {
3124 struct memcg_stock_pcp *stock;
3125 unsigned long flags;
3126 bool ret = false;
3127
3128 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3129
3130 stock = this_cpu_ptr(&memcg_stock);
3131 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3132 stock->nr_bytes -= nr_bytes;
3133 ret = true;
3134 }
3135
3136 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3137
3138 return ret;
3139 }
3140
drain_obj_stock(struct memcg_stock_pcp * stock)3141 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3142 {
3143 struct obj_cgroup *old = stock->cached_objcg;
3144
3145 if (!old)
3146 return NULL;
3147
3148 if (stock->nr_bytes) {
3149 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3150 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3151
3152 if (nr_pages) {
3153 struct mem_cgroup *memcg;
3154
3155 memcg = get_mem_cgroup_from_objcg(old);
3156
3157 memcg_account_kmem(memcg, -nr_pages);
3158 __refill_stock(memcg, nr_pages);
3159
3160 css_put(&memcg->css);
3161 }
3162
3163 /*
3164 * The leftover is flushed to the centralized per-memcg value.
3165 * On the next attempt to refill obj stock it will be moved
3166 * to a per-cpu stock (probably, on an other CPU), see
3167 * refill_obj_stock().
3168 *
3169 * How often it's flushed is a trade-off between the memory
3170 * limit enforcement accuracy and potential CPU contention,
3171 * so it might be changed in the future.
3172 */
3173 atomic_add(nr_bytes, &old->nr_charged_bytes);
3174 stock->nr_bytes = 0;
3175 }
3176
3177 /*
3178 * Flush the vmstat data in current stock
3179 */
3180 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3181 if (stock->nr_slab_reclaimable_b) {
3182 mod_objcg_mlstate(old, stock->cached_pgdat,
3183 NR_SLAB_RECLAIMABLE_B,
3184 stock->nr_slab_reclaimable_b);
3185 stock->nr_slab_reclaimable_b = 0;
3186 }
3187 if (stock->nr_slab_unreclaimable_b) {
3188 mod_objcg_mlstate(old, stock->cached_pgdat,
3189 NR_SLAB_UNRECLAIMABLE_B,
3190 stock->nr_slab_unreclaimable_b);
3191 stock->nr_slab_unreclaimable_b = 0;
3192 }
3193 stock->cached_pgdat = NULL;
3194 }
3195
3196 stock->cached_objcg = NULL;
3197 /*
3198 * The `old' objects needs to be released by the caller via
3199 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3200 */
3201 return old;
3202 }
3203
obj_stock_flush_required(struct memcg_stock_pcp * stock,struct mem_cgroup * root_memcg)3204 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3205 struct mem_cgroup *root_memcg)
3206 {
3207 struct mem_cgroup *memcg;
3208
3209 if (stock->cached_objcg) {
3210 memcg = obj_cgroup_memcg(stock->cached_objcg);
3211 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3212 return true;
3213 }
3214
3215 return false;
3216 }
3217
refill_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes,bool allow_uncharge)3218 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3219 bool allow_uncharge)
3220 {
3221 struct memcg_stock_pcp *stock;
3222 struct obj_cgroup *old = NULL;
3223 unsigned long flags;
3224 unsigned int nr_pages = 0;
3225
3226 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3227
3228 stock = this_cpu_ptr(&memcg_stock);
3229 if (stock->cached_objcg != objcg) { /* reset if necessary */
3230 old = drain_obj_stock(stock);
3231 obj_cgroup_get(objcg);
3232 stock->cached_objcg = objcg;
3233 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3234 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3235 allow_uncharge = true; /* Allow uncharge when objcg changes */
3236 }
3237 stock->nr_bytes += nr_bytes;
3238
3239 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3240 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3241 stock->nr_bytes &= (PAGE_SIZE - 1);
3242 }
3243
3244 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3245 if (old)
3246 obj_cgroup_put(old);
3247
3248 if (nr_pages)
3249 obj_cgroup_uncharge_pages(objcg, nr_pages);
3250 }
3251
obj_cgroup_charge(struct obj_cgroup * objcg,gfp_t gfp,size_t size)3252 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3253 {
3254 unsigned int nr_pages, nr_bytes;
3255 int ret;
3256
3257 if (consume_obj_stock(objcg, size))
3258 return 0;
3259
3260 /*
3261 * In theory, objcg->nr_charged_bytes can have enough
3262 * pre-charged bytes to satisfy the allocation. However,
3263 * flushing objcg->nr_charged_bytes requires two atomic
3264 * operations, and objcg->nr_charged_bytes can't be big.
3265 * The shared objcg->nr_charged_bytes can also become a
3266 * performance bottleneck if all tasks of the same memcg are
3267 * trying to update it. So it's better to ignore it and try
3268 * grab some new pages. The stock's nr_bytes will be flushed to
3269 * objcg->nr_charged_bytes later on when objcg changes.
3270 *
3271 * The stock's nr_bytes may contain enough pre-charged bytes
3272 * to allow one less page from being charged, but we can't rely
3273 * on the pre-charged bytes not being changed outside of
3274 * consume_obj_stock() or refill_obj_stock(). So ignore those
3275 * pre-charged bytes as well when charging pages. To avoid a
3276 * page uncharge right after a page charge, we set the
3277 * allow_uncharge flag to false when calling refill_obj_stock()
3278 * to temporarily allow the pre-charged bytes to exceed the page
3279 * size limit. The maximum reachable value of the pre-charged
3280 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3281 * race.
3282 */
3283 nr_pages = size >> PAGE_SHIFT;
3284 nr_bytes = size & (PAGE_SIZE - 1);
3285
3286 if (nr_bytes)
3287 nr_pages += 1;
3288
3289 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3290 if (!ret && nr_bytes)
3291 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3292
3293 return ret;
3294 }
3295
obj_cgroup_uncharge(struct obj_cgroup * objcg,size_t size)3296 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3297 {
3298 refill_obj_stock(objcg, size, true);
3299 }
3300
3301 #endif /* CONFIG_MEMCG_KMEM */
3302
3303 /*
3304 * Because page_memcg(head) is not set on tails, set it now.
3305 */
split_page_memcg(struct page * head,unsigned int nr)3306 void split_page_memcg(struct page *head, unsigned int nr)
3307 {
3308 struct folio *folio = page_folio(head);
3309 struct mem_cgroup *memcg = folio_memcg(folio);
3310 int i;
3311
3312 if (mem_cgroup_disabled() || !memcg)
3313 return;
3314
3315 for (i = 1; i < nr; i++)
3316 folio_page(folio, i)->memcg_data = folio->memcg_data;
3317
3318 if (folio_memcg_kmem(folio))
3319 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3320 else
3321 css_get_many(&memcg->css, nr - 1);
3322 }
3323
3324 #ifdef CONFIG_MEMCG_SWAP
3325 /**
3326 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3327 * @entry: swap entry to be moved
3328 * @from: mem_cgroup which the entry is moved from
3329 * @to: mem_cgroup which the entry is moved to
3330 *
3331 * It succeeds only when the swap_cgroup's record for this entry is the same
3332 * as the mem_cgroup's id of @from.
3333 *
3334 * Returns 0 on success, -EINVAL on failure.
3335 *
3336 * The caller must have charged to @to, IOW, called page_counter_charge() about
3337 * both res and memsw, and called css_get().
3338 */
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)3339 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3340 struct mem_cgroup *from, struct mem_cgroup *to)
3341 {
3342 unsigned short old_id, new_id;
3343
3344 old_id = mem_cgroup_id(from);
3345 new_id = mem_cgroup_id(to);
3346
3347 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3348 mod_memcg_state(from, MEMCG_SWAP, -1);
3349 mod_memcg_state(to, MEMCG_SWAP, 1);
3350 return 0;
3351 }
3352 return -EINVAL;
3353 }
3354 #else
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)3355 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3356 struct mem_cgroup *from, struct mem_cgroup *to)
3357 {
3358 return -EINVAL;
3359 }
3360 #endif
3361
3362 static DEFINE_MUTEX(memcg_max_mutex);
3363
mem_cgroup_resize_max(struct mem_cgroup * memcg,unsigned long max,bool memsw)3364 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3365 unsigned long max, bool memsw)
3366 {
3367 bool enlarge = false;
3368 bool drained = false;
3369 int ret;
3370 bool limits_invariant;
3371 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3372
3373 do {
3374 if (signal_pending(current)) {
3375 ret = -EINTR;
3376 break;
3377 }
3378
3379 mutex_lock(&memcg_max_mutex);
3380 /*
3381 * Make sure that the new limit (memsw or memory limit) doesn't
3382 * break our basic invariant rule memory.max <= memsw.max.
3383 */
3384 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3385 max <= memcg->memsw.max;
3386 if (!limits_invariant) {
3387 mutex_unlock(&memcg_max_mutex);
3388 ret = -EINVAL;
3389 break;
3390 }
3391 if (max > counter->max)
3392 enlarge = true;
3393 ret = page_counter_set_max(counter, max);
3394 mutex_unlock(&memcg_max_mutex);
3395
3396 if (!ret)
3397 break;
3398
3399 if (!drained) {
3400 drain_all_stock(memcg);
3401 drained = true;
3402 continue;
3403 }
3404
3405 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3406 GFP_KERNEL, !memsw)) {
3407 ret = -EBUSY;
3408 break;
3409 }
3410 } while (true);
3411
3412 if (!ret && enlarge)
3413 memcg_oom_recover(memcg);
3414
3415 return ret;
3416 }
3417
mem_cgroup_soft_limit_reclaim(pg_data_t * pgdat,int order,gfp_t gfp_mask,unsigned long * total_scanned)3418 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3419 gfp_t gfp_mask,
3420 unsigned long *total_scanned)
3421 {
3422 unsigned long nr_reclaimed = 0;
3423 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3424 unsigned long reclaimed;
3425 int loop = 0;
3426 struct mem_cgroup_tree_per_node *mctz;
3427 unsigned long excess;
3428
3429 if (order > 0)
3430 return 0;
3431
3432 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3433
3434 /*
3435 * Do not even bother to check the largest node if the root
3436 * is empty. Do it lockless to prevent lock bouncing. Races
3437 * are acceptable as soft limit is best effort anyway.
3438 */
3439 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3440 return 0;
3441
3442 /*
3443 * This loop can run a while, specially if mem_cgroup's continuously
3444 * keep exceeding their soft limit and putting the system under
3445 * pressure
3446 */
3447 do {
3448 if (next_mz)
3449 mz = next_mz;
3450 else
3451 mz = mem_cgroup_largest_soft_limit_node(mctz);
3452 if (!mz)
3453 break;
3454
3455 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3456 gfp_mask, total_scanned);
3457 nr_reclaimed += reclaimed;
3458 spin_lock_irq(&mctz->lock);
3459
3460 /*
3461 * If we failed to reclaim anything from this memory cgroup
3462 * it is time to move on to the next cgroup
3463 */
3464 next_mz = NULL;
3465 if (!reclaimed)
3466 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3467
3468 excess = soft_limit_excess(mz->memcg);
3469 /*
3470 * One school of thought says that we should not add
3471 * back the node to the tree if reclaim returns 0.
3472 * But our reclaim could return 0, simply because due
3473 * to priority we are exposing a smaller subset of
3474 * memory to reclaim from. Consider this as a longer
3475 * term TODO.
3476 */
3477 /* If excess == 0, no tree ops */
3478 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3479 spin_unlock_irq(&mctz->lock);
3480 css_put(&mz->memcg->css);
3481 loop++;
3482 /*
3483 * Could not reclaim anything and there are no more
3484 * mem cgroups to try or we seem to be looping without
3485 * reclaiming anything.
3486 */
3487 if (!nr_reclaimed &&
3488 (next_mz == NULL ||
3489 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3490 break;
3491 } while (!nr_reclaimed);
3492 if (next_mz)
3493 css_put(&next_mz->memcg->css);
3494 return nr_reclaimed;
3495 }
3496
3497 /*
3498 * Reclaims as many pages from the given memcg as possible.
3499 *
3500 * Caller is responsible for holding css reference for memcg.
3501 */
mem_cgroup_force_empty(struct mem_cgroup * memcg)3502 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3503 {
3504 int nr_retries = MAX_RECLAIM_RETRIES;
3505
3506 /* we call try-to-free pages for make this cgroup empty */
3507 lru_add_drain_all();
3508
3509 drain_all_stock(memcg);
3510
3511 /* try to free all pages in this cgroup */
3512 while (nr_retries && page_counter_read(&memcg->memory)) {
3513 if (signal_pending(current))
3514 return -EINTR;
3515
3516 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true))
3517 nr_retries--;
3518 }
3519
3520 return 0;
3521 }
3522
mem_cgroup_force_empty_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3523 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3524 char *buf, size_t nbytes,
3525 loff_t off)
3526 {
3527 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3528
3529 if (mem_cgroup_is_root(memcg))
3530 return -EINVAL;
3531 return mem_cgroup_force_empty(memcg) ?: nbytes;
3532 }
3533
mem_cgroup_hierarchy_read(struct cgroup_subsys_state * css,struct cftype * cft)3534 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3535 struct cftype *cft)
3536 {
3537 return 1;
3538 }
3539
mem_cgroup_hierarchy_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3540 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3541 struct cftype *cft, u64 val)
3542 {
3543 if (val == 1)
3544 return 0;
3545
3546 pr_warn_once("Non-hierarchical mode is deprecated. "
3547 "Please report your usecase to linux-mm@kvack.org if you "
3548 "depend on this functionality.\n");
3549
3550 return -EINVAL;
3551 }
3552
mem_cgroup_usage(struct mem_cgroup * memcg,bool swap)3553 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3554 {
3555 unsigned long val;
3556
3557 if (mem_cgroup_is_root(memcg)) {
3558 mem_cgroup_flush_stats();
3559 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3560 memcg_page_state(memcg, NR_ANON_MAPPED);
3561 if (swap)
3562 val += memcg_page_state(memcg, MEMCG_SWAP);
3563 } else {
3564 if (!swap)
3565 val = page_counter_read(&memcg->memory);
3566 else
3567 val = page_counter_read(&memcg->memsw);
3568 }
3569 return val;
3570 }
3571
3572 enum {
3573 RES_USAGE,
3574 RES_LIMIT,
3575 RES_MAX_USAGE,
3576 RES_FAILCNT,
3577 RES_SOFT_LIMIT,
3578 };
3579
mem_cgroup_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)3580 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3581 struct cftype *cft)
3582 {
3583 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3584 struct page_counter *counter;
3585
3586 switch (MEMFILE_TYPE(cft->private)) {
3587 case _MEM:
3588 counter = &memcg->memory;
3589 break;
3590 case _MEMSWAP:
3591 counter = &memcg->memsw;
3592 break;
3593 case _KMEM:
3594 counter = &memcg->kmem;
3595 break;
3596 case _TCP:
3597 counter = &memcg->tcpmem;
3598 break;
3599 default:
3600 BUG();
3601 }
3602
3603 switch (MEMFILE_ATTR(cft->private)) {
3604 case RES_USAGE:
3605 if (counter == &memcg->memory)
3606 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3607 if (counter == &memcg->memsw)
3608 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3609 return (u64)page_counter_read(counter) * PAGE_SIZE;
3610 case RES_LIMIT:
3611 return (u64)counter->max * PAGE_SIZE;
3612 case RES_MAX_USAGE:
3613 return (u64)counter->watermark * PAGE_SIZE;
3614 case RES_FAILCNT:
3615 return counter->failcnt;
3616 case RES_SOFT_LIMIT:
3617 return (u64)memcg->soft_limit * PAGE_SIZE;
3618 default:
3619 BUG();
3620 }
3621 }
3622
3623 #ifdef CONFIG_MEMCG_KMEM
memcg_online_kmem(struct mem_cgroup * memcg)3624 static int memcg_online_kmem(struct mem_cgroup *memcg)
3625 {
3626 struct obj_cgroup *objcg;
3627
3628 if (cgroup_memory_nokmem)
3629 return 0;
3630
3631 if (unlikely(mem_cgroup_is_root(memcg)))
3632 return 0;
3633
3634 objcg = obj_cgroup_alloc();
3635 if (!objcg)
3636 return -ENOMEM;
3637
3638 objcg->memcg = memcg;
3639 rcu_assign_pointer(memcg->objcg, objcg);
3640
3641 static_branch_enable(&memcg_kmem_enabled_key);
3642
3643 memcg->kmemcg_id = memcg->id.id;
3644
3645 return 0;
3646 }
3647
memcg_offline_kmem(struct mem_cgroup * memcg)3648 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3649 {
3650 struct mem_cgroup *parent;
3651
3652 if (cgroup_memory_nokmem)
3653 return;
3654
3655 if (unlikely(mem_cgroup_is_root(memcg)))
3656 return;
3657
3658 parent = parent_mem_cgroup(memcg);
3659 if (!parent)
3660 parent = root_mem_cgroup;
3661
3662 memcg_reparent_objcgs(memcg, parent);
3663
3664 /*
3665 * After we have finished memcg_reparent_objcgs(), all list_lrus
3666 * corresponding to this cgroup are guaranteed to remain empty.
3667 * The ordering is imposed by list_lru_node->lock taken by
3668 * memcg_reparent_list_lrus().
3669 */
3670 memcg_reparent_list_lrus(memcg, parent);
3671 }
3672 #else
memcg_online_kmem(struct mem_cgroup * memcg)3673 static int memcg_online_kmem(struct mem_cgroup *memcg)
3674 {
3675 return 0;
3676 }
memcg_offline_kmem(struct mem_cgroup * memcg)3677 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3678 {
3679 }
3680 #endif /* CONFIG_MEMCG_KMEM */
3681
memcg_update_tcp_max(struct mem_cgroup * memcg,unsigned long max)3682 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3683 {
3684 int ret;
3685
3686 mutex_lock(&memcg_max_mutex);
3687
3688 ret = page_counter_set_max(&memcg->tcpmem, max);
3689 if (ret)
3690 goto out;
3691
3692 if (!memcg->tcpmem_active) {
3693 /*
3694 * The active flag needs to be written after the static_key
3695 * update. This is what guarantees that the socket activation
3696 * function is the last one to run. See mem_cgroup_sk_alloc()
3697 * for details, and note that we don't mark any socket as
3698 * belonging to this memcg until that flag is up.
3699 *
3700 * We need to do this, because static_keys will span multiple
3701 * sites, but we can't control their order. If we mark a socket
3702 * as accounted, but the accounting functions are not patched in
3703 * yet, we'll lose accounting.
3704 *
3705 * We never race with the readers in mem_cgroup_sk_alloc(),
3706 * because when this value change, the code to process it is not
3707 * patched in yet.
3708 */
3709 static_branch_inc(&memcg_sockets_enabled_key);
3710 memcg->tcpmem_active = true;
3711 }
3712 out:
3713 mutex_unlock(&memcg_max_mutex);
3714 return ret;
3715 }
3716
3717 /*
3718 * The user of this function is...
3719 * RES_LIMIT.
3720 */
mem_cgroup_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3721 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3722 char *buf, size_t nbytes, loff_t off)
3723 {
3724 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3725 unsigned long nr_pages;
3726 int ret;
3727
3728 buf = strstrip(buf);
3729 ret = page_counter_memparse(buf, "-1", &nr_pages);
3730 if (ret)
3731 return ret;
3732
3733 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3734 case RES_LIMIT:
3735 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3736 ret = -EINVAL;
3737 break;
3738 }
3739 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3740 case _MEM:
3741 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3742 break;
3743 case _MEMSWAP:
3744 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3745 break;
3746 case _KMEM:
3747 /* kmem.limit_in_bytes is deprecated. */
3748 ret = -EOPNOTSUPP;
3749 break;
3750 case _TCP:
3751 ret = memcg_update_tcp_max(memcg, nr_pages);
3752 break;
3753 }
3754 break;
3755 case RES_SOFT_LIMIT:
3756 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3757 ret = -EOPNOTSUPP;
3758 } else {
3759 memcg->soft_limit = nr_pages;
3760 ret = 0;
3761 }
3762 break;
3763 }
3764 return ret ?: nbytes;
3765 }
3766
mem_cgroup_reset(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3767 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3768 size_t nbytes, loff_t off)
3769 {
3770 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3771 struct page_counter *counter;
3772
3773 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3774 case _MEM:
3775 counter = &memcg->memory;
3776 break;
3777 case _MEMSWAP:
3778 counter = &memcg->memsw;
3779 break;
3780 case _KMEM:
3781 counter = &memcg->kmem;
3782 break;
3783 case _TCP:
3784 counter = &memcg->tcpmem;
3785 break;
3786 default:
3787 BUG();
3788 }
3789
3790 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3791 case RES_MAX_USAGE:
3792 page_counter_reset_watermark(counter);
3793 break;
3794 case RES_FAILCNT:
3795 counter->failcnt = 0;
3796 break;
3797 default:
3798 BUG();
3799 }
3800
3801 return nbytes;
3802 }
3803
mem_cgroup_move_charge_read(struct cgroup_subsys_state * css,struct cftype * cft)3804 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3805 struct cftype *cft)
3806 {
3807 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3808 }
3809
3810 #ifdef CONFIG_MMU
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3811 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3812 struct cftype *cft, u64 val)
3813 {
3814 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3815
3816 if (val & ~MOVE_MASK)
3817 return -EINVAL;
3818
3819 /*
3820 * No kind of locking is needed in here, because ->can_attach() will
3821 * check this value once in the beginning of the process, and then carry
3822 * on with stale data. This means that changes to this value will only
3823 * affect task migrations starting after the change.
3824 */
3825 memcg->move_charge_at_immigrate = val;
3826 return 0;
3827 }
3828 #else
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3829 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3830 struct cftype *cft, u64 val)
3831 {
3832 return -ENOSYS;
3833 }
3834 #endif
3835
3836 #ifdef CONFIG_NUMA
3837
3838 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3839 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3840 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3841
mem_cgroup_node_nr_lru_pages(struct mem_cgroup * memcg,int nid,unsigned int lru_mask,bool tree)3842 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3843 int nid, unsigned int lru_mask, bool tree)
3844 {
3845 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3846 unsigned long nr = 0;
3847 enum lru_list lru;
3848
3849 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3850
3851 for_each_lru(lru) {
3852 if (!(BIT(lru) & lru_mask))
3853 continue;
3854 if (tree)
3855 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3856 else
3857 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3858 }
3859 return nr;
3860 }
3861
mem_cgroup_nr_lru_pages(struct mem_cgroup * memcg,unsigned int lru_mask,bool tree)3862 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3863 unsigned int lru_mask,
3864 bool tree)
3865 {
3866 unsigned long nr = 0;
3867 enum lru_list lru;
3868
3869 for_each_lru(lru) {
3870 if (!(BIT(lru) & lru_mask))
3871 continue;
3872 if (tree)
3873 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3874 else
3875 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3876 }
3877 return nr;
3878 }
3879
memcg_numa_stat_show(struct seq_file * m,void * v)3880 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3881 {
3882 struct numa_stat {
3883 const char *name;
3884 unsigned int lru_mask;
3885 };
3886
3887 static const struct numa_stat stats[] = {
3888 { "total", LRU_ALL },
3889 { "file", LRU_ALL_FILE },
3890 { "anon", LRU_ALL_ANON },
3891 { "unevictable", BIT(LRU_UNEVICTABLE) },
3892 };
3893 const struct numa_stat *stat;
3894 int nid;
3895 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3896
3897 mem_cgroup_flush_stats();
3898
3899 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3900 seq_printf(m, "%s=%lu", stat->name,
3901 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3902 false));
3903 for_each_node_state(nid, N_MEMORY)
3904 seq_printf(m, " N%d=%lu", nid,
3905 mem_cgroup_node_nr_lru_pages(memcg, nid,
3906 stat->lru_mask, false));
3907 seq_putc(m, '\n');
3908 }
3909
3910 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3911
3912 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3913 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3914 true));
3915 for_each_node_state(nid, N_MEMORY)
3916 seq_printf(m, " N%d=%lu", nid,
3917 mem_cgroup_node_nr_lru_pages(memcg, nid,
3918 stat->lru_mask, true));
3919 seq_putc(m, '\n');
3920 }
3921
3922 return 0;
3923 }
3924 #endif /* CONFIG_NUMA */
3925
3926 static const unsigned int memcg1_stats[] = {
3927 NR_FILE_PAGES,
3928 NR_ANON_MAPPED,
3929 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3930 NR_ANON_THPS,
3931 #endif
3932 NR_SHMEM,
3933 NR_FILE_MAPPED,
3934 NR_FILE_DIRTY,
3935 NR_WRITEBACK,
3936 MEMCG_SWAP,
3937 };
3938
3939 static const char *const memcg1_stat_names[] = {
3940 "cache",
3941 "rss",
3942 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3943 "rss_huge",
3944 #endif
3945 "shmem",
3946 "mapped_file",
3947 "dirty",
3948 "writeback",
3949 "swap",
3950 };
3951
3952 /* Universal VM events cgroup1 shows, original sort order */
3953 static const unsigned int memcg1_events[] = {
3954 PGPGIN,
3955 PGPGOUT,
3956 PGFAULT,
3957 PGMAJFAULT,
3958 };
3959
memcg_stat_show(struct seq_file * m,void * v)3960 static int memcg_stat_show(struct seq_file *m, void *v)
3961 {
3962 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3963 unsigned long memory, memsw;
3964 struct mem_cgroup *mi;
3965 unsigned int i;
3966
3967 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3968
3969 mem_cgroup_flush_stats();
3970
3971 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3972 unsigned long nr;
3973
3974 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3975 continue;
3976 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
3977 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
3978 }
3979
3980 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3981 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3982 memcg_events_local(memcg, memcg1_events[i]));
3983
3984 for (i = 0; i < NR_LRU_LISTS; i++)
3985 seq_printf(m, "%s %lu\n", lru_list_name(i),
3986 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3987 PAGE_SIZE);
3988
3989 /* Hierarchical information */
3990 memory = memsw = PAGE_COUNTER_MAX;
3991 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3992 memory = min(memory, READ_ONCE(mi->memory.max));
3993 memsw = min(memsw, READ_ONCE(mi->memsw.max));
3994 }
3995 seq_printf(m, "hierarchical_memory_limit %llu\n",
3996 (u64)memory * PAGE_SIZE);
3997 if (do_memsw_account())
3998 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3999 (u64)memsw * PAGE_SIZE);
4000
4001 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4002 unsigned long nr;
4003
4004 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4005 continue;
4006 nr = memcg_page_state(memcg, memcg1_stats[i]);
4007 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4008 (u64)nr * PAGE_SIZE);
4009 }
4010
4011 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4012 seq_printf(m, "total_%s %llu\n",
4013 vm_event_name(memcg1_events[i]),
4014 (u64)memcg_events(memcg, memcg1_events[i]));
4015
4016 for (i = 0; i < NR_LRU_LISTS; i++)
4017 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4018 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4019 PAGE_SIZE);
4020
4021 #ifdef CONFIG_DEBUG_VM
4022 {
4023 pg_data_t *pgdat;
4024 struct mem_cgroup_per_node *mz;
4025 unsigned long anon_cost = 0;
4026 unsigned long file_cost = 0;
4027
4028 for_each_online_pgdat(pgdat) {
4029 mz = memcg->nodeinfo[pgdat->node_id];
4030
4031 anon_cost += mz->lruvec.anon_cost;
4032 file_cost += mz->lruvec.file_cost;
4033 }
4034 seq_printf(m, "anon_cost %lu\n", anon_cost);
4035 seq_printf(m, "file_cost %lu\n", file_cost);
4036 }
4037 #endif
4038
4039 return 0;
4040 }
4041
mem_cgroup_swappiness_read(struct cgroup_subsys_state * css,struct cftype * cft)4042 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4043 struct cftype *cft)
4044 {
4045 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4046
4047 return mem_cgroup_swappiness(memcg);
4048 }
4049
mem_cgroup_swappiness_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4050 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4051 struct cftype *cft, u64 val)
4052 {
4053 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4054
4055 if (val > 200)
4056 return -EINVAL;
4057
4058 if (!mem_cgroup_is_root(memcg))
4059 memcg->swappiness = val;
4060 else
4061 vm_swappiness = val;
4062
4063 return 0;
4064 }
4065
__mem_cgroup_threshold(struct mem_cgroup * memcg,bool swap)4066 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4067 {
4068 struct mem_cgroup_threshold_ary *t;
4069 unsigned long usage;
4070 int i;
4071
4072 rcu_read_lock();
4073 if (!swap)
4074 t = rcu_dereference(memcg->thresholds.primary);
4075 else
4076 t = rcu_dereference(memcg->memsw_thresholds.primary);
4077
4078 if (!t)
4079 goto unlock;
4080
4081 usage = mem_cgroup_usage(memcg, swap);
4082
4083 /*
4084 * current_threshold points to threshold just below or equal to usage.
4085 * If it's not true, a threshold was crossed after last
4086 * call of __mem_cgroup_threshold().
4087 */
4088 i = t->current_threshold;
4089
4090 /*
4091 * Iterate backward over array of thresholds starting from
4092 * current_threshold and check if a threshold is crossed.
4093 * If none of thresholds below usage is crossed, we read
4094 * only one element of the array here.
4095 */
4096 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4097 eventfd_signal(t->entries[i].eventfd, 1);
4098
4099 /* i = current_threshold + 1 */
4100 i++;
4101
4102 /*
4103 * Iterate forward over array of thresholds starting from
4104 * current_threshold+1 and check if a threshold is crossed.
4105 * If none of thresholds above usage is crossed, we read
4106 * only one element of the array here.
4107 */
4108 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4109 eventfd_signal(t->entries[i].eventfd, 1);
4110
4111 /* Update current_threshold */
4112 t->current_threshold = i - 1;
4113 unlock:
4114 rcu_read_unlock();
4115 }
4116
mem_cgroup_threshold(struct mem_cgroup * memcg)4117 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4118 {
4119 while (memcg) {
4120 __mem_cgroup_threshold(memcg, false);
4121 if (do_memsw_account())
4122 __mem_cgroup_threshold(memcg, true);
4123
4124 memcg = parent_mem_cgroup(memcg);
4125 }
4126 }
4127
compare_thresholds(const void * a,const void * b)4128 static int compare_thresholds(const void *a, const void *b)
4129 {
4130 const struct mem_cgroup_threshold *_a = a;
4131 const struct mem_cgroup_threshold *_b = b;
4132
4133 if (_a->threshold > _b->threshold)
4134 return 1;
4135
4136 if (_a->threshold < _b->threshold)
4137 return -1;
4138
4139 return 0;
4140 }
4141
mem_cgroup_oom_notify_cb(struct mem_cgroup * memcg)4142 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4143 {
4144 struct mem_cgroup_eventfd_list *ev;
4145
4146 spin_lock(&memcg_oom_lock);
4147
4148 list_for_each_entry(ev, &memcg->oom_notify, list)
4149 eventfd_signal(ev->eventfd, 1);
4150
4151 spin_unlock(&memcg_oom_lock);
4152 return 0;
4153 }
4154
mem_cgroup_oom_notify(struct mem_cgroup * memcg)4155 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4156 {
4157 struct mem_cgroup *iter;
4158
4159 for_each_mem_cgroup_tree(iter, memcg)
4160 mem_cgroup_oom_notify_cb(iter);
4161 }
4162
__mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args,enum res_type type)4163 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4164 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4165 {
4166 struct mem_cgroup_thresholds *thresholds;
4167 struct mem_cgroup_threshold_ary *new;
4168 unsigned long threshold;
4169 unsigned long usage;
4170 int i, size, ret;
4171
4172 ret = page_counter_memparse(args, "-1", &threshold);
4173 if (ret)
4174 return ret;
4175
4176 mutex_lock(&memcg->thresholds_lock);
4177
4178 if (type == _MEM) {
4179 thresholds = &memcg->thresholds;
4180 usage = mem_cgroup_usage(memcg, false);
4181 } else if (type == _MEMSWAP) {
4182 thresholds = &memcg->memsw_thresholds;
4183 usage = mem_cgroup_usage(memcg, true);
4184 } else
4185 BUG();
4186
4187 /* Check if a threshold crossed before adding a new one */
4188 if (thresholds->primary)
4189 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4190
4191 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4192
4193 /* Allocate memory for new array of thresholds */
4194 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4195 if (!new) {
4196 ret = -ENOMEM;
4197 goto unlock;
4198 }
4199 new->size = size;
4200
4201 /* Copy thresholds (if any) to new array */
4202 if (thresholds->primary)
4203 memcpy(new->entries, thresholds->primary->entries,
4204 flex_array_size(new, entries, size - 1));
4205
4206 /* Add new threshold */
4207 new->entries[size - 1].eventfd = eventfd;
4208 new->entries[size - 1].threshold = threshold;
4209
4210 /* Sort thresholds. Registering of new threshold isn't time-critical */
4211 sort(new->entries, size, sizeof(*new->entries),
4212 compare_thresholds, NULL);
4213
4214 /* Find current threshold */
4215 new->current_threshold = -1;
4216 for (i = 0; i < size; i++) {
4217 if (new->entries[i].threshold <= usage) {
4218 /*
4219 * new->current_threshold will not be used until
4220 * rcu_assign_pointer(), so it's safe to increment
4221 * it here.
4222 */
4223 ++new->current_threshold;
4224 } else
4225 break;
4226 }
4227
4228 /* Free old spare buffer and save old primary buffer as spare */
4229 kfree(thresholds->spare);
4230 thresholds->spare = thresholds->primary;
4231
4232 rcu_assign_pointer(thresholds->primary, new);
4233
4234 /* To be sure that nobody uses thresholds */
4235 synchronize_rcu();
4236
4237 unlock:
4238 mutex_unlock(&memcg->thresholds_lock);
4239
4240 return ret;
4241 }
4242
mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4243 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4244 struct eventfd_ctx *eventfd, const char *args)
4245 {
4246 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4247 }
4248
memsw_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4249 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4250 struct eventfd_ctx *eventfd, const char *args)
4251 {
4252 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4253 }
4254
__mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,enum res_type type)4255 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4256 struct eventfd_ctx *eventfd, enum res_type type)
4257 {
4258 struct mem_cgroup_thresholds *thresholds;
4259 struct mem_cgroup_threshold_ary *new;
4260 unsigned long usage;
4261 int i, j, size, entries;
4262
4263 mutex_lock(&memcg->thresholds_lock);
4264
4265 if (type == _MEM) {
4266 thresholds = &memcg->thresholds;
4267 usage = mem_cgroup_usage(memcg, false);
4268 } else if (type == _MEMSWAP) {
4269 thresholds = &memcg->memsw_thresholds;
4270 usage = mem_cgroup_usage(memcg, true);
4271 } else
4272 BUG();
4273
4274 if (!thresholds->primary)
4275 goto unlock;
4276
4277 /* Check if a threshold crossed before removing */
4278 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4279
4280 /* Calculate new number of threshold */
4281 size = entries = 0;
4282 for (i = 0; i < thresholds->primary->size; i++) {
4283 if (thresholds->primary->entries[i].eventfd != eventfd)
4284 size++;
4285 else
4286 entries++;
4287 }
4288
4289 new = thresholds->spare;
4290
4291 /* If no items related to eventfd have been cleared, nothing to do */
4292 if (!entries)
4293 goto unlock;
4294
4295 /* Set thresholds array to NULL if we don't have thresholds */
4296 if (!size) {
4297 kfree(new);
4298 new = NULL;
4299 goto swap_buffers;
4300 }
4301
4302 new->size = size;
4303
4304 /* Copy thresholds and find current threshold */
4305 new->current_threshold = -1;
4306 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4307 if (thresholds->primary->entries[i].eventfd == eventfd)
4308 continue;
4309
4310 new->entries[j] = thresholds->primary->entries[i];
4311 if (new->entries[j].threshold <= usage) {
4312 /*
4313 * new->current_threshold will not be used
4314 * until rcu_assign_pointer(), so it's safe to increment
4315 * it here.
4316 */
4317 ++new->current_threshold;
4318 }
4319 j++;
4320 }
4321
4322 swap_buffers:
4323 /* Swap primary and spare array */
4324 thresholds->spare = thresholds->primary;
4325
4326 rcu_assign_pointer(thresholds->primary, new);
4327
4328 /* To be sure that nobody uses thresholds */
4329 synchronize_rcu();
4330
4331 /* If all events are unregistered, free the spare array */
4332 if (!new) {
4333 kfree(thresholds->spare);
4334 thresholds->spare = NULL;
4335 }
4336 unlock:
4337 mutex_unlock(&memcg->thresholds_lock);
4338 }
4339
mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4340 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4341 struct eventfd_ctx *eventfd)
4342 {
4343 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4344 }
4345
memsw_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4346 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4347 struct eventfd_ctx *eventfd)
4348 {
4349 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4350 }
4351
mem_cgroup_oom_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4352 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4353 struct eventfd_ctx *eventfd, const char *args)
4354 {
4355 struct mem_cgroup_eventfd_list *event;
4356
4357 event = kmalloc(sizeof(*event), GFP_KERNEL);
4358 if (!event)
4359 return -ENOMEM;
4360
4361 spin_lock(&memcg_oom_lock);
4362
4363 event->eventfd = eventfd;
4364 list_add(&event->list, &memcg->oom_notify);
4365
4366 /* already in OOM ? */
4367 if (memcg->under_oom)
4368 eventfd_signal(eventfd, 1);
4369 spin_unlock(&memcg_oom_lock);
4370
4371 return 0;
4372 }
4373
mem_cgroup_oom_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4374 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4375 struct eventfd_ctx *eventfd)
4376 {
4377 struct mem_cgroup_eventfd_list *ev, *tmp;
4378
4379 spin_lock(&memcg_oom_lock);
4380
4381 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4382 if (ev->eventfd == eventfd) {
4383 list_del(&ev->list);
4384 kfree(ev);
4385 }
4386 }
4387
4388 spin_unlock(&memcg_oom_lock);
4389 }
4390
mem_cgroup_oom_control_read(struct seq_file * sf,void * v)4391 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4392 {
4393 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4394
4395 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4396 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4397 seq_printf(sf, "oom_kill %lu\n",
4398 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4399 return 0;
4400 }
4401
mem_cgroup_oom_control_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4402 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4403 struct cftype *cft, u64 val)
4404 {
4405 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4406
4407 /* cannot set to root cgroup and only 0 and 1 are allowed */
4408 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4409 return -EINVAL;
4410
4411 memcg->oom_kill_disable = val;
4412 if (!val)
4413 memcg_oom_recover(memcg);
4414
4415 return 0;
4416 }
4417
4418 #ifdef CONFIG_CGROUP_WRITEBACK
4419
4420 #include <trace/events/writeback.h>
4421
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)4422 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4423 {
4424 return wb_domain_init(&memcg->cgwb_domain, gfp);
4425 }
4426
memcg_wb_domain_exit(struct mem_cgroup * memcg)4427 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4428 {
4429 wb_domain_exit(&memcg->cgwb_domain);
4430 }
4431
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)4432 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4433 {
4434 wb_domain_size_changed(&memcg->cgwb_domain);
4435 }
4436
mem_cgroup_wb_domain(struct bdi_writeback * wb)4437 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4438 {
4439 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4440
4441 if (!memcg->css.parent)
4442 return NULL;
4443
4444 return &memcg->cgwb_domain;
4445 }
4446
4447 /**
4448 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4449 * @wb: bdi_writeback in question
4450 * @pfilepages: out parameter for number of file pages
4451 * @pheadroom: out parameter for number of allocatable pages according to memcg
4452 * @pdirty: out parameter for number of dirty pages
4453 * @pwriteback: out parameter for number of pages under writeback
4454 *
4455 * Determine the numbers of file, headroom, dirty, and writeback pages in
4456 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4457 * is a bit more involved.
4458 *
4459 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4460 * headroom is calculated as the lowest headroom of itself and the
4461 * ancestors. Note that this doesn't consider the actual amount of
4462 * available memory in the system. The caller should further cap
4463 * *@pheadroom accordingly.
4464 */
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)4465 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4466 unsigned long *pheadroom, unsigned long *pdirty,
4467 unsigned long *pwriteback)
4468 {
4469 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4470 struct mem_cgroup *parent;
4471
4472 mem_cgroup_flush_stats();
4473
4474 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4475 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4476 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4477 memcg_page_state(memcg, NR_ACTIVE_FILE);
4478
4479 *pheadroom = PAGE_COUNTER_MAX;
4480 while ((parent = parent_mem_cgroup(memcg))) {
4481 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4482 READ_ONCE(memcg->memory.high));
4483 unsigned long used = page_counter_read(&memcg->memory);
4484
4485 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4486 memcg = parent;
4487 }
4488 }
4489
4490 /*
4491 * Foreign dirty flushing
4492 *
4493 * There's an inherent mismatch between memcg and writeback. The former
4494 * tracks ownership per-page while the latter per-inode. This was a
4495 * deliberate design decision because honoring per-page ownership in the
4496 * writeback path is complicated, may lead to higher CPU and IO overheads
4497 * and deemed unnecessary given that write-sharing an inode across
4498 * different cgroups isn't a common use-case.
4499 *
4500 * Combined with inode majority-writer ownership switching, this works well
4501 * enough in most cases but there are some pathological cases. For
4502 * example, let's say there are two cgroups A and B which keep writing to
4503 * different but confined parts of the same inode. B owns the inode and
4504 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4505 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4506 * triggering background writeback. A will be slowed down without a way to
4507 * make writeback of the dirty pages happen.
4508 *
4509 * Conditions like the above can lead to a cgroup getting repeatedly and
4510 * severely throttled after making some progress after each
4511 * dirty_expire_interval while the underlying IO device is almost
4512 * completely idle.
4513 *
4514 * Solving this problem completely requires matching the ownership tracking
4515 * granularities between memcg and writeback in either direction. However,
4516 * the more egregious behaviors can be avoided by simply remembering the
4517 * most recent foreign dirtying events and initiating remote flushes on
4518 * them when local writeback isn't enough to keep the memory clean enough.
4519 *
4520 * The following two functions implement such mechanism. When a foreign
4521 * page - a page whose memcg and writeback ownerships don't match - is
4522 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4523 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4524 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4525 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4526 * foreign bdi_writebacks which haven't expired. Both the numbers of
4527 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4528 * limited to MEMCG_CGWB_FRN_CNT.
4529 *
4530 * The mechanism only remembers IDs and doesn't hold any object references.
4531 * As being wrong occasionally doesn't matter, updates and accesses to the
4532 * records are lockless and racy.
4533 */
mem_cgroup_track_foreign_dirty_slowpath(struct folio * folio,struct bdi_writeback * wb)4534 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4535 struct bdi_writeback *wb)
4536 {
4537 struct mem_cgroup *memcg = folio_memcg(folio);
4538 struct memcg_cgwb_frn *frn;
4539 u64 now = get_jiffies_64();
4540 u64 oldest_at = now;
4541 int oldest = -1;
4542 int i;
4543
4544 trace_track_foreign_dirty(folio, wb);
4545
4546 /*
4547 * Pick the slot to use. If there is already a slot for @wb, keep
4548 * using it. If not replace the oldest one which isn't being
4549 * written out.
4550 */
4551 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4552 frn = &memcg->cgwb_frn[i];
4553 if (frn->bdi_id == wb->bdi->id &&
4554 frn->memcg_id == wb->memcg_css->id)
4555 break;
4556 if (time_before64(frn->at, oldest_at) &&
4557 atomic_read(&frn->done.cnt) == 1) {
4558 oldest = i;
4559 oldest_at = frn->at;
4560 }
4561 }
4562
4563 if (i < MEMCG_CGWB_FRN_CNT) {
4564 /*
4565 * Re-using an existing one. Update timestamp lazily to
4566 * avoid making the cacheline hot. We want them to be
4567 * reasonably up-to-date and significantly shorter than
4568 * dirty_expire_interval as that's what expires the record.
4569 * Use the shorter of 1s and dirty_expire_interval / 8.
4570 */
4571 unsigned long update_intv =
4572 min_t(unsigned long, HZ,
4573 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4574
4575 if (time_before64(frn->at, now - update_intv))
4576 frn->at = now;
4577 } else if (oldest >= 0) {
4578 /* replace the oldest free one */
4579 frn = &memcg->cgwb_frn[oldest];
4580 frn->bdi_id = wb->bdi->id;
4581 frn->memcg_id = wb->memcg_css->id;
4582 frn->at = now;
4583 }
4584 }
4585
4586 /* issue foreign writeback flushes for recorded foreign dirtying events */
mem_cgroup_flush_foreign(struct bdi_writeback * wb)4587 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4588 {
4589 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4590 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4591 u64 now = jiffies_64;
4592 int i;
4593
4594 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4595 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4596
4597 /*
4598 * If the record is older than dirty_expire_interval,
4599 * writeback on it has already started. No need to kick it
4600 * off again. Also, don't start a new one if there's
4601 * already one in flight.
4602 */
4603 if (time_after64(frn->at, now - intv) &&
4604 atomic_read(&frn->done.cnt) == 1) {
4605 frn->at = 0;
4606 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4607 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4608 WB_REASON_FOREIGN_FLUSH,
4609 &frn->done);
4610 }
4611 }
4612 }
4613
4614 #else /* CONFIG_CGROUP_WRITEBACK */
4615
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)4616 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4617 {
4618 return 0;
4619 }
4620
memcg_wb_domain_exit(struct mem_cgroup * memcg)4621 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4622 {
4623 }
4624
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)4625 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4626 {
4627 }
4628
4629 #endif /* CONFIG_CGROUP_WRITEBACK */
4630
4631 /*
4632 * DO NOT USE IN NEW FILES.
4633 *
4634 * "cgroup.event_control" implementation.
4635 *
4636 * This is way over-engineered. It tries to support fully configurable
4637 * events for each user. Such level of flexibility is completely
4638 * unnecessary especially in the light of the planned unified hierarchy.
4639 *
4640 * Please deprecate this and replace with something simpler if at all
4641 * possible.
4642 */
4643
4644 /*
4645 * Unregister event and free resources.
4646 *
4647 * Gets called from workqueue.
4648 */
memcg_event_remove(struct work_struct * work)4649 static void memcg_event_remove(struct work_struct *work)
4650 {
4651 struct mem_cgroup_event *event =
4652 container_of(work, struct mem_cgroup_event, remove);
4653 struct mem_cgroup *memcg = event->memcg;
4654
4655 remove_wait_queue(event->wqh, &event->wait);
4656
4657 event->unregister_event(memcg, event->eventfd);
4658
4659 /* Notify userspace the event is going away. */
4660 eventfd_signal(event->eventfd, 1);
4661
4662 eventfd_ctx_put(event->eventfd);
4663 kfree(event);
4664 css_put(&memcg->css);
4665 }
4666
4667 /*
4668 * Gets called on EPOLLHUP on eventfd when user closes it.
4669 *
4670 * Called with wqh->lock held and interrupts disabled.
4671 */
memcg_event_wake(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)4672 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4673 int sync, void *key)
4674 {
4675 struct mem_cgroup_event *event =
4676 container_of(wait, struct mem_cgroup_event, wait);
4677 struct mem_cgroup *memcg = event->memcg;
4678 __poll_t flags = key_to_poll(key);
4679
4680 if (flags & EPOLLHUP) {
4681 /*
4682 * If the event has been detached at cgroup removal, we
4683 * can simply return knowing the other side will cleanup
4684 * for us.
4685 *
4686 * We can't race against event freeing since the other
4687 * side will require wqh->lock via remove_wait_queue(),
4688 * which we hold.
4689 */
4690 spin_lock(&memcg->event_list_lock);
4691 if (!list_empty(&event->list)) {
4692 list_del_init(&event->list);
4693 /*
4694 * We are in atomic context, but cgroup_event_remove()
4695 * may sleep, so we have to call it in workqueue.
4696 */
4697 schedule_work(&event->remove);
4698 }
4699 spin_unlock(&memcg->event_list_lock);
4700 }
4701
4702 return 0;
4703 }
4704
memcg_event_ptable_queue_proc(struct file * file,wait_queue_head_t * wqh,poll_table * pt)4705 static void memcg_event_ptable_queue_proc(struct file *file,
4706 wait_queue_head_t *wqh, poll_table *pt)
4707 {
4708 struct mem_cgroup_event *event =
4709 container_of(pt, struct mem_cgroup_event, pt);
4710
4711 event->wqh = wqh;
4712 add_wait_queue(wqh, &event->wait);
4713 }
4714
4715 /*
4716 * DO NOT USE IN NEW FILES.
4717 *
4718 * Parse input and register new cgroup event handler.
4719 *
4720 * Input must be in format '<event_fd> <control_fd> <args>'.
4721 * Interpretation of args is defined by control file implementation.
4722 */
memcg_write_event_control(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4723 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4724 char *buf, size_t nbytes, loff_t off)
4725 {
4726 struct cgroup_subsys_state *css = of_css(of);
4727 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4728 struct mem_cgroup_event *event;
4729 struct cgroup_subsys_state *cfile_css;
4730 unsigned int efd, cfd;
4731 struct fd efile;
4732 struct fd cfile;
4733 const char *name;
4734 char *endp;
4735 int ret;
4736
4737 if (IS_ENABLED(CONFIG_PREEMPT_RT))
4738 return -EOPNOTSUPP;
4739
4740 buf = strstrip(buf);
4741
4742 efd = simple_strtoul(buf, &endp, 10);
4743 if (*endp != ' ')
4744 return -EINVAL;
4745 buf = endp + 1;
4746
4747 cfd = simple_strtoul(buf, &endp, 10);
4748 if ((*endp != ' ') && (*endp != '\0'))
4749 return -EINVAL;
4750 buf = endp + 1;
4751
4752 event = kzalloc(sizeof(*event), GFP_KERNEL);
4753 if (!event)
4754 return -ENOMEM;
4755
4756 event->memcg = memcg;
4757 INIT_LIST_HEAD(&event->list);
4758 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4759 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4760 INIT_WORK(&event->remove, memcg_event_remove);
4761
4762 efile = fdget(efd);
4763 if (!efile.file) {
4764 ret = -EBADF;
4765 goto out_kfree;
4766 }
4767
4768 event->eventfd = eventfd_ctx_fileget(efile.file);
4769 if (IS_ERR(event->eventfd)) {
4770 ret = PTR_ERR(event->eventfd);
4771 goto out_put_efile;
4772 }
4773
4774 cfile = fdget(cfd);
4775 if (!cfile.file) {
4776 ret = -EBADF;
4777 goto out_put_eventfd;
4778 }
4779
4780 /* the process need read permission on control file */
4781 /* AV: shouldn't we check that it's been opened for read instead? */
4782 ret = file_permission(cfile.file, MAY_READ);
4783 if (ret < 0)
4784 goto out_put_cfile;
4785
4786 /*
4787 * Determine the event callbacks and set them in @event. This used
4788 * to be done via struct cftype but cgroup core no longer knows
4789 * about these events. The following is crude but the whole thing
4790 * is for compatibility anyway.
4791 *
4792 * DO NOT ADD NEW FILES.
4793 */
4794 name = cfile.file->f_path.dentry->d_name.name;
4795
4796 if (!strcmp(name, "memory.usage_in_bytes")) {
4797 event->register_event = mem_cgroup_usage_register_event;
4798 event->unregister_event = mem_cgroup_usage_unregister_event;
4799 } else if (!strcmp(name, "memory.oom_control")) {
4800 event->register_event = mem_cgroup_oom_register_event;
4801 event->unregister_event = mem_cgroup_oom_unregister_event;
4802 } else if (!strcmp(name, "memory.pressure_level")) {
4803 event->register_event = vmpressure_register_event;
4804 event->unregister_event = vmpressure_unregister_event;
4805 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4806 event->register_event = memsw_cgroup_usage_register_event;
4807 event->unregister_event = memsw_cgroup_usage_unregister_event;
4808 } else {
4809 ret = -EINVAL;
4810 goto out_put_cfile;
4811 }
4812
4813 /*
4814 * Verify @cfile should belong to @css. Also, remaining events are
4815 * automatically removed on cgroup destruction but the removal is
4816 * asynchronous, so take an extra ref on @css.
4817 */
4818 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4819 &memory_cgrp_subsys);
4820 ret = -EINVAL;
4821 if (IS_ERR(cfile_css))
4822 goto out_put_cfile;
4823 if (cfile_css != css) {
4824 css_put(cfile_css);
4825 goto out_put_cfile;
4826 }
4827
4828 ret = event->register_event(memcg, event->eventfd, buf);
4829 if (ret)
4830 goto out_put_css;
4831
4832 vfs_poll(efile.file, &event->pt);
4833
4834 spin_lock_irq(&memcg->event_list_lock);
4835 list_add(&event->list, &memcg->event_list);
4836 spin_unlock_irq(&memcg->event_list_lock);
4837
4838 fdput(cfile);
4839 fdput(efile);
4840
4841 return nbytes;
4842
4843 out_put_css:
4844 css_put(css);
4845 out_put_cfile:
4846 fdput(cfile);
4847 out_put_eventfd:
4848 eventfd_ctx_put(event->eventfd);
4849 out_put_efile:
4850 fdput(efile);
4851 out_kfree:
4852 kfree(event);
4853
4854 return ret;
4855 }
4856
4857 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
mem_cgroup_slab_show(struct seq_file * m,void * p)4858 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
4859 {
4860 /*
4861 * Deprecated.
4862 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
4863 */
4864 return 0;
4865 }
4866 #endif
4867
4868 static struct cftype mem_cgroup_legacy_files[] = {
4869 {
4870 .name = "usage_in_bytes",
4871 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4872 .read_u64 = mem_cgroup_read_u64,
4873 },
4874 {
4875 .name = "max_usage_in_bytes",
4876 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4877 .write = mem_cgroup_reset,
4878 .read_u64 = mem_cgroup_read_u64,
4879 },
4880 {
4881 .name = "limit_in_bytes",
4882 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4883 .write = mem_cgroup_write,
4884 .read_u64 = mem_cgroup_read_u64,
4885 },
4886 {
4887 .name = "soft_limit_in_bytes",
4888 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4889 .write = mem_cgroup_write,
4890 .read_u64 = mem_cgroup_read_u64,
4891 },
4892 {
4893 .name = "failcnt",
4894 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4895 .write = mem_cgroup_reset,
4896 .read_u64 = mem_cgroup_read_u64,
4897 },
4898 {
4899 .name = "stat",
4900 .seq_show = memcg_stat_show,
4901 },
4902 {
4903 .name = "force_empty",
4904 .write = mem_cgroup_force_empty_write,
4905 },
4906 {
4907 .name = "use_hierarchy",
4908 .write_u64 = mem_cgroup_hierarchy_write,
4909 .read_u64 = mem_cgroup_hierarchy_read,
4910 },
4911 {
4912 .name = "cgroup.event_control", /* XXX: for compat */
4913 .write = memcg_write_event_control,
4914 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4915 },
4916 {
4917 .name = "swappiness",
4918 .read_u64 = mem_cgroup_swappiness_read,
4919 .write_u64 = mem_cgroup_swappiness_write,
4920 },
4921 {
4922 .name = "move_charge_at_immigrate",
4923 .read_u64 = mem_cgroup_move_charge_read,
4924 .write_u64 = mem_cgroup_move_charge_write,
4925 },
4926 {
4927 .name = "oom_control",
4928 .seq_show = mem_cgroup_oom_control_read,
4929 .write_u64 = mem_cgroup_oom_control_write,
4930 },
4931 {
4932 .name = "pressure_level",
4933 },
4934 #ifdef CONFIG_NUMA
4935 {
4936 .name = "numa_stat",
4937 .seq_show = memcg_numa_stat_show,
4938 },
4939 #endif
4940 {
4941 .name = "kmem.limit_in_bytes",
4942 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4943 .write = mem_cgroup_write,
4944 .read_u64 = mem_cgroup_read_u64,
4945 },
4946 {
4947 .name = "kmem.usage_in_bytes",
4948 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4949 .read_u64 = mem_cgroup_read_u64,
4950 },
4951 {
4952 .name = "kmem.failcnt",
4953 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4954 .write = mem_cgroup_reset,
4955 .read_u64 = mem_cgroup_read_u64,
4956 },
4957 {
4958 .name = "kmem.max_usage_in_bytes",
4959 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4960 .write = mem_cgroup_reset,
4961 .read_u64 = mem_cgroup_read_u64,
4962 },
4963 #if defined(CONFIG_MEMCG_KMEM) && \
4964 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4965 {
4966 .name = "kmem.slabinfo",
4967 .seq_show = mem_cgroup_slab_show,
4968 },
4969 #endif
4970 {
4971 .name = "kmem.tcp.limit_in_bytes",
4972 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4973 .write = mem_cgroup_write,
4974 .read_u64 = mem_cgroup_read_u64,
4975 },
4976 {
4977 .name = "kmem.tcp.usage_in_bytes",
4978 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4979 .read_u64 = mem_cgroup_read_u64,
4980 },
4981 {
4982 .name = "kmem.tcp.failcnt",
4983 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4984 .write = mem_cgroup_reset,
4985 .read_u64 = mem_cgroup_read_u64,
4986 },
4987 {
4988 .name = "kmem.tcp.max_usage_in_bytes",
4989 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4990 .write = mem_cgroup_reset,
4991 .read_u64 = mem_cgroup_read_u64,
4992 },
4993 { }, /* terminate */
4994 };
4995
4996 /*
4997 * Private memory cgroup IDR
4998 *
4999 * Swap-out records and page cache shadow entries need to store memcg
5000 * references in constrained space, so we maintain an ID space that is
5001 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5002 * memory-controlled cgroups to 64k.
5003 *
5004 * However, there usually are many references to the offline CSS after
5005 * the cgroup has been destroyed, such as page cache or reclaimable
5006 * slab objects, that don't need to hang on to the ID. We want to keep
5007 * those dead CSS from occupying IDs, or we might quickly exhaust the
5008 * relatively small ID space and prevent the creation of new cgroups
5009 * even when there are much fewer than 64k cgroups - possibly none.
5010 *
5011 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5012 * be freed and recycled when it's no longer needed, which is usually
5013 * when the CSS is offlined.
5014 *
5015 * The only exception to that are records of swapped out tmpfs/shmem
5016 * pages that need to be attributed to live ancestors on swapin. But
5017 * those references are manageable from userspace.
5018 */
5019
5020 static DEFINE_IDR(mem_cgroup_idr);
5021
mem_cgroup_id_remove(struct mem_cgroup * memcg)5022 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5023 {
5024 if (memcg->id.id > 0) {
5025 idr_remove(&mem_cgroup_idr, memcg->id.id);
5026 memcg->id.id = 0;
5027 }
5028 }
5029
mem_cgroup_id_get_many(struct mem_cgroup * memcg,unsigned int n)5030 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5031 unsigned int n)
5032 {
5033 refcount_add(n, &memcg->id.ref);
5034 }
5035
mem_cgroup_id_put_many(struct mem_cgroup * memcg,unsigned int n)5036 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5037 {
5038 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5039 mem_cgroup_id_remove(memcg);
5040
5041 /* Memcg ID pins CSS */
5042 css_put(&memcg->css);
5043 }
5044 }
5045
mem_cgroup_id_put(struct mem_cgroup * memcg)5046 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5047 {
5048 mem_cgroup_id_put_many(memcg, 1);
5049 }
5050
5051 /**
5052 * mem_cgroup_from_id - look up a memcg from a memcg id
5053 * @id: the memcg id to look up
5054 *
5055 * Caller must hold rcu_read_lock().
5056 */
mem_cgroup_from_id(unsigned short id)5057 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5058 {
5059 WARN_ON_ONCE(!rcu_read_lock_held());
5060 return idr_find(&mem_cgroup_idr, id);
5061 }
5062
alloc_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)5063 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5064 {
5065 struct mem_cgroup_per_node *pn;
5066
5067 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5068 if (!pn)
5069 return 1;
5070
5071 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5072 GFP_KERNEL_ACCOUNT);
5073 if (!pn->lruvec_stats_percpu) {
5074 kfree(pn);
5075 return 1;
5076 }
5077
5078 lruvec_init(&pn->lruvec);
5079 pn->memcg = memcg;
5080
5081 memcg->nodeinfo[node] = pn;
5082 return 0;
5083 }
5084
free_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)5085 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5086 {
5087 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5088
5089 if (!pn)
5090 return;
5091
5092 free_percpu(pn->lruvec_stats_percpu);
5093 kfree(pn);
5094 }
5095
__mem_cgroup_free(struct mem_cgroup * memcg)5096 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5097 {
5098 int node;
5099
5100 for_each_node(node)
5101 free_mem_cgroup_per_node_info(memcg, node);
5102 free_percpu(memcg->vmstats_percpu);
5103 kfree(memcg);
5104 }
5105
mem_cgroup_free(struct mem_cgroup * memcg)5106 static void mem_cgroup_free(struct mem_cgroup *memcg)
5107 {
5108 memcg_wb_domain_exit(memcg);
5109 __mem_cgroup_free(memcg);
5110 }
5111
mem_cgroup_alloc(void)5112 static struct mem_cgroup *mem_cgroup_alloc(void)
5113 {
5114 struct mem_cgroup *memcg;
5115 int node;
5116 int __maybe_unused i;
5117 long error = -ENOMEM;
5118
5119 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5120 if (!memcg)
5121 return ERR_PTR(error);
5122
5123 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5124 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5125 if (memcg->id.id < 0) {
5126 error = memcg->id.id;
5127 goto fail;
5128 }
5129
5130 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5131 GFP_KERNEL_ACCOUNT);
5132 if (!memcg->vmstats_percpu)
5133 goto fail;
5134
5135 for_each_node(node)
5136 if (alloc_mem_cgroup_per_node_info(memcg, node))
5137 goto fail;
5138
5139 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5140 goto fail;
5141
5142 INIT_WORK(&memcg->high_work, high_work_func);
5143 INIT_LIST_HEAD(&memcg->oom_notify);
5144 mutex_init(&memcg->thresholds_lock);
5145 spin_lock_init(&memcg->move_lock);
5146 vmpressure_init(&memcg->vmpressure);
5147 INIT_LIST_HEAD(&memcg->event_list);
5148 spin_lock_init(&memcg->event_list_lock);
5149 memcg->socket_pressure = jiffies;
5150 #ifdef CONFIG_MEMCG_KMEM
5151 memcg->kmemcg_id = -1;
5152 INIT_LIST_HEAD(&memcg->objcg_list);
5153 #endif
5154 #ifdef CONFIG_CGROUP_WRITEBACK
5155 INIT_LIST_HEAD(&memcg->cgwb_list);
5156 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5157 memcg->cgwb_frn[i].done =
5158 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5159 #endif
5160 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5161 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5162 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5163 memcg->deferred_split_queue.split_queue_len = 0;
5164 #endif
5165 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5166 return memcg;
5167 fail:
5168 mem_cgroup_id_remove(memcg);
5169 __mem_cgroup_free(memcg);
5170 return ERR_PTR(error);
5171 }
5172
5173 static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)5174 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5175 {
5176 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5177 struct mem_cgroup *memcg, *old_memcg;
5178
5179 old_memcg = set_active_memcg(parent);
5180 memcg = mem_cgroup_alloc();
5181 set_active_memcg(old_memcg);
5182 if (IS_ERR(memcg))
5183 return ERR_CAST(memcg);
5184
5185 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5186 memcg->soft_limit = PAGE_COUNTER_MAX;
5187 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5188 memcg->zswap_max = PAGE_COUNTER_MAX;
5189 #endif
5190 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5191 if (parent) {
5192 memcg->swappiness = mem_cgroup_swappiness(parent);
5193 memcg->oom_kill_disable = parent->oom_kill_disable;
5194
5195 page_counter_init(&memcg->memory, &parent->memory);
5196 page_counter_init(&memcg->swap, &parent->swap);
5197 page_counter_init(&memcg->kmem, &parent->kmem);
5198 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5199 } else {
5200 page_counter_init(&memcg->memory, NULL);
5201 page_counter_init(&memcg->swap, NULL);
5202 page_counter_init(&memcg->kmem, NULL);
5203 page_counter_init(&memcg->tcpmem, NULL);
5204
5205 root_mem_cgroup = memcg;
5206 return &memcg->css;
5207 }
5208
5209 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5210 static_branch_inc(&memcg_sockets_enabled_key);
5211
5212 return &memcg->css;
5213 }
5214
mem_cgroup_css_online(struct cgroup_subsys_state * css)5215 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5216 {
5217 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5218
5219 if (memcg_online_kmem(memcg))
5220 goto remove_id;
5221
5222 /*
5223 * A memcg must be visible for expand_shrinker_info()
5224 * by the time the maps are allocated. So, we allocate maps
5225 * here, when for_each_mem_cgroup() can't skip it.
5226 */
5227 if (alloc_shrinker_info(memcg))
5228 goto offline_kmem;
5229
5230 /* Online state pins memcg ID, memcg ID pins CSS */
5231 refcount_set(&memcg->id.ref, 1);
5232 css_get(css);
5233
5234 if (unlikely(mem_cgroup_is_root(memcg)))
5235 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5236 2UL*HZ);
5237 return 0;
5238 offline_kmem:
5239 memcg_offline_kmem(memcg);
5240 remove_id:
5241 mem_cgroup_id_remove(memcg);
5242 return -ENOMEM;
5243 }
5244
mem_cgroup_css_offline(struct cgroup_subsys_state * css)5245 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5246 {
5247 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5248 struct mem_cgroup_event *event, *tmp;
5249
5250 /*
5251 * Unregister events and notify userspace.
5252 * Notify userspace about cgroup removing only after rmdir of cgroup
5253 * directory to avoid race between userspace and kernelspace.
5254 */
5255 spin_lock_irq(&memcg->event_list_lock);
5256 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5257 list_del_init(&event->list);
5258 schedule_work(&event->remove);
5259 }
5260 spin_unlock_irq(&memcg->event_list_lock);
5261
5262 page_counter_set_min(&memcg->memory, 0);
5263 page_counter_set_low(&memcg->memory, 0);
5264
5265 memcg_offline_kmem(memcg);
5266 reparent_shrinker_deferred(memcg);
5267 wb_memcg_offline(memcg);
5268
5269 drain_all_stock(memcg);
5270
5271 mem_cgroup_id_put(memcg);
5272 }
5273
mem_cgroup_css_released(struct cgroup_subsys_state * css)5274 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5275 {
5276 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5277
5278 invalidate_reclaim_iterators(memcg);
5279 }
5280
mem_cgroup_css_free(struct cgroup_subsys_state * css)5281 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5282 {
5283 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5284 int __maybe_unused i;
5285
5286 #ifdef CONFIG_CGROUP_WRITEBACK
5287 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5288 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5289 #endif
5290 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5291 static_branch_dec(&memcg_sockets_enabled_key);
5292
5293 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5294 static_branch_dec(&memcg_sockets_enabled_key);
5295
5296 vmpressure_cleanup(&memcg->vmpressure);
5297 cancel_work_sync(&memcg->high_work);
5298 mem_cgroup_remove_from_trees(memcg);
5299 free_shrinker_info(memcg);
5300 mem_cgroup_free(memcg);
5301 }
5302
5303 /**
5304 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5305 * @css: the target css
5306 *
5307 * Reset the states of the mem_cgroup associated with @css. This is
5308 * invoked when the userland requests disabling on the default hierarchy
5309 * but the memcg is pinned through dependency. The memcg should stop
5310 * applying policies and should revert to the vanilla state as it may be
5311 * made visible again.
5312 *
5313 * The current implementation only resets the essential configurations.
5314 * This needs to be expanded to cover all the visible parts.
5315 */
mem_cgroup_css_reset(struct cgroup_subsys_state * css)5316 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5317 {
5318 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5319
5320 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5321 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5322 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5323 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5324 page_counter_set_min(&memcg->memory, 0);
5325 page_counter_set_low(&memcg->memory, 0);
5326 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5327 memcg->soft_limit = PAGE_COUNTER_MAX;
5328 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5329 memcg_wb_domain_size_changed(memcg);
5330 }
5331
mem_cgroup_css_rstat_flush(struct cgroup_subsys_state * css,int cpu)5332 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5333 {
5334 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5335 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5336 struct memcg_vmstats_percpu *statc;
5337 long delta, v;
5338 int i, nid;
5339
5340 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5341
5342 for (i = 0; i < MEMCG_NR_STAT; i++) {
5343 /*
5344 * Collect the aggregated propagation counts of groups
5345 * below us. We're in a per-cpu loop here and this is
5346 * a global counter, so the first cycle will get them.
5347 */
5348 delta = memcg->vmstats.state_pending[i];
5349 if (delta)
5350 memcg->vmstats.state_pending[i] = 0;
5351
5352 /* Add CPU changes on this level since the last flush */
5353 v = READ_ONCE(statc->state[i]);
5354 if (v != statc->state_prev[i]) {
5355 delta += v - statc->state_prev[i];
5356 statc->state_prev[i] = v;
5357 }
5358
5359 if (!delta)
5360 continue;
5361
5362 /* Aggregate counts on this level and propagate upwards */
5363 memcg->vmstats.state[i] += delta;
5364 if (parent)
5365 parent->vmstats.state_pending[i] += delta;
5366 }
5367
5368 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5369 delta = memcg->vmstats.events_pending[i];
5370 if (delta)
5371 memcg->vmstats.events_pending[i] = 0;
5372
5373 v = READ_ONCE(statc->events[i]);
5374 if (v != statc->events_prev[i]) {
5375 delta += v - statc->events_prev[i];
5376 statc->events_prev[i] = v;
5377 }
5378
5379 if (!delta)
5380 continue;
5381
5382 memcg->vmstats.events[i] += delta;
5383 if (parent)
5384 parent->vmstats.events_pending[i] += delta;
5385 }
5386
5387 for_each_node_state(nid, N_MEMORY) {
5388 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5389 struct mem_cgroup_per_node *ppn = NULL;
5390 struct lruvec_stats_percpu *lstatc;
5391
5392 if (parent)
5393 ppn = parent->nodeinfo[nid];
5394
5395 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5396
5397 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5398 delta = pn->lruvec_stats.state_pending[i];
5399 if (delta)
5400 pn->lruvec_stats.state_pending[i] = 0;
5401
5402 v = READ_ONCE(lstatc->state[i]);
5403 if (v != lstatc->state_prev[i]) {
5404 delta += v - lstatc->state_prev[i];
5405 lstatc->state_prev[i] = v;
5406 }
5407
5408 if (!delta)
5409 continue;
5410
5411 pn->lruvec_stats.state[i] += delta;
5412 if (ppn)
5413 ppn->lruvec_stats.state_pending[i] += delta;
5414 }
5415 }
5416 }
5417
5418 #ifdef CONFIG_MMU
5419 /* Handlers for move charge at task migration. */
mem_cgroup_do_precharge(unsigned long count)5420 static int mem_cgroup_do_precharge(unsigned long count)
5421 {
5422 int ret;
5423
5424 /* Try a single bulk charge without reclaim first, kswapd may wake */
5425 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5426 if (!ret) {
5427 mc.precharge += count;
5428 return ret;
5429 }
5430
5431 /* Try charges one by one with reclaim, but do not retry */
5432 while (count--) {
5433 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5434 if (ret)
5435 return ret;
5436 mc.precharge++;
5437 cond_resched();
5438 }
5439 return 0;
5440 }
5441
5442 union mc_target {
5443 struct page *page;
5444 swp_entry_t ent;
5445 };
5446
5447 enum mc_target_type {
5448 MC_TARGET_NONE = 0,
5449 MC_TARGET_PAGE,
5450 MC_TARGET_SWAP,
5451 MC_TARGET_DEVICE,
5452 };
5453
mc_handle_present_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent)5454 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5455 unsigned long addr, pte_t ptent)
5456 {
5457 struct page *page = vm_normal_page(vma, addr, ptent);
5458
5459 if (!page || !page_mapped(page))
5460 return NULL;
5461 if (PageAnon(page)) {
5462 if (!(mc.flags & MOVE_ANON))
5463 return NULL;
5464 } else {
5465 if (!(mc.flags & MOVE_FILE))
5466 return NULL;
5467 }
5468 if (!get_page_unless_zero(page))
5469 return NULL;
5470
5471 return page;
5472 }
5473
5474 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
mc_handle_swap_pte(struct vm_area_struct * vma,pte_t ptent,swp_entry_t * entry)5475 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5476 pte_t ptent, swp_entry_t *entry)
5477 {
5478 struct page *page = NULL;
5479 swp_entry_t ent = pte_to_swp_entry(ptent);
5480
5481 if (!(mc.flags & MOVE_ANON))
5482 return NULL;
5483
5484 /*
5485 * Handle device private pages that are not accessible by the CPU, but
5486 * stored as special swap entries in the page table.
5487 */
5488 if (is_device_private_entry(ent)) {
5489 page = pfn_swap_entry_to_page(ent);
5490 if (!get_page_unless_zero(page))
5491 return NULL;
5492 return page;
5493 }
5494
5495 if (non_swap_entry(ent))
5496 return NULL;
5497
5498 /*
5499 * Because lookup_swap_cache() updates some statistics counter,
5500 * we call find_get_page() with swapper_space directly.
5501 */
5502 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5503 entry->val = ent.val;
5504
5505 return page;
5506 }
5507 #else
mc_handle_swap_pte(struct vm_area_struct * vma,pte_t ptent,swp_entry_t * entry)5508 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5509 pte_t ptent, swp_entry_t *entry)
5510 {
5511 return NULL;
5512 }
5513 #endif
5514
mc_handle_file_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent)5515 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5516 unsigned long addr, pte_t ptent)
5517 {
5518 if (!vma->vm_file) /* anonymous vma */
5519 return NULL;
5520 if (!(mc.flags & MOVE_FILE))
5521 return NULL;
5522
5523 /* page is moved even if it's not RSS of this task(page-faulted). */
5524 /* shmem/tmpfs may report page out on swap: account for that too. */
5525 return find_get_incore_page(vma->vm_file->f_mapping,
5526 linear_page_index(vma, addr));
5527 }
5528
5529 /**
5530 * mem_cgroup_move_account - move account of the page
5531 * @page: the page
5532 * @compound: charge the page as compound or small page
5533 * @from: mem_cgroup which the page is moved from.
5534 * @to: mem_cgroup which the page is moved to. @from != @to.
5535 *
5536 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5537 *
5538 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5539 * from old cgroup.
5540 */
mem_cgroup_move_account(struct page * page,bool compound,struct mem_cgroup * from,struct mem_cgroup * to)5541 static int mem_cgroup_move_account(struct page *page,
5542 bool compound,
5543 struct mem_cgroup *from,
5544 struct mem_cgroup *to)
5545 {
5546 struct folio *folio = page_folio(page);
5547 struct lruvec *from_vec, *to_vec;
5548 struct pglist_data *pgdat;
5549 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5550 int nid, ret;
5551
5552 VM_BUG_ON(from == to);
5553 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5554 VM_BUG_ON(compound && !folio_test_large(folio));
5555
5556 /*
5557 * Prevent mem_cgroup_migrate() from looking at
5558 * page's memory cgroup of its source page while we change it.
5559 */
5560 ret = -EBUSY;
5561 if (!folio_trylock(folio))
5562 goto out;
5563
5564 ret = -EINVAL;
5565 if (folio_memcg(folio) != from)
5566 goto out_unlock;
5567
5568 pgdat = folio_pgdat(folio);
5569 from_vec = mem_cgroup_lruvec(from, pgdat);
5570 to_vec = mem_cgroup_lruvec(to, pgdat);
5571
5572 folio_memcg_lock(folio);
5573
5574 if (folio_test_anon(folio)) {
5575 if (folio_mapped(folio)) {
5576 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5577 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5578 if (folio_test_transhuge(folio)) {
5579 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5580 -nr_pages);
5581 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5582 nr_pages);
5583 }
5584 }
5585 } else {
5586 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5587 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5588
5589 if (folio_test_swapbacked(folio)) {
5590 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5591 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5592 }
5593
5594 if (folio_mapped(folio)) {
5595 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5596 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5597 }
5598
5599 if (folio_test_dirty(folio)) {
5600 struct address_space *mapping = folio_mapping(folio);
5601
5602 if (mapping_can_writeback(mapping)) {
5603 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5604 -nr_pages);
5605 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5606 nr_pages);
5607 }
5608 }
5609 }
5610
5611 if (folio_test_writeback(folio)) {
5612 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5613 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5614 }
5615
5616 /*
5617 * All state has been migrated, let's switch to the new memcg.
5618 *
5619 * It is safe to change page's memcg here because the page
5620 * is referenced, charged, isolated, and locked: we can't race
5621 * with (un)charging, migration, LRU putback, or anything else
5622 * that would rely on a stable page's memory cgroup.
5623 *
5624 * Note that lock_page_memcg is a memcg lock, not a page lock,
5625 * to save space. As soon as we switch page's memory cgroup to a
5626 * new memcg that isn't locked, the above state can change
5627 * concurrently again. Make sure we're truly done with it.
5628 */
5629 smp_mb();
5630
5631 css_get(&to->css);
5632 css_put(&from->css);
5633
5634 folio->memcg_data = (unsigned long)to;
5635
5636 __folio_memcg_unlock(from);
5637
5638 ret = 0;
5639 nid = folio_nid(folio);
5640
5641 local_irq_disable();
5642 mem_cgroup_charge_statistics(to, nr_pages);
5643 memcg_check_events(to, nid);
5644 mem_cgroup_charge_statistics(from, -nr_pages);
5645 memcg_check_events(from, nid);
5646 local_irq_enable();
5647 out_unlock:
5648 folio_unlock(folio);
5649 out:
5650 return ret;
5651 }
5652
5653 /**
5654 * get_mctgt_type - get target type of moving charge
5655 * @vma: the vma the pte to be checked belongs
5656 * @addr: the address corresponding to the pte to be checked
5657 * @ptent: the pte to be checked
5658 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5659 *
5660 * Returns
5661 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5662 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5663 * move charge. if @target is not NULL, the page is stored in target->page
5664 * with extra refcnt got(Callers should handle it).
5665 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5666 * target for charge migration. if @target is not NULL, the entry is stored
5667 * in target->ent.
5668 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5669 * (so ZONE_DEVICE page and thus not on the lru).
5670 * For now we such page is charge like a regular page would be as for all
5671 * intent and purposes it is just special memory taking the place of a
5672 * regular page.
5673 *
5674 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5675 *
5676 * Called with pte lock held.
5677 */
5678
get_mctgt_type(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,union mc_target * target)5679 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5680 unsigned long addr, pte_t ptent, union mc_target *target)
5681 {
5682 struct page *page = NULL;
5683 enum mc_target_type ret = MC_TARGET_NONE;
5684 swp_entry_t ent = { .val = 0 };
5685
5686 if (pte_present(ptent))
5687 page = mc_handle_present_pte(vma, addr, ptent);
5688 else if (pte_none_mostly(ptent))
5689 /*
5690 * PTE markers should be treated as a none pte here, separated
5691 * from other swap handling below.
5692 */
5693 page = mc_handle_file_pte(vma, addr, ptent);
5694 else if (is_swap_pte(ptent))
5695 page = mc_handle_swap_pte(vma, ptent, &ent);
5696
5697 if (!page && !ent.val)
5698 return ret;
5699 if (page) {
5700 /*
5701 * Do only loose check w/o serialization.
5702 * mem_cgroup_move_account() checks the page is valid or
5703 * not under LRU exclusion.
5704 */
5705 if (page_memcg(page) == mc.from) {
5706 ret = MC_TARGET_PAGE;
5707 if (is_device_private_page(page))
5708 ret = MC_TARGET_DEVICE;
5709 if (target)
5710 target->page = page;
5711 }
5712 if (!ret || !target)
5713 put_page(page);
5714 }
5715 /*
5716 * There is a swap entry and a page doesn't exist or isn't charged.
5717 * But we cannot move a tail-page in a THP.
5718 */
5719 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5720 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5721 ret = MC_TARGET_SWAP;
5722 if (target)
5723 target->ent = ent;
5724 }
5725 return ret;
5726 }
5727
5728 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5729 /*
5730 * We don't consider PMD mapped swapping or file mapped pages because THP does
5731 * not support them for now.
5732 * Caller should make sure that pmd_trans_huge(pmd) is true.
5733 */
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)5734 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5735 unsigned long addr, pmd_t pmd, union mc_target *target)
5736 {
5737 struct page *page = NULL;
5738 enum mc_target_type ret = MC_TARGET_NONE;
5739
5740 if (unlikely(is_swap_pmd(pmd))) {
5741 VM_BUG_ON(thp_migration_supported() &&
5742 !is_pmd_migration_entry(pmd));
5743 return ret;
5744 }
5745 page = pmd_page(pmd);
5746 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5747 if (!(mc.flags & MOVE_ANON))
5748 return ret;
5749 if (page_memcg(page) == mc.from) {
5750 ret = MC_TARGET_PAGE;
5751 if (target) {
5752 get_page(page);
5753 target->page = page;
5754 }
5755 }
5756 return ret;
5757 }
5758 #else
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)5759 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5760 unsigned long addr, pmd_t pmd, union mc_target *target)
5761 {
5762 return MC_TARGET_NONE;
5763 }
5764 #endif
5765
mem_cgroup_count_precharge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)5766 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5767 unsigned long addr, unsigned long end,
5768 struct mm_walk *walk)
5769 {
5770 struct vm_area_struct *vma = walk->vma;
5771 pte_t *pte;
5772 spinlock_t *ptl;
5773
5774 ptl = pmd_trans_huge_lock(pmd, vma);
5775 if (ptl) {
5776 /*
5777 * Note their can not be MC_TARGET_DEVICE for now as we do not
5778 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5779 * this might change.
5780 */
5781 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5782 mc.precharge += HPAGE_PMD_NR;
5783 spin_unlock(ptl);
5784 return 0;
5785 }
5786
5787 if (pmd_trans_unstable(pmd))
5788 return 0;
5789 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5790 for (; addr != end; pte++, addr += PAGE_SIZE)
5791 if (get_mctgt_type(vma, addr, *pte, NULL))
5792 mc.precharge++; /* increment precharge temporarily */
5793 pte_unmap_unlock(pte - 1, ptl);
5794 cond_resched();
5795
5796 return 0;
5797 }
5798
5799 static const struct mm_walk_ops precharge_walk_ops = {
5800 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5801 };
5802
mem_cgroup_count_precharge(struct mm_struct * mm)5803 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5804 {
5805 unsigned long precharge;
5806
5807 mmap_read_lock(mm);
5808 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5809 mmap_read_unlock(mm);
5810
5811 precharge = mc.precharge;
5812 mc.precharge = 0;
5813
5814 return precharge;
5815 }
5816
mem_cgroup_precharge_mc(struct mm_struct * mm)5817 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5818 {
5819 unsigned long precharge = mem_cgroup_count_precharge(mm);
5820
5821 VM_BUG_ON(mc.moving_task);
5822 mc.moving_task = current;
5823 return mem_cgroup_do_precharge(precharge);
5824 }
5825
5826 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
__mem_cgroup_clear_mc(void)5827 static void __mem_cgroup_clear_mc(void)
5828 {
5829 struct mem_cgroup *from = mc.from;
5830 struct mem_cgroup *to = mc.to;
5831
5832 /* we must uncharge all the leftover precharges from mc.to */
5833 if (mc.precharge) {
5834 cancel_charge(mc.to, mc.precharge);
5835 mc.precharge = 0;
5836 }
5837 /*
5838 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5839 * we must uncharge here.
5840 */
5841 if (mc.moved_charge) {
5842 cancel_charge(mc.from, mc.moved_charge);
5843 mc.moved_charge = 0;
5844 }
5845 /* we must fixup refcnts and charges */
5846 if (mc.moved_swap) {
5847 /* uncharge swap account from the old cgroup */
5848 if (!mem_cgroup_is_root(mc.from))
5849 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5850
5851 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5852
5853 /*
5854 * we charged both to->memory and to->memsw, so we
5855 * should uncharge to->memory.
5856 */
5857 if (!mem_cgroup_is_root(mc.to))
5858 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5859
5860 mc.moved_swap = 0;
5861 }
5862 memcg_oom_recover(from);
5863 memcg_oom_recover(to);
5864 wake_up_all(&mc.waitq);
5865 }
5866
mem_cgroup_clear_mc(void)5867 static void mem_cgroup_clear_mc(void)
5868 {
5869 struct mm_struct *mm = mc.mm;
5870
5871 /*
5872 * we must clear moving_task before waking up waiters at the end of
5873 * task migration.
5874 */
5875 mc.moving_task = NULL;
5876 __mem_cgroup_clear_mc();
5877 spin_lock(&mc.lock);
5878 mc.from = NULL;
5879 mc.to = NULL;
5880 mc.mm = NULL;
5881 spin_unlock(&mc.lock);
5882
5883 mmput(mm);
5884 }
5885
mem_cgroup_can_attach(struct cgroup_taskset * tset)5886 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5887 {
5888 struct cgroup_subsys_state *css;
5889 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5890 struct mem_cgroup *from;
5891 struct task_struct *leader, *p;
5892 struct mm_struct *mm;
5893 unsigned long move_flags;
5894 int ret = 0;
5895
5896 /* charge immigration isn't supported on the default hierarchy */
5897 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5898 return 0;
5899
5900 /*
5901 * Multi-process migrations only happen on the default hierarchy
5902 * where charge immigration is not used. Perform charge
5903 * immigration if @tset contains a leader and whine if there are
5904 * multiple.
5905 */
5906 p = NULL;
5907 cgroup_taskset_for_each_leader(leader, css, tset) {
5908 WARN_ON_ONCE(p);
5909 p = leader;
5910 memcg = mem_cgroup_from_css(css);
5911 }
5912 if (!p)
5913 return 0;
5914
5915 /*
5916 * We are now committed to this value whatever it is. Changes in this
5917 * tunable will only affect upcoming migrations, not the current one.
5918 * So we need to save it, and keep it going.
5919 */
5920 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5921 if (!move_flags)
5922 return 0;
5923
5924 from = mem_cgroup_from_task(p);
5925
5926 VM_BUG_ON(from == memcg);
5927
5928 mm = get_task_mm(p);
5929 if (!mm)
5930 return 0;
5931 /* We move charges only when we move a owner of the mm */
5932 if (mm->owner == p) {
5933 VM_BUG_ON(mc.from);
5934 VM_BUG_ON(mc.to);
5935 VM_BUG_ON(mc.precharge);
5936 VM_BUG_ON(mc.moved_charge);
5937 VM_BUG_ON(mc.moved_swap);
5938
5939 spin_lock(&mc.lock);
5940 mc.mm = mm;
5941 mc.from = from;
5942 mc.to = memcg;
5943 mc.flags = move_flags;
5944 spin_unlock(&mc.lock);
5945 /* We set mc.moving_task later */
5946
5947 ret = mem_cgroup_precharge_mc(mm);
5948 if (ret)
5949 mem_cgroup_clear_mc();
5950 } else {
5951 mmput(mm);
5952 }
5953 return ret;
5954 }
5955
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)5956 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5957 {
5958 if (mc.to)
5959 mem_cgroup_clear_mc();
5960 }
5961
mem_cgroup_move_charge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)5962 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5963 unsigned long addr, unsigned long end,
5964 struct mm_walk *walk)
5965 {
5966 int ret = 0;
5967 struct vm_area_struct *vma = walk->vma;
5968 pte_t *pte;
5969 spinlock_t *ptl;
5970 enum mc_target_type target_type;
5971 union mc_target target;
5972 struct page *page;
5973
5974 ptl = pmd_trans_huge_lock(pmd, vma);
5975 if (ptl) {
5976 if (mc.precharge < HPAGE_PMD_NR) {
5977 spin_unlock(ptl);
5978 return 0;
5979 }
5980 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5981 if (target_type == MC_TARGET_PAGE) {
5982 page = target.page;
5983 if (!isolate_lru_page(page)) {
5984 if (!mem_cgroup_move_account(page, true,
5985 mc.from, mc.to)) {
5986 mc.precharge -= HPAGE_PMD_NR;
5987 mc.moved_charge += HPAGE_PMD_NR;
5988 }
5989 putback_lru_page(page);
5990 }
5991 put_page(page);
5992 } else if (target_type == MC_TARGET_DEVICE) {
5993 page = target.page;
5994 if (!mem_cgroup_move_account(page, true,
5995 mc.from, mc.to)) {
5996 mc.precharge -= HPAGE_PMD_NR;
5997 mc.moved_charge += HPAGE_PMD_NR;
5998 }
5999 put_page(page);
6000 }
6001 spin_unlock(ptl);
6002 return 0;
6003 }
6004
6005 if (pmd_trans_unstable(pmd))
6006 return 0;
6007 retry:
6008 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6009 for (; addr != end; addr += PAGE_SIZE) {
6010 pte_t ptent = *(pte++);
6011 bool device = false;
6012 swp_entry_t ent;
6013
6014 if (!mc.precharge)
6015 break;
6016
6017 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6018 case MC_TARGET_DEVICE:
6019 device = true;
6020 fallthrough;
6021 case MC_TARGET_PAGE:
6022 page = target.page;
6023 /*
6024 * We can have a part of the split pmd here. Moving it
6025 * can be done but it would be too convoluted so simply
6026 * ignore such a partial THP and keep it in original
6027 * memcg. There should be somebody mapping the head.
6028 */
6029 if (PageTransCompound(page))
6030 goto put;
6031 if (!device && isolate_lru_page(page))
6032 goto put;
6033 if (!mem_cgroup_move_account(page, false,
6034 mc.from, mc.to)) {
6035 mc.precharge--;
6036 /* we uncharge from mc.from later. */
6037 mc.moved_charge++;
6038 }
6039 if (!device)
6040 putback_lru_page(page);
6041 put: /* get_mctgt_type() gets the page */
6042 put_page(page);
6043 break;
6044 case MC_TARGET_SWAP:
6045 ent = target.ent;
6046 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6047 mc.precharge--;
6048 mem_cgroup_id_get_many(mc.to, 1);
6049 /* we fixup other refcnts and charges later. */
6050 mc.moved_swap++;
6051 }
6052 break;
6053 default:
6054 break;
6055 }
6056 }
6057 pte_unmap_unlock(pte - 1, ptl);
6058 cond_resched();
6059
6060 if (addr != end) {
6061 /*
6062 * We have consumed all precharges we got in can_attach().
6063 * We try charge one by one, but don't do any additional
6064 * charges to mc.to if we have failed in charge once in attach()
6065 * phase.
6066 */
6067 ret = mem_cgroup_do_precharge(1);
6068 if (!ret)
6069 goto retry;
6070 }
6071
6072 return ret;
6073 }
6074
6075 static const struct mm_walk_ops charge_walk_ops = {
6076 .pmd_entry = mem_cgroup_move_charge_pte_range,
6077 };
6078
mem_cgroup_move_charge(void)6079 static void mem_cgroup_move_charge(void)
6080 {
6081 lru_add_drain_all();
6082 /*
6083 * Signal lock_page_memcg() to take the memcg's move_lock
6084 * while we're moving its pages to another memcg. Then wait
6085 * for already started RCU-only updates to finish.
6086 */
6087 atomic_inc(&mc.from->moving_account);
6088 synchronize_rcu();
6089 retry:
6090 if (unlikely(!mmap_read_trylock(mc.mm))) {
6091 /*
6092 * Someone who are holding the mmap_lock might be waiting in
6093 * waitq. So we cancel all extra charges, wake up all waiters,
6094 * and retry. Because we cancel precharges, we might not be able
6095 * to move enough charges, but moving charge is a best-effort
6096 * feature anyway, so it wouldn't be a big problem.
6097 */
6098 __mem_cgroup_clear_mc();
6099 cond_resched();
6100 goto retry;
6101 }
6102 /*
6103 * When we have consumed all precharges and failed in doing
6104 * additional charge, the page walk just aborts.
6105 */
6106 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6107 NULL);
6108
6109 mmap_read_unlock(mc.mm);
6110 atomic_dec(&mc.from->moving_account);
6111 }
6112
mem_cgroup_move_task(void)6113 static void mem_cgroup_move_task(void)
6114 {
6115 if (mc.to) {
6116 mem_cgroup_move_charge();
6117 mem_cgroup_clear_mc();
6118 }
6119 }
6120 #else /* !CONFIG_MMU */
mem_cgroup_can_attach(struct cgroup_taskset * tset)6121 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6122 {
6123 return 0;
6124 }
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)6125 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6126 {
6127 }
mem_cgroup_move_task(void)6128 static void mem_cgroup_move_task(void)
6129 {
6130 }
6131 #endif
6132
seq_puts_memcg_tunable(struct seq_file * m,unsigned long value)6133 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6134 {
6135 if (value == PAGE_COUNTER_MAX)
6136 seq_puts(m, "max\n");
6137 else
6138 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6139
6140 return 0;
6141 }
6142
memory_current_read(struct cgroup_subsys_state * css,struct cftype * cft)6143 static u64 memory_current_read(struct cgroup_subsys_state *css,
6144 struct cftype *cft)
6145 {
6146 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6147
6148 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6149 }
6150
memory_peak_read(struct cgroup_subsys_state * css,struct cftype * cft)6151 static u64 memory_peak_read(struct cgroup_subsys_state *css,
6152 struct cftype *cft)
6153 {
6154 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6155
6156 return (u64)memcg->memory.watermark * PAGE_SIZE;
6157 }
6158
memory_min_show(struct seq_file * m,void * v)6159 static int memory_min_show(struct seq_file *m, void *v)
6160 {
6161 return seq_puts_memcg_tunable(m,
6162 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6163 }
6164
memory_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6165 static ssize_t memory_min_write(struct kernfs_open_file *of,
6166 char *buf, size_t nbytes, loff_t off)
6167 {
6168 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6169 unsigned long min;
6170 int err;
6171
6172 buf = strstrip(buf);
6173 err = page_counter_memparse(buf, "max", &min);
6174 if (err)
6175 return err;
6176
6177 page_counter_set_min(&memcg->memory, min);
6178
6179 return nbytes;
6180 }
6181
memory_low_show(struct seq_file * m,void * v)6182 static int memory_low_show(struct seq_file *m, void *v)
6183 {
6184 return seq_puts_memcg_tunable(m,
6185 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6186 }
6187
memory_low_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6188 static ssize_t memory_low_write(struct kernfs_open_file *of,
6189 char *buf, size_t nbytes, loff_t off)
6190 {
6191 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6192 unsigned long low;
6193 int err;
6194
6195 buf = strstrip(buf);
6196 err = page_counter_memparse(buf, "max", &low);
6197 if (err)
6198 return err;
6199
6200 page_counter_set_low(&memcg->memory, low);
6201
6202 return nbytes;
6203 }
6204
memory_high_show(struct seq_file * m,void * v)6205 static int memory_high_show(struct seq_file *m, void *v)
6206 {
6207 return seq_puts_memcg_tunable(m,
6208 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6209 }
6210
memory_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6211 static ssize_t memory_high_write(struct kernfs_open_file *of,
6212 char *buf, size_t nbytes, loff_t off)
6213 {
6214 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6215 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6216 bool drained = false;
6217 unsigned long high;
6218 int err;
6219
6220 buf = strstrip(buf);
6221 err = page_counter_memparse(buf, "max", &high);
6222 if (err)
6223 return err;
6224
6225 page_counter_set_high(&memcg->memory, high);
6226
6227 for (;;) {
6228 unsigned long nr_pages = page_counter_read(&memcg->memory);
6229 unsigned long reclaimed;
6230
6231 if (nr_pages <= high)
6232 break;
6233
6234 if (signal_pending(current))
6235 break;
6236
6237 if (!drained) {
6238 drain_all_stock(memcg);
6239 drained = true;
6240 continue;
6241 }
6242
6243 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6244 GFP_KERNEL, true);
6245
6246 if (!reclaimed && !nr_retries--)
6247 break;
6248 }
6249
6250 memcg_wb_domain_size_changed(memcg);
6251 return nbytes;
6252 }
6253
memory_max_show(struct seq_file * m,void * v)6254 static int memory_max_show(struct seq_file *m, void *v)
6255 {
6256 return seq_puts_memcg_tunable(m,
6257 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6258 }
6259
memory_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6260 static ssize_t memory_max_write(struct kernfs_open_file *of,
6261 char *buf, size_t nbytes, loff_t off)
6262 {
6263 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6264 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6265 bool drained = false;
6266 unsigned long max;
6267 int err;
6268
6269 buf = strstrip(buf);
6270 err = page_counter_memparse(buf, "max", &max);
6271 if (err)
6272 return err;
6273
6274 xchg(&memcg->memory.max, max);
6275
6276 for (;;) {
6277 unsigned long nr_pages = page_counter_read(&memcg->memory);
6278
6279 if (nr_pages <= max)
6280 break;
6281
6282 if (signal_pending(current))
6283 break;
6284
6285 if (!drained) {
6286 drain_all_stock(memcg);
6287 drained = true;
6288 continue;
6289 }
6290
6291 if (nr_reclaims) {
6292 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6293 GFP_KERNEL, true))
6294 nr_reclaims--;
6295 continue;
6296 }
6297
6298 memcg_memory_event(memcg, MEMCG_OOM);
6299 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6300 break;
6301 }
6302
6303 memcg_wb_domain_size_changed(memcg);
6304 return nbytes;
6305 }
6306
__memory_events_show(struct seq_file * m,atomic_long_t * events)6307 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6308 {
6309 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6310 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6311 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6312 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6313 seq_printf(m, "oom_kill %lu\n",
6314 atomic_long_read(&events[MEMCG_OOM_KILL]));
6315 seq_printf(m, "oom_group_kill %lu\n",
6316 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6317 }
6318
memory_events_show(struct seq_file * m,void * v)6319 static int memory_events_show(struct seq_file *m, void *v)
6320 {
6321 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6322
6323 __memory_events_show(m, memcg->memory_events);
6324 return 0;
6325 }
6326
memory_events_local_show(struct seq_file * m,void * v)6327 static int memory_events_local_show(struct seq_file *m, void *v)
6328 {
6329 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6330
6331 __memory_events_show(m, memcg->memory_events_local);
6332 return 0;
6333 }
6334
memory_stat_show(struct seq_file * m,void * v)6335 static int memory_stat_show(struct seq_file *m, void *v)
6336 {
6337 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6338 char *buf;
6339
6340 buf = memory_stat_format(memcg);
6341 if (!buf)
6342 return -ENOMEM;
6343 seq_puts(m, buf);
6344 kfree(buf);
6345 return 0;
6346 }
6347
6348 #ifdef CONFIG_NUMA
lruvec_page_state_output(struct lruvec * lruvec,int item)6349 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6350 int item)
6351 {
6352 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6353 }
6354
memory_numa_stat_show(struct seq_file * m,void * v)6355 static int memory_numa_stat_show(struct seq_file *m, void *v)
6356 {
6357 int i;
6358 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6359
6360 mem_cgroup_flush_stats();
6361
6362 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6363 int nid;
6364
6365 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6366 continue;
6367
6368 seq_printf(m, "%s", memory_stats[i].name);
6369 for_each_node_state(nid, N_MEMORY) {
6370 u64 size;
6371 struct lruvec *lruvec;
6372
6373 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6374 size = lruvec_page_state_output(lruvec,
6375 memory_stats[i].idx);
6376 seq_printf(m, " N%d=%llu", nid, size);
6377 }
6378 seq_putc(m, '\n');
6379 }
6380
6381 return 0;
6382 }
6383 #endif
6384
memory_oom_group_show(struct seq_file * m,void * v)6385 static int memory_oom_group_show(struct seq_file *m, void *v)
6386 {
6387 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6388
6389 seq_printf(m, "%d\n", memcg->oom_group);
6390
6391 return 0;
6392 }
6393
memory_oom_group_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6394 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6395 char *buf, size_t nbytes, loff_t off)
6396 {
6397 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6398 int ret, oom_group;
6399
6400 buf = strstrip(buf);
6401 if (!buf)
6402 return -EINVAL;
6403
6404 ret = kstrtoint(buf, 0, &oom_group);
6405 if (ret)
6406 return ret;
6407
6408 if (oom_group != 0 && oom_group != 1)
6409 return -EINVAL;
6410
6411 memcg->oom_group = oom_group;
6412
6413 return nbytes;
6414 }
6415
memory_reclaim(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6416 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6417 size_t nbytes, loff_t off)
6418 {
6419 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6420 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6421 unsigned long nr_to_reclaim, nr_reclaimed = 0;
6422 int err;
6423
6424 buf = strstrip(buf);
6425 err = page_counter_memparse(buf, "", &nr_to_reclaim);
6426 if (err)
6427 return err;
6428
6429 while (nr_reclaimed < nr_to_reclaim) {
6430 unsigned long reclaimed;
6431
6432 if (signal_pending(current))
6433 return -EINTR;
6434
6435 /*
6436 * This is the final attempt, drain percpu lru caches in the
6437 * hope of introducing more evictable pages for
6438 * try_to_free_mem_cgroup_pages().
6439 */
6440 if (!nr_retries)
6441 lru_add_drain_all();
6442
6443 reclaimed = try_to_free_mem_cgroup_pages(memcg,
6444 nr_to_reclaim - nr_reclaimed,
6445 GFP_KERNEL, true);
6446
6447 if (!reclaimed && !nr_retries--)
6448 return -EAGAIN;
6449
6450 nr_reclaimed += reclaimed;
6451 }
6452
6453 return nbytes;
6454 }
6455
6456 static struct cftype memory_files[] = {
6457 {
6458 .name = "current",
6459 .flags = CFTYPE_NOT_ON_ROOT,
6460 .read_u64 = memory_current_read,
6461 },
6462 {
6463 .name = "peak",
6464 .flags = CFTYPE_NOT_ON_ROOT,
6465 .read_u64 = memory_peak_read,
6466 },
6467 {
6468 .name = "min",
6469 .flags = CFTYPE_NOT_ON_ROOT,
6470 .seq_show = memory_min_show,
6471 .write = memory_min_write,
6472 },
6473 {
6474 .name = "low",
6475 .flags = CFTYPE_NOT_ON_ROOT,
6476 .seq_show = memory_low_show,
6477 .write = memory_low_write,
6478 },
6479 {
6480 .name = "high",
6481 .flags = CFTYPE_NOT_ON_ROOT,
6482 .seq_show = memory_high_show,
6483 .write = memory_high_write,
6484 },
6485 {
6486 .name = "max",
6487 .flags = CFTYPE_NOT_ON_ROOT,
6488 .seq_show = memory_max_show,
6489 .write = memory_max_write,
6490 },
6491 {
6492 .name = "events",
6493 .flags = CFTYPE_NOT_ON_ROOT,
6494 .file_offset = offsetof(struct mem_cgroup, events_file),
6495 .seq_show = memory_events_show,
6496 },
6497 {
6498 .name = "events.local",
6499 .flags = CFTYPE_NOT_ON_ROOT,
6500 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6501 .seq_show = memory_events_local_show,
6502 },
6503 {
6504 .name = "stat",
6505 .seq_show = memory_stat_show,
6506 },
6507 #ifdef CONFIG_NUMA
6508 {
6509 .name = "numa_stat",
6510 .seq_show = memory_numa_stat_show,
6511 },
6512 #endif
6513 {
6514 .name = "oom.group",
6515 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6516 .seq_show = memory_oom_group_show,
6517 .write = memory_oom_group_write,
6518 },
6519 {
6520 .name = "reclaim",
6521 .flags = CFTYPE_NS_DELEGATABLE,
6522 .write = memory_reclaim,
6523 },
6524 { } /* terminate */
6525 };
6526
6527 struct cgroup_subsys memory_cgrp_subsys = {
6528 .css_alloc = mem_cgroup_css_alloc,
6529 .css_online = mem_cgroup_css_online,
6530 .css_offline = mem_cgroup_css_offline,
6531 .css_released = mem_cgroup_css_released,
6532 .css_free = mem_cgroup_css_free,
6533 .css_reset = mem_cgroup_css_reset,
6534 .css_rstat_flush = mem_cgroup_css_rstat_flush,
6535 .can_attach = mem_cgroup_can_attach,
6536 .cancel_attach = mem_cgroup_cancel_attach,
6537 .post_attach = mem_cgroup_move_task,
6538 .dfl_cftypes = memory_files,
6539 .legacy_cftypes = mem_cgroup_legacy_files,
6540 .early_init = 0,
6541 };
6542
6543 /*
6544 * This function calculates an individual cgroup's effective
6545 * protection which is derived from its own memory.min/low, its
6546 * parent's and siblings' settings, as well as the actual memory
6547 * distribution in the tree.
6548 *
6549 * The following rules apply to the effective protection values:
6550 *
6551 * 1. At the first level of reclaim, effective protection is equal to
6552 * the declared protection in memory.min and memory.low.
6553 *
6554 * 2. To enable safe delegation of the protection configuration, at
6555 * subsequent levels the effective protection is capped to the
6556 * parent's effective protection.
6557 *
6558 * 3. To make complex and dynamic subtrees easier to configure, the
6559 * user is allowed to overcommit the declared protection at a given
6560 * level. If that is the case, the parent's effective protection is
6561 * distributed to the children in proportion to how much protection
6562 * they have declared and how much of it they are utilizing.
6563 *
6564 * This makes distribution proportional, but also work-conserving:
6565 * if one cgroup claims much more protection than it uses memory,
6566 * the unused remainder is available to its siblings.
6567 *
6568 * 4. Conversely, when the declared protection is undercommitted at a
6569 * given level, the distribution of the larger parental protection
6570 * budget is NOT proportional. A cgroup's protection from a sibling
6571 * is capped to its own memory.min/low setting.
6572 *
6573 * 5. However, to allow protecting recursive subtrees from each other
6574 * without having to declare each individual cgroup's fixed share
6575 * of the ancestor's claim to protection, any unutilized -
6576 * "floating" - protection from up the tree is distributed in
6577 * proportion to each cgroup's *usage*. This makes the protection
6578 * neutral wrt sibling cgroups and lets them compete freely over
6579 * the shared parental protection budget, but it protects the
6580 * subtree as a whole from neighboring subtrees.
6581 *
6582 * Note that 4. and 5. are not in conflict: 4. is about protecting
6583 * against immediate siblings whereas 5. is about protecting against
6584 * neighboring subtrees.
6585 */
effective_protection(unsigned long usage,unsigned long parent_usage,unsigned long setting,unsigned long parent_effective,unsigned long siblings_protected)6586 static unsigned long effective_protection(unsigned long usage,
6587 unsigned long parent_usage,
6588 unsigned long setting,
6589 unsigned long parent_effective,
6590 unsigned long siblings_protected)
6591 {
6592 unsigned long protected;
6593 unsigned long ep;
6594
6595 protected = min(usage, setting);
6596 /*
6597 * If all cgroups at this level combined claim and use more
6598 * protection then what the parent affords them, distribute
6599 * shares in proportion to utilization.
6600 *
6601 * We are using actual utilization rather than the statically
6602 * claimed protection in order to be work-conserving: claimed
6603 * but unused protection is available to siblings that would
6604 * otherwise get a smaller chunk than what they claimed.
6605 */
6606 if (siblings_protected > parent_effective)
6607 return protected * parent_effective / siblings_protected;
6608
6609 /*
6610 * Ok, utilized protection of all children is within what the
6611 * parent affords them, so we know whatever this child claims
6612 * and utilizes is effectively protected.
6613 *
6614 * If there is unprotected usage beyond this value, reclaim
6615 * will apply pressure in proportion to that amount.
6616 *
6617 * If there is unutilized protection, the cgroup will be fully
6618 * shielded from reclaim, but we do return a smaller value for
6619 * protection than what the group could enjoy in theory. This
6620 * is okay. With the overcommit distribution above, effective
6621 * protection is always dependent on how memory is actually
6622 * consumed among the siblings anyway.
6623 */
6624 ep = protected;
6625
6626 /*
6627 * If the children aren't claiming (all of) the protection
6628 * afforded to them by the parent, distribute the remainder in
6629 * proportion to the (unprotected) memory of each cgroup. That
6630 * way, cgroups that aren't explicitly prioritized wrt each
6631 * other compete freely over the allowance, but they are
6632 * collectively protected from neighboring trees.
6633 *
6634 * We're using unprotected memory for the weight so that if
6635 * some cgroups DO claim explicit protection, we don't protect
6636 * the same bytes twice.
6637 *
6638 * Check both usage and parent_usage against the respective
6639 * protected values. One should imply the other, but they
6640 * aren't read atomically - make sure the division is sane.
6641 */
6642 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6643 return ep;
6644 if (parent_effective > siblings_protected &&
6645 parent_usage > siblings_protected &&
6646 usage > protected) {
6647 unsigned long unclaimed;
6648
6649 unclaimed = parent_effective - siblings_protected;
6650 unclaimed *= usage - protected;
6651 unclaimed /= parent_usage - siblings_protected;
6652
6653 ep += unclaimed;
6654 }
6655
6656 return ep;
6657 }
6658
6659 /**
6660 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6661 * @root: the top ancestor of the sub-tree being checked
6662 * @memcg: the memory cgroup to check
6663 *
6664 * WARNING: This function is not stateless! It can only be used as part
6665 * of a top-down tree iteration, not for isolated queries.
6666 */
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)6667 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6668 struct mem_cgroup *memcg)
6669 {
6670 unsigned long usage, parent_usage;
6671 struct mem_cgroup *parent;
6672
6673 if (mem_cgroup_disabled())
6674 return;
6675
6676 if (!root)
6677 root = root_mem_cgroup;
6678
6679 /*
6680 * Effective values of the reclaim targets are ignored so they
6681 * can be stale. Have a look at mem_cgroup_protection for more
6682 * details.
6683 * TODO: calculation should be more robust so that we do not need
6684 * that special casing.
6685 */
6686 if (memcg == root)
6687 return;
6688
6689 usage = page_counter_read(&memcg->memory);
6690 if (!usage)
6691 return;
6692
6693 parent = parent_mem_cgroup(memcg);
6694
6695 if (parent == root) {
6696 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6697 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6698 return;
6699 }
6700
6701 parent_usage = page_counter_read(&parent->memory);
6702
6703 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6704 READ_ONCE(memcg->memory.min),
6705 READ_ONCE(parent->memory.emin),
6706 atomic_long_read(&parent->memory.children_min_usage)));
6707
6708 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6709 READ_ONCE(memcg->memory.low),
6710 READ_ONCE(parent->memory.elow),
6711 atomic_long_read(&parent->memory.children_low_usage)));
6712 }
6713
charge_memcg(struct folio * folio,struct mem_cgroup * memcg,gfp_t gfp)6714 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6715 gfp_t gfp)
6716 {
6717 long nr_pages = folio_nr_pages(folio);
6718 int ret;
6719
6720 ret = try_charge(memcg, gfp, nr_pages);
6721 if (ret)
6722 goto out;
6723
6724 css_get(&memcg->css);
6725 commit_charge(folio, memcg);
6726
6727 local_irq_disable();
6728 mem_cgroup_charge_statistics(memcg, nr_pages);
6729 memcg_check_events(memcg, folio_nid(folio));
6730 local_irq_enable();
6731 out:
6732 return ret;
6733 }
6734
__mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)6735 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
6736 {
6737 struct mem_cgroup *memcg;
6738 int ret;
6739
6740 memcg = get_mem_cgroup_from_mm(mm);
6741 ret = charge_memcg(folio, memcg, gfp);
6742 css_put(&memcg->css);
6743
6744 return ret;
6745 }
6746
6747 /**
6748 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6749 * @page: page to charge
6750 * @mm: mm context of the victim
6751 * @gfp: reclaim mode
6752 * @entry: swap entry for which the page is allocated
6753 *
6754 * This function charges a page allocated for swapin. Please call this before
6755 * adding the page to the swapcache.
6756 *
6757 * Returns 0 on success. Otherwise, an error code is returned.
6758 */
mem_cgroup_swapin_charge_page(struct page * page,struct mm_struct * mm,gfp_t gfp,swp_entry_t entry)6759 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6760 gfp_t gfp, swp_entry_t entry)
6761 {
6762 struct folio *folio = page_folio(page);
6763 struct mem_cgroup *memcg;
6764 unsigned short id;
6765 int ret;
6766
6767 if (mem_cgroup_disabled())
6768 return 0;
6769
6770 id = lookup_swap_cgroup_id(entry);
6771 rcu_read_lock();
6772 memcg = mem_cgroup_from_id(id);
6773 if (!memcg || !css_tryget_online(&memcg->css))
6774 memcg = get_mem_cgroup_from_mm(mm);
6775 rcu_read_unlock();
6776
6777 ret = charge_memcg(folio, memcg, gfp);
6778
6779 css_put(&memcg->css);
6780 return ret;
6781 }
6782
6783 /*
6784 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6785 * @entry: swap entry for which the page is charged
6786 *
6787 * Call this function after successfully adding the charged page to swapcache.
6788 *
6789 * Note: This function assumes the page for which swap slot is being uncharged
6790 * is order 0 page.
6791 */
mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)6792 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6793 {
6794 /*
6795 * Cgroup1's unified memory+swap counter has been charged with the
6796 * new swapcache page, finish the transfer by uncharging the swap
6797 * slot. The swap slot would also get uncharged when it dies, but
6798 * it can stick around indefinitely and we'd count the page twice
6799 * the entire time.
6800 *
6801 * Cgroup2 has separate resource counters for memory and swap,
6802 * so this is a non-issue here. Memory and swap charge lifetimes
6803 * correspond 1:1 to page and swap slot lifetimes: we charge the
6804 * page to memory here, and uncharge swap when the slot is freed.
6805 */
6806 if (!mem_cgroup_disabled() && do_memsw_account()) {
6807 /*
6808 * The swap entry might not get freed for a long time,
6809 * let's not wait for it. The page already received a
6810 * memory+swap charge, drop the swap entry duplicate.
6811 */
6812 mem_cgroup_uncharge_swap(entry, 1);
6813 }
6814 }
6815
6816 struct uncharge_gather {
6817 struct mem_cgroup *memcg;
6818 unsigned long nr_memory;
6819 unsigned long pgpgout;
6820 unsigned long nr_kmem;
6821 int nid;
6822 };
6823
uncharge_gather_clear(struct uncharge_gather * ug)6824 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6825 {
6826 memset(ug, 0, sizeof(*ug));
6827 }
6828
uncharge_batch(const struct uncharge_gather * ug)6829 static void uncharge_batch(const struct uncharge_gather *ug)
6830 {
6831 unsigned long flags;
6832
6833 if (ug->nr_memory) {
6834 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6835 if (do_memsw_account())
6836 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6837 if (ug->nr_kmem)
6838 memcg_account_kmem(ug->memcg, -ug->nr_kmem);
6839 memcg_oom_recover(ug->memcg);
6840 }
6841
6842 local_irq_save(flags);
6843 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6844 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6845 memcg_check_events(ug->memcg, ug->nid);
6846 local_irq_restore(flags);
6847
6848 /* drop reference from uncharge_folio */
6849 css_put(&ug->memcg->css);
6850 }
6851
uncharge_folio(struct folio * folio,struct uncharge_gather * ug)6852 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
6853 {
6854 long nr_pages;
6855 struct mem_cgroup *memcg;
6856 struct obj_cgroup *objcg;
6857
6858 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
6859
6860 /*
6861 * Nobody should be changing or seriously looking at
6862 * folio memcg or objcg at this point, we have fully
6863 * exclusive access to the folio.
6864 */
6865 if (folio_memcg_kmem(folio)) {
6866 objcg = __folio_objcg(folio);
6867 /*
6868 * This get matches the put at the end of the function and
6869 * kmem pages do not hold memcg references anymore.
6870 */
6871 memcg = get_mem_cgroup_from_objcg(objcg);
6872 } else {
6873 memcg = __folio_memcg(folio);
6874 }
6875
6876 if (!memcg)
6877 return;
6878
6879 if (ug->memcg != memcg) {
6880 if (ug->memcg) {
6881 uncharge_batch(ug);
6882 uncharge_gather_clear(ug);
6883 }
6884 ug->memcg = memcg;
6885 ug->nid = folio_nid(folio);
6886
6887 /* pairs with css_put in uncharge_batch */
6888 css_get(&memcg->css);
6889 }
6890
6891 nr_pages = folio_nr_pages(folio);
6892
6893 if (folio_memcg_kmem(folio)) {
6894 ug->nr_memory += nr_pages;
6895 ug->nr_kmem += nr_pages;
6896
6897 folio->memcg_data = 0;
6898 obj_cgroup_put(objcg);
6899 } else {
6900 /* LRU pages aren't accounted at the root level */
6901 if (!mem_cgroup_is_root(memcg))
6902 ug->nr_memory += nr_pages;
6903 ug->pgpgout++;
6904
6905 folio->memcg_data = 0;
6906 }
6907
6908 css_put(&memcg->css);
6909 }
6910
__mem_cgroup_uncharge(struct folio * folio)6911 void __mem_cgroup_uncharge(struct folio *folio)
6912 {
6913 struct uncharge_gather ug;
6914
6915 /* Don't touch folio->lru of any random page, pre-check: */
6916 if (!folio_memcg(folio))
6917 return;
6918
6919 uncharge_gather_clear(&ug);
6920 uncharge_folio(folio, &ug);
6921 uncharge_batch(&ug);
6922 }
6923
6924 /**
6925 * __mem_cgroup_uncharge_list - uncharge a list of page
6926 * @page_list: list of pages to uncharge
6927 *
6928 * Uncharge a list of pages previously charged with
6929 * __mem_cgroup_charge().
6930 */
__mem_cgroup_uncharge_list(struct list_head * page_list)6931 void __mem_cgroup_uncharge_list(struct list_head *page_list)
6932 {
6933 struct uncharge_gather ug;
6934 struct folio *folio;
6935
6936 uncharge_gather_clear(&ug);
6937 list_for_each_entry(folio, page_list, lru)
6938 uncharge_folio(folio, &ug);
6939 if (ug.memcg)
6940 uncharge_batch(&ug);
6941 }
6942
6943 /**
6944 * mem_cgroup_migrate - Charge a folio's replacement.
6945 * @old: Currently circulating folio.
6946 * @new: Replacement folio.
6947 *
6948 * Charge @new as a replacement folio for @old. @old will
6949 * be uncharged upon free.
6950 *
6951 * Both folios must be locked, @new->mapping must be set up.
6952 */
mem_cgroup_migrate(struct folio * old,struct folio * new)6953 void mem_cgroup_migrate(struct folio *old, struct folio *new)
6954 {
6955 struct mem_cgroup *memcg;
6956 long nr_pages = folio_nr_pages(new);
6957 unsigned long flags;
6958
6959 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
6960 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
6961 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
6962 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
6963
6964 if (mem_cgroup_disabled())
6965 return;
6966
6967 /* Page cache replacement: new folio already charged? */
6968 if (folio_memcg(new))
6969 return;
6970
6971 memcg = folio_memcg(old);
6972 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
6973 if (!memcg)
6974 return;
6975
6976 /* Force-charge the new page. The old one will be freed soon */
6977 if (!mem_cgroup_is_root(memcg)) {
6978 page_counter_charge(&memcg->memory, nr_pages);
6979 if (do_memsw_account())
6980 page_counter_charge(&memcg->memsw, nr_pages);
6981 }
6982
6983 css_get(&memcg->css);
6984 commit_charge(new, memcg);
6985
6986 local_irq_save(flags);
6987 mem_cgroup_charge_statistics(memcg, nr_pages);
6988 memcg_check_events(memcg, folio_nid(new));
6989 local_irq_restore(flags);
6990 }
6991
6992 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6993 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6994
mem_cgroup_sk_alloc(struct sock * sk)6995 void mem_cgroup_sk_alloc(struct sock *sk)
6996 {
6997 struct mem_cgroup *memcg;
6998
6999 if (!mem_cgroup_sockets_enabled)
7000 return;
7001
7002 /* Do not associate the sock with unrelated interrupted task's memcg. */
7003 if (!in_task())
7004 return;
7005
7006 rcu_read_lock();
7007 memcg = mem_cgroup_from_task(current);
7008 if (memcg == root_mem_cgroup)
7009 goto out;
7010 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7011 goto out;
7012 if (css_tryget(&memcg->css))
7013 sk->sk_memcg = memcg;
7014 out:
7015 rcu_read_unlock();
7016 }
7017
mem_cgroup_sk_free(struct sock * sk)7018 void mem_cgroup_sk_free(struct sock *sk)
7019 {
7020 if (sk->sk_memcg)
7021 css_put(&sk->sk_memcg->css);
7022 }
7023
7024 /**
7025 * mem_cgroup_charge_skmem - charge socket memory
7026 * @memcg: memcg to charge
7027 * @nr_pages: number of pages to charge
7028 * @gfp_mask: reclaim mode
7029 *
7030 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7031 * @memcg's configured limit, %false if it doesn't.
7032 */
mem_cgroup_charge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)7033 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7034 gfp_t gfp_mask)
7035 {
7036 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7037 struct page_counter *fail;
7038
7039 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7040 memcg->tcpmem_pressure = 0;
7041 return true;
7042 }
7043 memcg->tcpmem_pressure = 1;
7044 if (gfp_mask & __GFP_NOFAIL) {
7045 page_counter_charge(&memcg->tcpmem, nr_pages);
7046 return true;
7047 }
7048 return false;
7049 }
7050
7051 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7052 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7053 return true;
7054 }
7055
7056 return false;
7057 }
7058
7059 /**
7060 * mem_cgroup_uncharge_skmem - uncharge socket memory
7061 * @memcg: memcg to uncharge
7062 * @nr_pages: number of pages to uncharge
7063 */
mem_cgroup_uncharge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages)7064 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7065 {
7066 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7067 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7068 return;
7069 }
7070
7071 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7072
7073 refill_stock(memcg, nr_pages);
7074 }
7075
cgroup_memory(char * s)7076 static int __init cgroup_memory(char *s)
7077 {
7078 char *token;
7079
7080 while ((token = strsep(&s, ",")) != NULL) {
7081 if (!*token)
7082 continue;
7083 if (!strcmp(token, "nosocket"))
7084 cgroup_memory_nosocket = true;
7085 if (!strcmp(token, "nokmem"))
7086 cgroup_memory_nokmem = true;
7087 }
7088 return 1;
7089 }
7090 __setup("cgroup.memory=", cgroup_memory);
7091
7092 /*
7093 * subsys_initcall() for memory controller.
7094 *
7095 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7096 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7097 * basically everything that doesn't depend on a specific mem_cgroup structure
7098 * should be initialized from here.
7099 */
mem_cgroup_init(void)7100 static int __init mem_cgroup_init(void)
7101 {
7102 int cpu, node;
7103
7104 /*
7105 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7106 * used for per-memcg-per-cpu caching of per-node statistics. In order
7107 * to work fine, we should make sure that the overfill threshold can't
7108 * exceed S32_MAX / PAGE_SIZE.
7109 */
7110 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7111
7112 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7113 memcg_hotplug_cpu_dead);
7114
7115 for_each_possible_cpu(cpu)
7116 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7117 drain_local_stock);
7118
7119 for_each_node(node) {
7120 struct mem_cgroup_tree_per_node *rtpn;
7121
7122 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7123 node_online(node) ? node : NUMA_NO_NODE);
7124
7125 rtpn->rb_root = RB_ROOT;
7126 rtpn->rb_rightmost = NULL;
7127 spin_lock_init(&rtpn->lock);
7128 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7129 }
7130
7131 return 0;
7132 }
7133 subsys_initcall(mem_cgroup_init);
7134
7135 #ifdef CONFIG_MEMCG_SWAP
mem_cgroup_id_get_online(struct mem_cgroup * memcg)7136 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7137 {
7138 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7139 /*
7140 * The root cgroup cannot be destroyed, so it's refcount must
7141 * always be >= 1.
7142 */
7143 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7144 VM_BUG_ON(1);
7145 break;
7146 }
7147 memcg = parent_mem_cgroup(memcg);
7148 if (!memcg)
7149 memcg = root_mem_cgroup;
7150 }
7151 return memcg;
7152 }
7153
7154 /**
7155 * mem_cgroup_swapout - transfer a memsw charge to swap
7156 * @folio: folio whose memsw charge to transfer
7157 * @entry: swap entry to move the charge to
7158 *
7159 * Transfer the memsw charge of @folio to @entry.
7160 */
mem_cgroup_swapout(struct folio * folio,swp_entry_t entry)7161 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7162 {
7163 struct mem_cgroup *memcg, *swap_memcg;
7164 unsigned int nr_entries;
7165 unsigned short oldid;
7166
7167 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7168 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7169
7170 if (mem_cgroup_disabled())
7171 return;
7172
7173 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7174 return;
7175
7176 memcg = folio_memcg(folio);
7177
7178 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7179 if (!memcg)
7180 return;
7181
7182 /*
7183 * In case the memcg owning these pages has been offlined and doesn't
7184 * have an ID allocated to it anymore, charge the closest online
7185 * ancestor for the swap instead and transfer the memory+swap charge.
7186 */
7187 swap_memcg = mem_cgroup_id_get_online(memcg);
7188 nr_entries = folio_nr_pages(folio);
7189 /* Get references for the tail pages, too */
7190 if (nr_entries > 1)
7191 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7192 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7193 nr_entries);
7194 VM_BUG_ON_FOLIO(oldid, folio);
7195 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7196
7197 folio->memcg_data = 0;
7198
7199 if (!mem_cgroup_is_root(memcg))
7200 page_counter_uncharge(&memcg->memory, nr_entries);
7201
7202 if (!cgroup_memory_noswap && memcg != swap_memcg) {
7203 if (!mem_cgroup_is_root(swap_memcg))
7204 page_counter_charge(&swap_memcg->memsw, nr_entries);
7205 page_counter_uncharge(&memcg->memsw, nr_entries);
7206 }
7207
7208 /*
7209 * Interrupts should be disabled here because the caller holds the
7210 * i_pages lock which is taken with interrupts-off. It is
7211 * important here to have the interrupts disabled because it is the
7212 * only synchronisation we have for updating the per-CPU variables.
7213 */
7214 memcg_stats_lock();
7215 mem_cgroup_charge_statistics(memcg, -nr_entries);
7216 memcg_stats_unlock();
7217 memcg_check_events(memcg, folio_nid(folio));
7218
7219 css_put(&memcg->css);
7220 }
7221
7222 /**
7223 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7224 * @folio: folio being added to swap
7225 * @entry: swap entry to charge
7226 *
7227 * Try to charge @folio's memcg for the swap space at @entry.
7228 *
7229 * Returns 0 on success, -ENOMEM on failure.
7230 */
__mem_cgroup_try_charge_swap(struct folio * folio,swp_entry_t entry)7231 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7232 {
7233 unsigned int nr_pages = folio_nr_pages(folio);
7234 struct page_counter *counter;
7235 struct mem_cgroup *memcg;
7236 unsigned short oldid;
7237
7238 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7239 return 0;
7240
7241 memcg = folio_memcg(folio);
7242
7243 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7244 if (!memcg)
7245 return 0;
7246
7247 if (!entry.val) {
7248 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7249 return 0;
7250 }
7251
7252 memcg = mem_cgroup_id_get_online(memcg);
7253
7254 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7255 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7256 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7257 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7258 mem_cgroup_id_put(memcg);
7259 return -ENOMEM;
7260 }
7261
7262 /* Get references for the tail pages, too */
7263 if (nr_pages > 1)
7264 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7265 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7266 VM_BUG_ON_FOLIO(oldid, folio);
7267 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7268
7269 return 0;
7270 }
7271
7272 /**
7273 * __mem_cgroup_uncharge_swap - uncharge swap space
7274 * @entry: swap entry to uncharge
7275 * @nr_pages: the amount of swap space to uncharge
7276 */
__mem_cgroup_uncharge_swap(swp_entry_t entry,unsigned int nr_pages)7277 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7278 {
7279 struct mem_cgroup *memcg;
7280 unsigned short id;
7281
7282 id = swap_cgroup_record(entry, 0, nr_pages);
7283 rcu_read_lock();
7284 memcg = mem_cgroup_from_id(id);
7285 if (memcg) {
7286 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7287 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7288 page_counter_uncharge(&memcg->swap, nr_pages);
7289 else
7290 page_counter_uncharge(&memcg->memsw, nr_pages);
7291 }
7292 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7293 mem_cgroup_id_put_many(memcg, nr_pages);
7294 }
7295 rcu_read_unlock();
7296 }
7297
mem_cgroup_get_nr_swap_pages(struct mem_cgroup * memcg)7298 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7299 {
7300 long nr_swap_pages = get_nr_swap_pages();
7301
7302 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7303 return nr_swap_pages;
7304 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7305 nr_swap_pages = min_t(long, nr_swap_pages,
7306 READ_ONCE(memcg->swap.max) -
7307 page_counter_read(&memcg->swap));
7308 return nr_swap_pages;
7309 }
7310
mem_cgroup_swap_full(struct page * page)7311 bool mem_cgroup_swap_full(struct page *page)
7312 {
7313 struct mem_cgroup *memcg;
7314
7315 VM_BUG_ON_PAGE(!PageLocked(page), page);
7316
7317 if (vm_swap_full())
7318 return true;
7319 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7320 return false;
7321
7322 memcg = page_memcg(page);
7323 if (!memcg)
7324 return false;
7325
7326 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7327 unsigned long usage = page_counter_read(&memcg->swap);
7328
7329 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7330 usage * 2 >= READ_ONCE(memcg->swap.max))
7331 return true;
7332 }
7333
7334 return false;
7335 }
7336
setup_swap_account(char * s)7337 static int __init setup_swap_account(char *s)
7338 {
7339 if (!strcmp(s, "1"))
7340 cgroup_memory_noswap = false;
7341 else if (!strcmp(s, "0"))
7342 cgroup_memory_noswap = true;
7343 return 1;
7344 }
7345 __setup("swapaccount=", setup_swap_account);
7346
swap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)7347 static u64 swap_current_read(struct cgroup_subsys_state *css,
7348 struct cftype *cft)
7349 {
7350 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7351
7352 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7353 }
7354
swap_high_show(struct seq_file * m,void * v)7355 static int swap_high_show(struct seq_file *m, void *v)
7356 {
7357 return seq_puts_memcg_tunable(m,
7358 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7359 }
7360
swap_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7361 static ssize_t swap_high_write(struct kernfs_open_file *of,
7362 char *buf, size_t nbytes, loff_t off)
7363 {
7364 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7365 unsigned long high;
7366 int err;
7367
7368 buf = strstrip(buf);
7369 err = page_counter_memparse(buf, "max", &high);
7370 if (err)
7371 return err;
7372
7373 page_counter_set_high(&memcg->swap, high);
7374
7375 return nbytes;
7376 }
7377
swap_max_show(struct seq_file * m,void * v)7378 static int swap_max_show(struct seq_file *m, void *v)
7379 {
7380 return seq_puts_memcg_tunable(m,
7381 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7382 }
7383
swap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7384 static ssize_t swap_max_write(struct kernfs_open_file *of,
7385 char *buf, size_t nbytes, loff_t off)
7386 {
7387 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7388 unsigned long max;
7389 int err;
7390
7391 buf = strstrip(buf);
7392 err = page_counter_memparse(buf, "max", &max);
7393 if (err)
7394 return err;
7395
7396 xchg(&memcg->swap.max, max);
7397
7398 return nbytes;
7399 }
7400
swap_events_show(struct seq_file * m,void * v)7401 static int swap_events_show(struct seq_file *m, void *v)
7402 {
7403 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7404
7405 seq_printf(m, "high %lu\n",
7406 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7407 seq_printf(m, "max %lu\n",
7408 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7409 seq_printf(m, "fail %lu\n",
7410 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7411
7412 return 0;
7413 }
7414
7415 static struct cftype swap_files[] = {
7416 {
7417 .name = "swap.current",
7418 .flags = CFTYPE_NOT_ON_ROOT,
7419 .read_u64 = swap_current_read,
7420 },
7421 {
7422 .name = "swap.high",
7423 .flags = CFTYPE_NOT_ON_ROOT,
7424 .seq_show = swap_high_show,
7425 .write = swap_high_write,
7426 },
7427 {
7428 .name = "swap.max",
7429 .flags = CFTYPE_NOT_ON_ROOT,
7430 .seq_show = swap_max_show,
7431 .write = swap_max_write,
7432 },
7433 {
7434 .name = "swap.events",
7435 .flags = CFTYPE_NOT_ON_ROOT,
7436 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7437 .seq_show = swap_events_show,
7438 },
7439 { } /* terminate */
7440 };
7441
7442 static struct cftype memsw_files[] = {
7443 {
7444 .name = "memsw.usage_in_bytes",
7445 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7446 .read_u64 = mem_cgroup_read_u64,
7447 },
7448 {
7449 .name = "memsw.max_usage_in_bytes",
7450 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7451 .write = mem_cgroup_reset,
7452 .read_u64 = mem_cgroup_read_u64,
7453 },
7454 {
7455 .name = "memsw.limit_in_bytes",
7456 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7457 .write = mem_cgroup_write,
7458 .read_u64 = mem_cgroup_read_u64,
7459 },
7460 {
7461 .name = "memsw.failcnt",
7462 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7463 .write = mem_cgroup_reset,
7464 .read_u64 = mem_cgroup_read_u64,
7465 },
7466 { }, /* terminate */
7467 };
7468
7469 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7470 /**
7471 * obj_cgroup_may_zswap - check if this cgroup can zswap
7472 * @objcg: the object cgroup
7473 *
7474 * Check if the hierarchical zswap limit has been reached.
7475 *
7476 * This doesn't check for specific headroom, and it is not atomic
7477 * either. But with zswap, the size of the allocation is only known
7478 * once compression has occured, and this optimistic pre-check avoids
7479 * spending cycles on compression when there is already no room left
7480 * or zswap is disabled altogether somewhere in the hierarchy.
7481 */
obj_cgroup_may_zswap(struct obj_cgroup * objcg)7482 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7483 {
7484 struct mem_cgroup *memcg, *original_memcg;
7485 bool ret = true;
7486
7487 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7488 return true;
7489
7490 original_memcg = get_mem_cgroup_from_objcg(objcg);
7491 for (memcg = original_memcg; memcg != root_mem_cgroup;
7492 memcg = parent_mem_cgroup(memcg)) {
7493 unsigned long max = READ_ONCE(memcg->zswap_max);
7494 unsigned long pages;
7495
7496 if (max == PAGE_COUNTER_MAX)
7497 continue;
7498 if (max == 0) {
7499 ret = false;
7500 break;
7501 }
7502
7503 cgroup_rstat_flush(memcg->css.cgroup);
7504 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7505 if (pages < max)
7506 continue;
7507 ret = false;
7508 break;
7509 }
7510 mem_cgroup_put(original_memcg);
7511 return ret;
7512 }
7513
7514 /**
7515 * obj_cgroup_charge_zswap - charge compression backend memory
7516 * @objcg: the object cgroup
7517 * @size: size of compressed object
7518 *
7519 * This forces the charge after obj_cgroup_may_swap() allowed
7520 * compression and storage in zwap for this cgroup to go ahead.
7521 */
obj_cgroup_charge_zswap(struct obj_cgroup * objcg,size_t size)7522 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7523 {
7524 struct mem_cgroup *memcg;
7525
7526 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7527 return;
7528
7529 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7530
7531 /* PF_MEMALLOC context, charging must succeed */
7532 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7533 VM_WARN_ON_ONCE(1);
7534
7535 rcu_read_lock();
7536 memcg = obj_cgroup_memcg(objcg);
7537 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7538 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7539 rcu_read_unlock();
7540 }
7541
7542 /**
7543 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7544 * @objcg: the object cgroup
7545 * @size: size of compressed object
7546 *
7547 * Uncharges zswap memory on page in.
7548 */
obj_cgroup_uncharge_zswap(struct obj_cgroup * objcg,size_t size)7549 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7550 {
7551 struct mem_cgroup *memcg;
7552
7553 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7554 return;
7555
7556 obj_cgroup_uncharge(objcg, size);
7557
7558 rcu_read_lock();
7559 memcg = obj_cgroup_memcg(objcg);
7560 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7561 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7562 rcu_read_unlock();
7563 }
7564
zswap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)7565 static u64 zswap_current_read(struct cgroup_subsys_state *css,
7566 struct cftype *cft)
7567 {
7568 cgroup_rstat_flush(css->cgroup);
7569 return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7570 }
7571
zswap_max_show(struct seq_file * m,void * v)7572 static int zswap_max_show(struct seq_file *m, void *v)
7573 {
7574 return seq_puts_memcg_tunable(m,
7575 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7576 }
7577
zswap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7578 static ssize_t zswap_max_write(struct kernfs_open_file *of,
7579 char *buf, size_t nbytes, loff_t off)
7580 {
7581 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7582 unsigned long max;
7583 int err;
7584
7585 buf = strstrip(buf);
7586 err = page_counter_memparse(buf, "max", &max);
7587 if (err)
7588 return err;
7589
7590 xchg(&memcg->zswap_max, max);
7591
7592 return nbytes;
7593 }
7594
7595 static struct cftype zswap_files[] = {
7596 {
7597 .name = "zswap.current",
7598 .flags = CFTYPE_NOT_ON_ROOT,
7599 .read_u64 = zswap_current_read,
7600 },
7601 {
7602 .name = "zswap.max",
7603 .flags = CFTYPE_NOT_ON_ROOT,
7604 .seq_show = zswap_max_show,
7605 .write = zswap_max_write,
7606 },
7607 { } /* terminate */
7608 };
7609 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7610
7611 /*
7612 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7613 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7614 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7615 * boot parameter. This may result in premature OOPS inside
7616 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7617 */
mem_cgroup_swap_init(void)7618 static int __init mem_cgroup_swap_init(void)
7619 {
7620 /* No memory control -> no swap control */
7621 if (mem_cgroup_disabled())
7622 cgroup_memory_noswap = true;
7623
7624 if (cgroup_memory_noswap)
7625 return 0;
7626
7627 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7628 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7629 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7630 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7631 #endif
7632 return 0;
7633 }
7634 core_initcall(mem_cgroup_swap_init);
7635
7636 #endif /* CONFIG_MEMCG_SWAP */
7637