1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/lockdep.c
4 *
5 * Runtime locking correctness validator
6 *
7 * Started by Ingo Molnar:
8 *
9 * Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11 *
12 * this code maps all the lock dependencies as they occur in a live kernel
13 * and will warn about the following classes of locking bugs:
14 *
15 * - lock inversion scenarios
16 * - circular lock dependencies
17 * - hardirq/softirq safe/unsafe locking bugs
18 *
19 * Bugs are reported even if the current locking scenario does not cause
20 * any deadlock at this point.
21 *
22 * I.e. if anytime in the past two locks were taken in a different order,
23 * even if it happened for another task, even if those were different
24 * locks (but of the same class as this lock), this code will detect it.
25 *
26 * Thanks to Arjan van de Ven for coming up with the initial idea of
27 * mapping lock dependencies runtime.
28 */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57 #include <linux/lockdep.h>
58
59 #include <asm/sections.h>
60
61 #include "lockdep_internals.h"
62
63 #include <trace/events/lock.h>
64
65 #ifdef CONFIG_PROVE_LOCKING
66 static int prove_locking = 1;
67 module_param(prove_locking, int, 0644);
68 #else
69 #define prove_locking 0
70 #endif
71
72 #ifdef CONFIG_LOCK_STAT
73 static int lock_stat = 1;
74 module_param(lock_stat, int, 0644);
75 #else
76 #define lock_stat 0
77 #endif
78
79 #ifdef CONFIG_SYSCTL
80 static struct ctl_table kern_lockdep_table[] = {
81 #ifdef CONFIG_PROVE_LOCKING
82 {
83 .procname = "prove_locking",
84 .data = &prove_locking,
85 .maxlen = sizeof(int),
86 .mode = 0644,
87 .proc_handler = proc_dointvec,
88 },
89 #endif /* CONFIG_PROVE_LOCKING */
90 #ifdef CONFIG_LOCK_STAT
91 {
92 .procname = "lock_stat",
93 .data = &lock_stat,
94 .maxlen = sizeof(int),
95 .mode = 0644,
96 .proc_handler = proc_dointvec,
97 },
98 #endif /* CONFIG_LOCK_STAT */
99 { }
100 };
101
kernel_lockdep_sysctls_init(void)102 static __init int kernel_lockdep_sysctls_init(void)
103 {
104 register_sysctl_init("kernel", kern_lockdep_table);
105 return 0;
106 }
107 late_initcall(kernel_lockdep_sysctls_init);
108 #endif /* CONFIG_SYSCTL */
109
110 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
111 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
112
lockdep_enabled(void)113 static __always_inline bool lockdep_enabled(void)
114 {
115 if (!debug_locks)
116 return false;
117
118 if (this_cpu_read(lockdep_recursion))
119 return false;
120
121 if (current->lockdep_recursion)
122 return false;
123
124 return true;
125 }
126
127 /*
128 * lockdep_lock: protects the lockdep graph, the hashes and the
129 * class/list/hash allocators.
130 *
131 * This is one of the rare exceptions where it's justified
132 * to use a raw spinlock - we really dont want the spinlock
133 * code to recurse back into the lockdep code...
134 */
135 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
136 static struct task_struct *__owner;
137
lockdep_lock(void)138 static inline void lockdep_lock(void)
139 {
140 DEBUG_LOCKS_WARN_ON(!irqs_disabled());
141
142 __this_cpu_inc(lockdep_recursion);
143 arch_spin_lock(&__lock);
144 __owner = current;
145 }
146
lockdep_unlock(void)147 static inline void lockdep_unlock(void)
148 {
149 DEBUG_LOCKS_WARN_ON(!irqs_disabled());
150
151 if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
152 return;
153
154 __owner = NULL;
155 arch_spin_unlock(&__lock);
156 __this_cpu_dec(lockdep_recursion);
157 }
158
lockdep_assert_locked(void)159 static inline bool lockdep_assert_locked(void)
160 {
161 return DEBUG_LOCKS_WARN_ON(__owner != current);
162 }
163
164 static struct task_struct *lockdep_selftest_task_struct;
165
166
graph_lock(void)167 static int graph_lock(void)
168 {
169 lockdep_lock();
170 /*
171 * Make sure that if another CPU detected a bug while
172 * walking the graph we dont change it (while the other
173 * CPU is busy printing out stuff with the graph lock
174 * dropped already)
175 */
176 if (!debug_locks) {
177 lockdep_unlock();
178 return 0;
179 }
180 return 1;
181 }
182
graph_unlock(void)183 static inline void graph_unlock(void)
184 {
185 lockdep_unlock();
186 }
187
188 /*
189 * Turn lock debugging off and return with 0 if it was off already,
190 * and also release the graph lock:
191 */
debug_locks_off_graph_unlock(void)192 static inline int debug_locks_off_graph_unlock(void)
193 {
194 int ret = debug_locks_off();
195
196 lockdep_unlock();
197
198 return ret;
199 }
200
201 unsigned long nr_list_entries;
202 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
203 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
204
205 /*
206 * All data structures here are protected by the global debug_lock.
207 *
208 * nr_lock_classes is the number of elements of lock_classes[] that is
209 * in use.
210 */
211 #define KEYHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1)
212 #define KEYHASH_SIZE (1UL << KEYHASH_BITS)
213 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
214 unsigned long nr_lock_classes;
215 unsigned long nr_zapped_classes;
216 unsigned long max_lock_class_idx;
217 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
218 DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
219
hlock_class(struct held_lock * hlock)220 static inline struct lock_class *hlock_class(struct held_lock *hlock)
221 {
222 unsigned int class_idx = hlock->class_idx;
223
224 /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
225 barrier();
226
227 if (!test_bit(class_idx, lock_classes_in_use)) {
228 /*
229 * Someone passed in garbage, we give up.
230 */
231 DEBUG_LOCKS_WARN_ON(1);
232 return NULL;
233 }
234
235 /*
236 * At this point, if the passed hlock->class_idx is still garbage,
237 * we just have to live with it
238 */
239 return lock_classes + class_idx;
240 }
241
242 #ifdef CONFIG_LOCK_STAT
243 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
244
lockstat_clock(void)245 static inline u64 lockstat_clock(void)
246 {
247 return local_clock();
248 }
249
lock_point(unsigned long points[],unsigned long ip)250 static int lock_point(unsigned long points[], unsigned long ip)
251 {
252 int i;
253
254 for (i = 0; i < LOCKSTAT_POINTS; i++) {
255 if (points[i] == 0) {
256 points[i] = ip;
257 break;
258 }
259 if (points[i] == ip)
260 break;
261 }
262
263 return i;
264 }
265
lock_time_inc(struct lock_time * lt,u64 time)266 static void lock_time_inc(struct lock_time *lt, u64 time)
267 {
268 if (time > lt->max)
269 lt->max = time;
270
271 if (time < lt->min || !lt->nr)
272 lt->min = time;
273
274 lt->total += time;
275 lt->nr++;
276 }
277
lock_time_add(struct lock_time * src,struct lock_time * dst)278 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
279 {
280 if (!src->nr)
281 return;
282
283 if (src->max > dst->max)
284 dst->max = src->max;
285
286 if (src->min < dst->min || !dst->nr)
287 dst->min = src->min;
288
289 dst->total += src->total;
290 dst->nr += src->nr;
291 }
292
lock_stats(struct lock_class * class)293 struct lock_class_stats lock_stats(struct lock_class *class)
294 {
295 struct lock_class_stats stats;
296 int cpu, i;
297
298 memset(&stats, 0, sizeof(struct lock_class_stats));
299 for_each_possible_cpu(cpu) {
300 struct lock_class_stats *pcs =
301 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
302
303 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
304 stats.contention_point[i] += pcs->contention_point[i];
305
306 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
307 stats.contending_point[i] += pcs->contending_point[i];
308
309 lock_time_add(&pcs->read_waittime, &stats.read_waittime);
310 lock_time_add(&pcs->write_waittime, &stats.write_waittime);
311
312 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
313 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
314
315 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
316 stats.bounces[i] += pcs->bounces[i];
317 }
318
319 return stats;
320 }
321
clear_lock_stats(struct lock_class * class)322 void clear_lock_stats(struct lock_class *class)
323 {
324 int cpu;
325
326 for_each_possible_cpu(cpu) {
327 struct lock_class_stats *cpu_stats =
328 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
329
330 memset(cpu_stats, 0, sizeof(struct lock_class_stats));
331 }
332 memset(class->contention_point, 0, sizeof(class->contention_point));
333 memset(class->contending_point, 0, sizeof(class->contending_point));
334 }
335
get_lock_stats(struct lock_class * class)336 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
337 {
338 return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
339 }
340
lock_release_holdtime(struct held_lock * hlock)341 static void lock_release_holdtime(struct held_lock *hlock)
342 {
343 struct lock_class_stats *stats;
344 u64 holdtime;
345
346 if (!lock_stat)
347 return;
348
349 holdtime = lockstat_clock() - hlock->holdtime_stamp;
350
351 stats = get_lock_stats(hlock_class(hlock));
352 if (hlock->read)
353 lock_time_inc(&stats->read_holdtime, holdtime);
354 else
355 lock_time_inc(&stats->write_holdtime, holdtime);
356 }
357 #else
lock_release_holdtime(struct held_lock * hlock)358 static inline void lock_release_holdtime(struct held_lock *hlock)
359 {
360 }
361 #endif
362
363 /*
364 * We keep a global list of all lock classes. The list is only accessed with
365 * the lockdep spinlock lock held. free_lock_classes is a list with free
366 * elements. These elements are linked together by the lock_entry member in
367 * struct lock_class.
368 */
369 static LIST_HEAD(all_lock_classes);
370 static LIST_HEAD(free_lock_classes);
371
372 /**
373 * struct pending_free - information about data structures about to be freed
374 * @zapped: Head of a list with struct lock_class elements.
375 * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
376 * are about to be freed.
377 */
378 struct pending_free {
379 struct list_head zapped;
380 DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
381 };
382
383 /**
384 * struct delayed_free - data structures used for delayed freeing
385 *
386 * A data structure for delayed freeing of data structures that may be
387 * accessed by RCU readers at the time these were freed.
388 *
389 * @rcu_head: Used to schedule an RCU callback for freeing data structures.
390 * @index: Index of @pf to which freed data structures are added.
391 * @scheduled: Whether or not an RCU callback has been scheduled.
392 * @pf: Array with information about data structures about to be freed.
393 */
394 static struct delayed_free {
395 struct rcu_head rcu_head;
396 int index;
397 int scheduled;
398 struct pending_free pf[2];
399 } delayed_free;
400
401 /*
402 * The lockdep classes are in a hash-table as well, for fast lookup:
403 */
404 #define CLASSHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1)
405 #define CLASSHASH_SIZE (1UL << CLASSHASH_BITS)
406 #define __classhashfn(key) hash_long((unsigned long)key, CLASSHASH_BITS)
407 #define classhashentry(key) (classhash_table + __classhashfn((key)))
408
409 static struct hlist_head classhash_table[CLASSHASH_SIZE];
410
411 /*
412 * We put the lock dependency chains into a hash-table as well, to cache
413 * their existence:
414 */
415 #define CHAINHASH_BITS (MAX_LOCKDEP_CHAINS_BITS-1)
416 #define CHAINHASH_SIZE (1UL << CHAINHASH_BITS)
417 #define __chainhashfn(chain) hash_long(chain, CHAINHASH_BITS)
418 #define chainhashentry(chain) (chainhash_table + __chainhashfn((chain)))
419
420 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
421
422 /*
423 * the id of held_lock
424 */
hlock_id(struct held_lock * hlock)425 static inline u16 hlock_id(struct held_lock *hlock)
426 {
427 BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
428
429 return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
430 }
431
chain_hlock_class_idx(u16 hlock_id)432 static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
433 {
434 return hlock_id & (MAX_LOCKDEP_KEYS - 1);
435 }
436
437 /*
438 * The hash key of the lock dependency chains is a hash itself too:
439 * it's a hash of all locks taken up to that lock, including that lock.
440 * It's a 64-bit hash, because it's important for the keys to be
441 * unique.
442 */
iterate_chain_key(u64 key,u32 idx)443 static inline u64 iterate_chain_key(u64 key, u32 idx)
444 {
445 u32 k0 = key, k1 = key >> 32;
446
447 __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
448
449 return k0 | (u64)k1 << 32;
450 }
451
lockdep_init_task(struct task_struct * task)452 void lockdep_init_task(struct task_struct *task)
453 {
454 task->lockdep_depth = 0; /* no locks held yet */
455 task->curr_chain_key = INITIAL_CHAIN_KEY;
456 task->lockdep_recursion = 0;
457 }
458
lockdep_recursion_inc(void)459 static __always_inline void lockdep_recursion_inc(void)
460 {
461 __this_cpu_inc(lockdep_recursion);
462 }
463
lockdep_recursion_finish(void)464 static __always_inline void lockdep_recursion_finish(void)
465 {
466 if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
467 __this_cpu_write(lockdep_recursion, 0);
468 }
469
lockdep_set_selftest_task(struct task_struct * task)470 void lockdep_set_selftest_task(struct task_struct *task)
471 {
472 lockdep_selftest_task_struct = task;
473 }
474
475 /*
476 * Debugging switches:
477 */
478
479 #define VERBOSE 0
480 #define VERY_VERBOSE 0
481
482 #if VERBOSE
483 # define HARDIRQ_VERBOSE 1
484 # define SOFTIRQ_VERBOSE 1
485 #else
486 # define HARDIRQ_VERBOSE 0
487 # define SOFTIRQ_VERBOSE 0
488 #endif
489
490 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
491 /*
492 * Quick filtering for interesting events:
493 */
class_filter(struct lock_class * class)494 static int class_filter(struct lock_class *class)
495 {
496 #if 0
497 /* Example */
498 if (class->name_version == 1 &&
499 !strcmp(class->name, "lockname"))
500 return 1;
501 if (class->name_version == 1 &&
502 !strcmp(class->name, "&struct->lockfield"))
503 return 1;
504 #endif
505 /* Filter everything else. 1 would be to allow everything else */
506 return 0;
507 }
508 #endif
509
verbose(struct lock_class * class)510 static int verbose(struct lock_class *class)
511 {
512 #if VERBOSE
513 return class_filter(class);
514 #endif
515 return 0;
516 }
517
print_lockdep_off(const char * bug_msg)518 static void print_lockdep_off(const char *bug_msg)
519 {
520 printk(KERN_DEBUG "%s\n", bug_msg);
521 printk(KERN_DEBUG "turning off the locking correctness validator.\n");
522 #ifdef CONFIG_LOCK_STAT
523 printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
524 #endif
525 }
526
527 unsigned long nr_stack_trace_entries;
528
529 #ifdef CONFIG_PROVE_LOCKING
530 /**
531 * struct lock_trace - single stack backtrace
532 * @hash_entry: Entry in a stack_trace_hash[] list.
533 * @hash: jhash() of @entries.
534 * @nr_entries: Number of entries in @entries.
535 * @entries: Actual stack backtrace.
536 */
537 struct lock_trace {
538 struct hlist_node hash_entry;
539 u32 hash;
540 u32 nr_entries;
541 unsigned long entries[] __aligned(sizeof(unsigned long));
542 };
543 #define LOCK_TRACE_SIZE_IN_LONGS \
544 (sizeof(struct lock_trace) / sizeof(unsigned long))
545 /*
546 * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
547 */
548 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
549 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
550
traces_identical(struct lock_trace * t1,struct lock_trace * t2)551 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
552 {
553 return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
554 memcmp(t1->entries, t2->entries,
555 t1->nr_entries * sizeof(t1->entries[0])) == 0;
556 }
557
save_trace(void)558 static struct lock_trace *save_trace(void)
559 {
560 struct lock_trace *trace, *t2;
561 struct hlist_head *hash_head;
562 u32 hash;
563 int max_entries;
564
565 BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
566 BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
567
568 trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
569 max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
570 LOCK_TRACE_SIZE_IN_LONGS;
571
572 if (max_entries <= 0) {
573 if (!debug_locks_off_graph_unlock())
574 return NULL;
575
576 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
577 dump_stack();
578
579 return NULL;
580 }
581 trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
582
583 hash = jhash(trace->entries, trace->nr_entries *
584 sizeof(trace->entries[0]), 0);
585 trace->hash = hash;
586 hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
587 hlist_for_each_entry(t2, hash_head, hash_entry) {
588 if (traces_identical(trace, t2))
589 return t2;
590 }
591 nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
592 hlist_add_head(&trace->hash_entry, hash_head);
593
594 return trace;
595 }
596
597 /* Return the number of stack traces in the stack_trace[] array. */
lockdep_stack_trace_count(void)598 u64 lockdep_stack_trace_count(void)
599 {
600 struct lock_trace *trace;
601 u64 c = 0;
602 int i;
603
604 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
605 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
606 c++;
607 }
608 }
609
610 return c;
611 }
612
613 /* Return the number of stack hash chains that have at least one stack trace. */
lockdep_stack_hash_count(void)614 u64 lockdep_stack_hash_count(void)
615 {
616 u64 c = 0;
617 int i;
618
619 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
620 if (!hlist_empty(&stack_trace_hash[i]))
621 c++;
622
623 return c;
624 }
625 #endif
626
627 unsigned int nr_hardirq_chains;
628 unsigned int nr_softirq_chains;
629 unsigned int nr_process_chains;
630 unsigned int max_lockdep_depth;
631
632 #ifdef CONFIG_DEBUG_LOCKDEP
633 /*
634 * Various lockdep statistics:
635 */
636 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
637 #endif
638
639 #ifdef CONFIG_PROVE_LOCKING
640 /*
641 * Locking printouts:
642 */
643
644 #define __USAGE(__STATE) \
645 [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W", \
646 [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W", \
647 [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
648 [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
649
650 static const char *usage_str[] =
651 {
652 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
653 #include "lockdep_states.h"
654 #undef LOCKDEP_STATE
655 [LOCK_USED] = "INITIAL USE",
656 [LOCK_USED_READ] = "INITIAL READ USE",
657 /* abused as string storage for verify_lock_unused() */
658 [LOCK_USAGE_STATES] = "IN-NMI",
659 };
660 #endif
661
__get_key_name(const struct lockdep_subclass_key * key,char * str)662 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
663 {
664 return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
665 }
666
lock_flag(enum lock_usage_bit bit)667 static inline unsigned long lock_flag(enum lock_usage_bit bit)
668 {
669 return 1UL << bit;
670 }
671
get_usage_char(struct lock_class * class,enum lock_usage_bit bit)672 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
673 {
674 /*
675 * The usage character defaults to '.' (i.e., irqs disabled and not in
676 * irq context), which is the safest usage category.
677 */
678 char c = '.';
679
680 /*
681 * The order of the following usage checks matters, which will
682 * result in the outcome character as follows:
683 *
684 * - '+': irq is enabled and not in irq context
685 * - '-': in irq context and irq is disabled
686 * - '?': in irq context and irq is enabled
687 */
688 if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
689 c = '+';
690 if (class->usage_mask & lock_flag(bit))
691 c = '?';
692 } else if (class->usage_mask & lock_flag(bit))
693 c = '-';
694
695 return c;
696 }
697
get_usage_chars(struct lock_class * class,char usage[LOCK_USAGE_CHARS])698 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
699 {
700 int i = 0;
701
702 #define LOCKDEP_STATE(__STATE) \
703 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE); \
704 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
705 #include "lockdep_states.h"
706 #undef LOCKDEP_STATE
707
708 usage[i] = '\0';
709 }
710
__print_lock_name(struct lock_class * class)711 static void __print_lock_name(struct lock_class *class)
712 {
713 char str[KSYM_NAME_LEN];
714 const char *name;
715
716 name = class->name;
717 if (!name) {
718 name = __get_key_name(class->key, str);
719 printk(KERN_CONT "%s", name);
720 } else {
721 printk(KERN_CONT "%s", name);
722 if (class->name_version > 1)
723 printk(KERN_CONT "#%d", class->name_version);
724 if (class->subclass)
725 printk(KERN_CONT "/%d", class->subclass);
726 }
727 }
728
print_lock_name(struct lock_class * class)729 static void print_lock_name(struct lock_class *class)
730 {
731 char usage[LOCK_USAGE_CHARS];
732
733 get_usage_chars(class, usage);
734
735 printk(KERN_CONT " (");
736 __print_lock_name(class);
737 printk(KERN_CONT "){%s}-{%d:%d}", usage,
738 class->wait_type_outer ?: class->wait_type_inner,
739 class->wait_type_inner);
740 }
741
print_lockdep_cache(struct lockdep_map * lock)742 static void print_lockdep_cache(struct lockdep_map *lock)
743 {
744 const char *name;
745 char str[KSYM_NAME_LEN];
746
747 name = lock->name;
748 if (!name)
749 name = __get_key_name(lock->key->subkeys, str);
750
751 printk(KERN_CONT "%s", name);
752 }
753
print_lock(struct held_lock * hlock)754 static void print_lock(struct held_lock *hlock)
755 {
756 /*
757 * We can be called locklessly through debug_show_all_locks() so be
758 * extra careful, the hlock might have been released and cleared.
759 *
760 * If this indeed happens, lets pretend it does not hurt to continue
761 * to print the lock unless the hlock class_idx does not point to a
762 * registered class. The rationale here is: since we don't attempt
763 * to distinguish whether we are in this situation, if it just
764 * happened we can't count on class_idx to tell either.
765 */
766 struct lock_class *lock = hlock_class(hlock);
767
768 if (!lock) {
769 printk(KERN_CONT "<RELEASED>\n");
770 return;
771 }
772
773 printk(KERN_CONT "%px", hlock->instance);
774 print_lock_name(lock);
775 printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
776 }
777
lockdep_print_held_locks(struct task_struct * p)778 static void lockdep_print_held_locks(struct task_struct *p)
779 {
780 int i, depth = READ_ONCE(p->lockdep_depth);
781
782 if (!depth)
783 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
784 else
785 printk("%d lock%s held by %s/%d:\n", depth,
786 depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
787 /*
788 * It's not reliable to print a task's held locks if it's not sleeping
789 * and it's not the current task.
790 */
791 if (p != current && task_is_running(p))
792 return;
793 for (i = 0; i < depth; i++) {
794 printk(" #%d: ", i);
795 print_lock(p->held_locks + i);
796 }
797 }
798
print_kernel_ident(void)799 static void print_kernel_ident(void)
800 {
801 printk("%s %.*s %s\n", init_utsname()->release,
802 (int)strcspn(init_utsname()->version, " "),
803 init_utsname()->version,
804 print_tainted());
805 }
806
very_verbose(struct lock_class * class)807 static int very_verbose(struct lock_class *class)
808 {
809 #if VERY_VERBOSE
810 return class_filter(class);
811 #endif
812 return 0;
813 }
814
815 /*
816 * Is this the address of a static object:
817 */
818 #ifdef __KERNEL__
819 /*
820 * Check if an address is part of freed initmem. After initmem is freed,
821 * memory can be allocated from it, and such allocations would then have
822 * addresses within the range [_stext, _end].
823 */
824 #ifndef arch_is_kernel_initmem_freed
arch_is_kernel_initmem_freed(unsigned long addr)825 static int arch_is_kernel_initmem_freed(unsigned long addr)
826 {
827 if (system_state < SYSTEM_FREEING_INITMEM)
828 return 0;
829
830 return init_section_contains((void *)addr, 1);
831 }
832 #endif
833
static_obj(const void * obj)834 static int static_obj(const void *obj)
835 {
836 unsigned long start = (unsigned long) &_stext,
837 end = (unsigned long) &_end,
838 addr = (unsigned long) obj;
839
840 if (arch_is_kernel_initmem_freed(addr))
841 return 0;
842
843 /*
844 * static variable?
845 */
846 if ((addr >= start) && (addr < end))
847 return 1;
848
849 /*
850 * in-kernel percpu var?
851 */
852 if (is_kernel_percpu_address(addr))
853 return 1;
854
855 /*
856 * module static or percpu var?
857 */
858 return is_module_address(addr) || is_module_percpu_address(addr);
859 }
860 #endif
861
862 /*
863 * To make lock name printouts unique, we calculate a unique
864 * class->name_version generation counter. The caller must hold the graph
865 * lock.
866 */
count_matching_names(struct lock_class * new_class)867 static int count_matching_names(struct lock_class *new_class)
868 {
869 struct lock_class *class;
870 int count = 0;
871
872 if (!new_class->name)
873 return 0;
874
875 list_for_each_entry(class, &all_lock_classes, lock_entry) {
876 if (new_class->key - new_class->subclass == class->key)
877 return class->name_version;
878 if (class->name && !strcmp(class->name, new_class->name))
879 count = max(count, class->name_version);
880 }
881
882 return count + 1;
883 }
884
885 /* used from NMI context -- must be lockless */
886 static noinstr struct lock_class *
look_up_lock_class(const struct lockdep_map * lock,unsigned int subclass)887 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
888 {
889 struct lockdep_subclass_key *key;
890 struct hlist_head *hash_head;
891 struct lock_class *class;
892
893 if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
894 instrumentation_begin();
895 debug_locks_off();
896 printk(KERN_ERR
897 "BUG: looking up invalid subclass: %u\n", subclass);
898 printk(KERN_ERR
899 "turning off the locking correctness validator.\n");
900 dump_stack();
901 instrumentation_end();
902 return NULL;
903 }
904
905 /*
906 * If it is not initialised then it has never been locked,
907 * so it won't be present in the hash table.
908 */
909 if (unlikely(!lock->key))
910 return NULL;
911
912 /*
913 * NOTE: the class-key must be unique. For dynamic locks, a static
914 * lock_class_key variable is passed in through the mutex_init()
915 * (or spin_lock_init()) call - which acts as the key. For static
916 * locks we use the lock object itself as the key.
917 */
918 BUILD_BUG_ON(sizeof(struct lock_class_key) >
919 sizeof(struct lockdep_map));
920
921 key = lock->key->subkeys + subclass;
922
923 hash_head = classhashentry(key);
924
925 /*
926 * We do an RCU walk of the hash, see lockdep_free_key_range().
927 */
928 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
929 return NULL;
930
931 hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) {
932 if (class->key == key) {
933 /*
934 * Huh! same key, different name? Did someone trample
935 * on some memory? We're most confused.
936 */
937 WARN_ON_ONCE(class->name != lock->name &&
938 lock->key != &__lockdep_no_validate__);
939 return class;
940 }
941 }
942
943 return NULL;
944 }
945
946 /*
947 * Static locks do not have their class-keys yet - for them the key is
948 * the lock object itself. If the lock is in the per cpu area, the
949 * canonical address of the lock (per cpu offset removed) is used.
950 */
assign_lock_key(struct lockdep_map * lock)951 static bool assign_lock_key(struct lockdep_map *lock)
952 {
953 unsigned long can_addr, addr = (unsigned long)lock;
954
955 #ifdef __KERNEL__
956 /*
957 * lockdep_free_key_range() assumes that struct lock_class_key
958 * objects do not overlap. Since we use the address of lock
959 * objects as class key for static objects, check whether the
960 * size of lock_class_key objects does not exceed the size of
961 * the smallest lock object.
962 */
963 BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
964 #endif
965
966 if (__is_kernel_percpu_address(addr, &can_addr))
967 lock->key = (void *)can_addr;
968 else if (__is_module_percpu_address(addr, &can_addr))
969 lock->key = (void *)can_addr;
970 else if (static_obj(lock))
971 lock->key = (void *)lock;
972 else {
973 /* Debug-check: all keys must be persistent! */
974 debug_locks_off();
975 pr_err("INFO: trying to register non-static key.\n");
976 pr_err("The code is fine but needs lockdep annotation, or maybe\n");
977 pr_err("you didn't initialize this object before use?\n");
978 pr_err("turning off the locking correctness validator.\n");
979 dump_stack();
980 return false;
981 }
982
983 return true;
984 }
985
986 #ifdef CONFIG_DEBUG_LOCKDEP
987
988 /* Check whether element @e occurs in list @h */
in_list(struct list_head * e,struct list_head * h)989 static bool in_list(struct list_head *e, struct list_head *h)
990 {
991 struct list_head *f;
992
993 list_for_each(f, h) {
994 if (e == f)
995 return true;
996 }
997
998 return false;
999 }
1000
1001 /*
1002 * Check whether entry @e occurs in any of the locks_after or locks_before
1003 * lists.
1004 */
in_any_class_list(struct list_head * e)1005 static bool in_any_class_list(struct list_head *e)
1006 {
1007 struct lock_class *class;
1008 int i;
1009
1010 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1011 class = &lock_classes[i];
1012 if (in_list(e, &class->locks_after) ||
1013 in_list(e, &class->locks_before))
1014 return true;
1015 }
1016 return false;
1017 }
1018
class_lock_list_valid(struct lock_class * c,struct list_head * h)1019 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
1020 {
1021 struct lock_list *e;
1022
1023 list_for_each_entry(e, h, entry) {
1024 if (e->links_to != c) {
1025 printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
1026 c->name ? : "(?)",
1027 (unsigned long)(e - list_entries),
1028 e->links_to && e->links_to->name ?
1029 e->links_to->name : "(?)",
1030 e->class && e->class->name ? e->class->name :
1031 "(?)");
1032 return false;
1033 }
1034 }
1035 return true;
1036 }
1037
1038 #ifdef CONFIG_PROVE_LOCKING
1039 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
1040 #endif
1041
check_lock_chain_key(struct lock_chain * chain)1042 static bool check_lock_chain_key(struct lock_chain *chain)
1043 {
1044 #ifdef CONFIG_PROVE_LOCKING
1045 u64 chain_key = INITIAL_CHAIN_KEY;
1046 int i;
1047
1048 for (i = chain->base; i < chain->base + chain->depth; i++)
1049 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1050 /*
1051 * The 'unsigned long long' casts avoid that a compiler warning
1052 * is reported when building tools/lib/lockdep.
1053 */
1054 if (chain->chain_key != chain_key) {
1055 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1056 (unsigned long long)(chain - lock_chains),
1057 (unsigned long long)chain->chain_key,
1058 (unsigned long long)chain_key);
1059 return false;
1060 }
1061 #endif
1062 return true;
1063 }
1064
in_any_zapped_class_list(struct lock_class * class)1065 static bool in_any_zapped_class_list(struct lock_class *class)
1066 {
1067 struct pending_free *pf;
1068 int i;
1069
1070 for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1071 if (in_list(&class->lock_entry, &pf->zapped))
1072 return true;
1073 }
1074
1075 return false;
1076 }
1077
__check_data_structures(void)1078 static bool __check_data_structures(void)
1079 {
1080 struct lock_class *class;
1081 struct lock_chain *chain;
1082 struct hlist_head *head;
1083 struct lock_list *e;
1084 int i;
1085
1086 /* Check whether all classes occur in a lock list. */
1087 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1088 class = &lock_classes[i];
1089 if (!in_list(&class->lock_entry, &all_lock_classes) &&
1090 !in_list(&class->lock_entry, &free_lock_classes) &&
1091 !in_any_zapped_class_list(class)) {
1092 printk(KERN_INFO "class %px/%s is not in any class list\n",
1093 class, class->name ? : "(?)");
1094 return false;
1095 }
1096 }
1097
1098 /* Check whether all classes have valid lock lists. */
1099 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1100 class = &lock_classes[i];
1101 if (!class_lock_list_valid(class, &class->locks_before))
1102 return false;
1103 if (!class_lock_list_valid(class, &class->locks_after))
1104 return false;
1105 }
1106
1107 /* Check the chain_key of all lock chains. */
1108 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1109 head = chainhash_table + i;
1110 hlist_for_each_entry_rcu(chain, head, entry) {
1111 if (!check_lock_chain_key(chain))
1112 return false;
1113 }
1114 }
1115
1116 /*
1117 * Check whether all list entries that are in use occur in a class
1118 * lock list.
1119 */
1120 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1121 e = list_entries + i;
1122 if (!in_any_class_list(&e->entry)) {
1123 printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1124 (unsigned int)(e - list_entries),
1125 e->class->name ? : "(?)",
1126 e->links_to->name ? : "(?)");
1127 return false;
1128 }
1129 }
1130
1131 /*
1132 * Check whether all list entries that are not in use do not occur in
1133 * a class lock list.
1134 */
1135 for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1136 e = list_entries + i;
1137 if (in_any_class_list(&e->entry)) {
1138 printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1139 (unsigned int)(e - list_entries),
1140 e->class && e->class->name ? e->class->name :
1141 "(?)",
1142 e->links_to && e->links_to->name ?
1143 e->links_to->name : "(?)");
1144 return false;
1145 }
1146 }
1147
1148 return true;
1149 }
1150
1151 int check_consistency = 0;
1152 module_param(check_consistency, int, 0644);
1153
check_data_structures(void)1154 static void check_data_structures(void)
1155 {
1156 static bool once = false;
1157
1158 if (check_consistency && !once) {
1159 if (!__check_data_structures()) {
1160 once = true;
1161 WARN_ON(once);
1162 }
1163 }
1164 }
1165
1166 #else /* CONFIG_DEBUG_LOCKDEP */
1167
check_data_structures(void)1168 static inline void check_data_structures(void) { }
1169
1170 #endif /* CONFIG_DEBUG_LOCKDEP */
1171
1172 static void init_chain_block_buckets(void);
1173
1174 /*
1175 * Initialize the lock_classes[] array elements, the free_lock_classes list
1176 * and also the delayed_free structure.
1177 */
init_data_structures_once(void)1178 static void init_data_structures_once(void)
1179 {
1180 static bool __read_mostly ds_initialized, rcu_head_initialized;
1181 int i;
1182
1183 if (likely(rcu_head_initialized))
1184 return;
1185
1186 if (system_state >= SYSTEM_SCHEDULING) {
1187 init_rcu_head(&delayed_free.rcu_head);
1188 rcu_head_initialized = true;
1189 }
1190
1191 if (ds_initialized)
1192 return;
1193
1194 ds_initialized = true;
1195
1196 INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1197 INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1198
1199 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1200 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1201 INIT_LIST_HEAD(&lock_classes[i].locks_after);
1202 INIT_LIST_HEAD(&lock_classes[i].locks_before);
1203 }
1204 init_chain_block_buckets();
1205 }
1206
keyhashentry(const struct lock_class_key * key)1207 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1208 {
1209 unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1210
1211 return lock_keys_hash + hash;
1212 }
1213
1214 /* Register a dynamically allocated key. */
lockdep_register_key(struct lock_class_key * key)1215 void lockdep_register_key(struct lock_class_key *key)
1216 {
1217 struct hlist_head *hash_head;
1218 struct lock_class_key *k;
1219 unsigned long flags;
1220
1221 if (WARN_ON_ONCE(static_obj(key)))
1222 return;
1223 hash_head = keyhashentry(key);
1224
1225 raw_local_irq_save(flags);
1226 if (!graph_lock())
1227 goto restore_irqs;
1228 hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1229 if (WARN_ON_ONCE(k == key))
1230 goto out_unlock;
1231 }
1232 hlist_add_head_rcu(&key->hash_entry, hash_head);
1233 out_unlock:
1234 graph_unlock();
1235 restore_irqs:
1236 raw_local_irq_restore(flags);
1237 }
1238 EXPORT_SYMBOL_GPL(lockdep_register_key);
1239
1240 /* Check whether a key has been registered as a dynamic key. */
is_dynamic_key(const struct lock_class_key * key)1241 static bool is_dynamic_key(const struct lock_class_key *key)
1242 {
1243 struct hlist_head *hash_head;
1244 struct lock_class_key *k;
1245 bool found = false;
1246
1247 if (WARN_ON_ONCE(static_obj(key)))
1248 return false;
1249
1250 /*
1251 * If lock debugging is disabled lock_keys_hash[] may contain
1252 * pointers to memory that has already been freed. Avoid triggering
1253 * a use-after-free in that case by returning early.
1254 */
1255 if (!debug_locks)
1256 return true;
1257
1258 hash_head = keyhashentry(key);
1259
1260 rcu_read_lock();
1261 hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1262 if (k == key) {
1263 found = true;
1264 break;
1265 }
1266 }
1267 rcu_read_unlock();
1268
1269 return found;
1270 }
1271
1272 /*
1273 * Register a lock's class in the hash-table, if the class is not present
1274 * yet. Otherwise we look it up. We cache the result in the lock object
1275 * itself, so actual lookup of the hash should be once per lock object.
1276 */
1277 static struct lock_class *
register_lock_class(struct lockdep_map * lock,unsigned int subclass,int force)1278 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1279 {
1280 struct lockdep_subclass_key *key;
1281 struct hlist_head *hash_head;
1282 struct lock_class *class;
1283 int idx;
1284
1285 DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1286
1287 class = look_up_lock_class(lock, subclass);
1288 if (likely(class))
1289 goto out_set_class_cache;
1290
1291 if (!lock->key) {
1292 if (!assign_lock_key(lock))
1293 return NULL;
1294 } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1295 return NULL;
1296 }
1297
1298 key = lock->key->subkeys + subclass;
1299 hash_head = classhashentry(key);
1300
1301 if (!graph_lock()) {
1302 return NULL;
1303 }
1304 /*
1305 * We have to do the hash-walk again, to avoid races
1306 * with another CPU:
1307 */
1308 hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1309 if (class->key == key)
1310 goto out_unlock_set;
1311 }
1312
1313 init_data_structures_once();
1314
1315 /* Allocate a new lock class and add it to the hash. */
1316 class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1317 lock_entry);
1318 if (!class) {
1319 if (!debug_locks_off_graph_unlock()) {
1320 return NULL;
1321 }
1322
1323 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1324 dump_stack();
1325 return NULL;
1326 }
1327 nr_lock_classes++;
1328 __set_bit(class - lock_classes, lock_classes_in_use);
1329 debug_atomic_inc(nr_unused_locks);
1330 class->key = key;
1331 class->name = lock->name;
1332 class->subclass = subclass;
1333 WARN_ON_ONCE(!list_empty(&class->locks_before));
1334 WARN_ON_ONCE(!list_empty(&class->locks_after));
1335 class->name_version = count_matching_names(class);
1336 class->wait_type_inner = lock->wait_type_inner;
1337 class->wait_type_outer = lock->wait_type_outer;
1338 class->lock_type = lock->lock_type;
1339 /*
1340 * We use RCU's safe list-add method to make
1341 * parallel walking of the hash-list safe:
1342 */
1343 hlist_add_head_rcu(&class->hash_entry, hash_head);
1344 /*
1345 * Remove the class from the free list and add it to the global list
1346 * of classes.
1347 */
1348 list_move_tail(&class->lock_entry, &all_lock_classes);
1349 idx = class - lock_classes;
1350 if (idx > max_lock_class_idx)
1351 max_lock_class_idx = idx;
1352
1353 if (verbose(class)) {
1354 graph_unlock();
1355
1356 printk("\nnew class %px: %s", class->key, class->name);
1357 if (class->name_version > 1)
1358 printk(KERN_CONT "#%d", class->name_version);
1359 printk(KERN_CONT "\n");
1360 dump_stack();
1361
1362 if (!graph_lock()) {
1363 return NULL;
1364 }
1365 }
1366 out_unlock_set:
1367 graph_unlock();
1368
1369 out_set_class_cache:
1370 if (!subclass || force)
1371 lock->class_cache[0] = class;
1372 else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1373 lock->class_cache[subclass] = class;
1374
1375 /*
1376 * Hash collision, did we smoke some? We found a class with a matching
1377 * hash but the subclass -- which is hashed in -- didn't match.
1378 */
1379 if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1380 return NULL;
1381
1382 return class;
1383 }
1384
1385 #ifdef CONFIG_PROVE_LOCKING
1386 /*
1387 * Allocate a lockdep entry. (assumes the graph_lock held, returns
1388 * with NULL on failure)
1389 */
alloc_list_entry(void)1390 static struct lock_list *alloc_list_entry(void)
1391 {
1392 int idx = find_first_zero_bit(list_entries_in_use,
1393 ARRAY_SIZE(list_entries));
1394
1395 if (idx >= ARRAY_SIZE(list_entries)) {
1396 if (!debug_locks_off_graph_unlock())
1397 return NULL;
1398
1399 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1400 dump_stack();
1401 return NULL;
1402 }
1403 nr_list_entries++;
1404 __set_bit(idx, list_entries_in_use);
1405 return list_entries + idx;
1406 }
1407
1408 /*
1409 * Add a new dependency to the head of the list:
1410 */
add_lock_to_list(struct lock_class * this,struct lock_class * links_to,struct list_head * head,u16 distance,u8 dep,const struct lock_trace * trace)1411 static int add_lock_to_list(struct lock_class *this,
1412 struct lock_class *links_to, struct list_head *head,
1413 u16 distance, u8 dep,
1414 const struct lock_trace *trace)
1415 {
1416 struct lock_list *entry;
1417 /*
1418 * Lock not present yet - get a new dependency struct and
1419 * add it to the list:
1420 */
1421 entry = alloc_list_entry();
1422 if (!entry)
1423 return 0;
1424
1425 entry->class = this;
1426 entry->links_to = links_to;
1427 entry->dep = dep;
1428 entry->distance = distance;
1429 entry->trace = trace;
1430 /*
1431 * Both allocation and removal are done under the graph lock; but
1432 * iteration is under RCU-sched; see look_up_lock_class() and
1433 * lockdep_free_key_range().
1434 */
1435 list_add_tail_rcu(&entry->entry, head);
1436
1437 return 1;
1438 }
1439
1440 /*
1441 * For good efficiency of modular, we use power of 2
1442 */
1443 #define MAX_CIRCULAR_QUEUE_SIZE (1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1444 #define CQ_MASK (MAX_CIRCULAR_QUEUE_SIZE-1)
1445
1446 /*
1447 * The circular_queue and helpers are used to implement graph
1448 * breadth-first search (BFS) algorithm, by which we can determine
1449 * whether there is a path from a lock to another. In deadlock checks,
1450 * a path from the next lock to be acquired to a previous held lock
1451 * indicates that adding the <prev> -> <next> lock dependency will
1452 * produce a circle in the graph. Breadth-first search instead of
1453 * depth-first search is used in order to find the shortest (circular)
1454 * path.
1455 */
1456 struct circular_queue {
1457 struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1458 unsigned int front, rear;
1459 };
1460
1461 static struct circular_queue lock_cq;
1462
1463 unsigned int max_bfs_queue_depth;
1464
1465 static unsigned int lockdep_dependency_gen_id;
1466
__cq_init(struct circular_queue * cq)1467 static inline void __cq_init(struct circular_queue *cq)
1468 {
1469 cq->front = cq->rear = 0;
1470 lockdep_dependency_gen_id++;
1471 }
1472
__cq_empty(struct circular_queue * cq)1473 static inline int __cq_empty(struct circular_queue *cq)
1474 {
1475 return (cq->front == cq->rear);
1476 }
1477
__cq_full(struct circular_queue * cq)1478 static inline int __cq_full(struct circular_queue *cq)
1479 {
1480 return ((cq->rear + 1) & CQ_MASK) == cq->front;
1481 }
1482
__cq_enqueue(struct circular_queue * cq,struct lock_list * elem)1483 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1484 {
1485 if (__cq_full(cq))
1486 return -1;
1487
1488 cq->element[cq->rear] = elem;
1489 cq->rear = (cq->rear + 1) & CQ_MASK;
1490 return 0;
1491 }
1492
1493 /*
1494 * Dequeue an element from the circular_queue, return a lock_list if
1495 * the queue is not empty, or NULL if otherwise.
1496 */
__cq_dequeue(struct circular_queue * cq)1497 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1498 {
1499 struct lock_list * lock;
1500
1501 if (__cq_empty(cq))
1502 return NULL;
1503
1504 lock = cq->element[cq->front];
1505 cq->front = (cq->front + 1) & CQ_MASK;
1506
1507 return lock;
1508 }
1509
__cq_get_elem_count(struct circular_queue * cq)1510 static inline unsigned int __cq_get_elem_count(struct circular_queue *cq)
1511 {
1512 return (cq->rear - cq->front) & CQ_MASK;
1513 }
1514
mark_lock_accessed(struct lock_list * lock)1515 static inline void mark_lock_accessed(struct lock_list *lock)
1516 {
1517 lock->class->dep_gen_id = lockdep_dependency_gen_id;
1518 }
1519
visit_lock_entry(struct lock_list * lock,struct lock_list * parent)1520 static inline void visit_lock_entry(struct lock_list *lock,
1521 struct lock_list *parent)
1522 {
1523 lock->parent = parent;
1524 }
1525
lock_accessed(struct lock_list * lock)1526 static inline unsigned long lock_accessed(struct lock_list *lock)
1527 {
1528 return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1529 }
1530
get_lock_parent(struct lock_list * child)1531 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1532 {
1533 return child->parent;
1534 }
1535
get_lock_depth(struct lock_list * child)1536 static inline int get_lock_depth(struct lock_list *child)
1537 {
1538 int depth = 0;
1539 struct lock_list *parent;
1540
1541 while ((parent = get_lock_parent(child))) {
1542 child = parent;
1543 depth++;
1544 }
1545 return depth;
1546 }
1547
1548 /*
1549 * Return the forward or backward dependency list.
1550 *
1551 * @lock: the lock_list to get its class's dependency list
1552 * @offset: the offset to struct lock_class to determine whether it is
1553 * locks_after or locks_before
1554 */
get_dep_list(struct lock_list * lock,int offset)1555 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1556 {
1557 void *lock_class = lock->class;
1558
1559 return lock_class + offset;
1560 }
1561 /*
1562 * Return values of a bfs search:
1563 *
1564 * BFS_E* indicates an error
1565 * BFS_R* indicates a result (match or not)
1566 *
1567 * BFS_EINVALIDNODE: Find a invalid node in the graph.
1568 *
1569 * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1570 *
1571 * BFS_RMATCH: Find the matched node in the graph, and put that node into
1572 * *@target_entry.
1573 *
1574 * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1575 * _unchanged_.
1576 */
1577 enum bfs_result {
1578 BFS_EINVALIDNODE = -2,
1579 BFS_EQUEUEFULL = -1,
1580 BFS_RMATCH = 0,
1581 BFS_RNOMATCH = 1,
1582 };
1583
1584 /*
1585 * bfs_result < 0 means error
1586 */
bfs_error(enum bfs_result res)1587 static inline bool bfs_error(enum bfs_result res)
1588 {
1589 return res < 0;
1590 }
1591
1592 /*
1593 * DEP_*_BIT in lock_list::dep
1594 *
1595 * For dependency @prev -> @next:
1596 *
1597 * SR: @prev is shared reader (->read != 0) and @next is recursive reader
1598 * (->read == 2)
1599 * ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1600 * SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1601 * EN: @prev is exclusive locker and @next is non-recursive locker
1602 *
1603 * Note that we define the value of DEP_*_BITs so that:
1604 * bit0 is prev->read == 0
1605 * bit1 is next->read != 2
1606 */
1607 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1608 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1609 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1610 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1611
1612 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1613 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1614 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1615 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1616
1617 static inline unsigned int
__calc_dep_bit(struct held_lock * prev,struct held_lock * next)1618 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1619 {
1620 return (prev->read == 0) + ((next->read != 2) << 1);
1621 }
1622
calc_dep(struct held_lock * prev,struct held_lock * next)1623 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1624 {
1625 return 1U << __calc_dep_bit(prev, next);
1626 }
1627
1628 /*
1629 * calculate the dep_bit for backwards edges. We care about whether @prev is
1630 * shared and whether @next is recursive.
1631 */
1632 static inline unsigned int
__calc_dep_bitb(struct held_lock * prev,struct held_lock * next)1633 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1634 {
1635 return (next->read != 2) + ((prev->read == 0) << 1);
1636 }
1637
calc_depb(struct held_lock * prev,struct held_lock * next)1638 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1639 {
1640 return 1U << __calc_dep_bitb(prev, next);
1641 }
1642
1643 /*
1644 * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1645 * search.
1646 */
__bfs_init_root(struct lock_list * lock,struct lock_class * class)1647 static inline void __bfs_init_root(struct lock_list *lock,
1648 struct lock_class *class)
1649 {
1650 lock->class = class;
1651 lock->parent = NULL;
1652 lock->only_xr = 0;
1653 }
1654
1655 /*
1656 * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1657 * root for a BFS search.
1658 *
1659 * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1660 * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1661 * and -(S*)->.
1662 */
bfs_init_root(struct lock_list * lock,struct held_lock * hlock)1663 static inline void bfs_init_root(struct lock_list *lock,
1664 struct held_lock *hlock)
1665 {
1666 __bfs_init_root(lock, hlock_class(hlock));
1667 lock->only_xr = (hlock->read == 2);
1668 }
1669
1670 /*
1671 * Similar to bfs_init_root() but initialize the root for backwards BFS.
1672 *
1673 * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1674 * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1675 * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1676 */
bfs_init_rootb(struct lock_list * lock,struct held_lock * hlock)1677 static inline void bfs_init_rootb(struct lock_list *lock,
1678 struct held_lock *hlock)
1679 {
1680 __bfs_init_root(lock, hlock_class(hlock));
1681 lock->only_xr = (hlock->read != 0);
1682 }
1683
__bfs_next(struct lock_list * lock,int offset)1684 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1685 {
1686 if (!lock || !lock->parent)
1687 return NULL;
1688
1689 return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1690 &lock->entry, struct lock_list, entry);
1691 }
1692
1693 /*
1694 * Breadth-First Search to find a strong path in the dependency graph.
1695 *
1696 * @source_entry: the source of the path we are searching for.
1697 * @data: data used for the second parameter of @match function
1698 * @match: match function for the search
1699 * @target_entry: pointer to the target of a matched path
1700 * @offset: the offset to struct lock_class to determine whether it is
1701 * locks_after or locks_before
1702 *
1703 * We may have multiple edges (considering different kinds of dependencies,
1704 * e.g. ER and SN) between two nodes in the dependency graph. But
1705 * only the strong dependency path in the graph is relevant to deadlocks. A
1706 * strong dependency path is a dependency path that doesn't have two adjacent
1707 * dependencies as -(*R)-> -(S*)->, please see:
1708 *
1709 * Documentation/locking/lockdep-design.rst
1710 *
1711 * for more explanation of the definition of strong dependency paths
1712 *
1713 * In __bfs(), we only traverse in the strong dependency path:
1714 *
1715 * In lock_list::only_xr, we record whether the previous dependency only
1716 * has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1717 * filter out any -(S*)-> in the current dependency and after that, the
1718 * ->only_xr is set according to whether we only have -(*R)-> left.
1719 */
__bfs(struct lock_list * source_entry,void * data,bool (* match)(struct lock_list * entry,void * data),bool (* skip)(struct lock_list * entry,void * data),struct lock_list ** target_entry,int offset)1720 static enum bfs_result __bfs(struct lock_list *source_entry,
1721 void *data,
1722 bool (*match)(struct lock_list *entry, void *data),
1723 bool (*skip)(struct lock_list *entry, void *data),
1724 struct lock_list **target_entry,
1725 int offset)
1726 {
1727 struct circular_queue *cq = &lock_cq;
1728 struct lock_list *lock = NULL;
1729 struct lock_list *entry;
1730 struct list_head *head;
1731 unsigned int cq_depth;
1732 bool first;
1733
1734 lockdep_assert_locked();
1735
1736 __cq_init(cq);
1737 __cq_enqueue(cq, source_entry);
1738
1739 while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1740 if (!lock->class)
1741 return BFS_EINVALIDNODE;
1742
1743 /*
1744 * Step 1: check whether we already finish on this one.
1745 *
1746 * If we have visited all the dependencies from this @lock to
1747 * others (iow, if we have visited all lock_list entries in
1748 * @lock->class->locks_{after,before}) we skip, otherwise go
1749 * and visit all the dependencies in the list and mark this
1750 * list accessed.
1751 */
1752 if (lock_accessed(lock))
1753 continue;
1754 else
1755 mark_lock_accessed(lock);
1756
1757 /*
1758 * Step 2: check whether prev dependency and this form a strong
1759 * dependency path.
1760 */
1761 if (lock->parent) { /* Parent exists, check prev dependency */
1762 u8 dep = lock->dep;
1763 bool prev_only_xr = lock->parent->only_xr;
1764
1765 /*
1766 * Mask out all -(S*)-> if we only have *R in previous
1767 * step, because -(*R)-> -(S*)-> don't make up a strong
1768 * dependency.
1769 */
1770 if (prev_only_xr)
1771 dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1772
1773 /* If nothing left, we skip */
1774 if (!dep)
1775 continue;
1776
1777 /* If there are only -(*R)-> left, set that for the next step */
1778 lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1779 }
1780
1781 /*
1782 * Step 3: we haven't visited this and there is a strong
1783 * dependency path to this, so check with @match.
1784 * If @skip is provide and returns true, we skip this
1785 * lock (and any path this lock is in).
1786 */
1787 if (skip && skip(lock, data))
1788 continue;
1789
1790 if (match(lock, data)) {
1791 *target_entry = lock;
1792 return BFS_RMATCH;
1793 }
1794
1795 /*
1796 * Step 4: if not match, expand the path by adding the
1797 * forward or backwards dependencies in the search
1798 *
1799 */
1800 first = true;
1801 head = get_dep_list(lock, offset);
1802 list_for_each_entry_rcu(entry, head, entry) {
1803 visit_lock_entry(entry, lock);
1804
1805 /*
1806 * Note we only enqueue the first of the list into the
1807 * queue, because we can always find a sibling
1808 * dependency from one (see __bfs_next()), as a result
1809 * the space of queue is saved.
1810 */
1811 if (!first)
1812 continue;
1813
1814 first = false;
1815
1816 if (__cq_enqueue(cq, entry))
1817 return BFS_EQUEUEFULL;
1818
1819 cq_depth = __cq_get_elem_count(cq);
1820 if (max_bfs_queue_depth < cq_depth)
1821 max_bfs_queue_depth = cq_depth;
1822 }
1823 }
1824
1825 return BFS_RNOMATCH;
1826 }
1827
1828 static inline enum bfs_result
__bfs_forwards(struct lock_list * src_entry,void * data,bool (* match)(struct lock_list * entry,void * data),bool (* skip)(struct lock_list * entry,void * data),struct lock_list ** target_entry)1829 __bfs_forwards(struct lock_list *src_entry,
1830 void *data,
1831 bool (*match)(struct lock_list *entry, void *data),
1832 bool (*skip)(struct lock_list *entry, void *data),
1833 struct lock_list **target_entry)
1834 {
1835 return __bfs(src_entry, data, match, skip, target_entry,
1836 offsetof(struct lock_class, locks_after));
1837
1838 }
1839
1840 static inline enum bfs_result
__bfs_backwards(struct lock_list * src_entry,void * data,bool (* match)(struct lock_list * entry,void * data),bool (* skip)(struct lock_list * entry,void * data),struct lock_list ** target_entry)1841 __bfs_backwards(struct lock_list *src_entry,
1842 void *data,
1843 bool (*match)(struct lock_list *entry, void *data),
1844 bool (*skip)(struct lock_list *entry, void *data),
1845 struct lock_list **target_entry)
1846 {
1847 return __bfs(src_entry, data, match, skip, target_entry,
1848 offsetof(struct lock_class, locks_before));
1849
1850 }
1851
print_lock_trace(const struct lock_trace * trace,unsigned int spaces)1852 static void print_lock_trace(const struct lock_trace *trace,
1853 unsigned int spaces)
1854 {
1855 stack_trace_print(trace->entries, trace->nr_entries, spaces);
1856 }
1857
1858 /*
1859 * Print a dependency chain entry (this is only done when a deadlock
1860 * has been detected):
1861 */
1862 static noinline void
print_circular_bug_entry(struct lock_list * target,int depth)1863 print_circular_bug_entry(struct lock_list *target, int depth)
1864 {
1865 if (debug_locks_silent)
1866 return;
1867 printk("\n-> #%u", depth);
1868 print_lock_name(target->class);
1869 printk(KERN_CONT ":\n");
1870 print_lock_trace(target->trace, 6);
1871 }
1872
1873 static void
print_circular_lock_scenario(struct held_lock * src,struct held_lock * tgt,struct lock_list * prt)1874 print_circular_lock_scenario(struct held_lock *src,
1875 struct held_lock *tgt,
1876 struct lock_list *prt)
1877 {
1878 struct lock_class *source = hlock_class(src);
1879 struct lock_class *target = hlock_class(tgt);
1880 struct lock_class *parent = prt->class;
1881
1882 /*
1883 * A direct locking problem where unsafe_class lock is taken
1884 * directly by safe_class lock, then all we need to show
1885 * is the deadlock scenario, as it is obvious that the
1886 * unsafe lock is taken under the safe lock.
1887 *
1888 * But if there is a chain instead, where the safe lock takes
1889 * an intermediate lock (middle_class) where this lock is
1890 * not the same as the safe lock, then the lock chain is
1891 * used to describe the problem. Otherwise we would need
1892 * to show a different CPU case for each link in the chain
1893 * from the safe_class lock to the unsafe_class lock.
1894 */
1895 if (parent != source) {
1896 printk("Chain exists of:\n ");
1897 __print_lock_name(source);
1898 printk(KERN_CONT " --> ");
1899 __print_lock_name(parent);
1900 printk(KERN_CONT " --> ");
1901 __print_lock_name(target);
1902 printk(KERN_CONT "\n\n");
1903 }
1904
1905 printk(" Possible unsafe locking scenario:\n\n");
1906 printk(" CPU0 CPU1\n");
1907 printk(" ---- ----\n");
1908 printk(" lock(");
1909 __print_lock_name(target);
1910 printk(KERN_CONT ");\n");
1911 printk(" lock(");
1912 __print_lock_name(parent);
1913 printk(KERN_CONT ");\n");
1914 printk(" lock(");
1915 __print_lock_name(target);
1916 printk(KERN_CONT ");\n");
1917 printk(" lock(");
1918 __print_lock_name(source);
1919 printk(KERN_CONT ");\n");
1920 printk("\n *** DEADLOCK ***\n\n");
1921 }
1922
1923 /*
1924 * When a circular dependency is detected, print the
1925 * header first:
1926 */
1927 static noinline void
print_circular_bug_header(struct lock_list * entry,unsigned int depth,struct held_lock * check_src,struct held_lock * check_tgt)1928 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1929 struct held_lock *check_src,
1930 struct held_lock *check_tgt)
1931 {
1932 struct task_struct *curr = current;
1933
1934 if (debug_locks_silent)
1935 return;
1936
1937 pr_warn("\n");
1938 pr_warn("======================================================\n");
1939 pr_warn("WARNING: possible circular locking dependency detected\n");
1940 print_kernel_ident();
1941 pr_warn("------------------------------------------------------\n");
1942 pr_warn("%s/%d is trying to acquire lock:\n",
1943 curr->comm, task_pid_nr(curr));
1944 print_lock(check_src);
1945
1946 pr_warn("\nbut task is already holding lock:\n");
1947
1948 print_lock(check_tgt);
1949 pr_warn("\nwhich lock already depends on the new lock.\n\n");
1950 pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1951
1952 print_circular_bug_entry(entry, depth);
1953 }
1954
1955 /*
1956 * We are about to add A -> B into the dependency graph, and in __bfs() a
1957 * strong dependency path A -> .. -> B is found: hlock_class equals
1958 * entry->class.
1959 *
1960 * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1961 * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1962 * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1963 * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1964 * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1965 * having dependency A -> B, we could already get a equivalent path ..-> A ->
1966 * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant.
1967 *
1968 * We need to make sure both the start and the end of A -> .. -> B is not
1969 * weaker than A -> B. For the start part, please see the comment in
1970 * check_redundant(). For the end part, we need:
1971 *
1972 * Either
1973 *
1974 * a) A -> B is -(*R)-> (everything is not weaker than that)
1975 *
1976 * or
1977 *
1978 * b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1979 *
1980 */
hlock_equal(struct lock_list * entry,void * data)1981 static inline bool hlock_equal(struct lock_list *entry, void *data)
1982 {
1983 struct held_lock *hlock = (struct held_lock *)data;
1984
1985 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1986 (hlock->read == 2 || /* A -> B is -(*R)-> */
1987 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
1988 }
1989
1990 /*
1991 * We are about to add B -> A into the dependency graph, and in __bfs() a
1992 * strong dependency path A -> .. -> B is found: hlock_class equals
1993 * entry->class.
1994 *
1995 * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
1996 * dependency cycle, that means:
1997 *
1998 * Either
1999 *
2000 * a) B -> A is -(E*)->
2001 *
2002 * or
2003 *
2004 * b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
2005 *
2006 * as then we don't have -(*R)-> -(S*)-> in the cycle.
2007 */
hlock_conflict(struct lock_list * entry,void * data)2008 static inline bool hlock_conflict(struct lock_list *entry, void *data)
2009 {
2010 struct held_lock *hlock = (struct held_lock *)data;
2011
2012 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
2013 (hlock->read == 0 || /* B -> A is -(E*)-> */
2014 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
2015 }
2016
print_circular_bug(struct lock_list * this,struct lock_list * target,struct held_lock * check_src,struct held_lock * check_tgt)2017 static noinline void print_circular_bug(struct lock_list *this,
2018 struct lock_list *target,
2019 struct held_lock *check_src,
2020 struct held_lock *check_tgt)
2021 {
2022 struct task_struct *curr = current;
2023 struct lock_list *parent;
2024 struct lock_list *first_parent;
2025 int depth;
2026
2027 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2028 return;
2029
2030 this->trace = save_trace();
2031 if (!this->trace)
2032 return;
2033
2034 depth = get_lock_depth(target);
2035
2036 print_circular_bug_header(target, depth, check_src, check_tgt);
2037
2038 parent = get_lock_parent(target);
2039 first_parent = parent;
2040
2041 while (parent) {
2042 print_circular_bug_entry(parent, --depth);
2043 parent = get_lock_parent(parent);
2044 }
2045
2046 printk("\nother info that might help us debug this:\n\n");
2047 print_circular_lock_scenario(check_src, check_tgt,
2048 first_parent);
2049
2050 lockdep_print_held_locks(curr);
2051
2052 printk("\nstack backtrace:\n");
2053 dump_stack();
2054 }
2055
print_bfs_bug(int ret)2056 static noinline void print_bfs_bug(int ret)
2057 {
2058 if (!debug_locks_off_graph_unlock())
2059 return;
2060
2061 /*
2062 * Breadth-first-search failed, graph got corrupted?
2063 */
2064 WARN(1, "lockdep bfs error:%d\n", ret);
2065 }
2066
noop_count(struct lock_list * entry,void * data)2067 static bool noop_count(struct lock_list *entry, void *data)
2068 {
2069 (*(unsigned long *)data)++;
2070 return false;
2071 }
2072
__lockdep_count_forward_deps(struct lock_list * this)2073 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2074 {
2075 unsigned long count = 0;
2076 struct lock_list *target_entry;
2077
2078 __bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2079
2080 return count;
2081 }
lockdep_count_forward_deps(struct lock_class * class)2082 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2083 {
2084 unsigned long ret, flags;
2085 struct lock_list this;
2086
2087 __bfs_init_root(&this, class);
2088
2089 raw_local_irq_save(flags);
2090 lockdep_lock();
2091 ret = __lockdep_count_forward_deps(&this);
2092 lockdep_unlock();
2093 raw_local_irq_restore(flags);
2094
2095 return ret;
2096 }
2097
__lockdep_count_backward_deps(struct lock_list * this)2098 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2099 {
2100 unsigned long count = 0;
2101 struct lock_list *target_entry;
2102
2103 __bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2104
2105 return count;
2106 }
2107
lockdep_count_backward_deps(struct lock_class * class)2108 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2109 {
2110 unsigned long ret, flags;
2111 struct lock_list this;
2112
2113 __bfs_init_root(&this, class);
2114
2115 raw_local_irq_save(flags);
2116 lockdep_lock();
2117 ret = __lockdep_count_backward_deps(&this);
2118 lockdep_unlock();
2119 raw_local_irq_restore(flags);
2120
2121 return ret;
2122 }
2123
2124 /*
2125 * Check that the dependency graph starting at <src> can lead to
2126 * <target> or not.
2127 */
2128 static noinline enum bfs_result
check_path(struct held_lock * target,struct lock_list * src_entry,bool (* match)(struct lock_list * entry,void * data),bool (* skip)(struct lock_list * entry,void * data),struct lock_list ** target_entry)2129 check_path(struct held_lock *target, struct lock_list *src_entry,
2130 bool (*match)(struct lock_list *entry, void *data),
2131 bool (*skip)(struct lock_list *entry, void *data),
2132 struct lock_list **target_entry)
2133 {
2134 enum bfs_result ret;
2135
2136 ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2137
2138 if (unlikely(bfs_error(ret)))
2139 print_bfs_bug(ret);
2140
2141 return ret;
2142 }
2143
2144 /*
2145 * Prove that the dependency graph starting at <src> can not
2146 * lead to <target>. If it can, there is a circle when adding
2147 * <target> -> <src> dependency.
2148 *
2149 * Print an error and return BFS_RMATCH if it does.
2150 */
2151 static noinline enum bfs_result
check_noncircular(struct held_lock * src,struct held_lock * target,struct lock_trace ** const trace)2152 check_noncircular(struct held_lock *src, struct held_lock *target,
2153 struct lock_trace **const trace)
2154 {
2155 enum bfs_result ret;
2156 struct lock_list *target_entry;
2157 struct lock_list src_entry;
2158
2159 bfs_init_root(&src_entry, src);
2160
2161 debug_atomic_inc(nr_cyclic_checks);
2162
2163 ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2164
2165 if (unlikely(ret == BFS_RMATCH)) {
2166 if (!*trace) {
2167 /*
2168 * If save_trace fails here, the printing might
2169 * trigger a WARN but because of the !nr_entries it
2170 * should not do bad things.
2171 */
2172 *trace = save_trace();
2173 }
2174
2175 print_circular_bug(&src_entry, target_entry, src, target);
2176 }
2177
2178 return ret;
2179 }
2180
2181 #ifdef CONFIG_TRACE_IRQFLAGS
2182
2183 /*
2184 * Forwards and backwards subgraph searching, for the purposes of
2185 * proving that two subgraphs can be connected by a new dependency
2186 * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2187 *
2188 * A irq safe->unsafe deadlock happens with the following conditions:
2189 *
2190 * 1) We have a strong dependency path A -> ... -> B
2191 *
2192 * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2193 * irq can create a new dependency B -> A (consider the case that a holder
2194 * of B gets interrupted by an irq whose handler will try to acquire A).
2195 *
2196 * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2197 * strong circle:
2198 *
2199 * For the usage bits of B:
2200 * a) if A -> B is -(*N)->, then B -> A could be any type, so any
2201 * ENABLED_IRQ usage suffices.
2202 * b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2203 * ENABLED_IRQ_*_READ usage suffices.
2204 *
2205 * For the usage bits of A:
2206 * c) if A -> B is -(E*)->, then B -> A could be any type, so any
2207 * USED_IN_IRQ usage suffices.
2208 * d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2209 * USED_IN_IRQ_*_READ usage suffices.
2210 */
2211
2212 /*
2213 * There is a strong dependency path in the dependency graph: A -> B, and now
2214 * we need to decide which usage bit of A should be accumulated to detect
2215 * safe->unsafe bugs.
2216 *
2217 * Note that usage_accumulate() is used in backwards search, so ->only_xr
2218 * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2219 *
2220 * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2221 * path, any usage of A should be considered. Otherwise, we should only
2222 * consider _READ usage.
2223 */
usage_accumulate(struct lock_list * entry,void * mask)2224 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2225 {
2226 if (!entry->only_xr)
2227 *(unsigned long *)mask |= entry->class->usage_mask;
2228 else /* Mask out _READ usage bits */
2229 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2230
2231 return false;
2232 }
2233
2234 /*
2235 * There is a strong dependency path in the dependency graph: A -> B, and now
2236 * we need to decide which usage bit of B conflicts with the usage bits of A,
2237 * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2238 *
2239 * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2240 * path, any usage of B should be considered. Otherwise, we should only
2241 * consider _READ usage.
2242 */
usage_match(struct lock_list * entry,void * mask)2243 static inline bool usage_match(struct lock_list *entry, void *mask)
2244 {
2245 if (!entry->only_xr)
2246 return !!(entry->class->usage_mask & *(unsigned long *)mask);
2247 else /* Mask out _READ usage bits */
2248 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2249 }
2250
usage_skip(struct lock_list * entry,void * mask)2251 static inline bool usage_skip(struct lock_list *entry, void *mask)
2252 {
2253 /*
2254 * Skip local_lock() for irq inversion detection.
2255 *
2256 * For !RT, local_lock() is not a real lock, so it won't carry any
2257 * dependency.
2258 *
2259 * For RT, an irq inversion happens when we have lock A and B, and on
2260 * some CPU we can have:
2261 *
2262 * lock(A);
2263 * <interrupted>
2264 * lock(B);
2265 *
2266 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2267 *
2268 * Now we prove local_lock() cannot exist in that dependency. First we
2269 * have the observation for any lock chain L1 -> ... -> Ln, for any
2270 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2271 * wait context check will complain. And since B is not a sleep lock,
2272 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2273 * local_lock() is 3, which is greater than 2, therefore there is no
2274 * way the local_lock() exists in the dependency B -> ... -> A.
2275 *
2276 * As a result, we will skip local_lock(), when we search for irq
2277 * inversion bugs.
2278 */
2279 if (entry->class->lock_type == LD_LOCK_PERCPU) {
2280 if (DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2281 return false;
2282
2283 return true;
2284 }
2285
2286 return false;
2287 }
2288
2289 /*
2290 * Find a node in the forwards-direction dependency sub-graph starting
2291 * at @root->class that matches @bit.
2292 *
2293 * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2294 * into *@target_entry.
2295 */
2296 static enum bfs_result
find_usage_forwards(struct lock_list * root,unsigned long usage_mask,struct lock_list ** target_entry)2297 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2298 struct lock_list **target_entry)
2299 {
2300 enum bfs_result result;
2301
2302 debug_atomic_inc(nr_find_usage_forwards_checks);
2303
2304 result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2305
2306 return result;
2307 }
2308
2309 /*
2310 * Find a node in the backwards-direction dependency sub-graph starting
2311 * at @root->class that matches @bit.
2312 */
2313 static enum bfs_result
find_usage_backwards(struct lock_list * root,unsigned long usage_mask,struct lock_list ** target_entry)2314 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2315 struct lock_list **target_entry)
2316 {
2317 enum bfs_result result;
2318
2319 debug_atomic_inc(nr_find_usage_backwards_checks);
2320
2321 result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2322
2323 return result;
2324 }
2325
print_lock_class_header(struct lock_class * class,int depth)2326 static void print_lock_class_header(struct lock_class *class, int depth)
2327 {
2328 int bit;
2329
2330 printk("%*s->", depth, "");
2331 print_lock_name(class);
2332 #ifdef CONFIG_DEBUG_LOCKDEP
2333 printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2334 #endif
2335 printk(KERN_CONT " {\n");
2336
2337 for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2338 if (class->usage_mask & (1 << bit)) {
2339 int len = depth;
2340
2341 len += printk("%*s %s", depth, "", usage_str[bit]);
2342 len += printk(KERN_CONT " at:\n");
2343 print_lock_trace(class->usage_traces[bit], len);
2344 }
2345 }
2346 printk("%*s }\n", depth, "");
2347
2348 printk("%*s ... key at: [<%px>] %pS\n",
2349 depth, "", class->key, class->key);
2350 }
2351
2352 /*
2353 * Dependency path printing:
2354 *
2355 * After BFS we get a lock dependency path (linked via ->parent of lock_list),
2356 * printing out each lock in the dependency path will help on understanding how
2357 * the deadlock could happen. Here are some details about dependency path
2358 * printing:
2359 *
2360 * 1) A lock_list can be either forwards or backwards for a lock dependency,
2361 * for a lock dependency A -> B, there are two lock_lists:
2362 *
2363 * a) lock_list in the ->locks_after list of A, whose ->class is B and
2364 * ->links_to is A. In this case, we can say the lock_list is
2365 * "A -> B" (forwards case).
2366 *
2367 * b) lock_list in the ->locks_before list of B, whose ->class is A
2368 * and ->links_to is B. In this case, we can say the lock_list is
2369 * "B <- A" (bacwards case).
2370 *
2371 * The ->trace of both a) and b) point to the call trace where B was
2372 * acquired with A held.
2373 *
2374 * 2) A "helper" lock_list is introduced during BFS, this lock_list doesn't
2375 * represent a certain lock dependency, it only provides an initial entry
2376 * for BFS. For example, BFS may introduce a "helper" lock_list whose
2377 * ->class is A, as a result BFS will search all dependencies starting with
2378 * A, e.g. A -> B or A -> C.
2379 *
2380 * The notation of a forwards helper lock_list is like "-> A", which means
2381 * we should search the forwards dependencies starting with "A", e.g A -> B
2382 * or A -> C.
2383 *
2384 * The notation of a bacwards helper lock_list is like "<- B", which means
2385 * we should search the backwards dependencies ending with "B", e.g.
2386 * B <- A or B <- C.
2387 */
2388
2389 /*
2390 * printk the shortest lock dependencies from @root to @leaf in reverse order.
2391 *
2392 * We have a lock dependency path as follow:
2393 *
2394 * @root @leaf
2395 * | |
2396 * V V
2397 * ->parent ->parent
2398 * | lock_list | <--------- | lock_list | ... | lock_list | <--------- | lock_list |
2399 * | -> L1 | | L1 -> L2 | ... |Ln-2 -> Ln-1| | Ln-1 -> Ln|
2400 *
2401 * , so it's natural that we start from @leaf and print every ->class and
2402 * ->trace until we reach the @root.
2403 */
2404 static void __used
print_shortest_lock_dependencies(struct lock_list * leaf,struct lock_list * root)2405 print_shortest_lock_dependencies(struct lock_list *leaf,
2406 struct lock_list *root)
2407 {
2408 struct lock_list *entry = leaf;
2409 int depth;
2410
2411 /*compute depth from generated tree by BFS*/
2412 depth = get_lock_depth(leaf);
2413
2414 do {
2415 print_lock_class_header(entry->class, depth);
2416 printk("%*s ... acquired at:\n", depth, "");
2417 print_lock_trace(entry->trace, 2);
2418 printk("\n");
2419
2420 if (depth == 0 && (entry != root)) {
2421 printk("lockdep:%s bad path found in chain graph\n", __func__);
2422 break;
2423 }
2424
2425 entry = get_lock_parent(entry);
2426 depth--;
2427 } while (entry && (depth >= 0));
2428 }
2429
2430 /*
2431 * printk the shortest lock dependencies from @leaf to @root.
2432 *
2433 * We have a lock dependency path (from a backwards search) as follow:
2434 *
2435 * @leaf @root
2436 * | |
2437 * V V
2438 * ->parent ->parent
2439 * | lock_list | ---------> | lock_list | ... | lock_list | ---------> | lock_list |
2440 * | L2 <- L1 | | L3 <- L2 | ... | Ln <- Ln-1 | | <- Ln |
2441 *
2442 * , so when we iterate from @leaf to @root, we actually print the lock
2443 * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
2444 *
2445 * Another thing to notice here is that ->class of L2 <- L1 is L1, while the
2446 * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
2447 * trace of L1 in the dependency path, which is alright, because most of the
2448 * time we can figure out where L1 is held from the call trace of L2.
2449 */
2450 static void __used
print_shortest_lock_dependencies_backwards(struct lock_list * leaf,struct lock_list * root)2451 print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
2452 struct lock_list *root)
2453 {
2454 struct lock_list *entry = leaf;
2455 const struct lock_trace *trace = NULL;
2456 int depth;
2457
2458 /*compute depth from generated tree by BFS*/
2459 depth = get_lock_depth(leaf);
2460
2461 do {
2462 print_lock_class_header(entry->class, depth);
2463 if (trace) {
2464 printk("%*s ... acquired at:\n", depth, "");
2465 print_lock_trace(trace, 2);
2466 printk("\n");
2467 }
2468
2469 /*
2470 * Record the pointer to the trace for the next lock_list
2471 * entry, see the comments for the function.
2472 */
2473 trace = entry->trace;
2474
2475 if (depth == 0 && (entry != root)) {
2476 printk("lockdep:%s bad path found in chain graph\n", __func__);
2477 break;
2478 }
2479
2480 entry = get_lock_parent(entry);
2481 depth--;
2482 } while (entry && (depth >= 0));
2483 }
2484
2485 static void
print_irq_lock_scenario(struct lock_list * safe_entry,struct lock_list * unsafe_entry,struct lock_class * prev_class,struct lock_class * next_class)2486 print_irq_lock_scenario(struct lock_list *safe_entry,
2487 struct lock_list *unsafe_entry,
2488 struct lock_class *prev_class,
2489 struct lock_class *next_class)
2490 {
2491 struct lock_class *safe_class = safe_entry->class;
2492 struct lock_class *unsafe_class = unsafe_entry->class;
2493 struct lock_class *middle_class = prev_class;
2494
2495 if (middle_class == safe_class)
2496 middle_class = next_class;
2497
2498 /*
2499 * A direct locking problem where unsafe_class lock is taken
2500 * directly by safe_class lock, then all we need to show
2501 * is the deadlock scenario, as it is obvious that the
2502 * unsafe lock is taken under the safe lock.
2503 *
2504 * But if there is a chain instead, where the safe lock takes
2505 * an intermediate lock (middle_class) where this lock is
2506 * not the same as the safe lock, then the lock chain is
2507 * used to describe the problem. Otherwise we would need
2508 * to show a different CPU case for each link in the chain
2509 * from the safe_class lock to the unsafe_class lock.
2510 */
2511 if (middle_class != unsafe_class) {
2512 printk("Chain exists of:\n ");
2513 __print_lock_name(safe_class);
2514 printk(KERN_CONT " --> ");
2515 __print_lock_name(middle_class);
2516 printk(KERN_CONT " --> ");
2517 __print_lock_name(unsafe_class);
2518 printk(KERN_CONT "\n\n");
2519 }
2520
2521 printk(" Possible interrupt unsafe locking scenario:\n\n");
2522 printk(" CPU0 CPU1\n");
2523 printk(" ---- ----\n");
2524 printk(" lock(");
2525 __print_lock_name(unsafe_class);
2526 printk(KERN_CONT ");\n");
2527 printk(" local_irq_disable();\n");
2528 printk(" lock(");
2529 __print_lock_name(safe_class);
2530 printk(KERN_CONT ");\n");
2531 printk(" lock(");
2532 __print_lock_name(middle_class);
2533 printk(KERN_CONT ");\n");
2534 printk(" <Interrupt>\n");
2535 printk(" lock(");
2536 __print_lock_name(safe_class);
2537 printk(KERN_CONT ");\n");
2538 printk("\n *** DEADLOCK ***\n\n");
2539 }
2540
2541 static void
print_bad_irq_dependency(struct task_struct * curr,struct lock_list * prev_root,struct lock_list * next_root,struct lock_list * backwards_entry,struct lock_list * forwards_entry,struct held_lock * prev,struct held_lock * next,enum lock_usage_bit bit1,enum lock_usage_bit bit2,const char * irqclass)2542 print_bad_irq_dependency(struct task_struct *curr,
2543 struct lock_list *prev_root,
2544 struct lock_list *next_root,
2545 struct lock_list *backwards_entry,
2546 struct lock_list *forwards_entry,
2547 struct held_lock *prev,
2548 struct held_lock *next,
2549 enum lock_usage_bit bit1,
2550 enum lock_usage_bit bit2,
2551 const char *irqclass)
2552 {
2553 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2554 return;
2555
2556 pr_warn("\n");
2557 pr_warn("=====================================================\n");
2558 pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2559 irqclass, irqclass);
2560 print_kernel_ident();
2561 pr_warn("-----------------------------------------------------\n");
2562 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2563 curr->comm, task_pid_nr(curr),
2564 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2565 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2566 lockdep_hardirqs_enabled(),
2567 curr->softirqs_enabled);
2568 print_lock(next);
2569
2570 pr_warn("\nand this task is already holding:\n");
2571 print_lock(prev);
2572 pr_warn("which would create a new lock dependency:\n");
2573 print_lock_name(hlock_class(prev));
2574 pr_cont(" ->");
2575 print_lock_name(hlock_class(next));
2576 pr_cont("\n");
2577
2578 pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2579 irqclass);
2580 print_lock_name(backwards_entry->class);
2581 pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2582
2583 print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2584
2585 pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2586 print_lock_name(forwards_entry->class);
2587 pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2588 pr_warn("...");
2589
2590 print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2591
2592 pr_warn("\nother info that might help us debug this:\n\n");
2593 print_irq_lock_scenario(backwards_entry, forwards_entry,
2594 hlock_class(prev), hlock_class(next));
2595
2596 lockdep_print_held_locks(curr);
2597
2598 pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2599 print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
2600
2601 pr_warn("\nthe dependencies between the lock to be acquired");
2602 pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2603 next_root->trace = save_trace();
2604 if (!next_root->trace)
2605 return;
2606 print_shortest_lock_dependencies(forwards_entry, next_root);
2607
2608 pr_warn("\nstack backtrace:\n");
2609 dump_stack();
2610 }
2611
2612 static const char *state_names[] = {
2613 #define LOCKDEP_STATE(__STATE) \
2614 __stringify(__STATE),
2615 #include "lockdep_states.h"
2616 #undef LOCKDEP_STATE
2617 };
2618
2619 static const char *state_rnames[] = {
2620 #define LOCKDEP_STATE(__STATE) \
2621 __stringify(__STATE)"-READ",
2622 #include "lockdep_states.h"
2623 #undef LOCKDEP_STATE
2624 };
2625
state_name(enum lock_usage_bit bit)2626 static inline const char *state_name(enum lock_usage_bit bit)
2627 {
2628 if (bit & LOCK_USAGE_READ_MASK)
2629 return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2630 else
2631 return state_names[bit >> LOCK_USAGE_DIR_MASK];
2632 }
2633
2634 /*
2635 * The bit number is encoded like:
2636 *
2637 * bit0: 0 exclusive, 1 read lock
2638 * bit1: 0 used in irq, 1 irq enabled
2639 * bit2-n: state
2640 */
exclusive_bit(int new_bit)2641 static int exclusive_bit(int new_bit)
2642 {
2643 int state = new_bit & LOCK_USAGE_STATE_MASK;
2644 int dir = new_bit & LOCK_USAGE_DIR_MASK;
2645
2646 /*
2647 * keep state, bit flip the direction and strip read.
2648 */
2649 return state | (dir ^ LOCK_USAGE_DIR_MASK);
2650 }
2651
2652 /*
2653 * Observe that when given a bitmask where each bitnr is encoded as above, a
2654 * right shift of the mask transforms the individual bitnrs as -1 and
2655 * conversely, a left shift transforms into +1 for the individual bitnrs.
2656 *
2657 * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2658 * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2659 * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2660 *
2661 * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2662 *
2663 * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2664 * all bits set) and recompose with bitnr1 flipped.
2665 */
invert_dir_mask(unsigned long mask)2666 static unsigned long invert_dir_mask(unsigned long mask)
2667 {
2668 unsigned long excl = 0;
2669
2670 /* Invert dir */
2671 excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2672 excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2673
2674 return excl;
2675 }
2676
2677 /*
2678 * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2679 * usage may cause deadlock too, for example:
2680 *
2681 * P1 P2
2682 * <irq disabled>
2683 * write_lock(l1); <irq enabled>
2684 * read_lock(l2);
2685 * write_lock(l2);
2686 * <in irq>
2687 * read_lock(l1);
2688 *
2689 * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2690 * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2691 * deadlock.
2692 *
2693 * In fact, all of the following cases may cause deadlocks:
2694 *
2695 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2696 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2697 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2698 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2699 *
2700 * As a result, to calculate the "exclusive mask", first we invert the
2701 * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2702 * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2703 * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2704 */
exclusive_mask(unsigned long mask)2705 static unsigned long exclusive_mask(unsigned long mask)
2706 {
2707 unsigned long excl = invert_dir_mask(mask);
2708
2709 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2710 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2711
2712 return excl;
2713 }
2714
2715 /*
2716 * Retrieve the _possible_ original mask to which @mask is
2717 * exclusive. Ie: this is the opposite of exclusive_mask().
2718 * Note that 2 possible original bits can match an exclusive
2719 * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2720 * cleared. So both are returned for each exclusive bit.
2721 */
original_mask(unsigned long mask)2722 static unsigned long original_mask(unsigned long mask)
2723 {
2724 unsigned long excl = invert_dir_mask(mask);
2725
2726 /* Include read in existing usages */
2727 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2728 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2729
2730 return excl;
2731 }
2732
2733 /*
2734 * Find the first pair of bit match between an original
2735 * usage mask and an exclusive usage mask.
2736 */
find_exclusive_match(unsigned long mask,unsigned long excl_mask,enum lock_usage_bit * bitp,enum lock_usage_bit * excl_bitp)2737 static int find_exclusive_match(unsigned long mask,
2738 unsigned long excl_mask,
2739 enum lock_usage_bit *bitp,
2740 enum lock_usage_bit *excl_bitp)
2741 {
2742 int bit, excl, excl_read;
2743
2744 for_each_set_bit(bit, &mask, LOCK_USED) {
2745 /*
2746 * exclusive_bit() strips the read bit, however,
2747 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2748 * to search excl | LOCK_USAGE_READ_MASK as well.
2749 */
2750 excl = exclusive_bit(bit);
2751 excl_read = excl | LOCK_USAGE_READ_MASK;
2752 if (excl_mask & lock_flag(excl)) {
2753 *bitp = bit;
2754 *excl_bitp = excl;
2755 return 0;
2756 } else if (excl_mask & lock_flag(excl_read)) {
2757 *bitp = bit;
2758 *excl_bitp = excl_read;
2759 return 0;
2760 }
2761 }
2762 return -1;
2763 }
2764
2765 /*
2766 * Prove that the new dependency does not connect a hardirq-safe(-read)
2767 * lock with a hardirq-unsafe lock - to achieve this we search
2768 * the backwards-subgraph starting at <prev>, and the
2769 * forwards-subgraph starting at <next>:
2770 */
check_irq_usage(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)2771 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2772 struct held_lock *next)
2773 {
2774 unsigned long usage_mask = 0, forward_mask, backward_mask;
2775 enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2776 struct lock_list *target_entry1;
2777 struct lock_list *target_entry;
2778 struct lock_list this, that;
2779 enum bfs_result ret;
2780
2781 /*
2782 * Step 1: gather all hard/soft IRQs usages backward in an
2783 * accumulated usage mask.
2784 */
2785 bfs_init_rootb(&this, prev);
2786
2787 ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2788 if (bfs_error(ret)) {
2789 print_bfs_bug(ret);
2790 return 0;
2791 }
2792
2793 usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2794 if (!usage_mask)
2795 return 1;
2796
2797 /*
2798 * Step 2: find exclusive uses forward that match the previous
2799 * backward accumulated mask.
2800 */
2801 forward_mask = exclusive_mask(usage_mask);
2802
2803 bfs_init_root(&that, next);
2804
2805 ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2806 if (bfs_error(ret)) {
2807 print_bfs_bug(ret);
2808 return 0;
2809 }
2810 if (ret == BFS_RNOMATCH)
2811 return 1;
2812
2813 /*
2814 * Step 3: we found a bad match! Now retrieve a lock from the backward
2815 * list whose usage mask matches the exclusive usage mask from the
2816 * lock found on the forward list.
2817 *
2818 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
2819 * the follow case:
2820 *
2821 * When trying to add A -> B to the graph, we find that there is a
2822 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
2823 * that B -> ... -> M. However M is **softirq-safe**, if we use exact
2824 * invert bits of M's usage_mask, we will find another lock N that is
2825 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
2826 * cause a inversion deadlock.
2827 */
2828 backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
2829
2830 ret = find_usage_backwards(&this, backward_mask, &target_entry);
2831 if (bfs_error(ret)) {
2832 print_bfs_bug(ret);
2833 return 0;
2834 }
2835 if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2836 return 1;
2837
2838 /*
2839 * Step 4: narrow down to a pair of incompatible usage bits
2840 * and report it.
2841 */
2842 ret = find_exclusive_match(target_entry->class->usage_mask,
2843 target_entry1->class->usage_mask,
2844 &backward_bit, &forward_bit);
2845 if (DEBUG_LOCKS_WARN_ON(ret == -1))
2846 return 1;
2847
2848 print_bad_irq_dependency(curr, &this, &that,
2849 target_entry, target_entry1,
2850 prev, next,
2851 backward_bit, forward_bit,
2852 state_name(backward_bit));
2853
2854 return 0;
2855 }
2856
2857 #else
2858
check_irq_usage(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)2859 static inline int check_irq_usage(struct task_struct *curr,
2860 struct held_lock *prev, struct held_lock *next)
2861 {
2862 return 1;
2863 }
2864
usage_skip(struct lock_list * entry,void * mask)2865 static inline bool usage_skip(struct lock_list *entry, void *mask)
2866 {
2867 return false;
2868 }
2869
2870 #endif /* CONFIG_TRACE_IRQFLAGS */
2871
2872 #ifdef CONFIG_LOCKDEP_SMALL
2873 /*
2874 * Check that the dependency graph starting at <src> can lead to
2875 * <target> or not. If it can, <src> -> <target> dependency is already
2876 * in the graph.
2877 *
2878 * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if
2879 * any error appears in the bfs search.
2880 */
2881 static noinline enum bfs_result
check_redundant(struct held_lock * src,struct held_lock * target)2882 check_redundant(struct held_lock *src, struct held_lock *target)
2883 {
2884 enum bfs_result ret;
2885 struct lock_list *target_entry;
2886 struct lock_list src_entry;
2887
2888 bfs_init_root(&src_entry, src);
2889 /*
2890 * Special setup for check_redundant().
2891 *
2892 * To report redundant, we need to find a strong dependency path that
2893 * is equal to or stronger than <src> -> <target>. So if <src> is E,
2894 * we need to let __bfs() only search for a path starting at a -(E*)->,
2895 * we achieve this by setting the initial node's ->only_xr to true in
2896 * that case. And if <prev> is S, we set initial ->only_xr to false
2897 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2898 */
2899 src_entry.only_xr = src->read == 0;
2900
2901 debug_atomic_inc(nr_redundant_checks);
2902
2903 /*
2904 * Note: we skip local_lock() for redundant check, because as the
2905 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2906 * the same.
2907 */
2908 ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2909
2910 if (ret == BFS_RMATCH)
2911 debug_atomic_inc(nr_redundant);
2912
2913 return ret;
2914 }
2915
2916 #else
2917
2918 static inline enum bfs_result
check_redundant(struct held_lock * src,struct held_lock * target)2919 check_redundant(struct held_lock *src, struct held_lock *target)
2920 {
2921 return BFS_RNOMATCH;
2922 }
2923
2924 #endif
2925
inc_chains(int irq_context)2926 static void inc_chains(int irq_context)
2927 {
2928 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2929 nr_hardirq_chains++;
2930 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2931 nr_softirq_chains++;
2932 else
2933 nr_process_chains++;
2934 }
2935
dec_chains(int irq_context)2936 static void dec_chains(int irq_context)
2937 {
2938 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2939 nr_hardirq_chains--;
2940 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2941 nr_softirq_chains--;
2942 else
2943 nr_process_chains--;
2944 }
2945
2946 static void
print_deadlock_scenario(struct held_lock * nxt,struct held_lock * prv)2947 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2948 {
2949 struct lock_class *next = hlock_class(nxt);
2950 struct lock_class *prev = hlock_class(prv);
2951
2952 printk(" Possible unsafe locking scenario:\n\n");
2953 printk(" CPU0\n");
2954 printk(" ----\n");
2955 printk(" lock(");
2956 __print_lock_name(prev);
2957 printk(KERN_CONT ");\n");
2958 printk(" lock(");
2959 __print_lock_name(next);
2960 printk(KERN_CONT ");\n");
2961 printk("\n *** DEADLOCK ***\n\n");
2962 printk(" May be due to missing lock nesting notation\n\n");
2963 }
2964
2965 static void
print_deadlock_bug(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)2966 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2967 struct held_lock *next)
2968 {
2969 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2970 return;
2971
2972 pr_warn("\n");
2973 pr_warn("============================================\n");
2974 pr_warn("WARNING: possible recursive locking detected\n");
2975 print_kernel_ident();
2976 pr_warn("--------------------------------------------\n");
2977 pr_warn("%s/%d is trying to acquire lock:\n",
2978 curr->comm, task_pid_nr(curr));
2979 print_lock(next);
2980 pr_warn("\nbut task is already holding lock:\n");
2981 print_lock(prev);
2982
2983 pr_warn("\nother info that might help us debug this:\n");
2984 print_deadlock_scenario(next, prev);
2985 lockdep_print_held_locks(curr);
2986
2987 pr_warn("\nstack backtrace:\n");
2988 dump_stack();
2989 }
2990
2991 /*
2992 * Check whether we are holding such a class already.
2993 *
2994 * (Note that this has to be done separately, because the graph cannot
2995 * detect such classes of deadlocks.)
2996 *
2997 * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
2998 * lock class is held but nest_lock is also held, i.e. we rely on the
2999 * nest_lock to avoid the deadlock.
3000 */
3001 static int
check_deadlock(struct task_struct * curr,struct held_lock * next)3002 check_deadlock(struct task_struct *curr, struct held_lock *next)
3003 {
3004 struct held_lock *prev;
3005 struct held_lock *nest = NULL;
3006 int i;
3007
3008 for (i = 0; i < curr->lockdep_depth; i++) {
3009 prev = curr->held_locks + i;
3010
3011 if (prev->instance == next->nest_lock)
3012 nest = prev;
3013
3014 if (hlock_class(prev) != hlock_class(next))
3015 continue;
3016
3017 /*
3018 * Allow read-after-read recursion of the same
3019 * lock class (i.e. read_lock(lock)+read_lock(lock)):
3020 */
3021 if ((next->read == 2) && prev->read)
3022 continue;
3023
3024 /*
3025 * We're holding the nest_lock, which serializes this lock's
3026 * nesting behaviour.
3027 */
3028 if (nest)
3029 return 2;
3030
3031 print_deadlock_bug(curr, prev, next);
3032 return 0;
3033 }
3034 return 1;
3035 }
3036
3037 /*
3038 * There was a chain-cache miss, and we are about to add a new dependency
3039 * to a previous lock. We validate the following rules:
3040 *
3041 * - would the adding of the <prev> -> <next> dependency create a
3042 * circular dependency in the graph? [== circular deadlock]
3043 *
3044 * - does the new prev->next dependency connect any hardirq-safe lock
3045 * (in the full backwards-subgraph starting at <prev>) with any
3046 * hardirq-unsafe lock (in the full forwards-subgraph starting at
3047 * <next>)? [== illegal lock inversion with hardirq contexts]
3048 *
3049 * - does the new prev->next dependency connect any softirq-safe lock
3050 * (in the full backwards-subgraph starting at <prev>) with any
3051 * softirq-unsafe lock (in the full forwards-subgraph starting at
3052 * <next>)? [== illegal lock inversion with softirq contexts]
3053 *
3054 * any of these scenarios could lead to a deadlock.
3055 *
3056 * Then if all the validations pass, we add the forwards and backwards
3057 * dependency.
3058 */
3059 static int
check_prev_add(struct task_struct * curr,struct held_lock * prev,struct held_lock * next,u16 distance,struct lock_trace ** const trace)3060 check_prev_add(struct task_struct *curr, struct held_lock *prev,
3061 struct held_lock *next, u16 distance,
3062 struct lock_trace **const trace)
3063 {
3064 struct lock_list *entry;
3065 enum bfs_result ret;
3066
3067 if (!hlock_class(prev)->key || !hlock_class(next)->key) {
3068 /*
3069 * The warning statements below may trigger a use-after-free
3070 * of the class name. It is better to trigger a use-after free
3071 * and to have the class name most of the time instead of not
3072 * having the class name available.
3073 */
3074 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
3075 "Detected use-after-free of lock class %px/%s\n",
3076 hlock_class(prev),
3077 hlock_class(prev)->name);
3078 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
3079 "Detected use-after-free of lock class %px/%s\n",
3080 hlock_class(next),
3081 hlock_class(next)->name);
3082 return 2;
3083 }
3084
3085 /*
3086 * Prove that the new <prev> -> <next> dependency would not
3087 * create a circular dependency in the graph. (We do this by
3088 * a breadth-first search into the graph starting at <next>,
3089 * and check whether we can reach <prev>.)
3090 *
3091 * The search is limited by the size of the circular queue (i.e.,
3092 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
3093 * in the graph whose neighbours are to be checked.
3094 */
3095 ret = check_noncircular(next, prev, trace);
3096 if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
3097 return 0;
3098
3099 if (!check_irq_usage(curr, prev, next))
3100 return 0;
3101
3102 /*
3103 * Is the <prev> -> <next> dependency already present?
3104 *
3105 * (this may occur even though this is a new chain: consider
3106 * e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
3107 * chains - the second one will be new, but L1 already has
3108 * L2 added to its dependency list, due to the first chain.)
3109 */
3110 list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
3111 if (entry->class == hlock_class(next)) {
3112 if (distance == 1)
3113 entry->distance = 1;
3114 entry->dep |= calc_dep(prev, next);
3115
3116 /*
3117 * Also, update the reverse dependency in @next's
3118 * ->locks_before list.
3119 *
3120 * Here we reuse @entry as the cursor, which is fine
3121 * because we won't go to the next iteration of the
3122 * outer loop:
3123 *
3124 * For normal cases, we return in the inner loop.
3125 *
3126 * If we fail to return, we have inconsistency, i.e.
3127 * <prev>::locks_after contains <next> while
3128 * <next>::locks_before doesn't contain <prev>. In
3129 * that case, we return after the inner and indicate
3130 * something is wrong.
3131 */
3132 list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
3133 if (entry->class == hlock_class(prev)) {
3134 if (distance == 1)
3135 entry->distance = 1;
3136 entry->dep |= calc_depb(prev, next);
3137 return 1;
3138 }
3139 }
3140
3141 /* <prev> is not found in <next>::locks_before */
3142 return 0;
3143 }
3144 }
3145
3146 /*
3147 * Is the <prev> -> <next> link redundant?
3148 */
3149 ret = check_redundant(prev, next);
3150 if (bfs_error(ret))
3151 return 0;
3152 else if (ret == BFS_RMATCH)
3153 return 2;
3154
3155 if (!*trace) {
3156 *trace = save_trace();
3157 if (!*trace)
3158 return 0;
3159 }
3160
3161 /*
3162 * Ok, all validations passed, add the new lock
3163 * to the previous lock's dependency list:
3164 */
3165 ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3166 &hlock_class(prev)->locks_after, distance,
3167 calc_dep(prev, next), *trace);
3168
3169 if (!ret)
3170 return 0;
3171
3172 ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3173 &hlock_class(next)->locks_before, distance,
3174 calc_depb(prev, next), *trace);
3175 if (!ret)
3176 return 0;
3177
3178 return 2;
3179 }
3180
3181 /*
3182 * Add the dependency to all directly-previous locks that are 'relevant'.
3183 * The ones that are relevant are (in increasing distance from curr):
3184 * all consecutive trylock entries and the final non-trylock entry - or
3185 * the end of this context's lock-chain - whichever comes first.
3186 */
3187 static int
check_prevs_add(struct task_struct * curr,struct held_lock * next)3188 check_prevs_add(struct task_struct *curr, struct held_lock *next)
3189 {
3190 struct lock_trace *trace = NULL;
3191 int depth = curr->lockdep_depth;
3192 struct held_lock *hlock;
3193
3194 /*
3195 * Debugging checks.
3196 *
3197 * Depth must not be zero for a non-head lock:
3198 */
3199 if (!depth)
3200 goto out_bug;
3201 /*
3202 * At least two relevant locks must exist for this
3203 * to be a head:
3204 */
3205 if (curr->held_locks[depth].irq_context !=
3206 curr->held_locks[depth-1].irq_context)
3207 goto out_bug;
3208
3209 for (;;) {
3210 u16 distance = curr->lockdep_depth - depth + 1;
3211 hlock = curr->held_locks + depth - 1;
3212
3213 if (hlock->check) {
3214 int ret = check_prev_add(curr, hlock, next, distance, &trace);
3215 if (!ret)
3216 return 0;
3217
3218 /*
3219 * Stop after the first non-trylock entry,
3220 * as non-trylock entries have added their
3221 * own direct dependencies already, so this
3222 * lock is connected to them indirectly:
3223 */
3224 if (!hlock->trylock)
3225 break;
3226 }
3227
3228 depth--;
3229 /*
3230 * End of lock-stack?
3231 */
3232 if (!depth)
3233 break;
3234 /*
3235 * Stop the search if we cross into another context:
3236 */
3237 if (curr->held_locks[depth].irq_context !=
3238 curr->held_locks[depth-1].irq_context)
3239 break;
3240 }
3241 return 1;
3242 out_bug:
3243 if (!debug_locks_off_graph_unlock())
3244 return 0;
3245
3246 /*
3247 * Clearly we all shouldn't be here, but since we made it we
3248 * can reliable say we messed up our state. See the above two
3249 * gotos for reasons why we could possibly end up here.
3250 */
3251 WARN_ON(1);
3252
3253 return 0;
3254 }
3255
3256 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3257 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3258 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3259 unsigned long nr_zapped_lock_chains;
3260 unsigned int nr_free_chain_hlocks; /* Free chain_hlocks in buckets */
3261 unsigned int nr_lost_chain_hlocks; /* Lost chain_hlocks */
3262 unsigned int nr_large_chain_blocks; /* size > MAX_CHAIN_BUCKETS */
3263
3264 /*
3265 * The first 2 chain_hlocks entries in the chain block in the bucket
3266 * list contains the following meta data:
3267 *
3268 * entry[0]:
3269 * Bit 15 - always set to 1 (it is not a class index)
3270 * Bits 0-14 - upper 15 bits of the next block index
3271 * entry[1] - lower 16 bits of next block index
3272 *
3273 * A next block index of all 1 bits means it is the end of the list.
3274 *
3275 * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3276 * the chain block size:
3277 *
3278 * entry[2] - upper 16 bits of the chain block size
3279 * entry[3] - lower 16 bits of the chain block size
3280 */
3281 #define MAX_CHAIN_BUCKETS 16
3282 #define CHAIN_BLK_FLAG (1U << 15)
3283 #define CHAIN_BLK_LIST_END 0xFFFFU
3284
3285 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3286
size_to_bucket(int size)3287 static inline int size_to_bucket(int size)
3288 {
3289 if (size > MAX_CHAIN_BUCKETS)
3290 return 0;
3291
3292 return size - 1;
3293 }
3294
3295 /*
3296 * Iterate all the chain blocks in a bucket.
3297 */
3298 #define for_each_chain_block(bucket, prev, curr) \
3299 for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \
3300 (curr) >= 0; \
3301 (prev) = (curr), (curr) = chain_block_next(curr))
3302
3303 /*
3304 * next block or -1
3305 */
chain_block_next(int offset)3306 static inline int chain_block_next(int offset)
3307 {
3308 int next = chain_hlocks[offset];
3309
3310 WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3311
3312 if (next == CHAIN_BLK_LIST_END)
3313 return -1;
3314
3315 next &= ~CHAIN_BLK_FLAG;
3316 next <<= 16;
3317 next |= chain_hlocks[offset + 1];
3318
3319 return next;
3320 }
3321
3322 /*
3323 * bucket-0 only
3324 */
chain_block_size(int offset)3325 static inline int chain_block_size(int offset)
3326 {
3327 return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3328 }
3329
init_chain_block(int offset,int next,int bucket,int size)3330 static inline void init_chain_block(int offset, int next, int bucket, int size)
3331 {
3332 chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3333 chain_hlocks[offset + 1] = (u16)next;
3334
3335 if (size && !bucket) {
3336 chain_hlocks[offset + 2] = size >> 16;
3337 chain_hlocks[offset + 3] = (u16)size;
3338 }
3339 }
3340
add_chain_block(int offset,int size)3341 static inline void add_chain_block(int offset, int size)
3342 {
3343 int bucket = size_to_bucket(size);
3344 int next = chain_block_buckets[bucket];
3345 int prev, curr;
3346
3347 if (unlikely(size < 2)) {
3348 /*
3349 * We can't store single entries on the freelist. Leak them.
3350 *
3351 * One possible way out would be to uniquely mark them, other
3352 * than with CHAIN_BLK_FLAG, such that we can recover them when
3353 * the block before it is re-added.
3354 */
3355 if (size)
3356 nr_lost_chain_hlocks++;
3357 return;
3358 }
3359
3360 nr_free_chain_hlocks += size;
3361 if (!bucket) {
3362 nr_large_chain_blocks++;
3363
3364 /*
3365 * Variable sized, sort large to small.
3366 */
3367 for_each_chain_block(0, prev, curr) {
3368 if (size >= chain_block_size(curr))
3369 break;
3370 }
3371 init_chain_block(offset, curr, 0, size);
3372 if (prev < 0)
3373 chain_block_buckets[0] = offset;
3374 else
3375 init_chain_block(prev, offset, 0, 0);
3376 return;
3377 }
3378 /*
3379 * Fixed size, add to head.
3380 */
3381 init_chain_block(offset, next, bucket, size);
3382 chain_block_buckets[bucket] = offset;
3383 }
3384
3385 /*
3386 * Only the first block in the list can be deleted.
3387 *
3388 * For the variable size bucket[0], the first block (the largest one) is
3389 * returned, broken up and put back into the pool. So if a chain block of
3390 * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3391 * queued up after the primordial chain block and never be used until the
3392 * hlock entries in the primordial chain block is almost used up. That
3393 * causes fragmentation and reduce allocation efficiency. That can be
3394 * monitored by looking at the "large chain blocks" number in lockdep_stats.
3395 */
del_chain_block(int bucket,int size,int next)3396 static inline void del_chain_block(int bucket, int size, int next)
3397 {
3398 nr_free_chain_hlocks -= size;
3399 chain_block_buckets[bucket] = next;
3400
3401 if (!bucket)
3402 nr_large_chain_blocks--;
3403 }
3404
init_chain_block_buckets(void)3405 static void init_chain_block_buckets(void)
3406 {
3407 int i;
3408
3409 for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3410 chain_block_buckets[i] = -1;
3411
3412 add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3413 }
3414
3415 /*
3416 * Return offset of a chain block of the right size or -1 if not found.
3417 *
3418 * Fairly simple worst-fit allocator with the addition of a number of size
3419 * specific free lists.
3420 */
alloc_chain_hlocks(int req)3421 static int alloc_chain_hlocks(int req)
3422 {
3423 int bucket, curr, size;
3424
3425 /*
3426 * We rely on the MSB to act as an escape bit to denote freelist
3427 * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3428 */
3429 BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3430
3431 init_data_structures_once();
3432
3433 if (nr_free_chain_hlocks < req)
3434 return -1;
3435
3436 /*
3437 * We require a minimum of 2 (u16) entries to encode a freelist
3438 * 'pointer'.
3439 */
3440 req = max(req, 2);
3441 bucket = size_to_bucket(req);
3442 curr = chain_block_buckets[bucket];
3443
3444 if (bucket) {
3445 if (curr >= 0) {
3446 del_chain_block(bucket, req, chain_block_next(curr));
3447 return curr;
3448 }
3449 /* Try bucket 0 */
3450 curr = chain_block_buckets[0];
3451 }
3452
3453 /*
3454 * The variable sized freelist is sorted by size; the first entry is
3455 * the largest. Use it if it fits.
3456 */
3457 if (curr >= 0) {
3458 size = chain_block_size(curr);
3459 if (likely(size >= req)) {
3460 del_chain_block(0, size, chain_block_next(curr));
3461 add_chain_block(curr + req, size - req);
3462 return curr;
3463 }
3464 }
3465
3466 /*
3467 * Last resort, split a block in a larger sized bucket.
3468 */
3469 for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3470 bucket = size_to_bucket(size);
3471 curr = chain_block_buckets[bucket];
3472 if (curr < 0)
3473 continue;
3474
3475 del_chain_block(bucket, size, chain_block_next(curr));
3476 add_chain_block(curr + req, size - req);
3477 return curr;
3478 }
3479
3480 return -1;
3481 }
3482
free_chain_hlocks(int base,int size)3483 static inline void free_chain_hlocks(int base, int size)
3484 {
3485 add_chain_block(base, max(size, 2));
3486 }
3487
lock_chain_get_class(struct lock_chain * chain,int i)3488 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3489 {
3490 u16 chain_hlock = chain_hlocks[chain->base + i];
3491 unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3492
3493 return lock_classes + class_idx;
3494 }
3495
3496 /*
3497 * Returns the index of the first held_lock of the current chain
3498 */
get_first_held_lock(struct task_struct * curr,struct held_lock * hlock)3499 static inline int get_first_held_lock(struct task_struct *curr,
3500 struct held_lock *hlock)
3501 {
3502 int i;
3503 struct held_lock *hlock_curr;
3504
3505 for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3506 hlock_curr = curr->held_locks + i;
3507 if (hlock_curr->irq_context != hlock->irq_context)
3508 break;
3509
3510 }
3511
3512 return ++i;
3513 }
3514
3515 #ifdef CONFIG_DEBUG_LOCKDEP
3516 /*
3517 * Returns the next chain_key iteration
3518 */
print_chain_key_iteration(u16 hlock_id,u64 chain_key)3519 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3520 {
3521 u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3522
3523 printk(" hlock_id:%d -> chain_key:%016Lx",
3524 (unsigned int)hlock_id,
3525 (unsigned long long)new_chain_key);
3526 return new_chain_key;
3527 }
3528
3529 static void
print_chain_keys_held_locks(struct task_struct * curr,struct held_lock * hlock_next)3530 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3531 {
3532 struct held_lock *hlock;
3533 u64 chain_key = INITIAL_CHAIN_KEY;
3534 int depth = curr->lockdep_depth;
3535 int i = get_first_held_lock(curr, hlock_next);
3536
3537 printk("depth: %u (irq_context %u)\n", depth - i + 1,
3538 hlock_next->irq_context);
3539 for (; i < depth; i++) {
3540 hlock = curr->held_locks + i;
3541 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3542
3543 print_lock(hlock);
3544 }
3545
3546 print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3547 print_lock(hlock_next);
3548 }
3549
print_chain_keys_chain(struct lock_chain * chain)3550 static void print_chain_keys_chain(struct lock_chain *chain)
3551 {
3552 int i;
3553 u64 chain_key = INITIAL_CHAIN_KEY;
3554 u16 hlock_id;
3555
3556 printk("depth: %u\n", chain->depth);
3557 for (i = 0; i < chain->depth; i++) {
3558 hlock_id = chain_hlocks[chain->base + i];
3559 chain_key = print_chain_key_iteration(hlock_id, chain_key);
3560
3561 print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id));
3562 printk("\n");
3563 }
3564 }
3565
print_collision(struct task_struct * curr,struct held_lock * hlock_next,struct lock_chain * chain)3566 static void print_collision(struct task_struct *curr,
3567 struct held_lock *hlock_next,
3568 struct lock_chain *chain)
3569 {
3570 pr_warn("\n");
3571 pr_warn("============================\n");
3572 pr_warn("WARNING: chain_key collision\n");
3573 print_kernel_ident();
3574 pr_warn("----------------------------\n");
3575 pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3576 pr_warn("Hash chain already cached but the contents don't match!\n");
3577
3578 pr_warn("Held locks:");
3579 print_chain_keys_held_locks(curr, hlock_next);
3580
3581 pr_warn("Locks in cached chain:");
3582 print_chain_keys_chain(chain);
3583
3584 pr_warn("\nstack backtrace:\n");
3585 dump_stack();
3586 }
3587 #endif
3588
3589 /*
3590 * Checks whether the chain and the current held locks are consistent
3591 * in depth and also in content. If they are not it most likely means
3592 * that there was a collision during the calculation of the chain_key.
3593 * Returns: 0 not passed, 1 passed
3594 */
check_no_collision(struct task_struct * curr,struct held_lock * hlock,struct lock_chain * chain)3595 static int check_no_collision(struct task_struct *curr,
3596 struct held_lock *hlock,
3597 struct lock_chain *chain)
3598 {
3599 #ifdef CONFIG_DEBUG_LOCKDEP
3600 int i, j, id;
3601
3602 i = get_first_held_lock(curr, hlock);
3603
3604 if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3605 print_collision(curr, hlock, chain);
3606 return 0;
3607 }
3608
3609 for (j = 0; j < chain->depth - 1; j++, i++) {
3610 id = hlock_id(&curr->held_locks[i]);
3611
3612 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3613 print_collision(curr, hlock, chain);
3614 return 0;
3615 }
3616 }
3617 #endif
3618 return 1;
3619 }
3620
3621 /*
3622 * Given an index that is >= -1, return the index of the next lock chain.
3623 * Return -2 if there is no next lock chain.
3624 */
lockdep_next_lockchain(long i)3625 long lockdep_next_lockchain(long i)
3626 {
3627 i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3628 return i < ARRAY_SIZE(lock_chains) ? i : -2;
3629 }
3630
lock_chain_count(void)3631 unsigned long lock_chain_count(void)
3632 {
3633 return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3634 }
3635
3636 /* Must be called with the graph lock held. */
alloc_lock_chain(void)3637 static struct lock_chain *alloc_lock_chain(void)
3638 {
3639 int idx = find_first_zero_bit(lock_chains_in_use,
3640 ARRAY_SIZE(lock_chains));
3641
3642 if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3643 return NULL;
3644 __set_bit(idx, lock_chains_in_use);
3645 return lock_chains + idx;
3646 }
3647
3648 /*
3649 * Adds a dependency chain into chain hashtable. And must be called with
3650 * graph_lock held.
3651 *
3652 * Return 0 if fail, and graph_lock is released.
3653 * Return 1 if succeed, with graph_lock held.
3654 */
add_chain_cache(struct task_struct * curr,struct held_lock * hlock,u64 chain_key)3655 static inline int add_chain_cache(struct task_struct *curr,
3656 struct held_lock *hlock,
3657 u64 chain_key)
3658 {
3659 struct hlist_head *hash_head = chainhashentry(chain_key);
3660 struct lock_chain *chain;
3661 int i, j;
3662
3663 /*
3664 * The caller must hold the graph lock, ensure we've got IRQs
3665 * disabled to make this an IRQ-safe lock.. for recursion reasons
3666 * lockdep won't complain about its own locking errors.
3667 */
3668 if (lockdep_assert_locked())
3669 return 0;
3670
3671 chain = alloc_lock_chain();
3672 if (!chain) {
3673 if (!debug_locks_off_graph_unlock())
3674 return 0;
3675
3676 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3677 dump_stack();
3678 return 0;
3679 }
3680 chain->chain_key = chain_key;
3681 chain->irq_context = hlock->irq_context;
3682 i = get_first_held_lock(curr, hlock);
3683 chain->depth = curr->lockdep_depth + 1 - i;
3684
3685 BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3686 BUILD_BUG_ON((1UL << 6) <= ARRAY_SIZE(curr->held_locks));
3687 BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3688
3689 j = alloc_chain_hlocks(chain->depth);
3690 if (j < 0) {
3691 if (!debug_locks_off_graph_unlock())
3692 return 0;
3693
3694 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3695 dump_stack();
3696 return 0;
3697 }
3698
3699 chain->base = j;
3700 for (j = 0; j < chain->depth - 1; j++, i++) {
3701 int lock_id = hlock_id(curr->held_locks + i);
3702
3703 chain_hlocks[chain->base + j] = lock_id;
3704 }
3705 chain_hlocks[chain->base + j] = hlock_id(hlock);
3706 hlist_add_head_rcu(&chain->entry, hash_head);
3707 debug_atomic_inc(chain_lookup_misses);
3708 inc_chains(chain->irq_context);
3709
3710 return 1;
3711 }
3712
3713 /*
3714 * Look up a dependency chain. Must be called with either the graph lock or
3715 * the RCU read lock held.
3716 */
lookup_chain_cache(u64 chain_key)3717 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3718 {
3719 struct hlist_head *hash_head = chainhashentry(chain_key);
3720 struct lock_chain *chain;
3721
3722 hlist_for_each_entry_rcu(chain, hash_head, entry) {
3723 if (READ_ONCE(chain->chain_key) == chain_key) {
3724 debug_atomic_inc(chain_lookup_hits);
3725 return chain;
3726 }
3727 }
3728 return NULL;
3729 }
3730
3731 /*
3732 * If the key is not present yet in dependency chain cache then
3733 * add it and return 1 - in this case the new dependency chain is
3734 * validated. If the key is already hashed, return 0.
3735 * (On return with 1 graph_lock is held.)
3736 */
lookup_chain_cache_add(struct task_struct * curr,struct held_lock * hlock,u64 chain_key)3737 static inline int lookup_chain_cache_add(struct task_struct *curr,
3738 struct held_lock *hlock,
3739 u64 chain_key)
3740 {
3741 struct lock_class *class = hlock_class(hlock);
3742 struct lock_chain *chain = lookup_chain_cache(chain_key);
3743
3744 if (chain) {
3745 cache_hit:
3746 if (!check_no_collision(curr, hlock, chain))
3747 return 0;
3748
3749 if (very_verbose(class)) {
3750 printk("\nhash chain already cached, key: "
3751 "%016Lx tail class: [%px] %s\n",
3752 (unsigned long long)chain_key,
3753 class->key, class->name);
3754 }
3755
3756 return 0;
3757 }
3758
3759 if (very_verbose(class)) {
3760 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3761 (unsigned long long)chain_key, class->key, class->name);
3762 }
3763
3764 if (!graph_lock())
3765 return 0;
3766
3767 /*
3768 * We have to walk the chain again locked - to avoid duplicates:
3769 */
3770 chain = lookup_chain_cache(chain_key);
3771 if (chain) {
3772 graph_unlock();
3773 goto cache_hit;
3774 }
3775
3776 if (!add_chain_cache(curr, hlock, chain_key))
3777 return 0;
3778
3779 return 1;
3780 }
3781
validate_chain(struct task_struct * curr,struct held_lock * hlock,int chain_head,u64 chain_key)3782 static int validate_chain(struct task_struct *curr,
3783 struct held_lock *hlock,
3784 int chain_head, u64 chain_key)
3785 {
3786 /*
3787 * Trylock needs to maintain the stack of held locks, but it
3788 * does not add new dependencies, because trylock can be done
3789 * in any order.
3790 *
3791 * We look up the chain_key and do the O(N^2) check and update of
3792 * the dependencies only if this is a new dependency chain.
3793 * (If lookup_chain_cache_add() return with 1 it acquires
3794 * graph_lock for us)
3795 */
3796 if (!hlock->trylock && hlock->check &&
3797 lookup_chain_cache_add(curr, hlock, chain_key)) {
3798 /*
3799 * Check whether last held lock:
3800 *
3801 * - is irq-safe, if this lock is irq-unsafe
3802 * - is softirq-safe, if this lock is hardirq-unsafe
3803 *
3804 * And check whether the new lock's dependency graph
3805 * could lead back to the previous lock:
3806 *
3807 * - within the current held-lock stack
3808 * - across our accumulated lock dependency records
3809 *
3810 * any of these scenarios could lead to a deadlock.
3811 */
3812 /*
3813 * The simple case: does the current hold the same lock
3814 * already?
3815 */
3816 int ret = check_deadlock(curr, hlock);
3817
3818 if (!ret)
3819 return 0;
3820 /*
3821 * Add dependency only if this lock is not the head
3822 * of the chain, and if the new lock introduces no more
3823 * lock dependency (because we already hold a lock with the
3824 * same lock class) nor deadlock (because the nest_lock
3825 * serializes nesting locks), see the comments for
3826 * check_deadlock().
3827 */
3828 if (!chain_head && ret != 2) {
3829 if (!check_prevs_add(curr, hlock))
3830 return 0;
3831 }
3832
3833 graph_unlock();
3834 } else {
3835 /* after lookup_chain_cache_add(): */
3836 if (unlikely(!debug_locks))
3837 return 0;
3838 }
3839
3840 return 1;
3841 }
3842 #else
validate_chain(struct task_struct * curr,struct held_lock * hlock,int chain_head,u64 chain_key)3843 static inline int validate_chain(struct task_struct *curr,
3844 struct held_lock *hlock,
3845 int chain_head, u64 chain_key)
3846 {
3847 return 1;
3848 }
3849
init_chain_block_buckets(void)3850 static void init_chain_block_buckets(void) { }
3851 #endif /* CONFIG_PROVE_LOCKING */
3852
3853 /*
3854 * We are building curr_chain_key incrementally, so double-check
3855 * it from scratch, to make sure that it's done correctly:
3856 */
check_chain_key(struct task_struct * curr)3857 static void check_chain_key(struct task_struct *curr)
3858 {
3859 #ifdef CONFIG_DEBUG_LOCKDEP
3860 struct held_lock *hlock, *prev_hlock = NULL;
3861 unsigned int i;
3862 u64 chain_key = INITIAL_CHAIN_KEY;
3863
3864 for (i = 0; i < curr->lockdep_depth; i++) {
3865 hlock = curr->held_locks + i;
3866 if (chain_key != hlock->prev_chain_key) {
3867 debug_locks_off();
3868 /*
3869 * We got mighty confused, our chain keys don't match
3870 * with what we expect, someone trample on our task state?
3871 */
3872 WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3873 curr->lockdep_depth, i,
3874 (unsigned long long)chain_key,
3875 (unsigned long long)hlock->prev_chain_key);
3876 return;
3877 }
3878
3879 /*
3880 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3881 * it registered lock class index?
3882 */
3883 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3884 return;
3885
3886 if (prev_hlock && (prev_hlock->irq_context !=
3887 hlock->irq_context))
3888 chain_key = INITIAL_CHAIN_KEY;
3889 chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3890 prev_hlock = hlock;
3891 }
3892 if (chain_key != curr->curr_chain_key) {
3893 debug_locks_off();
3894 /*
3895 * More smoking hash instead of calculating it, damn see these
3896 * numbers float.. I bet that a pink elephant stepped on my memory.
3897 */
3898 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3899 curr->lockdep_depth, i,
3900 (unsigned long long)chain_key,
3901 (unsigned long long)curr->curr_chain_key);
3902 }
3903 #endif
3904 }
3905
3906 #ifdef CONFIG_PROVE_LOCKING
3907 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3908 enum lock_usage_bit new_bit);
3909
print_usage_bug_scenario(struct held_lock * lock)3910 static void print_usage_bug_scenario(struct held_lock *lock)
3911 {
3912 struct lock_class *class = hlock_class(lock);
3913
3914 printk(" Possible unsafe locking scenario:\n\n");
3915 printk(" CPU0\n");
3916 printk(" ----\n");
3917 printk(" lock(");
3918 __print_lock_name(class);
3919 printk(KERN_CONT ");\n");
3920 printk(" <Interrupt>\n");
3921 printk(" lock(");
3922 __print_lock_name(class);
3923 printk(KERN_CONT ");\n");
3924 printk("\n *** DEADLOCK ***\n\n");
3925 }
3926
3927 static void
print_usage_bug(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit prev_bit,enum lock_usage_bit new_bit)3928 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3929 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3930 {
3931 if (!debug_locks_off() || debug_locks_silent)
3932 return;
3933
3934 pr_warn("\n");
3935 pr_warn("================================\n");
3936 pr_warn("WARNING: inconsistent lock state\n");
3937 print_kernel_ident();
3938 pr_warn("--------------------------------\n");
3939
3940 pr_warn("inconsistent {%s} -> {%s} usage.\n",
3941 usage_str[prev_bit], usage_str[new_bit]);
3942
3943 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3944 curr->comm, task_pid_nr(curr),
3945 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3946 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3947 lockdep_hardirqs_enabled(),
3948 lockdep_softirqs_enabled(curr));
3949 print_lock(this);
3950
3951 pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3952 print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3953
3954 print_irqtrace_events(curr);
3955 pr_warn("\nother info that might help us debug this:\n");
3956 print_usage_bug_scenario(this);
3957
3958 lockdep_print_held_locks(curr);
3959
3960 pr_warn("\nstack backtrace:\n");
3961 dump_stack();
3962 }
3963
3964 /*
3965 * Print out an error if an invalid bit is set:
3966 */
3967 static inline int
valid_state(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit,enum lock_usage_bit bad_bit)3968 valid_state(struct task_struct *curr, struct held_lock *this,
3969 enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3970 {
3971 if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3972 graph_unlock();
3973 print_usage_bug(curr, this, bad_bit, new_bit);
3974 return 0;
3975 }
3976 return 1;
3977 }
3978
3979
3980 /*
3981 * print irq inversion bug:
3982 */
3983 static void
print_irq_inversion_bug(struct task_struct * curr,struct lock_list * root,struct lock_list * other,struct held_lock * this,int forwards,const char * irqclass)3984 print_irq_inversion_bug(struct task_struct *curr,
3985 struct lock_list *root, struct lock_list *other,
3986 struct held_lock *this, int forwards,
3987 const char *irqclass)
3988 {
3989 struct lock_list *entry = other;
3990 struct lock_list *middle = NULL;
3991 int depth;
3992
3993 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3994 return;
3995
3996 pr_warn("\n");
3997 pr_warn("========================================================\n");
3998 pr_warn("WARNING: possible irq lock inversion dependency detected\n");
3999 print_kernel_ident();
4000 pr_warn("--------------------------------------------------------\n");
4001 pr_warn("%s/%d just changed the state of lock:\n",
4002 curr->comm, task_pid_nr(curr));
4003 print_lock(this);
4004 if (forwards)
4005 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
4006 else
4007 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
4008 print_lock_name(other->class);
4009 pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
4010
4011 pr_warn("\nother info that might help us debug this:\n");
4012
4013 /* Find a middle lock (if one exists) */
4014 depth = get_lock_depth(other);
4015 do {
4016 if (depth == 0 && (entry != root)) {
4017 pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
4018 break;
4019 }
4020 middle = entry;
4021 entry = get_lock_parent(entry);
4022 depth--;
4023 } while (entry && entry != root && (depth >= 0));
4024 if (forwards)
4025 print_irq_lock_scenario(root, other,
4026 middle ? middle->class : root->class, other->class);
4027 else
4028 print_irq_lock_scenario(other, root,
4029 middle ? middle->class : other->class, root->class);
4030
4031 lockdep_print_held_locks(curr);
4032
4033 pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
4034 root->trace = save_trace();
4035 if (!root->trace)
4036 return;
4037 print_shortest_lock_dependencies(other, root);
4038
4039 pr_warn("\nstack backtrace:\n");
4040 dump_stack();
4041 }
4042
4043 /*
4044 * Prove that in the forwards-direction subgraph starting at <this>
4045 * there is no lock matching <mask>:
4046 */
4047 static int
check_usage_forwards(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit bit)4048 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
4049 enum lock_usage_bit bit)
4050 {
4051 enum bfs_result ret;
4052 struct lock_list root;
4053 struct lock_list *target_entry;
4054 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4055 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4056
4057 bfs_init_root(&root, this);
4058 ret = find_usage_forwards(&root, usage_mask, &target_entry);
4059 if (bfs_error(ret)) {
4060 print_bfs_bug(ret);
4061 return 0;
4062 }
4063 if (ret == BFS_RNOMATCH)
4064 return 1;
4065
4066 /* Check whether write or read usage is the match */
4067 if (target_entry->class->usage_mask & lock_flag(bit)) {
4068 print_irq_inversion_bug(curr, &root, target_entry,
4069 this, 1, state_name(bit));
4070 } else {
4071 print_irq_inversion_bug(curr, &root, target_entry,
4072 this, 1, state_name(read_bit));
4073 }
4074
4075 return 0;
4076 }
4077
4078 /*
4079 * Prove that in the backwards-direction subgraph starting at <this>
4080 * there is no lock matching <mask>:
4081 */
4082 static int
check_usage_backwards(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit bit)4083 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
4084 enum lock_usage_bit bit)
4085 {
4086 enum bfs_result ret;
4087 struct lock_list root;
4088 struct lock_list *target_entry;
4089 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4090 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4091
4092 bfs_init_rootb(&root, this);
4093 ret = find_usage_backwards(&root, usage_mask, &target_entry);
4094 if (bfs_error(ret)) {
4095 print_bfs_bug(ret);
4096 return 0;
4097 }
4098 if (ret == BFS_RNOMATCH)
4099 return 1;
4100
4101 /* Check whether write or read usage is the match */
4102 if (target_entry->class->usage_mask & lock_flag(bit)) {
4103 print_irq_inversion_bug(curr, &root, target_entry,
4104 this, 0, state_name(bit));
4105 } else {
4106 print_irq_inversion_bug(curr, &root, target_entry,
4107 this, 0, state_name(read_bit));
4108 }
4109
4110 return 0;
4111 }
4112
print_irqtrace_events(struct task_struct * curr)4113 void print_irqtrace_events(struct task_struct *curr)
4114 {
4115 const struct irqtrace_events *trace = &curr->irqtrace;
4116
4117 printk("irq event stamp: %u\n", trace->irq_events);
4118 printk("hardirqs last enabled at (%u): [<%px>] %pS\n",
4119 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
4120 (void *)trace->hardirq_enable_ip);
4121 printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
4122 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
4123 (void *)trace->hardirq_disable_ip);
4124 printk("softirqs last enabled at (%u): [<%px>] %pS\n",
4125 trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
4126 (void *)trace->softirq_enable_ip);
4127 printk("softirqs last disabled at (%u): [<%px>] %pS\n",
4128 trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
4129 (void *)trace->softirq_disable_ip);
4130 }
4131
HARDIRQ_verbose(struct lock_class * class)4132 static int HARDIRQ_verbose(struct lock_class *class)
4133 {
4134 #if HARDIRQ_VERBOSE
4135 return class_filter(class);
4136 #endif
4137 return 0;
4138 }
4139
SOFTIRQ_verbose(struct lock_class * class)4140 static int SOFTIRQ_verbose(struct lock_class *class)
4141 {
4142 #if SOFTIRQ_VERBOSE
4143 return class_filter(class);
4144 #endif
4145 return 0;
4146 }
4147
4148 static int (*state_verbose_f[])(struct lock_class *class) = {
4149 #define LOCKDEP_STATE(__STATE) \
4150 __STATE##_verbose,
4151 #include "lockdep_states.h"
4152 #undef LOCKDEP_STATE
4153 };
4154
state_verbose(enum lock_usage_bit bit,struct lock_class * class)4155 static inline int state_verbose(enum lock_usage_bit bit,
4156 struct lock_class *class)
4157 {
4158 return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4159 }
4160
4161 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4162 enum lock_usage_bit bit, const char *name);
4163
4164 static int
mark_lock_irq(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit)4165 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4166 enum lock_usage_bit new_bit)
4167 {
4168 int excl_bit = exclusive_bit(new_bit);
4169 int read = new_bit & LOCK_USAGE_READ_MASK;
4170 int dir = new_bit & LOCK_USAGE_DIR_MASK;
4171
4172 /*
4173 * Validate that this particular lock does not have conflicting
4174 * usage states.
4175 */
4176 if (!valid_state(curr, this, new_bit, excl_bit))
4177 return 0;
4178
4179 /*
4180 * Check for read in write conflicts
4181 */
4182 if (!read && !valid_state(curr, this, new_bit,
4183 excl_bit + LOCK_USAGE_READ_MASK))
4184 return 0;
4185
4186
4187 /*
4188 * Validate that the lock dependencies don't have conflicting usage
4189 * states.
4190 */
4191 if (dir) {
4192 /*
4193 * mark ENABLED has to look backwards -- to ensure no dependee
4194 * has USED_IN state, which, again, would allow recursion deadlocks.
4195 */
4196 if (!check_usage_backwards(curr, this, excl_bit))
4197 return 0;
4198 } else {
4199 /*
4200 * mark USED_IN has to look forwards -- to ensure no dependency
4201 * has ENABLED state, which would allow recursion deadlocks.
4202 */
4203 if (!check_usage_forwards(curr, this, excl_bit))
4204 return 0;
4205 }
4206
4207 if (state_verbose(new_bit, hlock_class(this)))
4208 return 2;
4209
4210 return 1;
4211 }
4212
4213 /*
4214 * Mark all held locks with a usage bit:
4215 */
4216 static int
mark_held_locks(struct task_struct * curr,enum lock_usage_bit base_bit)4217 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4218 {
4219 struct held_lock *hlock;
4220 int i;
4221
4222 for (i = 0; i < curr->lockdep_depth; i++) {
4223 enum lock_usage_bit hlock_bit = base_bit;
4224 hlock = curr->held_locks + i;
4225
4226 if (hlock->read)
4227 hlock_bit += LOCK_USAGE_READ_MASK;
4228
4229 BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4230
4231 if (!hlock->check)
4232 continue;
4233
4234 if (!mark_lock(curr, hlock, hlock_bit))
4235 return 0;
4236 }
4237
4238 return 1;
4239 }
4240
4241 /*
4242 * Hardirqs will be enabled:
4243 */
__trace_hardirqs_on_caller(void)4244 static void __trace_hardirqs_on_caller(void)
4245 {
4246 struct task_struct *curr = current;
4247
4248 /*
4249 * We are going to turn hardirqs on, so set the
4250 * usage bit for all held locks:
4251 */
4252 if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4253 return;
4254 /*
4255 * If we have softirqs enabled, then set the usage
4256 * bit for all held locks. (disabled hardirqs prevented
4257 * this bit from being set before)
4258 */
4259 if (curr->softirqs_enabled)
4260 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4261 }
4262
4263 /**
4264 * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4265 *
4266 * Invoked before a possible transition to RCU idle from exit to user or
4267 * guest mode. This ensures that all RCU operations are done before RCU
4268 * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4269 * invoked to set the final state.
4270 */
lockdep_hardirqs_on_prepare(void)4271 void lockdep_hardirqs_on_prepare(void)
4272 {
4273 if (unlikely(!debug_locks))
4274 return;
4275
4276 /*
4277 * NMIs do not (and cannot) track lock dependencies, nothing to do.
4278 */
4279 if (unlikely(in_nmi()))
4280 return;
4281
4282 if (unlikely(this_cpu_read(lockdep_recursion)))
4283 return;
4284
4285 if (unlikely(lockdep_hardirqs_enabled())) {
4286 /*
4287 * Neither irq nor preemption are disabled here
4288 * so this is racy by nature but losing one hit
4289 * in a stat is not a big deal.
4290 */
4291 __debug_atomic_inc(redundant_hardirqs_on);
4292 return;
4293 }
4294
4295 /*
4296 * We're enabling irqs and according to our state above irqs weren't
4297 * already enabled, yet we find the hardware thinks they are in fact
4298 * enabled.. someone messed up their IRQ state tracing.
4299 */
4300 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4301 return;
4302
4303 /*
4304 * See the fine text that goes along with this variable definition.
4305 */
4306 if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4307 return;
4308
4309 /*
4310 * Can't allow enabling interrupts while in an interrupt handler,
4311 * that's general bad form and such. Recursion, limited stack etc..
4312 */
4313 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4314 return;
4315
4316 current->hardirq_chain_key = current->curr_chain_key;
4317
4318 lockdep_recursion_inc();
4319 __trace_hardirqs_on_caller();
4320 lockdep_recursion_finish();
4321 }
4322 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4323
lockdep_hardirqs_on(unsigned long ip)4324 void noinstr lockdep_hardirqs_on(unsigned long ip)
4325 {
4326 struct irqtrace_events *trace = ¤t->irqtrace;
4327
4328 if (unlikely(!debug_locks))
4329 return;
4330
4331 /*
4332 * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4333 * tracking state and hardware state are out of sync.
4334 *
4335 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4336 * and not rely on hardware state like normal interrupts.
4337 */
4338 if (unlikely(in_nmi())) {
4339 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4340 return;
4341
4342 /*
4343 * Skip:
4344 * - recursion check, because NMI can hit lockdep;
4345 * - hardware state check, because above;
4346 * - chain_key check, see lockdep_hardirqs_on_prepare().
4347 */
4348 goto skip_checks;
4349 }
4350
4351 if (unlikely(this_cpu_read(lockdep_recursion)))
4352 return;
4353
4354 if (lockdep_hardirqs_enabled()) {
4355 /*
4356 * Neither irq nor preemption are disabled here
4357 * so this is racy by nature but losing one hit
4358 * in a stat is not a big deal.
4359 */
4360 __debug_atomic_inc(redundant_hardirqs_on);
4361 return;
4362 }
4363
4364 /*
4365 * We're enabling irqs and according to our state above irqs weren't
4366 * already enabled, yet we find the hardware thinks they are in fact
4367 * enabled.. someone messed up their IRQ state tracing.
4368 */
4369 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4370 return;
4371
4372 /*
4373 * Ensure the lock stack remained unchanged between
4374 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4375 */
4376 DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4377 current->curr_chain_key);
4378
4379 skip_checks:
4380 /* we'll do an OFF -> ON transition: */
4381 __this_cpu_write(hardirqs_enabled, 1);
4382 trace->hardirq_enable_ip = ip;
4383 trace->hardirq_enable_event = ++trace->irq_events;
4384 debug_atomic_inc(hardirqs_on_events);
4385 }
4386 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4387
4388 /*
4389 * Hardirqs were disabled:
4390 */
lockdep_hardirqs_off(unsigned long ip)4391 void noinstr lockdep_hardirqs_off(unsigned long ip)
4392 {
4393 if (unlikely(!debug_locks))
4394 return;
4395
4396 /*
4397 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4398 * they will restore the software state. This ensures the software
4399 * state is consistent inside NMIs as well.
4400 */
4401 if (in_nmi()) {
4402 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4403 return;
4404 } else if (__this_cpu_read(lockdep_recursion))
4405 return;
4406
4407 /*
4408 * So we're supposed to get called after you mask local IRQs, but for
4409 * some reason the hardware doesn't quite think you did a proper job.
4410 */
4411 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4412 return;
4413
4414 if (lockdep_hardirqs_enabled()) {
4415 struct irqtrace_events *trace = ¤t->irqtrace;
4416
4417 /*
4418 * We have done an ON -> OFF transition:
4419 */
4420 __this_cpu_write(hardirqs_enabled, 0);
4421 trace->hardirq_disable_ip = ip;
4422 trace->hardirq_disable_event = ++trace->irq_events;
4423 debug_atomic_inc(hardirqs_off_events);
4424 } else {
4425 debug_atomic_inc(redundant_hardirqs_off);
4426 }
4427 }
4428 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4429
4430 /*
4431 * Softirqs will be enabled:
4432 */
lockdep_softirqs_on(unsigned long ip)4433 void lockdep_softirqs_on(unsigned long ip)
4434 {
4435 struct irqtrace_events *trace = ¤t->irqtrace;
4436
4437 if (unlikely(!lockdep_enabled()))
4438 return;
4439
4440 /*
4441 * We fancy IRQs being disabled here, see softirq.c, avoids
4442 * funny state and nesting things.
4443 */
4444 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4445 return;
4446
4447 if (current->softirqs_enabled) {
4448 debug_atomic_inc(redundant_softirqs_on);
4449 return;
4450 }
4451
4452 lockdep_recursion_inc();
4453 /*
4454 * We'll do an OFF -> ON transition:
4455 */
4456 current->softirqs_enabled = 1;
4457 trace->softirq_enable_ip = ip;
4458 trace->softirq_enable_event = ++trace->irq_events;
4459 debug_atomic_inc(softirqs_on_events);
4460 /*
4461 * We are going to turn softirqs on, so set the
4462 * usage bit for all held locks, if hardirqs are
4463 * enabled too:
4464 */
4465 if (lockdep_hardirqs_enabled())
4466 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4467 lockdep_recursion_finish();
4468 }
4469
4470 /*
4471 * Softirqs were disabled:
4472 */
lockdep_softirqs_off(unsigned long ip)4473 void lockdep_softirqs_off(unsigned long ip)
4474 {
4475 if (unlikely(!lockdep_enabled()))
4476 return;
4477
4478 /*
4479 * We fancy IRQs being disabled here, see softirq.c
4480 */
4481 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4482 return;
4483
4484 if (current->softirqs_enabled) {
4485 struct irqtrace_events *trace = ¤t->irqtrace;
4486
4487 /*
4488 * We have done an ON -> OFF transition:
4489 */
4490 current->softirqs_enabled = 0;
4491 trace->softirq_disable_ip = ip;
4492 trace->softirq_disable_event = ++trace->irq_events;
4493 debug_atomic_inc(softirqs_off_events);
4494 /*
4495 * Whoops, we wanted softirqs off, so why aren't they?
4496 */
4497 DEBUG_LOCKS_WARN_ON(!softirq_count());
4498 } else
4499 debug_atomic_inc(redundant_softirqs_off);
4500 }
4501
4502 static int
mark_usage(struct task_struct * curr,struct held_lock * hlock,int check)4503 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4504 {
4505 if (!check)
4506 goto lock_used;
4507
4508 /*
4509 * If non-trylock use in a hardirq or softirq context, then
4510 * mark the lock as used in these contexts:
4511 */
4512 if (!hlock->trylock) {
4513 if (hlock->read) {
4514 if (lockdep_hardirq_context())
4515 if (!mark_lock(curr, hlock,
4516 LOCK_USED_IN_HARDIRQ_READ))
4517 return 0;
4518 if (curr->softirq_context)
4519 if (!mark_lock(curr, hlock,
4520 LOCK_USED_IN_SOFTIRQ_READ))
4521 return 0;
4522 } else {
4523 if (lockdep_hardirq_context())
4524 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4525 return 0;
4526 if (curr->softirq_context)
4527 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4528 return 0;
4529 }
4530 }
4531 if (!hlock->hardirqs_off) {
4532 if (hlock->read) {
4533 if (!mark_lock(curr, hlock,
4534 LOCK_ENABLED_HARDIRQ_READ))
4535 return 0;
4536 if (curr->softirqs_enabled)
4537 if (!mark_lock(curr, hlock,
4538 LOCK_ENABLED_SOFTIRQ_READ))
4539 return 0;
4540 } else {
4541 if (!mark_lock(curr, hlock,
4542 LOCK_ENABLED_HARDIRQ))
4543 return 0;
4544 if (curr->softirqs_enabled)
4545 if (!mark_lock(curr, hlock,
4546 LOCK_ENABLED_SOFTIRQ))
4547 return 0;
4548 }
4549 }
4550
4551 lock_used:
4552 /* mark it as used: */
4553 if (!mark_lock(curr, hlock, LOCK_USED))
4554 return 0;
4555
4556 return 1;
4557 }
4558
task_irq_context(struct task_struct * task)4559 static inline unsigned int task_irq_context(struct task_struct *task)
4560 {
4561 return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4562 LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4563 }
4564
separate_irq_context(struct task_struct * curr,struct held_lock * hlock)4565 static int separate_irq_context(struct task_struct *curr,
4566 struct held_lock *hlock)
4567 {
4568 unsigned int depth = curr->lockdep_depth;
4569
4570 /*
4571 * Keep track of points where we cross into an interrupt context:
4572 */
4573 if (depth) {
4574 struct held_lock *prev_hlock;
4575
4576 prev_hlock = curr->held_locks + depth-1;
4577 /*
4578 * If we cross into another context, reset the
4579 * hash key (this also prevents the checking and the
4580 * adding of the dependency to 'prev'):
4581 */
4582 if (prev_hlock->irq_context != hlock->irq_context)
4583 return 1;
4584 }
4585 return 0;
4586 }
4587
4588 /*
4589 * Mark a lock with a usage bit, and validate the state transition:
4590 */
mark_lock(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit)4591 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4592 enum lock_usage_bit new_bit)
4593 {
4594 unsigned int new_mask, ret = 1;
4595
4596 if (new_bit >= LOCK_USAGE_STATES) {
4597 DEBUG_LOCKS_WARN_ON(1);
4598 return 0;
4599 }
4600
4601 if (new_bit == LOCK_USED && this->read)
4602 new_bit = LOCK_USED_READ;
4603
4604 new_mask = 1 << new_bit;
4605
4606 /*
4607 * If already set then do not dirty the cacheline,
4608 * nor do any checks:
4609 */
4610 if (likely(hlock_class(this)->usage_mask & new_mask))
4611 return 1;
4612
4613 if (!graph_lock())
4614 return 0;
4615 /*
4616 * Make sure we didn't race:
4617 */
4618 if (unlikely(hlock_class(this)->usage_mask & new_mask))
4619 goto unlock;
4620
4621 if (!hlock_class(this)->usage_mask)
4622 debug_atomic_dec(nr_unused_locks);
4623
4624 hlock_class(this)->usage_mask |= new_mask;
4625
4626 if (new_bit < LOCK_TRACE_STATES) {
4627 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4628 return 0;
4629 }
4630
4631 if (new_bit < LOCK_USED) {
4632 ret = mark_lock_irq(curr, this, new_bit);
4633 if (!ret)
4634 return 0;
4635 }
4636
4637 unlock:
4638 graph_unlock();
4639
4640 /*
4641 * We must printk outside of the graph_lock:
4642 */
4643 if (ret == 2) {
4644 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4645 print_lock(this);
4646 print_irqtrace_events(curr);
4647 dump_stack();
4648 }
4649
4650 return ret;
4651 }
4652
task_wait_context(struct task_struct * curr)4653 static inline short task_wait_context(struct task_struct *curr)
4654 {
4655 /*
4656 * Set appropriate wait type for the context; for IRQs we have to take
4657 * into account force_irqthread as that is implied by PREEMPT_RT.
4658 */
4659 if (lockdep_hardirq_context()) {
4660 /*
4661 * Check if force_irqthreads will run us threaded.
4662 */
4663 if (curr->hardirq_threaded || curr->irq_config)
4664 return LD_WAIT_CONFIG;
4665
4666 return LD_WAIT_SPIN;
4667 } else if (curr->softirq_context) {
4668 /*
4669 * Softirqs are always threaded.
4670 */
4671 return LD_WAIT_CONFIG;
4672 }
4673
4674 return LD_WAIT_MAX;
4675 }
4676
4677 static int
print_lock_invalid_wait_context(struct task_struct * curr,struct held_lock * hlock)4678 print_lock_invalid_wait_context(struct task_struct *curr,
4679 struct held_lock *hlock)
4680 {
4681 short curr_inner;
4682
4683 if (!debug_locks_off())
4684 return 0;
4685 if (debug_locks_silent)
4686 return 0;
4687
4688 pr_warn("\n");
4689 pr_warn("=============================\n");
4690 pr_warn("[ BUG: Invalid wait context ]\n");
4691 print_kernel_ident();
4692 pr_warn("-----------------------------\n");
4693
4694 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4695 print_lock(hlock);
4696
4697 pr_warn("other info that might help us debug this:\n");
4698
4699 curr_inner = task_wait_context(curr);
4700 pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4701
4702 lockdep_print_held_locks(curr);
4703
4704 pr_warn("stack backtrace:\n");
4705 dump_stack();
4706
4707 return 0;
4708 }
4709
4710 /*
4711 * Verify the wait_type context.
4712 *
4713 * This check validates we take locks in the right wait-type order; that is it
4714 * ensures that we do not take mutexes inside spinlocks and do not attempt to
4715 * acquire spinlocks inside raw_spinlocks and the sort.
4716 *
4717 * The entire thing is slightly more complex because of RCU, RCU is a lock that
4718 * can be taken from (pretty much) any context but also has constraints.
4719 * However when taken in a stricter environment the RCU lock does not loosen
4720 * the constraints.
4721 *
4722 * Therefore we must look for the strictest environment in the lock stack and
4723 * compare that to the lock we're trying to acquire.
4724 */
check_wait_context(struct task_struct * curr,struct held_lock * next)4725 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4726 {
4727 u8 next_inner = hlock_class(next)->wait_type_inner;
4728 u8 next_outer = hlock_class(next)->wait_type_outer;
4729 u8 curr_inner;
4730 int depth;
4731
4732 if (!next_inner || next->trylock)
4733 return 0;
4734
4735 if (!next_outer)
4736 next_outer = next_inner;
4737
4738 /*
4739 * Find start of current irq_context..
4740 */
4741 for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4742 struct held_lock *prev = curr->held_locks + depth;
4743 if (prev->irq_context != next->irq_context)
4744 break;
4745 }
4746 depth++;
4747
4748 curr_inner = task_wait_context(curr);
4749
4750 for (; depth < curr->lockdep_depth; depth++) {
4751 struct held_lock *prev = curr->held_locks + depth;
4752 u8 prev_inner = hlock_class(prev)->wait_type_inner;
4753
4754 if (prev_inner) {
4755 /*
4756 * We can have a bigger inner than a previous one
4757 * when outer is smaller than inner, as with RCU.
4758 *
4759 * Also due to trylocks.
4760 */
4761 curr_inner = min(curr_inner, prev_inner);
4762 }
4763 }
4764
4765 if (next_outer > curr_inner)
4766 return print_lock_invalid_wait_context(curr, next);
4767
4768 return 0;
4769 }
4770
4771 #else /* CONFIG_PROVE_LOCKING */
4772
4773 static inline int
mark_usage(struct task_struct * curr,struct held_lock * hlock,int check)4774 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4775 {
4776 return 1;
4777 }
4778
task_irq_context(struct task_struct * task)4779 static inline unsigned int task_irq_context(struct task_struct *task)
4780 {
4781 return 0;
4782 }
4783
separate_irq_context(struct task_struct * curr,struct held_lock * hlock)4784 static inline int separate_irq_context(struct task_struct *curr,
4785 struct held_lock *hlock)
4786 {
4787 return 0;
4788 }
4789
check_wait_context(struct task_struct * curr,struct held_lock * next)4790 static inline int check_wait_context(struct task_struct *curr,
4791 struct held_lock *next)
4792 {
4793 return 0;
4794 }
4795
4796 #endif /* CONFIG_PROVE_LOCKING */
4797
4798 /*
4799 * Initialize a lock instance's lock-class mapping info:
4800 */
lockdep_init_map_type(struct lockdep_map * lock,const char * name,struct lock_class_key * key,int subclass,u8 inner,u8 outer,u8 lock_type)4801 void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4802 struct lock_class_key *key, int subclass,
4803 u8 inner, u8 outer, u8 lock_type)
4804 {
4805 int i;
4806
4807 for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4808 lock->class_cache[i] = NULL;
4809
4810 #ifdef CONFIG_LOCK_STAT
4811 lock->cpu = raw_smp_processor_id();
4812 #endif
4813
4814 /*
4815 * Can't be having no nameless bastards around this place!
4816 */
4817 if (DEBUG_LOCKS_WARN_ON(!name)) {
4818 lock->name = "NULL";
4819 return;
4820 }
4821
4822 lock->name = name;
4823
4824 lock->wait_type_outer = outer;
4825 lock->wait_type_inner = inner;
4826 lock->lock_type = lock_type;
4827
4828 /*
4829 * No key, no joy, we need to hash something.
4830 */
4831 if (DEBUG_LOCKS_WARN_ON(!key))
4832 return;
4833 /*
4834 * Sanity check, the lock-class key must either have been allocated
4835 * statically or must have been registered as a dynamic key.
4836 */
4837 if (!static_obj(key) && !is_dynamic_key(key)) {
4838 if (debug_locks)
4839 printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4840 DEBUG_LOCKS_WARN_ON(1);
4841 return;
4842 }
4843 lock->key = key;
4844
4845 if (unlikely(!debug_locks))
4846 return;
4847
4848 if (subclass) {
4849 unsigned long flags;
4850
4851 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4852 return;
4853
4854 raw_local_irq_save(flags);
4855 lockdep_recursion_inc();
4856 register_lock_class(lock, subclass, 1);
4857 lockdep_recursion_finish();
4858 raw_local_irq_restore(flags);
4859 }
4860 }
4861 EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4862
4863 struct lock_class_key __lockdep_no_validate__;
4864 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4865
4866 static void
print_lock_nested_lock_not_held(struct task_struct * curr,struct held_lock * hlock)4867 print_lock_nested_lock_not_held(struct task_struct *curr,
4868 struct held_lock *hlock)
4869 {
4870 if (!debug_locks_off())
4871 return;
4872 if (debug_locks_silent)
4873 return;
4874
4875 pr_warn("\n");
4876 pr_warn("==================================\n");
4877 pr_warn("WARNING: Nested lock was not taken\n");
4878 print_kernel_ident();
4879 pr_warn("----------------------------------\n");
4880
4881 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4882 print_lock(hlock);
4883
4884 pr_warn("\nbut this task is not holding:\n");
4885 pr_warn("%s\n", hlock->nest_lock->name);
4886
4887 pr_warn("\nstack backtrace:\n");
4888 dump_stack();
4889
4890 pr_warn("\nother info that might help us debug this:\n");
4891 lockdep_print_held_locks(curr);
4892
4893 pr_warn("\nstack backtrace:\n");
4894 dump_stack();
4895 }
4896
4897 static int __lock_is_held(const struct lockdep_map *lock, int read);
4898
4899 /*
4900 * This gets called for every mutex_lock*()/spin_lock*() operation.
4901 * We maintain the dependency maps and validate the locking attempt:
4902 *
4903 * The callers must make sure that IRQs are disabled before calling it,
4904 * otherwise we could get an interrupt which would want to take locks,
4905 * which would end up in lockdep again.
4906 */
__lock_acquire(struct lockdep_map * lock,unsigned int subclass,int trylock,int read,int check,int hardirqs_off,struct lockdep_map * nest_lock,unsigned long ip,int references,int pin_count)4907 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4908 int trylock, int read, int check, int hardirqs_off,
4909 struct lockdep_map *nest_lock, unsigned long ip,
4910 int references, int pin_count)
4911 {
4912 struct task_struct *curr = current;
4913 struct lock_class *class = NULL;
4914 struct held_lock *hlock;
4915 unsigned int depth;
4916 int chain_head = 0;
4917 int class_idx;
4918 u64 chain_key;
4919
4920 if (unlikely(!debug_locks))
4921 return 0;
4922
4923 if (!prove_locking || lock->key == &__lockdep_no_validate__)
4924 check = 0;
4925
4926 if (subclass < NR_LOCKDEP_CACHING_CLASSES)
4927 class = lock->class_cache[subclass];
4928 /*
4929 * Not cached?
4930 */
4931 if (unlikely(!class)) {
4932 class = register_lock_class(lock, subclass, 0);
4933 if (!class)
4934 return 0;
4935 }
4936
4937 debug_class_ops_inc(class);
4938
4939 if (very_verbose(class)) {
4940 printk("\nacquire class [%px] %s", class->key, class->name);
4941 if (class->name_version > 1)
4942 printk(KERN_CONT "#%d", class->name_version);
4943 printk(KERN_CONT "\n");
4944 dump_stack();
4945 }
4946
4947 /*
4948 * Add the lock to the list of currently held locks.
4949 * (we dont increase the depth just yet, up until the
4950 * dependency checks are done)
4951 */
4952 depth = curr->lockdep_depth;
4953 /*
4954 * Ran out of static storage for our per-task lock stack again have we?
4955 */
4956 if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
4957 return 0;
4958
4959 class_idx = class - lock_classes;
4960
4961 if (depth) { /* we're holding locks */
4962 hlock = curr->held_locks + depth - 1;
4963 if (hlock->class_idx == class_idx && nest_lock) {
4964 if (!references)
4965 references++;
4966
4967 if (!hlock->references)
4968 hlock->references++;
4969
4970 hlock->references += references;
4971
4972 /* Overflow */
4973 if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
4974 return 0;
4975
4976 return 2;
4977 }
4978 }
4979
4980 hlock = curr->held_locks + depth;
4981 /*
4982 * Plain impossible, we just registered it and checked it weren't no
4983 * NULL like.. I bet this mushroom I ate was good!
4984 */
4985 if (DEBUG_LOCKS_WARN_ON(!class))
4986 return 0;
4987 hlock->class_idx = class_idx;
4988 hlock->acquire_ip = ip;
4989 hlock->instance = lock;
4990 hlock->nest_lock = nest_lock;
4991 hlock->irq_context = task_irq_context(curr);
4992 hlock->trylock = trylock;
4993 hlock->read = read;
4994 hlock->check = check;
4995 hlock->hardirqs_off = !!hardirqs_off;
4996 hlock->references = references;
4997 #ifdef CONFIG_LOCK_STAT
4998 hlock->waittime_stamp = 0;
4999 hlock->holdtime_stamp = lockstat_clock();
5000 #endif
5001 hlock->pin_count = pin_count;
5002
5003 if (check_wait_context(curr, hlock))
5004 return 0;
5005
5006 /* Initialize the lock usage bit */
5007 if (!mark_usage(curr, hlock, check))
5008 return 0;
5009
5010 /*
5011 * Calculate the chain hash: it's the combined hash of all the
5012 * lock keys along the dependency chain. We save the hash value
5013 * at every step so that we can get the current hash easily
5014 * after unlock. The chain hash is then used to cache dependency
5015 * results.
5016 *
5017 * The 'key ID' is what is the most compact key value to drive
5018 * the hash, not class->key.
5019 */
5020 /*
5021 * Whoops, we did it again.. class_idx is invalid.
5022 */
5023 if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
5024 return 0;
5025
5026 chain_key = curr->curr_chain_key;
5027 if (!depth) {
5028 /*
5029 * How can we have a chain hash when we ain't got no keys?!
5030 */
5031 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
5032 return 0;
5033 chain_head = 1;
5034 }
5035
5036 hlock->prev_chain_key = chain_key;
5037 if (separate_irq_context(curr, hlock)) {
5038 chain_key = INITIAL_CHAIN_KEY;
5039 chain_head = 1;
5040 }
5041 chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
5042
5043 if (nest_lock && !__lock_is_held(nest_lock, -1)) {
5044 print_lock_nested_lock_not_held(curr, hlock);
5045 return 0;
5046 }
5047
5048 if (!debug_locks_silent) {
5049 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
5050 WARN_ON_ONCE(!hlock_class(hlock)->key);
5051 }
5052
5053 if (!validate_chain(curr, hlock, chain_head, chain_key))
5054 return 0;
5055
5056 curr->curr_chain_key = chain_key;
5057 curr->lockdep_depth++;
5058 check_chain_key(curr);
5059 #ifdef CONFIG_DEBUG_LOCKDEP
5060 if (unlikely(!debug_locks))
5061 return 0;
5062 #endif
5063 if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
5064 debug_locks_off();
5065 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
5066 printk(KERN_DEBUG "depth: %i max: %lu!\n",
5067 curr->lockdep_depth, MAX_LOCK_DEPTH);
5068
5069 lockdep_print_held_locks(current);
5070 debug_show_all_locks();
5071 dump_stack();
5072
5073 return 0;
5074 }
5075
5076 if (unlikely(curr->lockdep_depth > max_lockdep_depth))
5077 max_lockdep_depth = curr->lockdep_depth;
5078
5079 return 1;
5080 }
5081
print_unlock_imbalance_bug(struct task_struct * curr,struct lockdep_map * lock,unsigned long ip)5082 static void print_unlock_imbalance_bug(struct task_struct *curr,
5083 struct lockdep_map *lock,
5084 unsigned long ip)
5085 {
5086 if (!debug_locks_off())
5087 return;
5088 if (debug_locks_silent)
5089 return;
5090
5091 pr_warn("\n");
5092 pr_warn("=====================================\n");
5093 pr_warn("WARNING: bad unlock balance detected!\n");
5094 print_kernel_ident();
5095 pr_warn("-------------------------------------\n");
5096 pr_warn("%s/%d is trying to release lock (",
5097 curr->comm, task_pid_nr(curr));
5098 print_lockdep_cache(lock);
5099 pr_cont(") at:\n");
5100 print_ip_sym(KERN_WARNING, ip);
5101 pr_warn("but there are no more locks to release!\n");
5102 pr_warn("\nother info that might help us debug this:\n");
5103 lockdep_print_held_locks(curr);
5104
5105 pr_warn("\nstack backtrace:\n");
5106 dump_stack();
5107 }
5108
match_held_lock(const struct held_lock * hlock,const struct lockdep_map * lock)5109 static noinstr int match_held_lock(const struct held_lock *hlock,
5110 const struct lockdep_map *lock)
5111 {
5112 if (hlock->instance == lock)
5113 return 1;
5114
5115 if (hlock->references) {
5116 const struct lock_class *class = lock->class_cache[0];
5117
5118 if (!class)
5119 class = look_up_lock_class(lock, 0);
5120
5121 /*
5122 * If look_up_lock_class() failed to find a class, we're trying
5123 * to test if we hold a lock that has never yet been acquired.
5124 * Clearly if the lock hasn't been acquired _ever_, we're not
5125 * holding it either, so report failure.
5126 */
5127 if (!class)
5128 return 0;
5129
5130 /*
5131 * References, but not a lock we're actually ref-counting?
5132 * State got messed up, follow the sites that change ->references
5133 * and try to make sense of it.
5134 */
5135 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
5136 return 0;
5137
5138 if (hlock->class_idx == class - lock_classes)
5139 return 1;
5140 }
5141
5142 return 0;
5143 }
5144
5145 /* @depth must not be zero */
find_held_lock(struct task_struct * curr,struct lockdep_map * lock,unsigned int depth,int * idx)5146 static struct held_lock *find_held_lock(struct task_struct *curr,
5147 struct lockdep_map *lock,
5148 unsigned int depth, int *idx)
5149 {
5150 struct held_lock *ret, *hlock, *prev_hlock;
5151 int i;
5152
5153 i = depth - 1;
5154 hlock = curr->held_locks + i;
5155 ret = hlock;
5156 if (match_held_lock(hlock, lock))
5157 goto out;
5158
5159 ret = NULL;
5160 for (i--, prev_hlock = hlock--;
5161 i >= 0;
5162 i--, prev_hlock = hlock--) {
5163 /*
5164 * We must not cross into another context:
5165 */
5166 if (prev_hlock->irq_context != hlock->irq_context) {
5167 ret = NULL;
5168 break;
5169 }
5170 if (match_held_lock(hlock, lock)) {
5171 ret = hlock;
5172 break;
5173 }
5174 }
5175
5176 out:
5177 *idx = i;
5178 return ret;
5179 }
5180
reacquire_held_locks(struct task_struct * curr,unsigned int depth,int idx,unsigned int * merged)5181 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5182 int idx, unsigned int *merged)
5183 {
5184 struct held_lock *hlock;
5185 int first_idx = idx;
5186
5187 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5188 return 0;
5189
5190 for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5191 switch (__lock_acquire(hlock->instance,
5192 hlock_class(hlock)->subclass,
5193 hlock->trylock,
5194 hlock->read, hlock->check,
5195 hlock->hardirqs_off,
5196 hlock->nest_lock, hlock->acquire_ip,
5197 hlock->references, hlock->pin_count)) {
5198 case 0:
5199 return 1;
5200 case 1:
5201 break;
5202 case 2:
5203 *merged += (idx == first_idx);
5204 break;
5205 default:
5206 WARN_ON(1);
5207 return 0;
5208 }
5209 }
5210 return 0;
5211 }
5212
5213 static int
__lock_set_class(struct lockdep_map * lock,const char * name,struct lock_class_key * key,unsigned int subclass,unsigned long ip)5214 __lock_set_class(struct lockdep_map *lock, const char *name,
5215 struct lock_class_key *key, unsigned int subclass,
5216 unsigned long ip)
5217 {
5218 struct task_struct *curr = current;
5219 unsigned int depth, merged = 0;
5220 struct held_lock *hlock;
5221 struct lock_class *class;
5222 int i;
5223
5224 if (unlikely(!debug_locks))
5225 return 0;
5226
5227 depth = curr->lockdep_depth;
5228 /*
5229 * This function is about (re)setting the class of a held lock,
5230 * yet we're not actually holding any locks. Naughty user!
5231 */
5232 if (DEBUG_LOCKS_WARN_ON(!depth))
5233 return 0;
5234
5235 hlock = find_held_lock(curr, lock, depth, &i);
5236 if (!hlock) {
5237 print_unlock_imbalance_bug(curr, lock, ip);
5238 return 0;
5239 }
5240
5241 lockdep_init_map_type(lock, name, key, 0,
5242 lock->wait_type_inner,
5243 lock->wait_type_outer,
5244 lock->lock_type);
5245 class = register_lock_class(lock, subclass, 0);
5246 hlock->class_idx = class - lock_classes;
5247
5248 curr->lockdep_depth = i;
5249 curr->curr_chain_key = hlock->prev_chain_key;
5250
5251 if (reacquire_held_locks(curr, depth, i, &merged))
5252 return 0;
5253
5254 /*
5255 * I took it apart and put it back together again, except now I have
5256 * these 'spare' parts.. where shall I put them.
5257 */
5258 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5259 return 0;
5260 return 1;
5261 }
5262
__lock_downgrade(struct lockdep_map * lock,unsigned long ip)5263 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5264 {
5265 struct task_struct *curr = current;
5266 unsigned int depth, merged = 0;
5267 struct held_lock *hlock;
5268 int i;
5269
5270 if (unlikely(!debug_locks))
5271 return 0;
5272
5273 depth = curr->lockdep_depth;
5274 /*
5275 * This function is about (re)setting the class of a held lock,
5276 * yet we're not actually holding any locks. Naughty user!
5277 */
5278 if (DEBUG_LOCKS_WARN_ON(!depth))
5279 return 0;
5280
5281 hlock = find_held_lock(curr, lock, depth, &i);
5282 if (!hlock) {
5283 print_unlock_imbalance_bug(curr, lock, ip);
5284 return 0;
5285 }
5286
5287 curr->lockdep_depth = i;
5288 curr->curr_chain_key = hlock->prev_chain_key;
5289
5290 WARN(hlock->read, "downgrading a read lock");
5291 hlock->read = 1;
5292 hlock->acquire_ip = ip;
5293
5294 if (reacquire_held_locks(curr, depth, i, &merged))
5295 return 0;
5296
5297 /* Merging can't happen with unchanged classes.. */
5298 if (DEBUG_LOCKS_WARN_ON(merged))
5299 return 0;
5300
5301 /*
5302 * I took it apart and put it back together again, except now I have
5303 * these 'spare' parts.. where shall I put them.
5304 */
5305 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5306 return 0;
5307
5308 return 1;
5309 }
5310
5311 /*
5312 * Remove the lock from the list of currently held locks - this gets
5313 * called on mutex_unlock()/spin_unlock*() (or on a failed
5314 * mutex_lock_interruptible()).
5315 */
5316 static int
__lock_release(struct lockdep_map * lock,unsigned long ip)5317 __lock_release(struct lockdep_map *lock, unsigned long ip)
5318 {
5319 struct task_struct *curr = current;
5320 unsigned int depth, merged = 1;
5321 struct held_lock *hlock;
5322 int i;
5323
5324 if (unlikely(!debug_locks))
5325 return 0;
5326
5327 depth = curr->lockdep_depth;
5328 /*
5329 * So we're all set to release this lock.. wait what lock? We don't
5330 * own any locks, you've been drinking again?
5331 */
5332 if (depth <= 0) {
5333 print_unlock_imbalance_bug(curr, lock, ip);
5334 return 0;
5335 }
5336
5337 /*
5338 * Check whether the lock exists in the current stack
5339 * of held locks:
5340 */
5341 hlock = find_held_lock(curr, lock, depth, &i);
5342 if (!hlock) {
5343 print_unlock_imbalance_bug(curr, lock, ip);
5344 return 0;
5345 }
5346
5347 if (hlock->instance == lock)
5348 lock_release_holdtime(hlock);
5349
5350 WARN(hlock->pin_count, "releasing a pinned lock\n");
5351
5352 if (hlock->references) {
5353 hlock->references--;
5354 if (hlock->references) {
5355 /*
5356 * We had, and after removing one, still have
5357 * references, the current lock stack is still
5358 * valid. We're done!
5359 */
5360 return 1;
5361 }
5362 }
5363
5364 /*
5365 * We have the right lock to unlock, 'hlock' points to it.
5366 * Now we remove it from the stack, and add back the other
5367 * entries (if any), recalculating the hash along the way:
5368 */
5369
5370 curr->lockdep_depth = i;
5371 curr->curr_chain_key = hlock->prev_chain_key;
5372
5373 /*
5374 * The most likely case is when the unlock is on the innermost
5375 * lock. In this case, we are done!
5376 */
5377 if (i == depth-1)
5378 return 1;
5379
5380 if (reacquire_held_locks(curr, depth, i + 1, &merged))
5381 return 0;
5382
5383 /*
5384 * We had N bottles of beer on the wall, we drank one, but now
5385 * there's not N-1 bottles of beer left on the wall...
5386 * Pouring two of the bottles together is acceptable.
5387 */
5388 DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5389
5390 /*
5391 * Since reacquire_held_locks() would have called check_chain_key()
5392 * indirectly via __lock_acquire(), we don't need to do it again
5393 * on return.
5394 */
5395 return 0;
5396 }
5397
5398 static __always_inline
__lock_is_held(const struct lockdep_map * lock,int read)5399 int __lock_is_held(const struct lockdep_map *lock, int read)
5400 {
5401 struct task_struct *curr = current;
5402 int i;
5403
5404 for (i = 0; i < curr->lockdep_depth; i++) {
5405 struct held_lock *hlock = curr->held_locks + i;
5406
5407 if (match_held_lock(hlock, lock)) {
5408 if (read == -1 || !!hlock->read == read)
5409 return LOCK_STATE_HELD;
5410
5411 return LOCK_STATE_NOT_HELD;
5412 }
5413 }
5414
5415 return LOCK_STATE_NOT_HELD;
5416 }
5417
__lock_pin_lock(struct lockdep_map * lock)5418 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5419 {
5420 struct pin_cookie cookie = NIL_COOKIE;
5421 struct task_struct *curr = current;
5422 int i;
5423
5424 if (unlikely(!debug_locks))
5425 return cookie;
5426
5427 for (i = 0; i < curr->lockdep_depth; i++) {
5428 struct held_lock *hlock = curr->held_locks + i;
5429
5430 if (match_held_lock(hlock, lock)) {
5431 /*
5432 * Grab 16bits of randomness; this is sufficient to not
5433 * be guessable and still allows some pin nesting in
5434 * our u32 pin_count.
5435 */
5436 cookie.val = 1 + (sched_clock() & 0xffff);
5437 hlock->pin_count += cookie.val;
5438 return cookie;
5439 }
5440 }
5441
5442 WARN(1, "pinning an unheld lock\n");
5443 return cookie;
5444 }
5445
__lock_repin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5446 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5447 {
5448 struct task_struct *curr = current;
5449 int i;
5450
5451 if (unlikely(!debug_locks))
5452 return;
5453
5454 for (i = 0; i < curr->lockdep_depth; i++) {
5455 struct held_lock *hlock = curr->held_locks + i;
5456
5457 if (match_held_lock(hlock, lock)) {
5458 hlock->pin_count += cookie.val;
5459 return;
5460 }
5461 }
5462
5463 WARN(1, "pinning an unheld lock\n");
5464 }
5465
__lock_unpin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5466 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5467 {
5468 struct task_struct *curr = current;
5469 int i;
5470
5471 if (unlikely(!debug_locks))
5472 return;
5473
5474 for (i = 0; i < curr->lockdep_depth; i++) {
5475 struct held_lock *hlock = curr->held_locks + i;
5476
5477 if (match_held_lock(hlock, lock)) {
5478 if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5479 return;
5480
5481 hlock->pin_count -= cookie.val;
5482
5483 if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5484 hlock->pin_count = 0;
5485
5486 return;
5487 }
5488 }
5489
5490 WARN(1, "unpinning an unheld lock\n");
5491 }
5492
5493 /*
5494 * Check whether we follow the irq-flags state precisely:
5495 */
check_flags(unsigned long flags)5496 static noinstr void check_flags(unsigned long flags)
5497 {
5498 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5499 if (!debug_locks)
5500 return;
5501
5502 /* Get the warning out.. */
5503 instrumentation_begin();
5504
5505 if (irqs_disabled_flags(flags)) {
5506 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5507 printk("possible reason: unannotated irqs-off.\n");
5508 }
5509 } else {
5510 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5511 printk("possible reason: unannotated irqs-on.\n");
5512 }
5513 }
5514
5515 #ifndef CONFIG_PREEMPT_RT
5516 /*
5517 * We dont accurately track softirq state in e.g.
5518 * hardirq contexts (such as on 4KSTACKS), so only
5519 * check if not in hardirq contexts:
5520 */
5521 if (!hardirq_count()) {
5522 if (softirq_count()) {
5523 /* like the above, but with softirqs */
5524 DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5525 } else {
5526 /* lick the above, does it taste good? */
5527 DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5528 }
5529 }
5530 #endif
5531
5532 if (!debug_locks)
5533 print_irqtrace_events(current);
5534
5535 instrumentation_end();
5536 #endif
5537 }
5538
lock_set_class(struct lockdep_map * lock,const char * name,struct lock_class_key * key,unsigned int subclass,unsigned long ip)5539 void lock_set_class(struct lockdep_map *lock, const char *name,
5540 struct lock_class_key *key, unsigned int subclass,
5541 unsigned long ip)
5542 {
5543 unsigned long flags;
5544
5545 if (unlikely(!lockdep_enabled()))
5546 return;
5547
5548 raw_local_irq_save(flags);
5549 lockdep_recursion_inc();
5550 check_flags(flags);
5551 if (__lock_set_class(lock, name, key, subclass, ip))
5552 check_chain_key(current);
5553 lockdep_recursion_finish();
5554 raw_local_irq_restore(flags);
5555 }
5556 EXPORT_SYMBOL_GPL(lock_set_class);
5557
lock_downgrade(struct lockdep_map * lock,unsigned long ip)5558 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5559 {
5560 unsigned long flags;
5561
5562 if (unlikely(!lockdep_enabled()))
5563 return;
5564
5565 raw_local_irq_save(flags);
5566 lockdep_recursion_inc();
5567 check_flags(flags);
5568 if (__lock_downgrade(lock, ip))
5569 check_chain_key(current);
5570 lockdep_recursion_finish();
5571 raw_local_irq_restore(flags);
5572 }
5573 EXPORT_SYMBOL_GPL(lock_downgrade);
5574
5575 /* NMI context !!! */
verify_lock_unused(struct lockdep_map * lock,struct held_lock * hlock,int subclass)5576 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5577 {
5578 #ifdef CONFIG_PROVE_LOCKING
5579 struct lock_class *class = look_up_lock_class(lock, subclass);
5580 unsigned long mask = LOCKF_USED;
5581
5582 /* if it doesn't have a class (yet), it certainly hasn't been used yet */
5583 if (!class)
5584 return;
5585
5586 /*
5587 * READ locks only conflict with USED, such that if we only ever use
5588 * READ locks, there is no deadlock possible -- RCU.
5589 */
5590 if (!hlock->read)
5591 mask |= LOCKF_USED_READ;
5592
5593 if (!(class->usage_mask & mask))
5594 return;
5595
5596 hlock->class_idx = class - lock_classes;
5597
5598 print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5599 #endif
5600 }
5601
lockdep_nmi(void)5602 static bool lockdep_nmi(void)
5603 {
5604 if (raw_cpu_read(lockdep_recursion))
5605 return false;
5606
5607 if (!in_nmi())
5608 return false;
5609
5610 return true;
5611 }
5612
5613 /*
5614 * read_lock() is recursive if:
5615 * 1. We force lockdep think this way in selftests or
5616 * 2. The implementation is not queued read/write lock or
5617 * 3. The locker is at an in_interrupt() context.
5618 */
read_lock_is_recursive(void)5619 bool read_lock_is_recursive(void)
5620 {
5621 return force_read_lock_recursive ||
5622 !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5623 in_interrupt();
5624 }
5625 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5626
5627 /*
5628 * We are not always called with irqs disabled - do that here,
5629 * and also avoid lockdep recursion:
5630 */
lock_acquire(struct lockdep_map * lock,unsigned int subclass,int trylock,int read,int check,struct lockdep_map * nest_lock,unsigned long ip)5631 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5632 int trylock, int read, int check,
5633 struct lockdep_map *nest_lock, unsigned long ip)
5634 {
5635 unsigned long flags;
5636
5637 trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5638
5639 if (!debug_locks)
5640 return;
5641
5642 if (unlikely(!lockdep_enabled())) {
5643 /* XXX allow trylock from NMI ?!? */
5644 if (lockdep_nmi() && !trylock) {
5645 struct held_lock hlock;
5646
5647 hlock.acquire_ip = ip;
5648 hlock.instance = lock;
5649 hlock.nest_lock = nest_lock;
5650 hlock.irq_context = 2; // XXX
5651 hlock.trylock = trylock;
5652 hlock.read = read;
5653 hlock.check = check;
5654 hlock.hardirqs_off = true;
5655 hlock.references = 0;
5656
5657 verify_lock_unused(lock, &hlock, subclass);
5658 }
5659 return;
5660 }
5661
5662 raw_local_irq_save(flags);
5663 check_flags(flags);
5664
5665 lockdep_recursion_inc();
5666 __lock_acquire(lock, subclass, trylock, read, check,
5667 irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
5668 lockdep_recursion_finish();
5669 raw_local_irq_restore(flags);
5670 }
5671 EXPORT_SYMBOL_GPL(lock_acquire);
5672
lock_release(struct lockdep_map * lock,unsigned long ip)5673 void lock_release(struct lockdep_map *lock, unsigned long ip)
5674 {
5675 unsigned long flags;
5676
5677 trace_lock_release(lock, ip);
5678
5679 if (unlikely(!lockdep_enabled()))
5680 return;
5681
5682 raw_local_irq_save(flags);
5683 check_flags(flags);
5684
5685 lockdep_recursion_inc();
5686 if (__lock_release(lock, ip))
5687 check_chain_key(current);
5688 lockdep_recursion_finish();
5689 raw_local_irq_restore(flags);
5690 }
5691 EXPORT_SYMBOL_GPL(lock_release);
5692
lock_is_held_type(const struct lockdep_map * lock,int read)5693 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5694 {
5695 unsigned long flags;
5696 int ret = LOCK_STATE_NOT_HELD;
5697
5698 /*
5699 * Avoid false negative lockdep_assert_held() and
5700 * lockdep_assert_not_held().
5701 */
5702 if (unlikely(!lockdep_enabled()))
5703 return LOCK_STATE_UNKNOWN;
5704
5705 raw_local_irq_save(flags);
5706 check_flags(flags);
5707
5708 lockdep_recursion_inc();
5709 ret = __lock_is_held(lock, read);
5710 lockdep_recursion_finish();
5711 raw_local_irq_restore(flags);
5712
5713 return ret;
5714 }
5715 EXPORT_SYMBOL_GPL(lock_is_held_type);
5716 NOKPROBE_SYMBOL(lock_is_held_type);
5717
lock_pin_lock(struct lockdep_map * lock)5718 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5719 {
5720 struct pin_cookie cookie = NIL_COOKIE;
5721 unsigned long flags;
5722
5723 if (unlikely(!lockdep_enabled()))
5724 return cookie;
5725
5726 raw_local_irq_save(flags);
5727 check_flags(flags);
5728
5729 lockdep_recursion_inc();
5730 cookie = __lock_pin_lock(lock);
5731 lockdep_recursion_finish();
5732 raw_local_irq_restore(flags);
5733
5734 return cookie;
5735 }
5736 EXPORT_SYMBOL_GPL(lock_pin_lock);
5737
lock_repin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5738 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5739 {
5740 unsigned long flags;
5741
5742 if (unlikely(!lockdep_enabled()))
5743 return;
5744
5745 raw_local_irq_save(flags);
5746 check_flags(flags);
5747
5748 lockdep_recursion_inc();
5749 __lock_repin_lock(lock, cookie);
5750 lockdep_recursion_finish();
5751 raw_local_irq_restore(flags);
5752 }
5753 EXPORT_SYMBOL_GPL(lock_repin_lock);
5754
lock_unpin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5755 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5756 {
5757 unsigned long flags;
5758
5759 if (unlikely(!lockdep_enabled()))
5760 return;
5761
5762 raw_local_irq_save(flags);
5763 check_flags(flags);
5764
5765 lockdep_recursion_inc();
5766 __lock_unpin_lock(lock, cookie);
5767 lockdep_recursion_finish();
5768 raw_local_irq_restore(flags);
5769 }
5770 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5771
5772 #ifdef CONFIG_LOCK_STAT
print_lock_contention_bug(struct task_struct * curr,struct lockdep_map * lock,unsigned long ip)5773 static void print_lock_contention_bug(struct task_struct *curr,
5774 struct lockdep_map *lock,
5775 unsigned long ip)
5776 {
5777 if (!debug_locks_off())
5778 return;
5779 if (debug_locks_silent)
5780 return;
5781
5782 pr_warn("\n");
5783 pr_warn("=================================\n");
5784 pr_warn("WARNING: bad contention detected!\n");
5785 print_kernel_ident();
5786 pr_warn("---------------------------------\n");
5787 pr_warn("%s/%d is trying to contend lock (",
5788 curr->comm, task_pid_nr(curr));
5789 print_lockdep_cache(lock);
5790 pr_cont(") at:\n");
5791 print_ip_sym(KERN_WARNING, ip);
5792 pr_warn("but there are no locks held!\n");
5793 pr_warn("\nother info that might help us debug this:\n");
5794 lockdep_print_held_locks(curr);
5795
5796 pr_warn("\nstack backtrace:\n");
5797 dump_stack();
5798 }
5799
5800 static void
__lock_contended(struct lockdep_map * lock,unsigned long ip)5801 __lock_contended(struct lockdep_map *lock, unsigned long ip)
5802 {
5803 struct task_struct *curr = current;
5804 struct held_lock *hlock;
5805 struct lock_class_stats *stats;
5806 unsigned int depth;
5807 int i, contention_point, contending_point;
5808
5809 depth = curr->lockdep_depth;
5810 /*
5811 * Whee, we contended on this lock, except it seems we're not
5812 * actually trying to acquire anything much at all..
5813 */
5814 if (DEBUG_LOCKS_WARN_ON(!depth))
5815 return;
5816
5817 hlock = find_held_lock(curr, lock, depth, &i);
5818 if (!hlock) {
5819 print_lock_contention_bug(curr, lock, ip);
5820 return;
5821 }
5822
5823 if (hlock->instance != lock)
5824 return;
5825
5826 hlock->waittime_stamp = lockstat_clock();
5827
5828 contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5829 contending_point = lock_point(hlock_class(hlock)->contending_point,
5830 lock->ip);
5831
5832 stats = get_lock_stats(hlock_class(hlock));
5833 if (contention_point < LOCKSTAT_POINTS)
5834 stats->contention_point[contention_point]++;
5835 if (contending_point < LOCKSTAT_POINTS)
5836 stats->contending_point[contending_point]++;
5837 if (lock->cpu != smp_processor_id())
5838 stats->bounces[bounce_contended + !!hlock->read]++;
5839 }
5840
5841 static void
__lock_acquired(struct lockdep_map * lock,unsigned long ip)5842 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
5843 {
5844 struct task_struct *curr = current;
5845 struct held_lock *hlock;
5846 struct lock_class_stats *stats;
5847 unsigned int depth;
5848 u64 now, waittime = 0;
5849 int i, cpu;
5850
5851 depth = curr->lockdep_depth;
5852 /*
5853 * Yay, we acquired ownership of this lock we didn't try to
5854 * acquire, how the heck did that happen?
5855 */
5856 if (DEBUG_LOCKS_WARN_ON(!depth))
5857 return;
5858
5859 hlock = find_held_lock(curr, lock, depth, &i);
5860 if (!hlock) {
5861 print_lock_contention_bug(curr, lock, _RET_IP_);
5862 return;
5863 }
5864
5865 if (hlock->instance != lock)
5866 return;
5867
5868 cpu = smp_processor_id();
5869 if (hlock->waittime_stamp) {
5870 now = lockstat_clock();
5871 waittime = now - hlock->waittime_stamp;
5872 hlock->holdtime_stamp = now;
5873 }
5874
5875 stats = get_lock_stats(hlock_class(hlock));
5876 if (waittime) {
5877 if (hlock->read)
5878 lock_time_inc(&stats->read_waittime, waittime);
5879 else
5880 lock_time_inc(&stats->write_waittime, waittime);
5881 }
5882 if (lock->cpu != cpu)
5883 stats->bounces[bounce_acquired + !!hlock->read]++;
5884
5885 lock->cpu = cpu;
5886 lock->ip = ip;
5887 }
5888
lock_contended(struct lockdep_map * lock,unsigned long ip)5889 void lock_contended(struct lockdep_map *lock, unsigned long ip)
5890 {
5891 unsigned long flags;
5892
5893 trace_lock_contended(lock, ip);
5894
5895 if (unlikely(!lock_stat || !lockdep_enabled()))
5896 return;
5897
5898 raw_local_irq_save(flags);
5899 check_flags(flags);
5900 lockdep_recursion_inc();
5901 __lock_contended(lock, ip);
5902 lockdep_recursion_finish();
5903 raw_local_irq_restore(flags);
5904 }
5905 EXPORT_SYMBOL_GPL(lock_contended);
5906
lock_acquired(struct lockdep_map * lock,unsigned long ip)5907 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
5908 {
5909 unsigned long flags;
5910
5911 trace_lock_acquired(lock, ip);
5912
5913 if (unlikely(!lock_stat || !lockdep_enabled()))
5914 return;
5915
5916 raw_local_irq_save(flags);
5917 check_flags(flags);
5918 lockdep_recursion_inc();
5919 __lock_acquired(lock, ip);
5920 lockdep_recursion_finish();
5921 raw_local_irq_restore(flags);
5922 }
5923 EXPORT_SYMBOL_GPL(lock_acquired);
5924 #endif
5925
5926 /*
5927 * Used by the testsuite, sanitize the validator state
5928 * after a simulated failure:
5929 */
5930
lockdep_reset(void)5931 void lockdep_reset(void)
5932 {
5933 unsigned long flags;
5934 int i;
5935
5936 raw_local_irq_save(flags);
5937 lockdep_init_task(current);
5938 memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
5939 nr_hardirq_chains = 0;
5940 nr_softirq_chains = 0;
5941 nr_process_chains = 0;
5942 debug_locks = 1;
5943 for (i = 0; i < CHAINHASH_SIZE; i++)
5944 INIT_HLIST_HEAD(chainhash_table + i);
5945 raw_local_irq_restore(flags);
5946 }
5947
5948 /* Remove a class from a lock chain. Must be called with the graph lock held. */
remove_class_from_lock_chain(struct pending_free * pf,struct lock_chain * chain,struct lock_class * class)5949 static void remove_class_from_lock_chain(struct pending_free *pf,
5950 struct lock_chain *chain,
5951 struct lock_class *class)
5952 {
5953 #ifdef CONFIG_PROVE_LOCKING
5954 int i;
5955
5956 for (i = chain->base; i < chain->base + chain->depth; i++) {
5957 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
5958 continue;
5959 /*
5960 * Each lock class occurs at most once in a lock chain so once
5961 * we found a match we can break out of this loop.
5962 */
5963 goto free_lock_chain;
5964 }
5965 /* Since the chain has not been modified, return. */
5966 return;
5967
5968 free_lock_chain:
5969 free_chain_hlocks(chain->base, chain->depth);
5970 /* Overwrite the chain key for concurrent RCU readers. */
5971 WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
5972 dec_chains(chain->irq_context);
5973
5974 /*
5975 * Note: calling hlist_del_rcu() from inside a
5976 * hlist_for_each_entry_rcu() loop is safe.
5977 */
5978 hlist_del_rcu(&chain->entry);
5979 __set_bit(chain - lock_chains, pf->lock_chains_being_freed);
5980 nr_zapped_lock_chains++;
5981 #endif
5982 }
5983
5984 /* Must be called with the graph lock held. */
remove_class_from_lock_chains(struct pending_free * pf,struct lock_class * class)5985 static void remove_class_from_lock_chains(struct pending_free *pf,
5986 struct lock_class *class)
5987 {
5988 struct lock_chain *chain;
5989 struct hlist_head *head;
5990 int i;
5991
5992 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
5993 head = chainhash_table + i;
5994 hlist_for_each_entry_rcu(chain, head, entry) {
5995 remove_class_from_lock_chain(pf, chain, class);
5996 }
5997 }
5998 }
5999
6000 /*
6001 * Remove all references to a lock class. The caller must hold the graph lock.
6002 */
zap_class(struct pending_free * pf,struct lock_class * class)6003 static void zap_class(struct pending_free *pf, struct lock_class *class)
6004 {
6005 struct lock_list *entry;
6006 int i;
6007
6008 WARN_ON_ONCE(!class->key);
6009
6010 /*
6011 * Remove all dependencies this lock is
6012 * involved in:
6013 */
6014 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
6015 entry = list_entries + i;
6016 if (entry->class != class && entry->links_to != class)
6017 continue;
6018 __clear_bit(i, list_entries_in_use);
6019 nr_list_entries--;
6020 list_del_rcu(&entry->entry);
6021 }
6022 if (list_empty(&class->locks_after) &&
6023 list_empty(&class->locks_before)) {
6024 list_move_tail(&class->lock_entry, &pf->zapped);
6025 hlist_del_rcu(&class->hash_entry);
6026 WRITE_ONCE(class->key, NULL);
6027 WRITE_ONCE(class->name, NULL);
6028 nr_lock_classes--;
6029 __clear_bit(class - lock_classes, lock_classes_in_use);
6030 if (class - lock_classes == max_lock_class_idx)
6031 max_lock_class_idx--;
6032 } else {
6033 WARN_ONCE(true, "%s() failed for class %s\n", __func__,
6034 class->name);
6035 }
6036
6037 remove_class_from_lock_chains(pf, class);
6038 nr_zapped_classes++;
6039 }
6040
reinit_class(struct lock_class * class)6041 static void reinit_class(struct lock_class *class)
6042 {
6043 WARN_ON_ONCE(!class->lock_entry.next);
6044 WARN_ON_ONCE(!list_empty(&class->locks_after));
6045 WARN_ON_ONCE(!list_empty(&class->locks_before));
6046 memset_startat(class, 0, key);
6047 WARN_ON_ONCE(!class->lock_entry.next);
6048 WARN_ON_ONCE(!list_empty(&class->locks_after));
6049 WARN_ON_ONCE(!list_empty(&class->locks_before));
6050 }
6051
within(const void * addr,void * start,unsigned long size)6052 static inline int within(const void *addr, void *start, unsigned long size)
6053 {
6054 return addr >= start && addr < start + size;
6055 }
6056
inside_selftest(void)6057 static bool inside_selftest(void)
6058 {
6059 return current == lockdep_selftest_task_struct;
6060 }
6061
6062 /* The caller must hold the graph lock. */
get_pending_free(void)6063 static struct pending_free *get_pending_free(void)
6064 {
6065 return delayed_free.pf + delayed_free.index;
6066 }
6067
6068 static void free_zapped_rcu(struct rcu_head *cb);
6069
6070 /*
6071 * Schedule an RCU callback if no RCU callback is pending. Must be called with
6072 * the graph lock held.
6073 */
call_rcu_zapped(struct pending_free * pf)6074 static void call_rcu_zapped(struct pending_free *pf)
6075 {
6076 WARN_ON_ONCE(inside_selftest());
6077
6078 if (list_empty(&pf->zapped))
6079 return;
6080
6081 if (delayed_free.scheduled)
6082 return;
6083
6084 delayed_free.scheduled = true;
6085
6086 WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
6087 delayed_free.index ^= 1;
6088
6089 call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6090 }
6091
6092 /* The caller must hold the graph lock. May be called from RCU context. */
__free_zapped_classes(struct pending_free * pf)6093 static void __free_zapped_classes(struct pending_free *pf)
6094 {
6095 struct lock_class *class;
6096
6097 check_data_structures();
6098
6099 list_for_each_entry(class, &pf->zapped, lock_entry)
6100 reinit_class(class);
6101
6102 list_splice_init(&pf->zapped, &free_lock_classes);
6103
6104 #ifdef CONFIG_PROVE_LOCKING
6105 bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
6106 pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
6107 bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
6108 #endif
6109 }
6110
free_zapped_rcu(struct rcu_head * ch)6111 static void free_zapped_rcu(struct rcu_head *ch)
6112 {
6113 struct pending_free *pf;
6114 unsigned long flags;
6115
6116 if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
6117 return;
6118
6119 raw_local_irq_save(flags);
6120 lockdep_lock();
6121
6122 /* closed head */
6123 pf = delayed_free.pf + (delayed_free.index ^ 1);
6124 __free_zapped_classes(pf);
6125 delayed_free.scheduled = false;
6126
6127 /*
6128 * If there's anything on the open list, close and start a new callback.
6129 */
6130 call_rcu_zapped(delayed_free.pf + delayed_free.index);
6131
6132 lockdep_unlock();
6133 raw_local_irq_restore(flags);
6134 }
6135
6136 /*
6137 * Remove all lock classes from the class hash table and from the
6138 * all_lock_classes list whose key or name is in the address range [start,
6139 * start + size). Move these lock classes to the zapped_classes list. Must
6140 * be called with the graph lock held.
6141 */
__lockdep_free_key_range(struct pending_free * pf,void * start,unsigned long size)6142 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
6143 unsigned long size)
6144 {
6145 struct lock_class *class;
6146 struct hlist_head *head;
6147 int i;
6148
6149 /* Unhash all classes that were created by a module. */
6150 for (i = 0; i < CLASSHASH_SIZE; i++) {
6151 head = classhash_table + i;
6152 hlist_for_each_entry_rcu(class, head, hash_entry) {
6153 if (!within(class->key, start, size) &&
6154 !within(class->name, start, size))
6155 continue;
6156 zap_class(pf, class);
6157 }
6158 }
6159 }
6160
6161 /*
6162 * Used in module.c to remove lock classes from memory that is going to be
6163 * freed; and possibly re-used by other modules.
6164 *
6165 * We will have had one synchronize_rcu() before getting here, so we're
6166 * guaranteed nobody will look up these exact classes -- they're properly dead
6167 * but still allocated.
6168 */
lockdep_free_key_range_reg(void * start,unsigned long size)6169 static void lockdep_free_key_range_reg(void *start, unsigned long size)
6170 {
6171 struct pending_free *pf;
6172 unsigned long flags;
6173
6174 init_data_structures_once();
6175
6176 raw_local_irq_save(flags);
6177 lockdep_lock();
6178 pf = get_pending_free();
6179 __lockdep_free_key_range(pf, start, size);
6180 call_rcu_zapped(pf);
6181 lockdep_unlock();
6182 raw_local_irq_restore(flags);
6183
6184 /*
6185 * Wait for any possible iterators from look_up_lock_class() to pass
6186 * before continuing to free the memory they refer to.
6187 */
6188 synchronize_rcu();
6189 }
6190
6191 /*
6192 * Free all lockdep keys in the range [start, start+size). Does not sleep.
6193 * Ignores debug_locks. Must only be used by the lockdep selftests.
6194 */
lockdep_free_key_range_imm(void * start,unsigned long size)6195 static void lockdep_free_key_range_imm(void *start, unsigned long size)
6196 {
6197 struct pending_free *pf = delayed_free.pf;
6198 unsigned long flags;
6199
6200 init_data_structures_once();
6201
6202 raw_local_irq_save(flags);
6203 lockdep_lock();
6204 __lockdep_free_key_range(pf, start, size);
6205 __free_zapped_classes(pf);
6206 lockdep_unlock();
6207 raw_local_irq_restore(flags);
6208 }
6209
lockdep_free_key_range(void * start,unsigned long size)6210 void lockdep_free_key_range(void *start, unsigned long size)
6211 {
6212 init_data_structures_once();
6213
6214 if (inside_selftest())
6215 lockdep_free_key_range_imm(start, size);
6216 else
6217 lockdep_free_key_range_reg(start, size);
6218 }
6219
6220 /*
6221 * Check whether any element of the @lock->class_cache[] array refers to a
6222 * registered lock class. The caller must hold either the graph lock or the
6223 * RCU read lock.
6224 */
lock_class_cache_is_registered(struct lockdep_map * lock)6225 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6226 {
6227 struct lock_class *class;
6228 struct hlist_head *head;
6229 int i, j;
6230
6231 for (i = 0; i < CLASSHASH_SIZE; i++) {
6232 head = classhash_table + i;
6233 hlist_for_each_entry_rcu(class, head, hash_entry) {
6234 for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6235 if (lock->class_cache[j] == class)
6236 return true;
6237 }
6238 }
6239 return false;
6240 }
6241
6242 /* The caller must hold the graph lock. Does not sleep. */
__lockdep_reset_lock(struct pending_free * pf,struct lockdep_map * lock)6243 static void __lockdep_reset_lock(struct pending_free *pf,
6244 struct lockdep_map *lock)
6245 {
6246 struct lock_class *class;
6247 int j;
6248
6249 /*
6250 * Remove all classes this lock might have:
6251 */
6252 for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6253 /*
6254 * If the class exists we look it up and zap it:
6255 */
6256 class = look_up_lock_class(lock, j);
6257 if (class)
6258 zap_class(pf, class);
6259 }
6260 /*
6261 * Debug check: in the end all mapped classes should
6262 * be gone.
6263 */
6264 if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6265 debug_locks_off();
6266 }
6267
6268 /*
6269 * Remove all information lockdep has about a lock if debug_locks == 1. Free
6270 * released data structures from RCU context.
6271 */
lockdep_reset_lock_reg(struct lockdep_map * lock)6272 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6273 {
6274 struct pending_free *pf;
6275 unsigned long flags;
6276 int locked;
6277
6278 raw_local_irq_save(flags);
6279 locked = graph_lock();
6280 if (!locked)
6281 goto out_irq;
6282
6283 pf = get_pending_free();
6284 __lockdep_reset_lock(pf, lock);
6285 call_rcu_zapped(pf);
6286
6287 graph_unlock();
6288 out_irq:
6289 raw_local_irq_restore(flags);
6290 }
6291
6292 /*
6293 * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6294 * lockdep selftests.
6295 */
lockdep_reset_lock_imm(struct lockdep_map * lock)6296 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6297 {
6298 struct pending_free *pf = delayed_free.pf;
6299 unsigned long flags;
6300
6301 raw_local_irq_save(flags);
6302 lockdep_lock();
6303 __lockdep_reset_lock(pf, lock);
6304 __free_zapped_classes(pf);
6305 lockdep_unlock();
6306 raw_local_irq_restore(flags);
6307 }
6308
lockdep_reset_lock(struct lockdep_map * lock)6309 void lockdep_reset_lock(struct lockdep_map *lock)
6310 {
6311 init_data_structures_once();
6312
6313 if (inside_selftest())
6314 lockdep_reset_lock_imm(lock);
6315 else
6316 lockdep_reset_lock_reg(lock);
6317 }
6318
6319 /*
6320 * Unregister a dynamically allocated key.
6321 *
6322 * Unlike lockdep_register_key(), a search is always done to find a matching
6323 * key irrespective of debug_locks to avoid potential invalid access to freed
6324 * memory in lock_class entry.
6325 */
lockdep_unregister_key(struct lock_class_key * key)6326 void lockdep_unregister_key(struct lock_class_key *key)
6327 {
6328 struct hlist_head *hash_head = keyhashentry(key);
6329 struct lock_class_key *k;
6330 struct pending_free *pf;
6331 unsigned long flags;
6332 bool found = false;
6333
6334 might_sleep();
6335
6336 if (WARN_ON_ONCE(static_obj(key)))
6337 return;
6338
6339 raw_local_irq_save(flags);
6340 lockdep_lock();
6341
6342 hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6343 if (k == key) {
6344 hlist_del_rcu(&k->hash_entry);
6345 found = true;
6346 break;
6347 }
6348 }
6349 WARN_ON_ONCE(!found && debug_locks);
6350 if (found) {
6351 pf = get_pending_free();
6352 __lockdep_free_key_range(pf, key, 1);
6353 call_rcu_zapped(pf);
6354 }
6355 lockdep_unlock();
6356 raw_local_irq_restore(flags);
6357
6358 /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6359 synchronize_rcu();
6360 }
6361 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6362
lockdep_init(void)6363 void __init lockdep_init(void)
6364 {
6365 printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6366
6367 printk("... MAX_LOCKDEP_SUBCLASSES: %lu\n", MAX_LOCKDEP_SUBCLASSES);
6368 printk("... MAX_LOCK_DEPTH: %lu\n", MAX_LOCK_DEPTH);
6369 printk("... MAX_LOCKDEP_KEYS: %lu\n", MAX_LOCKDEP_KEYS);
6370 printk("... CLASSHASH_SIZE: %lu\n", CLASSHASH_SIZE);
6371 printk("... MAX_LOCKDEP_ENTRIES: %lu\n", MAX_LOCKDEP_ENTRIES);
6372 printk("... MAX_LOCKDEP_CHAINS: %lu\n", MAX_LOCKDEP_CHAINS);
6373 printk("... CHAINHASH_SIZE: %lu\n", CHAINHASH_SIZE);
6374
6375 printk(" memory used by lock dependency info: %zu kB\n",
6376 (sizeof(lock_classes) +
6377 sizeof(lock_classes_in_use) +
6378 sizeof(classhash_table) +
6379 sizeof(list_entries) +
6380 sizeof(list_entries_in_use) +
6381 sizeof(chainhash_table) +
6382 sizeof(delayed_free)
6383 #ifdef CONFIG_PROVE_LOCKING
6384 + sizeof(lock_cq)
6385 + sizeof(lock_chains)
6386 + sizeof(lock_chains_in_use)
6387 + sizeof(chain_hlocks)
6388 #endif
6389 ) / 1024
6390 );
6391
6392 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6393 printk(" memory used for stack traces: %zu kB\n",
6394 (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6395 );
6396 #endif
6397
6398 printk(" per task-struct memory footprint: %zu bytes\n",
6399 sizeof(((struct task_struct *)NULL)->held_locks));
6400 }
6401
6402 static void
print_freed_lock_bug(struct task_struct * curr,const void * mem_from,const void * mem_to,struct held_lock * hlock)6403 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6404 const void *mem_to, struct held_lock *hlock)
6405 {
6406 if (!debug_locks_off())
6407 return;
6408 if (debug_locks_silent)
6409 return;
6410
6411 pr_warn("\n");
6412 pr_warn("=========================\n");
6413 pr_warn("WARNING: held lock freed!\n");
6414 print_kernel_ident();
6415 pr_warn("-------------------------\n");
6416 pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6417 curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6418 print_lock(hlock);
6419 lockdep_print_held_locks(curr);
6420
6421 pr_warn("\nstack backtrace:\n");
6422 dump_stack();
6423 }
6424
not_in_range(const void * mem_from,unsigned long mem_len,const void * lock_from,unsigned long lock_len)6425 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6426 const void* lock_from, unsigned long lock_len)
6427 {
6428 return lock_from + lock_len <= mem_from ||
6429 mem_from + mem_len <= lock_from;
6430 }
6431
6432 /*
6433 * Called when kernel memory is freed (or unmapped), or if a lock
6434 * is destroyed or reinitialized - this code checks whether there is
6435 * any held lock in the memory range of <from> to <to>:
6436 */
debug_check_no_locks_freed(const void * mem_from,unsigned long mem_len)6437 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6438 {
6439 struct task_struct *curr = current;
6440 struct held_lock *hlock;
6441 unsigned long flags;
6442 int i;
6443
6444 if (unlikely(!debug_locks))
6445 return;
6446
6447 raw_local_irq_save(flags);
6448 for (i = 0; i < curr->lockdep_depth; i++) {
6449 hlock = curr->held_locks + i;
6450
6451 if (not_in_range(mem_from, mem_len, hlock->instance,
6452 sizeof(*hlock->instance)))
6453 continue;
6454
6455 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6456 break;
6457 }
6458 raw_local_irq_restore(flags);
6459 }
6460 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6461
print_held_locks_bug(void)6462 static void print_held_locks_bug(void)
6463 {
6464 if (!debug_locks_off())
6465 return;
6466 if (debug_locks_silent)
6467 return;
6468
6469 pr_warn("\n");
6470 pr_warn("====================================\n");
6471 pr_warn("WARNING: %s/%d still has locks held!\n",
6472 current->comm, task_pid_nr(current));
6473 print_kernel_ident();
6474 pr_warn("------------------------------------\n");
6475 lockdep_print_held_locks(current);
6476 pr_warn("\nstack backtrace:\n");
6477 dump_stack();
6478 }
6479
debug_check_no_locks_held(void)6480 void debug_check_no_locks_held(void)
6481 {
6482 if (unlikely(current->lockdep_depth > 0))
6483 print_held_locks_bug();
6484 }
6485 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6486
6487 #ifdef __KERNEL__
debug_show_all_locks(void)6488 void debug_show_all_locks(void)
6489 {
6490 struct task_struct *g, *p;
6491
6492 if (unlikely(!debug_locks)) {
6493 pr_warn("INFO: lockdep is turned off.\n");
6494 return;
6495 }
6496 pr_warn("\nShowing all locks held in the system:\n");
6497
6498 rcu_read_lock();
6499 for_each_process_thread(g, p) {
6500 if (!p->lockdep_depth)
6501 continue;
6502 lockdep_print_held_locks(p);
6503 touch_nmi_watchdog();
6504 touch_all_softlockup_watchdogs();
6505 }
6506 rcu_read_unlock();
6507
6508 pr_warn("\n");
6509 pr_warn("=============================================\n\n");
6510 }
6511 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6512 #endif
6513
6514 /*
6515 * Careful: only use this function if you are sure that
6516 * the task cannot run in parallel!
6517 */
debug_show_held_locks(struct task_struct * task)6518 void debug_show_held_locks(struct task_struct *task)
6519 {
6520 if (unlikely(!debug_locks)) {
6521 printk("INFO: lockdep is turned off.\n");
6522 return;
6523 }
6524 lockdep_print_held_locks(task);
6525 }
6526 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6527
lockdep_sys_exit(void)6528 asmlinkage __visible void lockdep_sys_exit(void)
6529 {
6530 struct task_struct *curr = current;
6531
6532 if (unlikely(curr->lockdep_depth)) {
6533 if (!debug_locks_off())
6534 return;
6535 pr_warn("\n");
6536 pr_warn("================================================\n");
6537 pr_warn("WARNING: lock held when returning to user space!\n");
6538 print_kernel_ident();
6539 pr_warn("------------------------------------------------\n");
6540 pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6541 curr->comm, curr->pid);
6542 lockdep_print_held_locks(curr);
6543 }
6544
6545 /*
6546 * The lock history for each syscall should be independent. So wipe the
6547 * slate clean on return to userspace.
6548 */
6549 lockdep_invariant_state(false);
6550 }
6551
lockdep_rcu_suspicious(const char * file,const int line,const char * s)6552 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6553 {
6554 struct task_struct *curr = current;
6555 int dl = READ_ONCE(debug_locks);
6556
6557 /* Note: the following can be executed concurrently, so be careful. */
6558 pr_warn("\n");
6559 pr_warn("=============================\n");
6560 pr_warn("WARNING: suspicious RCU usage\n");
6561 print_kernel_ident();
6562 pr_warn("-----------------------------\n");
6563 pr_warn("%s:%d %s!\n", file, line, s);
6564 pr_warn("\nother info that might help us debug this:\n\n");
6565 pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s",
6566 !rcu_lockdep_current_cpu_online()
6567 ? "RCU used illegally from offline CPU!\n"
6568 : "",
6569 rcu_scheduler_active, dl,
6570 dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n");
6571
6572 /*
6573 * If a CPU is in the RCU-free window in idle (ie: in the section
6574 * between rcu_idle_enter() and rcu_idle_exit(), then RCU
6575 * considers that CPU to be in an "extended quiescent state",
6576 * which means that RCU will be completely ignoring that CPU.
6577 * Therefore, rcu_read_lock() and friends have absolutely no
6578 * effect on a CPU running in that state. In other words, even if
6579 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6580 * delete data structures out from under it. RCU really has no
6581 * choice here: we need to keep an RCU-free window in idle where
6582 * the CPU may possibly enter into low power mode. This way we can
6583 * notice an extended quiescent state to other CPUs that started a grace
6584 * period. Otherwise we would delay any grace period as long as we run
6585 * in the idle task.
6586 *
6587 * So complain bitterly if someone does call rcu_read_lock(),
6588 * rcu_read_lock_bh() and so on from extended quiescent states.
6589 */
6590 if (!rcu_is_watching())
6591 pr_warn("RCU used illegally from extended quiescent state!\n");
6592
6593 lockdep_print_held_locks(curr);
6594 pr_warn("\nstack backtrace:\n");
6595 dump_stack();
6596 }
6597 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
6598