1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion
4  *
5  * Copyright IBM Corporation, 2001
6  *
7  * Author: Dipankar Sarma <dipankar@in.ibm.com>
8  *
9  * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
10  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
11  * Papers:
12  * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
13  * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
14  *
15  * For detailed explanation of Read-Copy Update mechanism see -
16  *		http://lse.sourceforge.net/locking/rcupdate.html
17  *
18  */
19 
20 #ifndef __LINUX_RCUPDATE_H
21 #define __LINUX_RCUPDATE_H
22 
23 #include <linux/types.h>
24 #include <linux/compiler.h>
25 #include <linux/atomic.h>
26 #include <linux/irqflags.h>
27 #include <linux/preempt.h>
28 #include <linux/bottom_half.h>
29 #include <linux/lockdep.h>
30 #include <asm/processor.h>
31 #include <linux/cpumask.h>
32 
33 #define ULONG_CMP_GE(a, b)	(ULONG_MAX / 2 >= (a) - (b))
34 #define ULONG_CMP_LT(a, b)	(ULONG_MAX / 2 < (a) - (b))
35 #define ulong2long(a)		(*(long *)(&(a)))
36 #define USHORT_CMP_GE(a, b)	(USHRT_MAX / 2 >= (unsigned short)((a) - (b)))
37 #define USHORT_CMP_LT(a, b)	(USHRT_MAX / 2 < (unsigned short)((a) - (b)))
38 
39 /* Exported common interfaces */
40 void call_rcu(struct rcu_head *head, rcu_callback_t func);
41 void rcu_barrier_tasks(void);
42 void rcu_barrier_tasks_rude(void);
43 void synchronize_rcu(void);
44 
45 #ifdef CONFIG_PREEMPT_RCU
46 
47 void __rcu_read_lock(void);
48 void __rcu_read_unlock(void);
49 
50 /*
51  * Defined as a macro as it is a very low level header included from
52  * areas that don't even know about current.  This gives the rcu_read_lock()
53  * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
54  * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
55  */
56 #define rcu_preempt_depth() READ_ONCE(current->rcu_read_lock_nesting)
57 
58 #else /* #ifdef CONFIG_PREEMPT_RCU */
59 
60 #ifdef CONFIG_TINY_RCU
61 #define rcu_read_unlock_strict() do { } while (0)
62 #else
63 void rcu_read_unlock_strict(void);
64 #endif
65 
__rcu_read_lock(void)66 static inline void __rcu_read_lock(void)
67 {
68 	preempt_disable();
69 }
70 
__rcu_read_unlock(void)71 static inline void __rcu_read_unlock(void)
72 {
73 	preempt_enable();
74 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
75 		rcu_read_unlock_strict();
76 }
77 
rcu_preempt_depth(void)78 static inline int rcu_preempt_depth(void)
79 {
80 	return 0;
81 }
82 
83 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
84 
85 /* Internal to kernel */
86 void rcu_init(void);
87 extern int rcu_scheduler_active;
88 void rcu_sched_clock_irq(int user);
89 void rcu_report_dead(unsigned int cpu);
90 void rcutree_migrate_callbacks(int cpu);
91 
92 #ifdef CONFIG_TASKS_RCU_GENERIC
93 void rcu_init_tasks_generic(void);
94 #else
rcu_init_tasks_generic(void)95 static inline void rcu_init_tasks_generic(void) { }
96 #endif
97 
98 #ifdef CONFIG_RCU_STALL_COMMON
99 void rcu_sysrq_start(void);
100 void rcu_sysrq_end(void);
101 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
rcu_sysrq_start(void)102 static inline void rcu_sysrq_start(void) { }
rcu_sysrq_end(void)103 static inline void rcu_sysrq_end(void) { }
104 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
105 
106 #ifdef CONFIG_NO_HZ_FULL
107 void rcu_user_enter(void);
108 void rcu_user_exit(void);
109 #else
rcu_user_enter(void)110 static inline void rcu_user_enter(void) { }
rcu_user_exit(void)111 static inline void rcu_user_exit(void) { }
112 #endif /* CONFIG_NO_HZ_FULL */
113 
114 #ifdef CONFIG_RCU_NOCB_CPU
115 void rcu_init_nohz(void);
116 int rcu_nocb_cpu_offload(int cpu);
117 int rcu_nocb_cpu_deoffload(int cpu);
118 void rcu_nocb_flush_deferred_wakeup(void);
119 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
rcu_init_nohz(void)120 static inline void rcu_init_nohz(void) { }
rcu_nocb_cpu_offload(int cpu)121 static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; }
rcu_nocb_cpu_deoffload(int cpu)122 static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; }
rcu_nocb_flush_deferred_wakeup(void)123 static inline void rcu_nocb_flush_deferred_wakeup(void) { }
124 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
125 
126 /**
127  * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
128  * @a: Code that RCU needs to pay attention to.
129  *
130  * RCU read-side critical sections are forbidden in the inner idle loop,
131  * that is, between the rcu_idle_enter() and the rcu_idle_exit() -- RCU
132  * will happily ignore any such read-side critical sections.  However,
133  * things like powertop need tracepoints in the inner idle loop.
134  *
135  * This macro provides the way out:  RCU_NONIDLE(do_something_with_RCU())
136  * will tell RCU that it needs to pay attention, invoke its argument
137  * (in this example, calling the do_something_with_RCU() function),
138  * and then tell RCU to go back to ignoring this CPU.  It is permissible
139  * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
140  * on the order of a million or so, even on 32-bit systems).  It is
141  * not legal to block within RCU_NONIDLE(), nor is it permissible to
142  * transfer control either into or out of RCU_NONIDLE()'s statement.
143  */
144 #define RCU_NONIDLE(a) \
145 	do { \
146 		rcu_irq_enter_irqson(); \
147 		do { a; } while (0); \
148 		rcu_irq_exit_irqson(); \
149 	} while (0)
150 
151 /*
152  * Note a quasi-voluntary context switch for RCU-tasks's benefit.
153  * This is a macro rather than an inline function to avoid #include hell.
154  */
155 #ifdef CONFIG_TASKS_RCU_GENERIC
156 
157 # ifdef CONFIG_TASKS_RCU
158 # define rcu_tasks_classic_qs(t, preempt)				\
159 	do {								\
160 		if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout))	\
161 			WRITE_ONCE((t)->rcu_tasks_holdout, false);	\
162 	} while (0)
163 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
164 void synchronize_rcu_tasks(void);
165 # else
166 # define rcu_tasks_classic_qs(t, preempt) do { } while (0)
167 # define call_rcu_tasks call_rcu
168 # define synchronize_rcu_tasks synchronize_rcu
169 # endif
170 
171 # ifdef CONFIG_TASKS_TRACE_RCU
172 # define rcu_tasks_trace_qs(t)						\
173 	do {								\
174 		if (!likely(READ_ONCE((t)->trc_reader_checked)) &&	\
175 		    !unlikely(READ_ONCE((t)->trc_reader_nesting))) {	\
176 			smp_store_release(&(t)->trc_reader_checked, true); \
177 			smp_mb(); /* Readers partitioned by store. */	\
178 		}							\
179 	} while (0)
180 # else
181 # define rcu_tasks_trace_qs(t) do { } while (0)
182 # endif
183 
184 #define rcu_tasks_qs(t, preempt)					\
185 do {									\
186 	rcu_tasks_classic_qs((t), (preempt));				\
187 	rcu_tasks_trace_qs((t));					\
188 } while (0)
189 
190 # ifdef CONFIG_TASKS_RUDE_RCU
191 void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func);
192 void synchronize_rcu_tasks_rude(void);
193 # endif
194 
195 #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false)
196 void exit_tasks_rcu_start(void);
197 void exit_tasks_rcu_finish(void);
198 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
199 #define rcu_tasks_classic_qs(t, preempt) do { } while (0)
200 #define rcu_tasks_qs(t, preempt) do { } while (0)
201 #define rcu_note_voluntary_context_switch(t) do { } while (0)
202 #define call_rcu_tasks call_rcu
203 #define synchronize_rcu_tasks synchronize_rcu
exit_tasks_rcu_start(void)204 static inline void exit_tasks_rcu_start(void) { }
exit_tasks_rcu_finish(void)205 static inline void exit_tasks_rcu_finish(void) { }
206 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
207 
208 /**
209  * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
210  *
211  * This macro resembles cond_resched(), except that it is defined to
212  * report potential quiescent states to RCU-tasks even if the cond_resched()
213  * machinery were to be shut off, as some advocate for PREEMPTION kernels.
214  */
215 #define cond_resched_tasks_rcu_qs() \
216 do { \
217 	rcu_tasks_qs(current, false); \
218 	cond_resched(); \
219 } while (0)
220 
221 /*
222  * Infrastructure to implement the synchronize_() primitives in
223  * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
224  */
225 
226 #if defined(CONFIG_TREE_RCU)
227 #include <linux/rcutree.h>
228 #elif defined(CONFIG_TINY_RCU)
229 #include <linux/rcutiny.h>
230 #else
231 #error "Unknown RCU implementation specified to kernel configuration"
232 #endif
233 
234 /*
235  * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
236  * are needed for dynamic initialization and destruction of rcu_head
237  * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
238  * dynamic initialization and destruction of statically allocated rcu_head
239  * structures.  However, rcu_head structures allocated dynamically in the
240  * heap don't need any initialization.
241  */
242 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
243 void init_rcu_head(struct rcu_head *head);
244 void destroy_rcu_head(struct rcu_head *head);
245 void init_rcu_head_on_stack(struct rcu_head *head);
246 void destroy_rcu_head_on_stack(struct rcu_head *head);
247 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
init_rcu_head(struct rcu_head * head)248 static inline void init_rcu_head(struct rcu_head *head) { }
destroy_rcu_head(struct rcu_head * head)249 static inline void destroy_rcu_head(struct rcu_head *head) { }
init_rcu_head_on_stack(struct rcu_head * head)250 static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
destroy_rcu_head_on_stack(struct rcu_head * head)251 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
252 #endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
253 
254 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
255 bool rcu_lockdep_current_cpu_online(void);
256 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
rcu_lockdep_current_cpu_online(void)257 static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
258 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
259 
260 extern struct lockdep_map rcu_lock_map;
261 extern struct lockdep_map rcu_bh_lock_map;
262 extern struct lockdep_map rcu_sched_lock_map;
263 extern struct lockdep_map rcu_callback_map;
264 
265 #ifdef CONFIG_DEBUG_LOCK_ALLOC
266 
rcu_lock_acquire(struct lockdep_map * map)267 static inline void rcu_lock_acquire(struct lockdep_map *map)
268 {
269 	lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
270 }
271 
rcu_lock_release(struct lockdep_map * map)272 static inline void rcu_lock_release(struct lockdep_map *map)
273 {
274 	lock_release(map, _THIS_IP_);
275 }
276 
277 int debug_lockdep_rcu_enabled(void);
278 int rcu_read_lock_held(void);
279 int rcu_read_lock_bh_held(void);
280 int rcu_read_lock_sched_held(void);
281 int rcu_read_lock_any_held(void);
282 
283 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
284 
285 # define rcu_lock_acquire(a)		do { } while (0)
286 # define rcu_lock_release(a)		do { } while (0)
287 
rcu_read_lock_held(void)288 static inline int rcu_read_lock_held(void)
289 {
290 	return 1;
291 }
292 
rcu_read_lock_bh_held(void)293 static inline int rcu_read_lock_bh_held(void)
294 {
295 	return 1;
296 }
297 
rcu_read_lock_sched_held(void)298 static inline int rcu_read_lock_sched_held(void)
299 {
300 	return !preemptible();
301 }
302 
rcu_read_lock_any_held(void)303 static inline int rcu_read_lock_any_held(void)
304 {
305 	return !preemptible();
306 }
307 
308 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
309 
310 #ifdef CONFIG_PROVE_RCU
311 
312 /**
313  * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
314  * @c: condition to check
315  * @s: informative message
316  */
317 #define RCU_LOCKDEP_WARN(c, s)						\
318 	do {								\
319 		static bool __section(".data.unlikely") __warned;	\
320 		if ((c) && debug_lockdep_rcu_enabled() && !__warned) {	\
321 			__warned = true;				\
322 			lockdep_rcu_suspicious(__FILE__, __LINE__, s);	\
323 		}							\
324 	} while (0)
325 
326 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
rcu_preempt_sleep_check(void)327 static inline void rcu_preempt_sleep_check(void)
328 {
329 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
330 			 "Illegal context switch in RCU read-side critical section");
331 }
332 #else /* #ifdef CONFIG_PROVE_RCU */
rcu_preempt_sleep_check(void)333 static inline void rcu_preempt_sleep_check(void) { }
334 #endif /* #else #ifdef CONFIG_PROVE_RCU */
335 
336 #define rcu_sleep_check()						\
337 	do {								\
338 		rcu_preempt_sleep_check();				\
339 		if (!IS_ENABLED(CONFIG_PREEMPT_RT))			\
340 		    RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),	\
341 				 "Illegal context switch in RCU-bh read-side critical section"); \
342 		RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),	\
343 				 "Illegal context switch in RCU-sched read-side critical section"); \
344 	} while (0)
345 
346 #else /* #ifdef CONFIG_PROVE_RCU */
347 
348 #define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c))
349 #define rcu_sleep_check() do { } while (0)
350 
351 #endif /* #else #ifdef CONFIG_PROVE_RCU */
352 
353 /*
354  * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
355  * and rcu_assign_pointer().  Some of these could be folded into their
356  * callers, but they are left separate in order to ease introduction of
357  * multiple pointers markings to match different RCU implementations
358  * (e.g., __srcu), should this make sense in the future.
359  */
360 
361 #ifdef __CHECKER__
362 #define rcu_check_sparse(p, space) \
363 	((void)(((typeof(*p) space *)p) == p))
364 #else /* #ifdef __CHECKER__ */
365 #define rcu_check_sparse(p, space)
366 #endif /* #else #ifdef __CHECKER__ */
367 
368 #define __unrcu_pointer(p, local)					\
369 ({									\
370 	typeof(*p) *local = (typeof(*p) *__force)(p);			\
371 	rcu_check_sparse(p, __rcu);					\
372 	((typeof(*p) __force __kernel *)(local)); 			\
373 })
374 /**
375  * unrcu_pointer - mark a pointer as not being RCU protected
376  * @p: pointer needing to lose its __rcu property
377  *
378  * Converts @p from an __rcu pointer to a __kernel pointer.
379  * This allows an __rcu pointer to be used with xchg() and friends.
380  */
381 #define unrcu_pointer(p) __unrcu_pointer(p, __UNIQUE_ID(rcu))
382 
383 #define __rcu_access_pointer(p, local, space) \
384 ({ \
385 	typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
386 	rcu_check_sparse(p, space); \
387 	((typeof(*p) __force __kernel *)(local)); \
388 })
389 #define __rcu_dereference_check(p, local, c, space) \
390 ({ \
391 	/* Dependency order vs. p above. */ \
392 	typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
393 	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
394 	rcu_check_sparse(p, space); \
395 	((typeof(*p) __force __kernel *)(local)); \
396 })
397 #define __rcu_dereference_protected(p, local, c, space) \
398 ({ \
399 	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
400 	rcu_check_sparse(p, space); \
401 	((typeof(*p) __force __kernel *)(p)); \
402 })
403 #define __rcu_dereference_raw(p, local) \
404 ({ \
405 	/* Dependency order vs. p above. */ \
406 	typeof(p) local = READ_ONCE(p); \
407 	((typeof(*p) __force __kernel *)(local)); \
408 })
409 #define rcu_dereference_raw(p) __rcu_dereference_raw(p, __UNIQUE_ID(rcu))
410 
411 /**
412  * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
413  * @v: The value to statically initialize with.
414  */
415 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
416 
417 /**
418  * rcu_assign_pointer() - assign to RCU-protected pointer
419  * @p: pointer to assign to
420  * @v: value to assign (publish)
421  *
422  * Assigns the specified value to the specified RCU-protected
423  * pointer, ensuring that any concurrent RCU readers will see
424  * any prior initialization.
425  *
426  * Inserts memory barriers on architectures that require them
427  * (which is most of them), and also prevents the compiler from
428  * reordering the code that initializes the structure after the pointer
429  * assignment.  More importantly, this call documents which pointers
430  * will be dereferenced by RCU read-side code.
431  *
432  * In some special cases, you may use RCU_INIT_POINTER() instead
433  * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
434  * to the fact that it does not constrain either the CPU or the compiler.
435  * That said, using RCU_INIT_POINTER() when you should have used
436  * rcu_assign_pointer() is a very bad thing that results in
437  * impossible-to-diagnose memory corruption.  So please be careful.
438  * See the RCU_INIT_POINTER() comment header for details.
439  *
440  * Note that rcu_assign_pointer() evaluates each of its arguments only
441  * once, appearances notwithstanding.  One of the "extra" evaluations
442  * is in typeof() and the other visible only to sparse (__CHECKER__),
443  * neither of which actually execute the argument.  As with most cpp
444  * macros, this execute-arguments-only-once property is important, so
445  * please be careful when making changes to rcu_assign_pointer() and the
446  * other macros that it invokes.
447  */
448 #define rcu_assign_pointer(p, v)					      \
449 do {									      \
450 	uintptr_t _r_a_p__v = (uintptr_t)(v);				      \
451 	rcu_check_sparse(p, __rcu);					      \
452 									      \
453 	if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL)	      \
454 		WRITE_ONCE((p), (typeof(p))(_r_a_p__v));		      \
455 	else								      \
456 		smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
457 } while (0)
458 
459 /**
460  * rcu_replace_pointer() - replace an RCU pointer, returning its old value
461  * @rcu_ptr: RCU pointer, whose old value is returned
462  * @ptr: regular pointer
463  * @c: the lockdep conditions under which the dereference will take place
464  *
465  * Perform a replacement, where @rcu_ptr is an RCU-annotated
466  * pointer and @c is the lockdep argument that is passed to the
467  * rcu_dereference_protected() call used to read that pointer.  The old
468  * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
469  */
470 #define rcu_replace_pointer(rcu_ptr, ptr, c)				\
471 ({									\
472 	typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c));	\
473 	rcu_assign_pointer((rcu_ptr), (ptr));				\
474 	__tmp;								\
475 })
476 
477 /**
478  * rcu_access_pointer() - fetch RCU pointer with no dereferencing
479  * @p: The pointer to read
480  *
481  * Return the value of the specified RCU-protected pointer, but omit the
482  * lockdep checks for being in an RCU read-side critical section.  This is
483  * useful when the value of this pointer is accessed, but the pointer is
484  * not dereferenced, for example, when testing an RCU-protected pointer
485  * against NULL.  Although rcu_access_pointer() may also be used in cases
486  * where update-side locks prevent the value of the pointer from changing,
487  * you should instead use rcu_dereference_protected() for this use case.
488  *
489  * It is also permissible to use rcu_access_pointer() when read-side
490  * access to the pointer was removed at least one grace period ago, as
491  * is the case in the context of the RCU callback that is freeing up
492  * the data, or after a synchronize_rcu() returns.  This can be useful
493  * when tearing down multi-linked structures after a grace period
494  * has elapsed.
495  */
496 #define rcu_access_pointer(p) __rcu_access_pointer((p), __UNIQUE_ID(rcu), __rcu)
497 
498 /**
499  * rcu_dereference_check() - rcu_dereference with debug checking
500  * @p: The pointer to read, prior to dereferencing
501  * @c: The conditions under which the dereference will take place
502  *
503  * Do an rcu_dereference(), but check that the conditions under which the
504  * dereference will take place are correct.  Typically the conditions
505  * indicate the various locking conditions that should be held at that
506  * point.  The check should return true if the conditions are satisfied.
507  * An implicit check for being in an RCU read-side critical section
508  * (rcu_read_lock()) is included.
509  *
510  * For example:
511  *
512  *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
513  *
514  * could be used to indicate to lockdep that foo->bar may only be dereferenced
515  * if either rcu_read_lock() is held, or that the lock required to replace
516  * the bar struct at foo->bar is held.
517  *
518  * Note that the list of conditions may also include indications of when a lock
519  * need not be held, for example during initialisation or destruction of the
520  * target struct:
521  *
522  *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
523  *					      atomic_read(&foo->usage) == 0);
524  *
525  * Inserts memory barriers on architectures that require them
526  * (currently only the Alpha), prevents the compiler from refetching
527  * (and from merging fetches), and, more importantly, documents exactly
528  * which pointers are protected by RCU and checks that the pointer is
529  * annotated as __rcu.
530  */
531 #define rcu_dereference_check(p, c) \
532 	__rcu_dereference_check((p), __UNIQUE_ID(rcu), \
533 				(c) || rcu_read_lock_held(), __rcu)
534 
535 /**
536  * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
537  * @p: The pointer to read, prior to dereferencing
538  * @c: The conditions under which the dereference will take place
539  *
540  * This is the RCU-bh counterpart to rcu_dereference_check().  However,
541  * please note that starting in v5.0 kernels, vanilla RCU grace periods
542  * wait for local_bh_disable() regions of code in addition to regions of
543  * code demarked by rcu_read_lock() and rcu_read_unlock().  This means
544  * that synchronize_rcu(), call_rcu, and friends all take not only
545  * rcu_read_lock() but also rcu_read_lock_bh() into account.
546  */
547 #define rcu_dereference_bh_check(p, c) \
548 	__rcu_dereference_check((p), __UNIQUE_ID(rcu), \
549 				(c) || rcu_read_lock_bh_held(), __rcu)
550 
551 /**
552  * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
553  * @p: The pointer to read, prior to dereferencing
554  * @c: The conditions under which the dereference will take place
555  *
556  * This is the RCU-sched counterpart to rcu_dereference_check().
557  * However, please note that starting in v5.0 kernels, vanilla RCU grace
558  * periods wait for preempt_disable() regions of code in addition to
559  * regions of code demarked by rcu_read_lock() and rcu_read_unlock().
560  * This means that synchronize_rcu(), call_rcu, and friends all take not
561  * only rcu_read_lock() but also rcu_read_lock_sched() into account.
562  */
563 #define rcu_dereference_sched_check(p, c) \
564 	__rcu_dereference_check((p), __UNIQUE_ID(rcu), \
565 				(c) || rcu_read_lock_sched_held(), \
566 				__rcu)
567 
568 /*
569  * The tracing infrastructure traces RCU (we want that), but unfortunately
570  * some of the RCU checks causes tracing to lock up the system.
571  *
572  * The no-tracing version of rcu_dereference_raw() must not call
573  * rcu_read_lock_held().
574  */
575 #define rcu_dereference_raw_check(p) \
576 	__rcu_dereference_check((p), __UNIQUE_ID(rcu), 1, __rcu)
577 
578 /**
579  * rcu_dereference_protected() - fetch RCU pointer when updates prevented
580  * @p: The pointer to read, prior to dereferencing
581  * @c: The conditions under which the dereference will take place
582  *
583  * Return the value of the specified RCU-protected pointer, but omit
584  * the READ_ONCE().  This is useful in cases where update-side locks
585  * prevent the value of the pointer from changing.  Please note that this
586  * primitive does *not* prevent the compiler from repeating this reference
587  * or combining it with other references, so it should not be used without
588  * protection of appropriate locks.
589  *
590  * This function is only for update-side use.  Using this function
591  * when protected only by rcu_read_lock() will result in infrequent
592  * but very ugly failures.
593  */
594 #define rcu_dereference_protected(p, c) \
595 	__rcu_dereference_protected((p), __UNIQUE_ID(rcu), (c), __rcu)
596 
597 
598 /**
599  * rcu_dereference() - fetch RCU-protected pointer for dereferencing
600  * @p: The pointer to read, prior to dereferencing
601  *
602  * This is a simple wrapper around rcu_dereference_check().
603  */
604 #define rcu_dereference(p) rcu_dereference_check(p, 0)
605 
606 /**
607  * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
608  * @p: The pointer to read, prior to dereferencing
609  *
610  * Makes rcu_dereference_check() do the dirty work.
611  */
612 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
613 
614 /**
615  * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
616  * @p: The pointer to read, prior to dereferencing
617  *
618  * Makes rcu_dereference_check() do the dirty work.
619  */
620 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
621 
622 /**
623  * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
624  * @p: The pointer to hand off
625  *
626  * This is simply an identity function, but it documents where a pointer
627  * is handed off from RCU to some other synchronization mechanism, for
628  * example, reference counting or locking.  In C11, it would map to
629  * kill_dependency().  It could be used as follows::
630  *
631  *	rcu_read_lock();
632  *	p = rcu_dereference(gp);
633  *	long_lived = is_long_lived(p);
634  *	if (long_lived) {
635  *		if (!atomic_inc_not_zero(p->refcnt))
636  *			long_lived = false;
637  *		else
638  *			p = rcu_pointer_handoff(p);
639  *	}
640  *	rcu_read_unlock();
641  */
642 #define rcu_pointer_handoff(p) (p)
643 
644 /**
645  * rcu_read_lock() - mark the beginning of an RCU read-side critical section
646  *
647  * When synchronize_rcu() is invoked on one CPU while other CPUs
648  * are within RCU read-side critical sections, then the
649  * synchronize_rcu() is guaranteed to block until after all the other
650  * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
651  * on one CPU while other CPUs are within RCU read-side critical
652  * sections, invocation of the corresponding RCU callback is deferred
653  * until after the all the other CPUs exit their critical sections.
654  *
655  * In v5.0 and later kernels, synchronize_rcu() and call_rcu() also
656  * wait for regions of code with preemption disabled, including regions of
657  * code with interrupts or softirqs disabled.  In pre-v5.0 kernels, which
658  * define synchronize_sched(), only code enclosed within rcu_read_lock()
659  * and rcu_read_unlock() are guaranteed to be waited for.
660  *
661  * Note, however, that RCU callbacks are permitted to run concurrently
662  * with new RCU read-side critical sections.  One way that this can happen
663  * is via the following sequence of events: (1) CPU 0 enters an RCU
664  * read-side critical section, (2) CPU 1 invokes call_rcu() to register
665  * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
666  * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
667  * callback is invoked.  This is legal, because the RCU read-side critical
668  * section that was running concurrently with the call_rcu() (and which
669  * therefore might be referencing something that the corresponding RCU
670  * callback would free up) has completed before the corresponding
671  * RCU callback is invoked.
672  *
673  * RCU read-side critical sections may be nested.  Any deferred actions
674  * will be deferred until the outermost RCU read-side critical section
675  * completes.
676  *
677  * You can avoid reading and understanding the next paragraph by
678  * following this rule: don't put anything in an rcu_read_lock() RCU
679  * read-side critical section that would block in a !PREEMPTION kernel.
680  * But if you want the full story, read on!
681  *
682  * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU),
683  * it is illegal to block while in an RCU read-side critical section.
684  * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
685  * kernel builds, RCU read-side critical sections may be preempted,
686  * but explicit blocking is illegal.  Finally, in preemptible RCU
687  * implementations in real-time (with -rt patchset) kernel builds, RCU
688  * read-side critical sections may be preempted and they may also block, but
689  * only when acquiring spinlocks that are subject to priority inheritance.
690  */
rcu_read_lock(void)691 static __always_inline void rcu_read_lock(void)
692 {
693 	__rcu_read_lock();
694 	__acquire(RCU);
695 	rcu_lock_acquire(&rcu_lock_map);
696 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
697 			 "rcu_read_lock() used illegally while idle");
698 }
699 
700 /*
701  * So where is rcu_write_lock()?  It does not exist, as there is no
702  * way for writers to lock out RCU readers.  This is a feature, not
703  * a bug -- this property is what provides RCU's performance benefits.
704  * Of course, writers must coordinate with each other.  The normal
705  * spinlock primitives work well for this, but any other technique may be
706  * used as well.  RCU does not care how the writers keep out of each
707  * others' way, as long as they do so.
708  */
709 
710 /**
711  * rcu_read_unlock() - marks the end of an RCU read-side critical section.
712  *
713  * In almost all situations, rcu_read_unlock() is immune from deadlock.
714  * In recent kernels that have consolidated synchronize_sched() and
715  * synchronize_rcu_bh() into synchronize_rcu(), this deadlock immunity
716  * also extends to the scheduler's runqueue and priority-inheritance
717  * spinlocks, courtesy of the quiescent-state deferral that is carried
718  * out when rcu_read_unlock() is invoked with interrupts disabled.
719  *
720  * See rcu_read_lock() for more information.
721  */
rcu_read_unlock(void)722 static inline void rcu_read_unlock(void)
723 {
724 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
725 			 "rcu_read_unlock() used illegally while idle");
726 	__release(RCU);
727 	__rcu_read_unlock();
728 	rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
729 }
730 
731 /**
732  * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
733  *
734  * This is equivalent to rcu_read_lock(), but also disables softirqs.
735  * Note that anything else that disables softirqs can also serve as an RCU
736  * read-side critical section.  However, please note that this equivalence
737  * applies only to v5.0 and later.  Before v5.0, rcu_read_lock() and
738  * rcu_read_lock_bh() were unrelated.
739  *
740  * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
741  * must occur in the same context, for example, it is illegal to invoke
742  * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
743  * was invoked from some other task.
744  */
rcu_read_lock_bh(void)745 static inline void rcu_read_lock_bh(void)
746 {
747 	local_bh_disable();
748 	__acquire(RCU_BH);
749 	rcu_lock_acquire(&rcu_bh_lock_map);
750 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
751 			 "rcu_read_lock_bh() used illegally while idle");
752 }
753 
754 /**
755  * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section
756  *
757  * See rcu_read_lock_bh() for more information.
758  */
rcu_read_unlock_bh(void)759 static inline void rcu_read_unlock_bh(void)
760 {
761 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
762 			 "rcu_read_unlock_bh() used illegally while idle");
763 	rcu_lock_release(&rcu_bh_lock_map);
764 	__release(RCU_BH);
765 	local_bh_enable();
766 }
767 
768 /**
769  * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
770  *
771  * This is equivalent to rcu_read_lock(), but also disables preemption.
772  * Read-side critical sections can also be introduced by anything else that
773  * disables preemption, including local_irq_disable() and friends.  However,
774  * please note that the equivalence to rcu_read_lock() applies only to
775  * v5.0 and later.  Before v5.0, rcu_read_lock() and rcu_read_lock_sched()
776  * were unrelated.
777  *
778  * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
779  * must occur in the same context, for example, it is illegal to invoke
780  * rcu_read_unlock_sched() from process context if the matching
781  * rcu_read_lock_sched() was invoked from an NMI handler.
782  */
rcu_read_lock_sched(void)783 static inline void rcu_read_lock_sched(void)
784 {
785 	preempt_disable();
786 	__acquire(RCU_SCHED);
787 	rcu_lock_acquire(&rcu_sched_lock_map);
788 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
789 			 "rcu_read_lock_sched() used illegally while idle");
790 }
791 
792 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_lock_sched_notrace(void)793 static inline notrace void rcu_read_lock_sched_notrace(void)
794 {
795 	preempt_disable_notrace();
796 	__acquire(RCU_SCHED);
797 }
798 
799 /**
800  * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section
801  *
802  * See rcu_read_lock_sched() for more information.
803  */
rcu_read_unlock_sched(void)804 static inline void rcu_read_unlock_sched(void)
805 {
806 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
807 			 "rcu_read_unlock_sched() used illegally while idle");
808 	rcu_lock_release(&rcu_sched_lock_map);
809 	__release(RCU_SCHED);
810 	preempt_enable();
811 }
812 
813 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_unlock_sched_notrace(void)814 static inline notrace void rcu_read_unlock_sched_notrace(void)
815 {
816 	__release(RCU_SCHED);
817 	preempt_enable_notrace();
818 }
819 
820 /**
821  * RCU_INIT_POINTER() - initialize an RCU protected pointer
822  * @p: The pointer to be initialized.
823  * @v: The value to initialized the pointer to.
824  *
825  * Initialize an RCU-protected pointer in special cases where readers
826  * do not need ordering constraints on the CPU or the compiler.  These
827  * special cases are:
828  *
829  * 1.	This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
830  * 2.	The caller has taken whatever steps are required to prevent
831  *	RCU readers from concurrently accessing this pointer *or*
832  * 3.	The referenced data structure has already been exposed to
833  *	readers either at compile time or via rcu_assign_pointer() *and*
834  *
835  *	a.	You have not made *any* reader-visible changes to
836  *		this structure since then *or*
837  *	b.	It is OK for readers accessing this structure from its
838  *		new location to see the old state of the structure.  (For
839  *		example, the changes were to statistical counters or to
840  *		other state where exact synchronization is not required.)
841  *
842  * Failure to follow these rules governing use of RCU_INIT_POINTER() will
843  * result in impossible-to-diagnose memory corruption.  As in the structures
844  * will look OK in crash dumps, but any concurrent RCU readers might
845  * see pre-initialized values of the referenced data structure.  So
846  * please be very careful how you use RCU_INIT_POINTER()!!!
847  *
848  * If you are creating an RCU-protected linked structure that is accessed
849  * by a single external-to-structure RCU-protected pointer, then you may
850  * use RCU_INIT_POINTER() to initialize the internal RCU-protected
851  * pointers, but you must use rcu_assign_pointer() to initialize the
852  * external-to-structure pointer *after* you have completely initialized
853  * the reader-accessible portions of the linked structure.
854  *
855  * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
856  * ordering guarantees for either the CPU or the compiler.
857  */
858 #define RCU_INIT_POINTER(p, v) \
859 	do { \
860 		rcu_check_sparse(p, __rcu); \
861 		WRITE_ONCE(p, RCU_INITIALIZER(v)); \
862 	} while (0)
863 
864 /**
865  * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
866  * @p: The pointer to be initialized.
867  * @v: The value to initialized the pointer to.
868  *
869  * GCC-style initialization for an RCU-protected pointer in a structure field.
870  */
871 #define RCU_POINTER_INITIALIZER(p, v) \
872 		.p = RCU_INITIALIZER(v)
873 
874 /*
875  * Does the specified offset indicate that the corresponding rcu_head
876  * structure can be handled by kvfree_rcu()?
877  */
878 #define __is_kvfree_rcu_offset(offset) ((offset) < 4096)
879 
880 /**
881  * kfree_rcu() - kfree an object after a grace period.
882  * @ptr: pointer to kfree for both single- and double-argument invocations.
883  * @rhf: the name of the struct rcu_head within the type of @ptr,
884  *       but only for double-argument invocations.
885  *
886  * Many rcu callbacks functions just call kfree() on the base structure.
887  * These functions are trivial, but their size adds up, and furthermore
888  * when they are used in a kernel module, that module must invoke the
889  * high-latency rcu_barrier() function at module-unload time.
890  *
891  * The kfree_rcu() function handles this issue.  Rather than encoding a
892  * function address in the embedded rcu_head structure, kfree_rcu() instead
893  * encodes the offset of the rcu_head structure within the base structure.
894  * Because the functions are not allowed in the low-order 4096 bytes of
895  * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
896  * If the offset is larger than 4095 bytes, a compile-time error will
897  * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can
898  * either fall back to use of call_rcu() or rearrange the structure to
899  * position the rcu_head structure into the first 4096 bytes.
900  *
901  * Note that the allowable offset might decrease in the future, for example,
902  * to allow something like kmem_cache_free_rcu().
903  *
904  * The BUILD_BUG_ON check must not involve any function calls, hence the
905  * checks are done in macros here.
906  */
907 #define kfree_rcu(ptr, rhf...) kvfree_rcu(ptr, ## rhf)
908 
909 /**
910  * kvfree_rcu() - kvfree an object after a grace period.
911  *
912  * This macro consists of one or two arguments and it is
913  * based on whether an object is head-less or not. If it
914  * has a head then a semantic stays the same as it used
915  * to be before:
916  *
917  *     kvfree_rcu(ptr, rhf);
918  *
919  * where @ptr is a pointer to kvfree(), @rhf is the name
920  * of the rcu_head structure within the type of @ptr.
921  *
922  * When it comes to head-less variant, only one argument
923  * is passed and that is just a pointer which has to be
924  * freed after a grace period. Therefore the semantic is
925  *
926  *     kvfree_rcu(ptr);
927  *
928  * where @ptr is the pointer to be freed by kvfree().
929  *
930  * Please note, head-less way of freeing is permitted to
931  * use from a context that has to follow might_sleep()
932  * annotation. Otherwise, please switch and embed the
933  * rcu_head structure within the type of @ptr.
934  */
935 #define kvfree_rcu(...) KVFREE_GET_MACRO(__VA_ARGS__,		\
936 	kvfree_rcu_arg_2, kvfree_rcu_arg_1)(__VA_ARGS__)
937 
938 #define KVFREE_GET_MACRO(_1, _2, NAME, ...) NAME
939 #define kvfree_rcu_arg_2(ptr, rhf)					\
940 do {									\
941 	typeof (ptr) ___p = (ptr);					\
942 									\
943 	if (___p) {									\
944 		BUILD_BUG_ON(!__is_kvfree_rcu_offset(offsetof(typeof(*(ptr)), rhf)));	\
945 		kvfree_call_rcu(&((___p)->rhf), (rcu_callback_t)(unsigned long)		\
946 			(offsetof(typeof(*(ptr)), rhf)));				\
947 	}										\
948 } while (0)
949 
950 #define kvfree_rcu_arg_1(ptr)					\
951 do {								\
952 	typeof(ptr) ___p = (ptr);				\
953 								\
954 	if (___p)						\
955 		kvfree_call_rcu(NULL, (rcu_callback_t) (___p));	\
956 } while (0)
957 
958 /*
959  * Place this after a lock-acquisition primitive to guarantee that
960  * an UNLOCK+LOCK pair acts as a full barrier.  This guarantee applies
961  * if the UNLOCK and LOCK are executed by the same CPU or if the
962  * UNLOCK and LOCK operate on the same lock variable.
963  */
964 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
965 #define smp_mb__after_unlock_lock()	smp_mb()  /* Full ordering for lock. */
966 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
967 #define smp_mb__after_unlock_lock()	do { } while (0)
968 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
969 
970 
971 /* Has the specified rcu_head structure been handed to call_rcu()? */
972 
973 /**
974  * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
975  * @rhp: The rcu_head structure to initialize.
976  *
977  * If you intend to invoke rcu_head_after_call_rcu() to test whether a
978  * given rcu_head structure has already been passed to call_rcu(), then
979  * you must also invoke this rcu_head_init() function on it just after
980  * allocating that structure.  Calls to this function must not race with
981  * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
982  */
rcu_head_init(struct rcu_head * rhp)983 static inline void rcu_head_init(struct rcu_head *rhp)
984 {
985 	rhp->func = (rcu_callback_t)~0L;
986 }
987 
988 /**
989  * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()?
990  * @rhp: The rcu_head structure to test.
991  * @f: The function passed to call_rcu() along with @rhp.
992  *
993  * Returns @true if the @rhp has been passed to call_rcu() with @func,
994  * and @false otherwise.  Emits a warning in any other case, including
995  * the case where @rhp has already been invoked after a grace period.
996  * Calls to this function must not race with callback invocation.  One way
997  * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
998  * in an RCU read-side critical section that includes a read-side fetch
999  * of the pointer to the structure containing @rhp.
1000  */
1001 static inline bool
rcu_head_after_call_rcu(struct rcu_head * rhp,rcu_callback_t f)1002 rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
1003 {
1004 	rcu_callback_t func = READ_ONCE(rhp->func);
1005 
1006 	if (func == f)
1007 		return true;
1008 	WARN_ON_ONCE(func != (rcu_callback_t)~0L);
1009 	return false;
1010 }
1011 
1012 /* kernel/ksysfs.c definitions */
1013 extern int rcu_expedited;
1014 extern int rcu_normal;
1015 
1016 #endif /* __LINUX_RCUPDATE_H */
1017