1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * Copyright (c) 2016-2018 Christoph Hellwig.
5 * All Rights Reserved.
6 */
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_btree.h"
16 #include "xfs_bmap_btree.h"
17 #include "xfs_bmap.h"
18 #include "xfs_bmap_util.h"
19 #include "xfs_errortag.h"
20 #include "xfs_error.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_space.h"
23 #include "xfs_inode_item.h"
24 #include "xfs_iomap.h"
25 #include "xfs_trace.h"
26 #include "xfs_quota.h"
27 #include "xfs_dquot_item.h"
28 #include "xfs_dquot.h"
29 #include "xfs_reflink.h"
30
31 #define XFS_ALLOC_ALIGN(mp, off) \
32 (((off) >> mp->m_allocsize_log) << mp->m_allocsize_log)
33
34 static int
xfs_alert_fsblock_zero(xfs_inode_t * ip,xfs_bmbt_irec_t * imap)35 xfs_alert_fsblock_zero(
36 xfs_inode_t *ip,
37 xfs_bmbt_irec_t *imap)
38 {
39 xfs_alert_tag(ip->i_mount, XFS_PTAG_FSBLOCK_ZERO,
40 "Access to block zero in inode %llu "
41 "start_block: %llx start_off: %llx "
42 "blkcnt: %llx extent-state: %x",
43 (unsigned long long)ip->i_ino,
44 (unsigned long long)imap->br_startblock,
45 (unsigned long long)imap->br_startoff,
46 (unsigned long long)imap->br_blockcount,
47 imap->br_state);
48 return -EFSCORRUPTED;
49 }
50
51 int
xfs_bmbt_to_iomap(struct xfs_inode * ip,struct iomap * iomap,struct xfs_bmbt_irec * imap,unsigned int mapping_flags,u16 iomap_flags)52 xfs_bmbt_to_iomap(
53 struct xfs_inode *ip,
54 struct iomap *iomap,
55 struct xfs_bmbt_irec *imap,
56 unsigned int mapping_flags,
57 u16 iomap_flags)
58 {
59 struct xfs_mount *mp = ip->i_mount;
60 struct xfs_buftarg *target = xfs_inode_buftarg(ip);
61
62 if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock)))
63 return xfs_alert_fsblock_zero(ip, imap);
64
65 if (imap->br_startblock == HOLESTARTBLOCK) {
66 iomap->addr = IOMAP_NULL_ADDR;
67 iomap->type = IOMAP_HOLE;
68 } else if (imap->br_startblock == DELAYSTARTBLOCK ||
69 isnullstartblock(imap->br_startblock)) {
70 iomap->addr = IOMAP_NULL_ADDR;
71 iomap->type = IOMAP_DELALLOC;
72 } else {
73 iomap->addr = BBTOB(xfs_fsb_to_db(ip, imap->br_startblock));
74 if (mapping_flags & IOMAP_DAX)
75 iomap->addr += target->bt_dax_part_off;
76
77 if (imap->br_state == XFS_EXT_UNWRITTEN)
78 iomap->type = IOMAP_UNWRITTEN;
79 else
80 iomap->type = IOMAP_MAPPED;
81
82 }
83 iomap->offset = XFS_FSB_TO_B(mp, imap->br_startoff);
84 iomap->length = XFS_FSB_TO_B(mp, imap->br_blockcount);
85 if (mapping_flags & IOMAP_DAX)
86 iomap->dax_dev = target->bt_daxdev;
87 else
88 iomap->bdev = target->bt_bdev;
89 iomap->flags = iomap_flags;
90
91 if (xfs_ipincount(ip) &&
92 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
93 iomap->flags |= IOMAP_F_DIRTY;
94 return 0;
95 }
96
97 static void
xfs_hole_to_iomap(struct xfs_inode * ip,struct iomap * iomap,xfs_fileoff_t offset_fsb,xfs_fileoff_t end_fsb)98 xfs_hole_to_iomap(
99 struct xfs_inode *ip,
100 struct iomap *iomap,
101 xfs_fileoff_t offset_fsb,
102 xfs_fileoff_t end_fsb)
103 {
104 struct xfs_buftarg *target = xfs_inode_buftarg(ip);
105
106 iomap->addr = IOMAP_NULL_ADDR;
107 iomap->type = IOMAP_HOLE;
108 iomap->offset = XFS_FSB_TO_B(ip->i_mount, offset_fsb);
109 iomap->length = XFS_FSB_TO_B(ip->i_mount, end_fsb - offset_fsb);
110 iomap->bdev = target->bt_bdev;
111 iomap->dax_dev = target->bt_daxdev;
112 }
113
114 static inline xfs_fileoff_t
xfs_iomap_end_fsb(struct xfs_mount * mp,loff_t offset,loff_t count)115 xfs_iomap_end_fsb(
116 struct xfs_mount *mp,
117 loff_t offset,
118 loff_t count)
119 {
120 ASSERT(offset <= mp->m_super->s_maxbytes);
121 return min(XFS_B_TO_FSB(mp, offset + count),
122 XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes));
123 }
124
125 static xfs_extlen_t
xfs_eof_alignment(struct xfs_inode * ip)126 xfs_eof_alignment(
127 struct xfs_inode *ip)
128 {
129 struct xfs_mount *mp = ip->i_mount;
130 xfs_extlen_t align = 0;
131
132 if (!XFS_IS_REALTIME_INODE(ip)) {
133 /*
134 * Round up the allocation request to a stripe unit
135 * (m_dalign) boundary if the file size is >= stripe unit
136 * size, and we are allocating past the allocation eof.
137 *
138 * If mounted with the "-o swalloc" option the alignment is
139 * increased from the strip unit size to the stripe width.
140 */
141 if (mp->m_swidth && xfs_has_swalloc(mp))
142 align = mp->m_swidth;
143 else if (mp->m_dalign)
144 align = mp->m_dalign;
145
146 if (align && XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, align))
147 align = 0;
148 }
149
150 return align;
151 }
152
153 /*
154 * Check if last_fsb is outside the last extent, and if so grow it to the next
155 * stripe unit boundary.
156 */
157 xfs_fileoff_t
xfs_iomap_eof_align_last_fsb(struct xfs_inode * ip,xfs_fileoff_t end_fsb)158 xfs_iomap_eof_align_last_fsb(
159 struct xfs_inode *ip,
160 xfs_fileoff_t end_fsb)
161 {
162 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
163 xfs_extlen_t extsz = xfs_get_extsz_hint(ip);
164 xfs_extlen_t align = xfs_eof_alignment(ip);
165 struct xfs_bmbt_irec irec;
166 struct xfs_iext_cursor icur;
167
168 ASSERT(!xfs_need_iread_extents(ifp));
169
170 /*
171 * Always round up the allocation request to the extent hint boundary.
172 */
173 if (extsz) {
174 if (align)
175 align = roundup_64(align, extsz);
176 else
177 align = extsz;
178 }
179
180 if (align) {
181 xfs_fileoff_t aligned_end_fsb = roundup_64(end_fsb, align);
182
183 xfs_iext_last(ifp, &icur);
184 if (!xfs_iext_get_extent(ifp, &icur, &irec) ||
185 aligned_end_fsb >= irec.br_startoff + irec.br_blockcount)
186 return aligned_end_fsb;
187 }
188
189 return end_fsb;
190 }
191
192 int
xfs_iomap_write_direct(struct xfs_inode * ip,xfs_fileoff_t offset_fsb,xfs_fileoff_t count_fsb,unsigned int flags,struct xfs_bmbt_irec * imap)193 xfs_iomap_write_direct(
194 struct xfs_inode *ip,
195 xfs_fileoff_t offset_fsb,
196 xfs_fileoff_t count_fsb,
197 unsigned int flags,
198 struct xfs_bmbt_irec *imap)
199 {
200 struct xfs_mount *mp = ip->i_mount;
201 struct xfs_trans *tp;
202 xfs_filblks_t resaligned;
203 int nimaps;
204 unsigned int dblocks, rblocks;
205 bool force = false;
206 int error;
207 int bmapi_flags = XFS_BMAPI_PREALLOC;
208 int nr_exts = XFS_IEXT_ADD_NOSPLIT_CNT;
209
210 ASSERT(count_fsb > 0);
211
212 resaligned = xfs_aligned_fsb_count(offset_fsb, count_fsb,
213 xfs_get_extsz_hint(ip));
214 if (unlikely(XFS_IS_REALTIME_INODE(ip))) {
215 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
216 rblocks = resaligned;
217 } else {
218 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
219 rblocks = 0;
220 }
221
222 error = xfs_qm_dqattach(ip);
223 if (error)
224 return error;
225
226 /*
227 * For DAX, we do not allocate unwritten extents, but instead we zero
228 * the block before we commit the transaction. Ideally we'd like to do
229 * this outside the transaction context, but if we commit and then crash
230 * we may not have zeroed the blocks and this will be exposed on
231 * recovery of the allocation. Hence we must zero before commit.
232 *
233 * Further, if we are mapping unwritten extents here, we need to zero
234 * and convert them to written so that we don't need an unwritten extent
235 * callback for DAX. This also means that we need to be able to dip into
236 * the reserve block pool for bmbt block allocation if there is no space
237 * left but we need to do unwritten extent conversion.
238 */
239 if (flags & IOMAP_DAX) {
240 bmapi_flags = XFS_BMAPI_CONVERT | XFS_BMAPI_ZERO;
241 if (imap->br_state == XFS_EXT_UNWRITTEN) {
242 force = true;
243 nr_exts = XFS_IEXT_WRITE_UNWRITTEN_CNT;
244 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1;
245 }
246 }
247
248 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, dblocks,
249 rblocks, force, &tp);
250 if (error)
251 return error;
252
253 error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, nr_exts);
254 if (error == -EFBIG)
255 error = xfs_iext_count_upgrade(tp, ip, nr_exts);
256 if (error)
257 goto out_trans_cancel;
258
259 /*
260 * From this point onwards we overwrite the imap pointer that the
261 * caller gave to us.
262 */
263 nimaps = 1;
264 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb, bmapi_flags, 0,
265 imap, &nimaps);
266 if (error)
267 goto out_trans_cancel;
268
269 /*
270 * Complete the transaction
271 */
272 error = xfs_trans_commit(tp);
273 if (error)
274 goto out_unlock;
275
276 /*
277 * Copy any maps to caller's array and return any error.
278 */
279 if (nimaps == 0) {
280 error = -ENOSPC;
281 goto out_unlock;
282 }
283
284 if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock)))
285 error = xfs_alert_fsblock_zero(ip, imap);
286
287 out_unlock:
288 xfs_iunlock(ip, XFS_ILOCK_EXCL);
289 return error;
290
291 out_trans_cancel:
292 xfs_trans_cancel(tp);
293 goto out_unlock;
294 }
295
296 STATIC bool
xfs_quota_need_throttle(struct xfs_inode * ip,xfs_dqtype_t type,xfs_fsblock_t alloc_blocks)297 xfs_quota_need_throttle(
298 struct xfs_inode *ip,
299 xfs_dqtype_t type,
300 xfs_fsblock_t alloc_blocks)
301 {
302 struct xfs_dquot *dq = xfs_inode_dquot(ip, type);
303
304 if (!dq || !xfs_this_quota_on(ip->i_mount, type))
305 return false;
306
307 /* no hi watermark, no throttle */
308 if (!dq->q_prealloc_hi_wmark)
309 return false;
310
311 /* under the lo watermark, no throttle */
312 if (dq->q_blk.reserved + alloc_blocks < dq->q_prealloc_lo_wmark)
313 return false;
314
315 return true;
316 }
317
318 STATIC void
xfs_quota_calc_throttle(struct xfs_inode * ip,xfs_dqtype_t type,xfs_fsblock_t * qblocks,int * qshift,int64_t * qfreesp)319 xfs_quota_calc_throttle(
320 struct xfs_inode *ip,
321 xfs_dqtype_t type,
322 xfs_fsblock_t *qblocks,
323 int *qshift,
324 int64_t *qfreesp)
325 {
326 struct xfs_dquot *dq = xfs_inode_dquot(ip, type);
327 int64_t freesp;
328 int shift = 0;
329
330 /* no dq, or over hi wmark, squash the prealloc completely */
331 if (!dq || dq->q_blk.reserved >= dq->q_prealloc_hi_wmark) {
332 *qblocks = 0;
333 *qfreesp = 0;
334 return;
335 }
336
337 freesp = dq->q_prealloc_hi_wmark - dq->q_blk.reserved;
338 if (freesp < dq->q_low_space[XFS_QLOWSP_5_PCNT]) {
339 shift = 2;
340 if (freesp < dq->q_low_space[XFS_QLOWSP_3_PCNT])
341 shift += 2;
342 if (freesp < dq->q_low_space[XFS_QLOWSP_1_PCNT])
343 shift += 2;
344 }
345
346 if (freesp < *qfreesp)
347 *qfreesp = freesp;
348
349 /* only overwrite the throttle values if we are more aggressive */
350 if ((freesp >> shift) < (*qblocks >> *qshift)) {
351 *qblocks = freesp;
352 *qshift = shift;
353 }
354 }
355
356 /*
357 * If we don't have a user specified preallocation size, dynamically increase
358 * the preallocation size as the size of the file grows. Cap the maximum size
359 * at a single extent or less if the filesystem is near full. The closer the
360 * filesystem is to being full, the smaller the maximum preallocation.
361 */
362 STATIC xfs_fsblock_t
xfs_iomap_prealloc_size(struct xfs_inode * ip,int whichfork,loff_t offset,loff_t count,struct xfs_iext_cursor * icur)363 xfs_iomap_prealloc_size(
364 struct xfs_inode *ip,
365 int whichfork,
366 loff_t offset,
367 loff_t count,
368 struct xfs_iext_cursor *icur)
369 {
370 struct xfs_iext_cursor ncur = *icur;
371 struct xfs_bmbt_irec prev, got;
372 struct xfs_mount *mp = ip->i_mount;
373 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
374 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
375 int64_t freesp;
376 xfs_fsblock_t qblocks;
377 xfs_fsblock_t alloc_blocks = 0;
378 xfs_extlen_t plen;
379 int shift = 0;
380 int qshift = 0;
381
382 /*
383 * As an exception we don't do any preallocation at all if the file is
384 * smaller than the minimum preallocation and we are using the default
385 * dynamic preallocation scheme, as it is likely this is the only write
386 * to the file that is going to be done.
387 */
388 if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_allocsize_blocks))
389 return 0;
390
391 /*
392 * Use the minimum preallocation size for small files or if we are
393 * writing right after a hole.
394 */
395 if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_dalign) ||
396 !xfs_iext_prev_extent(ifp, &ncur, &prev) ||
397 prev.br_startoff + prev.br_blockcount < offset_fsb)
398 return mp->m_allocsize_blocks;
399
400 /*
401 * Take the size of the preceding data extents as the basis for the
402 * preallocation size. Note that we don't care if the previous extents
403 * are written or not.
404 */
405 plen = prev.br_blockcount;
406 while (xfs_iext_prev_extent(ifp, &ncur, &got)) {
407 if (plen > XFS_MAX_BMBT_EXTLEN / 2 ||
408 isnullstartblock(got.br_startblock) ||
409 got.br_startoff + got.br_blockcount != prev.br_startoff ||
410 got.br_startblock + got.br_blockcount != prev.br_startblock)
411 break;
412 plen += got.br_blockcount;
413 prev = got;
414 }
415
416 /*
417 * If the size of the extents is greater than half the maximum extent
418 * length, then use the current offset as the basis. This ensures that
419 * for large files the preallocation size always extends to
420 * XFS_BMBT_MAX_EXTLEN rather than falling short due to things like stripe
421 * unit/width alignment of real extents.
422 */
423 alloc_blocks = plen * 2;
424 if (alloc_blocks > XFS_MAX_BMBT_EXTLEN)
425 alloc_blocks = XFS_B_TO_FSB(mp, offset);
426 qblocks = alloc_blocks;
427
428 /*
429 * XFS_BMBT_MAX_EXTLEN is not a power of two value but we round the prealloc
430 * down to the nearest power of two value after throttling. To prevent
431 * the round down from unconditionally reducing the maximum supported
432 * prealloc size, we round up first, apply appropriate throttling, round
433 * down and cap the value to XFS_BMBT_MAX_EXTLEN.
434 */
435 alloc_blocks = XFS_FILEOFF_MIN(roundup_pow_of_two(XFS_MAX_BMBT_EXTLEN),
436 alloc_blocks);
437
438 freesp = percpu_counter_read_positive(&mp->m_fdblocks);
439 if (freesp < mp->m_low_space[XFS_LOWSP_5_PCNT]) {
440 shift = 2;
441 if (freesp < mp->m_low_space[XFS_LOWSP_4_PCNT])
442 shift++;
443 if (freesp < mp->m_low_space[XFS_LOWSP_3_PCNT])
444 shift++;
445 if (freesp < mp->m_low_space[XFS_LOWSP_2_PCNT])
446 shift++;
447 if (freesp < mp->m_low_space[XFS_LOWSP_1_PCNT])
448 shift++;
449 }
450
451 /*
452 * Check each quota to cap the prealloc size, provide a shift value to
453 * throttle with and adjust amount of available space.
454 */
455 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_USER, alloc_blocks))
456 xfs_quota_calc_throttle(ip, XFS_DQTYPE_USER, &qblocks, &qshift,
457 &freesp);
458 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_GROUP, alloc_blocks))
459 xfs_quota_calc_throttle(ip, XFS_DQTYPE_GROUP, &qblocks, &qshift,
460 &freesp);
461 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_PROJ, alloc_blocks))
462 xfs_quota_calc_throttle(ip, XFS_DQTYPE_PROJ, &qblocks, &qshift,
463 &freesp);
464
465 /*
466 * The final prealloc size is set to the minimum of free space available
467 * in each of the quotas and the overall filesystem.
468 *
469 * The shift throttle value is set to the maximum value as determined by
470 * the global low free space values and per-quota low free space values.
471 */
472 alloc_blocks = min(alloc_blocks, qblocks);
473 shift = max(shift, qshift);
474
475 if (shift)
476 alloc_blocks >>= shift;
477 /*
478 * rounddown_pow_of_two() returns an undefined result if we pass in
479 * alloc_blocks = 0.
480 */
481 if (alloc_blocks)
482 alloc_blocks = rounddown_pow_of_two(alloc_blocks);
483 if (alloc_blocks > XFS_MAX_BMBT_EXTLEN)
484 alloc_blocks = XFS_MAX_BMBT_EXTLEN;
485
486 /*
487 * If we are still trying to allocate more space than is
488 * available, squash the prealloc hard. This can happen if we
489 * have a large file on a small filesystem and the above
490 * lowspace thresholds are smaller than XFS_BMBT_MAX_EXTLEN.
491 */
492 while (alloc_blocks && alloc_blocks >= freesp)
493 alloc_blocks >>= 4;
494 if (alloc_blocks < mp->m_allocsize_blocks)
495 alloc_blocks = mp->m_allocsize_blocks;
496 trace_xfs_iomap_prealloc_size(ip, alloc_blocks, shift,
497 mp->m_allocsize_blocks);
498 return alloc_blocks;
499 }
500
501 int
xfs_iomap_write_unwritten(xfs_inode_t * ip,xfs_off_t offset,xfs_off_t count,bool update_isize)502 xfs_iomap_write_unwritten(
503 xfs_inode_t *ip,
504 xfs_off_t offset,
505 xfs_off_t count,
506 bool update_isize)
507 {
508 xfs_mount_t *mp = ip->i_mount;
509 xfs_fileoff_t offset_fsb;
510 xfs_filblks_t count_fsb;
511 xfs_filblks_t numblks_fsb;
512 int nimaps;
513 xfs_trans_t *tp;
514 xfs_bmbt_irec_t imap;
515 struct inode *inode = VFS_I(ip);
516 xfs_fsize_t i_size;
517 uint resblks;
518 int error;
519
520 trace_xfs_unwritten_convert(ip, offset, count);
521
522 offset_fsb = XFS_B_TO_FSBT(mp, offset);
523 count_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
524 count_fsb = (xfs_filblks_t)(count_fsb - offset_fsb);
525
526 /*
527 * Reserve enough blocks in this transaction for two complete extent
528 * btree splits. We may be converting the middle part of an unwritten
529 * extent and in this case we will insert two new extents in the btree
530 * each of which could cause a full split.
531 *
532 * This reservation amount will be used in the first call to
533 * xfs_bmbt_split() to select an AG with enough space to satisfy the
534 * rest of the operation.
535 */
536 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1;
537
538 /* Attach dquots so that bmbt splits are accounted correctly. */
539 error = xfs_qm_dqattach(ip);
540 if (error)
541 return error;
542
543 do {
544 /*
545 * Set up a transaction to convert the range of extents
546 * from unwritten to real. Do allocations in a loop until
547 * we have covered the range passed in.
548 *
549 * Note that we can't risk to recursing back into the filesystem
550 * here as we might be asked to write out the same inode that we
551 * complete here and might deadlock on the iolock.
552 */
553 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks,
554 0, true, &tp);
555 if (error)
556 return error;
557
558 error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK,
559 XFS_IEXT_WRITE_UNWRITTEN_CNT);
560 if (error == -EFBIG)
561 error = xfs_iext_count_upgrade(tp, ip,
562 XFS_IEXT_WRITE_UNWRITTEN_CNT);
563 if (error)
564 goto error_on_bmapi_transaction;
565
566 /*
567 * Modify the unwritten extent state of the buffer.
568 */
569 nimaps = 1;
570 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb,
571 XFS_BMAPI_CONVERT, resblks, &imap,
572 &nimaps);
573 if (error)
574 goto error_on_bmapi_transaction;
575
576 /*
577 * Log the updated inode size as we go. We have to be careful
578 * to only log it up to the actual write offset if it is
579 * halfway into a block.
580 */
581 i_size = XFS_FSB_TO_B(mp, offset_fsb + count_fsb);
582 if (i_size > offset + count)
583 i_size = offset + count;
584 if (update_isize && i_size > i_size_read(inode))
585 i_size_write(inode, i_size);
586 i_size = xfs_new_eof(ip, i_size);
587 if (i_size) {
588 ip->i_disk_size = i_size;
589 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
590 }
591
592 error = xfs_trans_commit(tp);
593 xfs_iunlock(ip, XFS_ILOCK_EXCL);
594 if (error)
595 return error;
596
597 if (unlikely(!xfs_valid_startblock(ip, imap.br_startblock)))
598 return xfs_alert_fsblock_zero(ip, &imap);
599
600 if ((numblks_fsb = imap.br_blockcount) == 0) {
601 /*
602 * The numblks_fsb value should always get
603 * smaller, otherwise the loop is stuck.
604 */
605 ASSERT(imap.br_blockcount);
606 break;
607 }
608 offset_fsb += numblks_fsb;
609 count_fsb -= numblks_fsb;
610 } while (count_fsb > 0);
611
612 return 0;
613
614 error_on_bmapi_transaction:
615 xfs_trans_cancel(tp);
616 xfs_iunlock(ip, XFS_ILOCK_EXCL);
617 return error;
618 }
619
620 static inline bool
imap_needs_alloc(struct inode * inode,unsigned flags,struct xfs_bmbt_irec * imap,int nimaps)621 imap_needs_alloc(
622 struct inode *inode,
623 unsigned flags,
624 struct xfs_bmbt_irec *imap,
625 int nimaps)
626 {
627 /* don't allocate blocks when just zeroing */
628 if (flags & IOMAP_ZERO)
629 return false;
630 if (!nimaps ||
631 imap->br_startblock == HOLESTARTBLOCK ||
632 imap->br_startblock == DELAYSTARTBLOCK)
633 return true;
634 /* we convert unwritten extents before copying the data for DAX */
635 if ((flags & IOMAP_DAX) && imap->br_state == XFS_EXT_UNWRITTEN)
636 return true;
637 return false;
638 }
639
640 static inline bool
imap_needs_cow(struct xfs_inode * ip,unsigned int flags,struct xfs_bmbt_irec * imap,int nimaps)641 imap_needs_cow(
642 struct xfs_inode *ip,
643 unsigned int flags,
644 struct xfs_bmbt_irec *imap,
645 int nimaps)
646 {
647 if (!xfs_is_cow_inode(ip))
648 return false;
649
650 /* when zeroing we don't have to COW holes or unwritten extents */
651 if (flags & IOMAP_ZERO) {
652 if (!nimaps ||
653 imap->br_startblock == HOLESTARTBLOCK ||
654 imap->br_state == XFS_EXT_UNWRITTEN)
655 return false;
656 }
657
658 return true;
659 }
660
661 static int
xfs_ilock_for_iomap(struct xfs_inode * ip,unsigned flags,unsigned * lockmode)662 xfs_ilock_for_iomap(
663 struct xfs_inode *ip,
664 unsigned flags,
665 unsigned *lockmode)
666 {
667 unsigned mode = XFS_ILOCK_SHARED;
668 bool is_write = flags & (IOMAP_WRITE | IOMAP_ZERO);
669
670 /*
671 * COW writes may allocate delalloc space or convert unwritten COW
672 * extents, so we need to make sure to take the lock exclusively here.
673 */
674 if (xfs_is_cow_inode(ip) && is_write)
675 mode = XFS_ILOCK_EXCL;
676
677 /*
678 * Extents not yet cached requires exclusive access, don't block. This
679 * is an opencoded xfs_ilock_data_map_shared() call but with
680 * non-blocking behaviour.
681 */
682 if (xfs_need_iread_extents(&ip->i_df)) {
683 if (flags & IOMAP_NOWAIT)
684 return -EAGAIN;
685 mode = XFS_ILOCK_EXCL;
686 }
687
688 relock:
689 if (flags & IOMAP_NOWAIT) {
690 if (!xfs_ilock_nowait(ip, mode))
691 return -EAGAIN;
692 } else {
693 xfs_ilock(ip, mode);
694 }
695
696 /*
697 * The reflink iflag could have changed since the earlier unlocked
698 * check, so if we got ILOCK_SHARED for a write and but we're now a
699 * reflink inode we have to switch to ILOCK_EXCL and relock.
700 */
701 if (mode == XFS_ILOCK_SHARED && is_write && xfs_is_cow_inode(ip)) {
702 xfs_iunlock(ip, mode);
703 mode = XFS_ILOCK_EXCL;
704 goto relock;
705 }
706
707 *lockmode = mode;
708 return 0;
709 }
710
711 /*
712 * Check that the imap we are going to return to the caller spans the entire
713 * range that the caller requested for the IO.
714 */
715 static bool
imap_spans_range(struct xfs_bmbt_irec * imap,xfs_fileoff_t offset_fsb,xfs_fileoff_t end_fsb)716 imap_spans_range(
717 struct xfs_bmbt_irec *imap,
718 xfs_fileoff_t offset_fsb,
719 xfs_fileoff_t end_fsb)
720 {
721 if (imap->br_startoff > offset_fsb)
722 return false;
723 if (imap->br_startoff + imap->br_blockcount < end_fsb)
724 return false;
725 return true;
726 }
727
728 static int
xfs_direct_write_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)729 xfs_direct_write_iomap_begin(
730 struct inode *inode,
731 loff_t offset,
732 loff_t length,
733 unsigned flags,
734 struct iomap *iomap,
735 struct iomap *srcmap)
736 {
737 struct xfs_inode *ip = XFS_I(inode);
738 struct xfs_mount *mp = ip->i_mount;
739 struct xfs_bmbt_irec imap, cmap;
740 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
741 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, length);
742 int nimaps = 1, error = 0;
743 bool shared = false;
744 u16 iomap_flags = 0;
745 unsigned lockmode;
746
747 ASSERT(flags & (IOMAP_WRITE | IOMAP_ZERO));
748
749 if (xfs_is_shutdown(mp))
750 return -EIO;
751
752 /*
753 * Writes that span EOF might trigger an IO size update on completion,
754 * so consider them to be dirty for the purposes of O_DSYNC even if
755 * there is no other metadata changes pending or have been made here.
756 */
757 if (offset + length > i_size_read(inode))
758 iomap_flags |= IOMAP_F_DIRTY;
759
760 error = xfs_ilock_for_iomap(ip, flags, &lockmode);
761 if (error)
762 return error;
763
764 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
765 &nimaps, 0);
766 if (error)
767 goto out_unlock;
768
769 if (imap_needs_cow(ip, flags, &imap, nimaps)) {
770 error = -EAGAIN;
771 if (flags & IOMAP_NOWAIT)
772 goto out_unlock;
773
774 /* may drop and re-acquire the ilock */
775 error = xfs_reflink_allocate_cow(ip, &imap, &cmap, &shared,
776 &lockmode, flags & IOMAP_DIRECT);
777 if (error)
778 goto out_unlock;
779 if (shared)
780 goto out_found_cow;
781 end_fsb = imap.br_startoff + imap.br_blockcount;
782 length = XFS_FSB_TO_B(mp, end_fsb) - offset;
783 }
784
785 if (imap_needs_alloc(inode, flags, &imap, nimaps))
786 goto allocate_blocks;
787
788 /*
789 * NOWAIT and OVERWRITE I/O needs to span the entire requested I/O with
790 * a single map so that we avoid partial IO failures due to the rest of
791 * the I/O range not covered by this map triggering an EAGAIN condition
792 * when it is subsequently mapped and aborting the I/O.
793 */
794 if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY)) {
795 error = -EAGAIN;
796 if (!imap_spans_range(&imap, offset_fsb, end_fsb))
797 goto out_unlock;
798 }
799
800 /*
801 * For overwrite only I/O, we cannot convert unwritten extents without
802 * requiring sub-block zeroing. This can only be done under an
803 * exclusive IOLOCK, hence return -EAGAIN if this is not a written
804 * extent to tell the caller to try again.
805 */
806 if (flags & IOMAP_OVERWRITE_ONLY) {
807 error = -EAGAIN;
808 if (imap.br_state != XFS_EXT_NORM &&
809 ((offset | length) & mp->m_blockmask))
810 goto out_unlock;
811 }
812
813 xfs_iunlock(ip, lockmode);
814 trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap);
815 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, iomap_flags);
816
817 allocate_blocks:
818 error = -EAGAIN;
819 if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY))
820 goto out_unlock;
821
822 /*
823 * We cap the maximum length we map to a sane size to keep the chunks
824 * of work done where somewhat symmetric with the work writeback does.
825 * This is a completely arbitrary number pulled out of thin air as a
826 * best guess for initial testing.
827 *
828 * Note that the values needs to be less than 32-bits wide until the
829 * lower level functions are updated.
830 */
831 length = min_t(loff_t, length, 1024 * PAGE_SIZE);
832 end_fsb = xfs_iomap_end_fsb(mp, offset, length);
833
834 if (offset + length > XFS_ISIZE(ip))
835 end_fsb = xfs_iomap_eof_align_last_fsb(ip, end_fsb);
836 else if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
837 end_fsb = min(end_fsb, imap.br_startoff + imap.br_blockcount);
838 xfs_iunlock(ip, lockmode);
839
840 error = xfs_iomap_write_direct(ip, offset_fsb, end_fsb - offset_fsb,
841 flags, &imap);
842 if (error)
843 return error;
844
845 trace_xfs_iomap_alloc(ip, offset, length, XFS_DATA_FORK, &imap);
846 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags,
847 iomap_flags | IOMAP_F_NEW);
848
849 out_found_cow:
850 xfs_iunlock(ip, lockmode);
851 length = XFS_FSB_TO_B(mp, cmap.br_startoff + cmap.br_blockcount);
852 trace_xfs_iomap_found(ip, offset, length - offset, XFS_COW_FORK, &cmap);
853 if (imap.br_startblock != HOLESTARTBLOCK) {
854 error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0);
855 if (error)
856 return error;
857 }
858 return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, IOMAP_F_SHARED);
859
860 out_unlock:
861 if (lockmode)
862 xfs_iunlock(ip, lockmode);
863 return error;
864 }
865
866 const struct iomap_ops xfs_direct_write_iomap_ops = {
867 .iomap_begin = xfs_direct_write_iomap_begin,
868 };
869
870 static int
xfs_buffered_write_iomap_begin(struct inode * inode,loff_t offset,loff_t count,unsigned flags,struct iomap * iomap,struct iomap * srcmap)871 xfs_buffered_write_iomap_begin(
872 struct inode *inode,
873 loff_t offset,
874 loff_t count,
875 unsigned flags,
876 struct iomap *iomap,
877 struct iomap *srcmap)
878 {
879 struct xfs_inode *ip = XFS_I(inode);
880 struct xfs_mount *mp = ip->i_mount;
881 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
882 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, count);
883 struct xfs_bmbt_irec imap, cmap;
884 struct xfs_iext_cursor icur, ccur;
885 xfs_fsblock_t prealloc_blocks = 0;
886 bool eof = false, cow_eof = false, shared = false;
887 int allocfork = XFS_DATA_FORK;
888 int error = 0;
889
890 if (xfs_is_shutdown(mp))
891 return -EIO;
892
893 /* we can't use delayed allocations when using extent size hints */
894 if (xfs_get_extsz_hint(ip))
895 return xfs_direct_write_iomap_begin(inode, offset, count,
896 flags, iomap, srcmap);
897
898 ASSERT(!XFS_IS_REALTIME_INODE(ip));
899
900 xfs_ilock(ip, XFS_ILOCK_EXCL);
901
902 if (XFS_IS_CORRUPT(mp, !xfs_ifork_has_extents(&ip->i_df)) ||
903 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BMAPIFORMAT)) {
904 error = -EFSCORRUPTED;
905 goto out_unlock;
906 }
907
908 XFS_STATS_INC(mp, xs_blk_mapw);
909
910 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
911 if (error)
912 goto out_unlock;
913
914 /*
915 * Search the data fork first to look up our source mapping. We
916 * always need the data fork map, as we have to return it to the
917 * iomap code so that the higher level write code can read data in to
918 * perform read-modify-write cycles for unaligned writes.
919 */
920 eof = !xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap);
921 if (eof)
922 imap.br_startoff = end_fsb; /* fake hole until the end */
923
924 /* We never need to allocate blocks for zeroing a hole. */
925 if ((flags & IOMAP_ZERO) && imap.br_startoff > offset_fsb) {
926 xfs_hole_to_iomap(ip, iomap, offset_fsb, imap.br_startoff);
927 goto out_unlock;
928 }
929
930 /*
931 * Search the COW fork extent list even if we did not find a data fork
932 * extent. This serves two purposes: first this implements the
933 * speculative preallocation using cowextsize, so that we also unshare
934 * block adjacent to shared blocks instead of just the shared blocks
935 * themselves. Second the lookup in the extent list is generally faster
936 * than going out to the shared extent tree.
937 */
938 if (xfs_is_cow_inode(ip)) {
939 if (!ip->i_cowfp) {
940 ASSERT(!xfs_is_reflink_inode(ip));
941 xfs_ifork_init_cow(ip);
942 }
943 cow_eof = !xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb,
944 &ccur, &cmap);
945 if (!cow_eof && cmap.br_startoff <= offset_fsb) {
946 trace_xfs_reflink_cow_found(ip, &cmap);
947 goto found_cow;
948 }
949 }
950
951 if (imap.br_startoff <= offset_fsb) {
952 /*
953 * For reflink files we may need a delalloc reservation when
954 * overwriting shared extents. This includes zeroing of
955 * existing extents that contain data.
956 */
957 if (!xfs_is_cow_inode(ip) ||
958 ((flags & IOMAP_ZERO) && imap.br_state != XFS_EXT_NORM)) {
959 trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK,
960 &imap);
961 goto found_imap;
962 }
963
964 xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb);
965
966 /* Trim the mapping to the nearest shared extent boundary. */
967 error = xfs_bmap_trim_cow(ip, &imap, &shared);
968 if (error)
969 goto out_unlock;
970
971 /* Not shared? Just report the (potentially capped) extent. */
972 if (!shared) {
973 trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK,
974 &imap);
975 goto found_imap;
976 }
977
978 /*
979 * Fork all the shared blocks from our write offset until the
980 * end of the extent.
981 */
982 allocfork = XFS_COW_FORK;
983 end_fsb = imap.br_startoff + imap.br_blockcount;
984 } else {
985 /*
986 * We cap the maximum length we map here to MAX_WRITEBACK_PAGES
987 * pages to keep the chunks of work done where somewhat
988 * symmetric with the work writeback does. This is a completely
989 * arbitrary number pulled out of thin air.
990 *
991 * Note that the values needs to be less than 32-bits wide until
992 * the lower level functions are updated.
993 */
994 count = min_t(loff_t, count, 1024 * PAGE_SIZE);
995 end_fsb = xfs_iomap_end_fsb(mp, offset, count);
996
997 if (xfs_is_always_cow_inode(ip))
998 allocfork = XFS_COW_FORK;
999 }
1000
1001 error = xfs_qm_dqattach_locked(ip, false);
1002 if (error)
1003 goto out_unlock;
1004
1005 if (eof && offset + count > XFS_ISIZE(ip)) {
1006 /*
1007 * Determine the initial size of the preallocation.
1008 * We clean up any extra preallocation when the file is closed.
1009 */
1010 if (xfs_has_allocsize(mp))
1011 prealloc_blocks = mp->m_allocsize_blocks;
1012 else
1013 prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork,
1014 offset, count, &icur);
1015 if (prealloc_blocks) {
1016 xfs_extlen_t align;
1017 xfs_off_t end_offset;
1018 xfs_fileoff_t p_end_fsb;
1019
1020 end_offset = XFS_ALLOC_ALIGN(mp, offset + count - 1);
1021 p_end_fsb = XFS_B_TO_FSBT(mp, end_offset) +
1022 prealloc_blocks;
1023
1024 align = xfs_eof_alignment(ip);
1025 if (align)
1026 p_end_fsb = roundup_64(p_end_fsb, align);
1027
1028 p_end_fsb = min(p_end_fsb,
1029 XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes));
1030 ASSERT(p_end_fsb > offset_fsb);
1031 prealloc_blocks = p_end_fsb - end_fsb;
1032 }
1033 }
1034
1035 retry:
1036 error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb,
1037 end_fsb - offset_fsb, prealloc_blocks,
1038 allocfork == XFS_DATA_FORK ? &imap : &cmap,
1039 allocfork == XFS_DATA_FORK ? &icur : &ccur,
1040 allocfork == XFS_DATA_FORK ? eof : cow_eof);
1041 switch (error) {
1042 case 0:
1043 break;
1044 case -ENOSPC:
1045 case -EDQUOT:
1046 /* retry without any preallocation */
1047 trace_xfs_delalloc_enospc(ip, offset, count);
1048 if (prealloc_blocks) {
1049 prealloc_blocks = 0;
1050 goto retry;
1051 }
1052 fallthrough;
1053 default:
1054 goto out_unlock;
1055 }
1056
1057 if (allocfork == XFS_COW_FORK) {
1058 trace_xfs_iomap_alloc(ip, offset, count, allocfork, &cmap);
1059 goto found_cow;
1060 }
1061
1062 /*
1063 * Flag newly allocated delalloc blocks with IOMAP_F_NEW so we punch
1064 * them out if the write happens to fail.
1065 */
1066 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1067 trace_xfs_iomap_alloc(ip, offset, count, allocfork, &imap);
1068 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, IOMAP_F_NEW);
1069
1070 found_imap:
1071 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1072 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 0);
1073
1074 found_cow:
1075 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1076 if (imap.br_startoff <= offset_fsb) {
1077 error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0);
1078 if (error)
1079 return error;
1080 return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags,
1081 IOMAP_F_SHARED);
1082 }
1083
1084 xfs_trim_extent(&cmap, offset_fsb, imap.br_startoff - offset_fsb);
1085 return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, 0);
1086
1087 out_unlock:
1088 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1089 return error;
1090 }
1091
1092 static int
xfs_buffered_write_iomap_end(struct inode * inode,loff_t offset,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)1093 xfs_buffered_write_iomap_end(
1094 struct inode *inode,
1095 loff_t offset,
1096 loff_t length,
1097 ssize_t written,
1098 unsigned flags,
1099 struct iomap *iomap)
1100 {
1101 struct xfs_inode *ip = XFS_I(inode);
1102 struct xfs_mount *mp = ip->i_mount;
1103 xfs_fileoff_t start_fsb;
1104 xfs_fileoff_t end_fsb;
1105 int error = 0;
1106
1107 if (iomap->type != IOMAP_DELALLOC)
1108 return 0;
1109
1110 /*
1111 * Behave as if the write failed if drop writes is enabled. Set the NEW
1112 * flag to force delalloc cleanup.
1113 */
1114 if (XFS_TEST_ERROR(false, mp, XFS_ERRTAG_DROP_WRITES)) {
1115 iomap->flags |= IOMAP_F_NEW;
1116 written = 0;
1117 }
1118
1119 /*
1120 * start_fsb refers to the first unused block after a short write. If
1121 * nothing was written, round offset down to point at the first block in
1122 * the range.
1123 */
1124 if (unlikely(!written))
1125 start_fsb = XFS_B_TO_FSBT(mp, offset);
1126 else
1127 start_fsb = XFS_B_TO_FSB(mp, offset + written);
1128 end_fsb = XFS_B_TO_FSB(mp, offset + length);
1129
1130 /*
1131 * Trim delalloc blocks if they were allocated by this write and we
1132 * didn't manage to write the whole range.
1133 *
1134 * We don't need to care about racing delalloc as we hold i_mutex
1135 * across the reserve/allocate/unreserve calls. If there are delalloc
1136 * blocks in the range, they are ours.
1137 */
1138 if ((iomap->flags & IOMAP_F_NEW) && start_fsb < end_fsb) {
1139 truncate_pagecache_range(VFS_I(ip), XFS_FSB_TO_B(mp, start_fsb),
1140 XFS_FSB_TO_B(mp, end_fsb) - 1);
1141
1142 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1143 end_fsb - start_fsb);
1144 if (error && !xfs_is_shutdown(mp)) {
1145 xfs_alert(mp, "%s: unable to clean up ino %lld",
1146 __func__, ip->i_ino);
1147 return error;
1148 }
1149 }
1150
1151 return 0;
1152 }
1153
1154 const struct iomap_ops xfs_buffered_write_iomap_ops = {
1155 .iomap_begin = xfs_buffered_write_iomap_begin,
1156 .iomap_end = xfs_buffered_write_iomap_end,
1157 };
1158
1159 static int
xfs_read_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)1160 xfs_read_iomap_begin(
1161 struct inode *inode,
1162 loff_t offset,
1163 loff_t length,
1164 unsigned flags,
1165 struct iomap *iomap,
1166 struct iomap *srcmap)
1167 {
1168 struct xfs_inode *ip = XFS_I(inode);
1169 struct xfs_mount *mp = ip->i_mount;
1170 struct xfs_bmbt_irec imap;
1171 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
1172 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, length);
1173 int nimaps = 1, error = 0;
1174 bool shared = false;
1175 unsigned lockmode;
1176
1177 ASSERT(!(flags & (IOMAP_WRITE | IOMAP_ZERO)));
1178
1179 if (xfs_is_shutdown(mp))
1180 return -EIO;
1181
1182 error = xfs_ilock_for_iomap(ip, flags, &lockmode);
1183 if (error)
1184 return error;
1185 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
1186 &nimaps, 0);
1187 if (!error && (flags & IOMAP_REPORT))
1188 error = xfs_reflink_trim_around_shared(ip, &imap, &shared);
1189 xfs_iunlock(ip, lockmode);
1190
1191 if (error)
1192 return error;
1193 trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap);
1194 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags,
1195 shared ? IOMAP_F_SHARED : 0);
1196 }
1197
1198 const struct iomap_ops xfs_read_iomap_ops = {
1199 .iomap_begin = xfs_read_iomap_begin,
1200 };
1201
1202 static int
xfs_seek_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)1203 xfs_seek_iomap_begin(
1204 struct inode *inode,
1205 loff_t offset,
1206 loff_t length,
1207 unsigned flags,
1208 struct iomap *iomap,
1209 struct iomap *srcmap)
1210 {
1211 struct xfs_inode *ip = XFS_I(inode);
1212 struct xfs_mount *mp = ip->i_mount;
1213 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
1214 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length);
1215 xfs_fileoff_t cow_fsb = NULLFILEOFF, data_fsb = NULLFILEOFF;
1216 struct xfs_iext_cursor icur;
1217 struct xfs_bmbt_irec imap, cmap;
1218 int error = 0;
1219 unsigned lockmode;
1220
1221 if (xfs_is_shutdown(mp))
1222 return -EIO;
1223
1224 lockmode = xfs_ilock_data_map_shared(ip);
1225 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
1226 if (error)
1227 goto out_unlock;
1228
1229 if (xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) {
1230 /*
1231 * If we found a data extent we are done.
1232 */
1233 if (imap.br_startoff <= offset_fsb)
1234 goto done;
1235 data_fsb = imap.br_startoff;
1236 } else {
1237 /*
1238 * Fake a hole until the end of the file.
1239 */
1240 data_fsb = xfs_iomap_end_fsb(mp, offset, length);
1241 }
1242
1243 /*
1244 * If a COW fork extent covers the hole, report it - capped to the next
1245 * data fork extent:
1246 */
1247 if (xfs_inode_has_cow_data(ip) &&
1248 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap))
1249 cow_fsb = cmap.br_startoff;
1250 if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
1251 if (data_fsb < cow_fsb + cmap.br_blockcount)
1252 end_fsb = min(end_fsb, data_fsb);
1253 xfs_trim_extent(&cmap, offset_fsb, end_fsb);
1254 error = xfs_bmbt_to_iomap(ip, iomap, &cmap, flags,
1255 IOMAP_F_SHARED);
1256 /*
1257 * This is a COW extent, so we must probe the page cache
1258 * because there could be dirty page cache being backed
1259 * by this extent.
1260 */
1261 iomap->type = IOMAP_UNWRITTEN;
1262 goto out_unlock;
1263 }
1264
1265 /*
1266 * Else report a hole, capped to the next found data or COW extent.
1267 */
1268 if (cow_fsb != NULLFILEOFF && cow_fsb < data_fsb)
1269 imap.br_blockcount = cow_fsb - offset_fsb;
1270 else
1271 imap.br_blockcount = data_fsb - offset_fsb;
1272 imap.br_startoff = offset_fsb;
1273 imap.br_startblock = HOLESTARTBLOCK;
1274 imap.br_state = XFS_EXT_NORM;
1275 done:
1276 xfs_trim_extent(&imap, offset_fsb, end_fsb);
1277 error = xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 0);
1278 out_unlock:
1279 xfs_iunlock(ip, lockmode);
1280 return error;
1281 }
1282
1283 const struct iomap_ops xfs_seek_iomap_ops = {
1284 .iomap_begin = xfs_seek_iomap_begin,
1285 };
1286
1287 static int
xfs_xattr_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)1288 xfs_xattr_iomap_begin(
1289 struct inode *inode,
1290 loff_t offset,
1291 loff_t length,
1292 unsigned flags,
1293 struct iomap *iomap,
1294 struct iomap *srcmap)
1295 {
1296 struct xfs_inode *ip = XFS_I(inode);
1297 struct xfs_mount *mp = ip->i_mount;
1298 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
1299 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length);
1300 struct xfs_bmbt_irec imap;
1301 int nimaps = 1, error = 0;
1302 unsigned lockmode;
1303
1304 if (xfs_is_shutdown(mp))
1305 return -EIO;
1306
1307 lockmode = xfs_ilock_attr_map_shared(ip);
1308
1309 /* if there are no attribute fork or extents, return ENOENT */
1310 if (!XFS_IFORK_Q(ip) || !ip->i_afp->if_nextents) {
1311 error = -ENOENT;
1312 goto out_unlock;
1313 }
1314
1315 ASSERT(ip->i_afp->if_format != XFS_DINODE_FMT_LOCAL);
1316 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
1317 &nimaps, XFS_BMAPI_ATTRFORK);
1318 out_unlock:
1319 xfs_iunlock(ip, lockmode);
1320
1321 if (error)
1322 return error;
1323 ASSERT(nimaps);
1324 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 0);
1325 }
1326
1327 const struct iomap_ops xfs_xattr_iomap_ops = {
1328 .iomap_begin = xfs_xattr_iomap_begin,
1329 };
1330
1331 int
xfs_zero_range(struct xfs_inode * ip,loff_t pos,loff_t len,bool * did_zero)1332 xfs_zero_range(
1333 struct xfs_inode *ip,
1334 loff_t pos,
1335 loff_t len,
1336 bool *did_zero)
1337 {
1338 struct inode *inode = VFS_I(ip);
1339
1340 if (IS_DAX(inode))
1341 return dax_zero_range(inode, pos, len, did_zero,
1342 &xfs_direct_write_iomap_ops);
1343 return iomap_zero_range(inode, pos, len, did_zero,
1344 &xfs_buffered_write_iomap_ops);
1345 }
1346
1347 int
xfs_truncate_page(struct xfs_inode * ip,loff_t pos,bool * did_zero)1348 xfs_truncate_page(
1349 struct xfs_inode *ip,
1350 loff_t pos,
1351 bool *did_zero)
1352 {
1353 struct inode *inode = VFS_I(ip);
1354
1355 if (IS_DAX(inode))
1356 return dax_truncate_page(inode, pos, did_zero,
1357 &xfs_direct_write_iomap_ops);
1358 return iomap_truncate_page(inode, pos, did_zero,
1359 &xfs_buffered_write_iomap_ops);
1360 }
1361