1 /******************************************************************************
2 * Client-facing interface for the Xenbus driver. In other words, the
3 * interface between the Xenbus and the device-specific code, be it the
4 * frontend or the backend of that driver.
5 *
6 * Copyright (C) 2005 XenSource Ltd
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License version 2
10 * as published by the Free Software Foundation; or, when distributed
11 * separately from the Linux kernel or incorporated into other
12 * software packages, subject to the following license:
13 *
14 * Permission is hereby granted, free of charge, to any person obtaining a copy
15 * of this source file (the "Software"), to deal in the Software without
16 * restriction, including without limitation the rights to use, copy, modify,
17 * merge, publish, distribute, sublicense, and/or sell copies of the Software,
18 * and to permit persons to whom the Software is furnished to do so, subject to
19 * the following conditions:
20 *
21 * The above copyright notice and this permission notice shall be included in
22 * all copies or substantial portions of the Software.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
25 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
26 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
27 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
28 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
29 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
30 * IN THE SOFTWARE.
31 */
32
33 #include <linux/mm.h>
34 #include <linux/slab.h>
35 #include <linux/types.h>
36 #include <linux/spinlock.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <asm/xen/hypervisor.h>
40 #include <xen/page.h>
41 #include <xen/interface/xen.h>
42 #include <xen/interface/event_channel.h>
43 #include <xen/balloon.h>
44 #include <xen/events.h>
45 #include <xen/grant_table.h>
46 #include <xen/xenbus.h>
47 #include <xen/xen.h>
48 #include <xen/features.h>
49
50 #include "xenbus.h"
51
52 #define XENBUS_PAGES(_grants) (DIV_ROUND_UP(_grants, XEN_PFN_PER_PAGE))
53
54 #define XENBUS_MAX_RING_PAGES (XENBUS_PAGES(XENBUS_MAX_RING_GRANTS))
55
56 struct xenbus_map_node {
57 struct list_head next;
58 union {
59 struct {
60 struct vm_struct *area;
61 } pv;
62 struct {
63 struct page *pages[XENBUS_MAX_RING_PAGES];
64 unsigned long addrs[XENBUS_MAX_RING_GRANTS];
65 void *addr;
66 } hvm;
67 };
68 grant_handle_t handles[XENBUS_MAX_RING_GRANTS];
69 unsigned int nr_handles;
70 };
71
72 struct map_ring_valloc {
73 struct xenbus_map_node *node;
74
75 /* Why do we need two arrays? See comment of __xenbus_map_ring */
76 unsigned long addrs[XENBUS_MAX_RING_GRANTS];
77 phys_addr_t phys_addrs[XENBUS_MAX_RING_GRANTS];
78
79 struct gnttab_map_grant_ref map[XENBUS_MAX_RING_GRANTS];
80 struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS];
81
82 unsigned int idx;
83 };
84
85 static DEFINE_SPINLOCK(xenbus_valloc_lock);
86 static LIST_HEAD(xenbus_valloc_pages);
87
88 struct xenbus_ring_ops {
89 int (*map)(struct xenbus_device *dev, struct map_ring_valloc *info,
90 grant_ref_t *gnt_refs, unsigned int nr_grefs,
91 void **vaddr);
92 int (*unmap)(struct xenbus_device *dev, void *vaddr);
93 };
94
95 static const struct xenbus_ring_ops *ring_ops __read_mostly;
96
xenbus_strstate(enum xenbus_state state)97 const char *xenbus_strstate(enum xenbus_state state)
98 {
99 static const char *const name[] = {
100 [ XenbusStateUnknown ] = "Unknown",
101 [ XenbusStateInitialising ] = "Initialising",
102 [ XenbusStateInitWait ] = "InitWait",
103 [ XenbusStateInitialised ] = "Initialised",
104 [ XenbusStateConnected ] = "Connected",
105 [ XenbusStateClosing ] = "Closing",
106 [ XenbusStateClosed ] = "Closed",
107 [XenbusStateReconfiguring] = "Reconfiguring",
108 [XenbusStateReconfigured] = "Reconfigured",
109 };
110 return (state < ARRAY_SIZE(name)) ? name[state] : "INVALID";
111 }
112 EXPORT_SYMBOL_GPL(xenbus_strstate);
113
114 /**
115 * xenbus_watch_path - register a watch
116 * @dev: xenbus device
117 * @path: path to watch
118 * @watch: watch to register
119 * @callback: callback to register
120 *
121 * Register a @watch on the given path, using the given xenbus_watch structure
122 * for storage, and the given @callback function as the callback. Return 0 on
123 * success, or -errno on error. On success, the given @path will be saved as
124 * @watch->node, and remains the caller's to free. On error, @watch->node will
125 * be NULL, the device will switch to %XenbusStateClosing, and the error will
126 * be saved in the store.
127 */
xenbus_watch_path(struct xenbus_device * dev,const char * path,struct xenbus_watch * watch,bool (* will_handle)(struct xenbus_watch *,const char *,const char *),void (* callback)(struct xenbus_watch *,const char *,const char *))128 int xenbus_watch_path(struct xenbus_device *dev, const char *path,
129 struct xenbus_watch *watch,
130 bool (*will_handle)(struct xenbus_watch *,
131 const char *, const char *),
132 void (*callback)(struct xenbus_watch *,
133 const char *, const char *))
134 {
135 int err;
136
137 watch->node = path;
138 watch->will_handle = will_handle;
139 watch->callback = callback;
140
141 err = register_xenbus_watch(watch);
142
143 if (err) {
144 watch->node = NULL;
145 watch->will_handle = NULL;
146 watch->callback = NULL;
147 xenbus_dev_fatal(dev, err, "adding watch on %s", path);
148 }
149
150 return err;
151 }
152 EXPORT_SYMBOL_GPL(xenbus_watch_path);
153
154
155 /**
156 * xenbus_watch_pathfmt - register a watch on a sprintf-formatted path
157 * @dev: xenbus device
158 * @watch: watch to register
159 * @callback: callback to register
160 * @pathfmt: format of path to watch
161 *
162 * Register a watch on the given @path, using the given xenbus_watch
163 * structure for storage, and the given @callback function as the callback.
164 * Return 0 on success, or -errno on error. On success, the watched path
165 * (@path/@path2) will be saved as @watch->node, and becomes the caller's to
166 * kfree(). On error, watch->node will be NULL, so the caller has nothing to
167 * free, the device will switch to %XenbusStateClosing, and the error will be
168 * saved in the store.
169 */
xenbus_watch_pathfmt(struct xenbus_device * dev,struct xenbus_watch * watch,bool (* will_handle)(struct xenbus_watch *,const char *,const char *),void (* callback)(struct xenbus_watch *,const char *,const char *),const char * pathfmt,...)170 int xenbus_watch_pathfmt(struct xenbus_device *dev,
171 struct xenbus_watch *watch,
172 bool (*will_handle)(struct xenbus_watch *,
173 const char *, const char *),
174 void (*callback)(struct xenbus_watch *,
175 const char *, const char *),
176 const char *pathfmt, ...)
177 {
178 int err;
179 va_list ap;
180 char *path;
181
182 va_start(ap, pathfmt);
183 path = kvasprintf(GFP_NOIO | __GFP_HIGH, pathfmt, ap);
184 va_end(ap);
185
186 if (!path) {
187 xenbus_dev_fatal(dev, -ENOMEM, "allocating path for watch");
188 return -ENOMEM;
189 }
190 err = xenbus_watch_path(dev, path, watch, will_handle, callback);
191
192 if (err)
193 kfree(path);
194 return err;
195 }
196 EXPORT_SYMBOL_GPL(xenbus_watch_pathfmt);
197
198 static void xenbus_switch_fatal(struct xenbus_device *, int, int,
199 const char *, ...);
200
201 static int
__xenbus_switch_state(struct xenbus_device * dev,enum xenbus_state state,int depth)202 __xenbus_switch_state(struct xenbus_device *dev,
203 enum xenbus_state state, int depth)
204 {
205 /* We check whether the state is currently set to the given value, and
206 if not, then the state is set. We don't want to unconditionally
207 write the given state, because we don't want to fire watches
208 unnecessarily. Furthermore, if the node has gone, we don't write
209 to it, as the device will be tearing down, and we don't want to
210 resurrect that directory.
211
212 Note that, because of this cached value of our state, this
213 function will not take a caller's Xenstore transaction
214 (something it was trying to in the past) because dev->state
215 would not get reset if the transaction was aborted.
216 */
217
218 struct xenbus_transaction xbt;
219 int current_state;
220 int err, abort;
221
222 if (state == dev->state)
223 return 0;
224
225 again:
226 abort = 1;
227
228 err = xenbus_transaction_start(&xbt);
229 if (err) {
230 xenbus_switch_fatal(dev, depth, err, "starting transaction");
231 return 0;
232 }
233
234 err = xenbus_scanf(xbt, dev->nodename, "state", "%d", ¤t_state);
235 if (err != 1)
236 goto abort;
237
238 err = xenbus_printf(xbt, dev->nodename, "state", "%d", state);
239 if (err) {
240 xenbus_switch_fatal(dev, depth, err, "writing new state");
241 goto abort;
242 }
243
244 abort = 0;
245 abort:
246 err = xenbus_transaction_end(xbt, abort);
247 if (err) {
248 if (err == -EAGAIN && !abort)
249 goto again;
250 xenbus_switch_fatal(dev, depth, err, "ending transaction");
251 } else
252 dev->state = state;
253
254 return 0;
255 }
256
257 /**
258 * xenbus_switch_state
259 * @dev: xenbus device
260 * @state: new state
261 *
262 * Advertise in the store a change of the given driver to the given new_state.
263 * Return 0 on success, or -errno on error. On error, the device will switch
264 * to XenbusStateClosing, and the error will be saved in the store.
265 */
xenbus_switch_state(struct xenbus_device * dev,enum xenbus_state state)266 int xenbus_switch_state(struct xenbus_device *dev, enum xenbus_state state)
267 {
268 return __xenbus_switch_state(dev, state, 0);
269 }
270
271 EXPORT_SYMBOL_GPL(xenbus_switch_state);
272
xenbus_frontend_closed(struct xenbus_device * dev)273 int xenbus_frontend_closed(struct xenbus_device *dev)
274 {
275 xenbus_switch_state(dev, XenbusStateClosed);
276 complete(&dev->down);
277 return 0;
278 }
279 EXPORT_SYMBOL_GPL(xenbus_frontend_closed);
280
xenbus_va_dev_error(struct xenbus_device * dev,int err,const char * fmt,va_list ap)281 static void xenbus_va_dev_error(struct xenbus_device *dev, int err,
282 const char *fmt, va_list ap)
283 {
284 unsigned int len;
285 char *printf_buffer;
286 char *path_buffer;
287
288 #define PRINTF_BUFFER_SIZE 4096
289
290 printf_buffer = kmalloc(PRINTF_BUFFER_SIZE, GFP_KERNEL);
291 if (!printf_buffer)
292 return;
293
294 len = sprintf(printf_buffer, "%i ", -err);
295 vsnprintf(printf_buffer + len, PRINTF_BUFFER_SIZE - len, fmt, ap);
296
297 dev_err(&dev->dev, "%s\n", printf_buffer);
298
299 path_buffer = kasprintf(GFP_KERNEL, "error/%s", dev->nodename);
300 if (path_buffer)
301 xenbus_write(XBT_NIL, path_buffer, "error", printf_buffer);
302
303 kfree(printf_buffer);
304 kfree(path_buffer);
305 }
306
307 /**
308 * xenbus_dev_error
309 * @dev: xenbus device
310 * @err: error to report
311 * @fmt: error message format
312 *
313 * Report the given negative errno into the store, along with the given
314 * formatted message.
315 */
xenbus_dev_error(struct xenbus_device * dev,int err,const char * fmt,...)316 void xenbus_dev_error(struct xenbus_device *dev, int err, const char *fmt, ...)
317 {
318 va_list ap;
319
320 va_start(ap, fmt);
321 xenbus_va_dev_error(dev, err, fmt, ap);
322 va_end(ap);
323 }
324 EXPORT_SYMBOL_GPL(xenbus_dev_error);
325
326 /**
327 * xenbus_dev_fatal
328 * @dev: xenbus device
329 * @err: error to report
330 * @fmt: error message format
331 *
332 * Equivalent to xenbus_dev_error(dev, err, fmt, args), followed by
333 * xenbus_switch_state(dev, XenbusStateClosing) to schedule an orderly
334 * closedown of this driver and its peer.
335 */
336
xenbus_dev_fatal(struct xenbus_device * dev,int err,const char * fmt,...)337 void xenbus_dev_fatal(struct xenbus_device *dev, int err, const char *fmt, ...)
338 {
339 va_list ap;
340
341 va_start(ap, fmt);
342 xenbus_va_dev_error(dev, err, fmt, ap);
343 va_end(ap);
344
345 xenbus_switch_state(dev, XenbusStateClosing);
346 }
347 EXPORT_SYMBOL_GPL(xenbus_dev_fatal);
348
349 /**
350 * Equivalent to xenbus_dev_fatal(dev, err, fmt, args), but helps
351 * avoiding recursion within xenbus_switch_state.
352 */
xenbus_switch_fatal(struct xenbus_device * dev,int depth,int err,const char * fmt,...)353 static void xenbus_switch_fatal(struct xenbus_device *dev, int depth, int err,
354 const char *fmt, ...)
355 {
356 va_list ap;
357
358 va_start(ap, fmt);
359 xenbus_va_dev_error(dev, err, fmt, ap);
360 va_end(ap);
361
362 if (!depth)
363 __xenbus_switch_state(dev, XenbusStateClosing, 1);
364 }
365
366 /*
367 * xenbus_setup_ring
368 * @dev: xenbus device
369 * @vaddr: pointer to starting virtual address of the ring
370 * @nr_pages: number of pages to be granted
371 * @grefs: grant reference array to be filled in
372 *
373 * Allocate physically contiguous pages for a shared ring buffer and grant it
374 * to the peer of the given device. The ring buffer is initially filled with
375 * zeroes. The virtual address of the ring is stored at @vaddr and the
376 * grant references are stored in the @grefs array. In case of error @vaddr
377 * will be set to NULL and @grefs will be filled with INVALID_GRANT_REF.
378 */
xenbus_setup_ring(struct xenbus_device * dev,gfp_t gfp,void ** vaddr,unsigned int nr_pages,grant_ref_t * grefs)379 int xenbus_setup_ring(struct xenbus_device *dev, gfp_t gfp, void **vaddr,
380 unsigned int nr_pages, grant_ref_t *grefs)
381 {
382 unsigned long ring_size = nr_pages * XEN_PAGE_SIZE;
383 grant_ref_t gref_head;
384 unsigned int i;
385 int ret;
386
387 *vaddr = alloc_pages_exact(ring_size, gfp | __GFP_ZERO);
388 if (!*vaddr) {
389 ret = -ENOMEM;
390 goto err;
391 }
392
393 ret = gnttab_alloc_grant_references(nr_pages, &gref_head);
394 if (ret) {
395 xenbus_dev_fatal(dev, ret, "granting access to %u ring pages",
396 nr_pages);
397 goto err;
398 }
399
400 for (i = 0; i < nr_pages; i++) {
401 unsigned long gfn;
402
403 if (is_vmalloc_addr(*vaddr))
404 gfn = pfn_to_gfn(vmalloc_to_pfn(vaddr[i]));
405 else
406 gfn = virt_to_gfn(vaddr[i]);
407
408 grefs[i] = gnttab_claim_grant_reference(&gref_head);
409 gnttab_grant_foreign_access_ref(grefs[i], dev->otherend_id,
410 gfn, 0);
411 }
412
413 return 0;
414
415 err:
416 if (*vaddr)
417 free_pages_exact(*vaddr, ring_size);
418 for (i = 0; i < nr_pages; i++)
419 grefs[i] = INVALID_GRANT_REF;
420 *vaddr = NULL;
421
422 return ret;
423 }
424 EXPORT_SYMBOL_GPL(xenbus_setup_ring);
425
426 /*
427 * xenbus_teardown_ring
428 * @vaddr: starting virtual address of the ring
429 * @nr_pages: number of pages
430 * @grefs: grant reference array
431 *
432 * Remove grants for the shared ring buffer and free the associated memory.
433 * On return the grant reference array is filled with INVALID_GRANT_REF.
434 */
xenbus_teardown_ring(void ** vaddr,unsigned int nr_pages,grant_ref_t * grefs)435 void xenbus_teardown_ring(void **vaddr, unsigned int nr_pages,
436 grant_ref_t *grefs)
437 {
438 unsigned int i;
439
440 for (i = 0; i < nr_pages; i++) {
441 if (grefs[i] != INVALID_GRANT_REF) {
442 gnttab_end_foreign_access(grefs[i], NULL);
443 grefs[i] = INVALID_GRANT_REF;
444 }
445 }
446
447 if (*vaddr)
448 free_pages_exact(*vaddr, nr_pages * XEN_PAGE_SIZE);
449 *vaddr = NULL;
450 }
451 EXPORT_SYMBOL_GPL(xenbus_teardown_ring);
452
453 /**
454 * Allocate an event channel for the given xenbus_device, assigning the newly
455 * created local port to *port. Return 0 on success, or -errno on error. On
456 * error, the device will switch to XenbusStateClosing, and the error will be
457 * saved in the store.
458 */
xenbus_alloc_evtchn(struct xenbus_device * dev,evtchn_port_t * port)459 int xenbus_alloc_evtchn(struct xenbus_device *dev, evtchn_port_t *port)
460 {
461 struct evtchn_alloc_unbound alloc_unbound;
462 int err;
463
464 alloc_unbound.dom = DOMID_SELF;
465 alloc_unbound.remote_dom = dev->otherend_id;
466
467 err = HYPERVISOR_event_channel_op(EVTCHNOP_alloc_unbound,
468 &alloc_unbound);
469 if (err)
470 xenbus_dev_fatal(dev, err, "allocating event channel");
471 else
472 *port = alloc_unbound.port;
473
474 return err;
475 }
476 EXPORT_SYMBOL_GPL(xenbus_alloc_evtchn);
477
478
479 /**
480 * Free an existing event channel. Returns 0 on success or -errno on error.
481 */
xenbus_free_evtchn(struct xenbus_device * dev,evtchn_port_t port)482 int xenbus_free_evtchn(struct xenbus_device *dev, evtchn_port_t port)
483 {
484 struct evtchn_close close;
485 int err;
486
487 close.port = port;
488
489 err = HYPERVISOR_event_channel_op(EVTCHNOP_close, &close);
490 if (err)
491 xenbus_dev_error(dev, err, "freeing event channel %u", port);
492
493 return err;
494 }
495 EXPORT_SYMBOL_GPL(xenbus_free_evtchn);
496
497
498 /**
499 * xenbus_map_ring_valloc
500 * @dev: xenbus device
501 * @gnt_refs: grant reference array
502 * @nr_grefs: number of grant references
503 * @vaddr: pointer to address to be filled out by mapping
504 *
505 * Map @nr_grefs pages of memory into this domain from another
506 * domain's grant table. xenbus_map_ring_valloc allocates @nr_grefs
507 * pages of virtual address space, maps the pages to that address, and
508 * sets *vaddr to that address. Returns 0 on success, and -errno on
509 * error. If an error is returned, device will switch to
510 * XenbusStateClosing and the error message will be saved in XenStore.
511 */
xenbus_map_ring_valloc(struct xenbus_device * dev,grant_ref_t * gnt_refs,unsigned int nr_grefs,void ** vaddr)512 int xenbus_map_ring_valloc(struct xenbus_device *dev, grant_ref_t *gnt_refs,
513 unsigned int nr_grefs, void **vaddr)
514 {
515 int err;
516 struct map_ring_valloc *info;
517
518 *vaddr = NULL;
519
520 if (nr_grefs > XENBUS_MAX_RING_GRANTS)
521 return -EINVAL;
522
523 info = kzalloc(sizeof(*info), GFP_KERNEL);
524 if (!info)
525 return -ENOMEM;
526
527 info->node = kzalloc(sizeof(*info->node), GFP_KERNEL);
528 if (!info->node)
529 err = -ENOMEM;
530 else
531 err = ring_ops->map(dev, info, gnt_refs, nr_grefs, vaddr);
532
533 kfree(info->node);
534 kfree(info);
535 return err;
536 }
537 EXPORT_SYMBOL_GPL(xenbus_map_ring_valloc);
538
539 /* N.B. sizeof(phys_addr_t) doesn't always equal to sizeof(unsigned
540 * long), e.g. 32-on-64. Caller is responsible for preparing the
541 * right array to feed into this function */
__xenbus_map_ring(struct xenbus_device * dev,grant_ref_t * gnt_refs,unsigned int nr_grefs,grant_handle_t * handles,struct map_ring_valloc * info,unsigned int flags,bool * leaked)542 static int __xenbus_map_ring(struct xenbus_device *dev,
543 grant_ref_t *gnt_refs,
544 unsigned int nr_grefs,
545 grant_handle_t *handles,
546 struct map_ring_valloc *info,
547 unsigned int flags,
548 bool *leaked)
549 {
550 int i, j;
551
552 if (nr_grefs > XENBUS_MAX_RING_GRANTS)
553 return -EINVAL;
554
555 for (i = 0; i < nr_grefs; i++) {
556 gnttab_set_map_op(&info->map[i], info->phys_addrs[i], flags,
557 gnt_refs[i], dev->otherend_id);
558 handles[i] = INVALID_GRANT_HANDLE;
559 }
560
561 gnttab_batch_map(info->map, i);
562
563 for (i = 0; i < nr_grefs; i++) {
564 if (info->map[i].status != GNTST_okay) {
565 xenbus_dev_fatal(dev, info->map[i].status,
566 "mapping in shared page %d from domain %d",
567 gnt_refs[i], dev->otherend_id);
568 goto fail;
569 } else
570 handles[i] = info->map[i].handle;
571 }
572
573 return 0;
574
575 fail:
576 for (i = j = 0; i < nr_grefs; i++) {
577 if (handles[i] != INVALID_GRANT_HANDLE) {
578 gnttab_set_unmap_op(&info->unmap[j],
579 info->phys_addrs[i],
580 GNTMAP_host_map, handles[i]);
581 j++;
582 }
583 }
584
585 BUG_ON(HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, info->unmap, j));
586
587 *leaked = false;
588 for (i = 0; i < j; i++) {
589 if (info->unmap[i].status != GNTST_okay) {
590 *leaked = true;
591 break;
592 }
593 }
594
595 return -ENOENT;
596 }
597
598 /**
599 * xenbus_unmap_ring
600 * @dev: xenbus device
601 * @handles: grant handle array
602 * @nr_handles: number of handles in the array
603 * @vaddrs: addresses to unmap
604 *
605 * Unmap memory in this domain that was imported from another domain.
606 * Returns 0 on success and returns GNTST_* on error
607 * (see xen/include/interface/grant_table.h).
608 */
xenbus_unmap_ring(struct xenbus_device * dev,grant_handle_t * handles,unsigned int nr_handles,unsigned long * vaddrs)609 static int xenbus_unmap_ring(struct xenbus_device *dev, grant_handle_t *handles,
610 unsigned int nr_handles, unsigned long *vaddrs)
611 {
612 struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS];
613 int i;
614 int err;
615
616 if (nr_handles > XENBUS_MAX_RING_GRANTS)
617 return -EINVAL;
618
619 for (i = 0; i < nr_handles; i++)
620 gnttab_set_unmap_op(&unmap[i], vaddrs[i],
621 GNTMAP_host_map, handles[i]);
622
623 BUG_ON(HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, unmap, i));
624
625 err = GNTST_okay;
626 for (i = 0; i < nr_handles; i++) {
627 if (unmap[i].status != GNTST_okay) {
628 xenbus_dev_error(dev, unmap[i].status,
629 "unmapping page at handle %d error %d",
630 handles[i], unmap[i].status);
631 err = unmap[i].status;
632 break;
633 }
634 }
635
636 return err;
637 }
638
xenbus_map_ring_setup_grant_hvm(unsigned long gfn,unsigned int goffset,unsigned int len,void * data)639 static void xenbus_map_ring_setup_grant_hvm(unsigned long gfn,
640 unsigned int goffset,
641 unsigned int len,
642 void *data)
643 {
644 struct map_ring_valloc *info = data;
645 unsigned long vaddr = (unsigned long)gfn_to_virt(gfn);
646
647 info->phys_addrs[info->idx] = vaddr;
648 info->addrs[info->idx] = vaddr;
649
650 info->idx++;
651 }
652
xenbus_map_ring_hvm(struct xenbus_device * dev,struct map_ring_valloc * info,grant_ref_t * gnt_ref,unsigned int nr_grefs,void ** vaddr)653 static int xenbus_map_ring_hvm(struct xenbus_device *dev,
654 struct map_ring_valloc *info,
655 grant_ref_t *gnt_ref,
656 unsigned int nr_grefs,
657 void **vaddr)
658 {
659 struct xenbus_map_node *node = info->node;
660 int err;
661 void *addr;
662 bool leaked = false;
663 unsigned int nr_pages = XENBUS_PAGES(nr_grefs);
664
665 err = xen_alloc_unpopulated_pages(nr_pages, node->hvm.pages);
666 if (err)
667 goto out_err;
668
669 gnttab_foreach_grant(node->hvm.pages, nr_grefs,
670 xenbus_map_ring_setup_grant_hvm,
671 info);
672
673 err = __xenbus_map_ring(dev, gnt_ref, nr_grefs, node->handles,
674 info, GNTMAP_host_map, &leaked);
675 node->nr_handles = nr_grefs;
676
677 if (err)
678 goto out_free_ballooned_pages;
679
680 addr = vmap(node->hvm.pages, nr_pages, VM_MAP | VM_IOREMAP,
681 PAGE_KERNEL);
682 if (!addr) {
683 err = -ENOMEM;
684 goto out_xenbus_unmap_ring;
685 }
686
687 node->hvm.addr = addr;
688
689 spin_lock(&xenbus_valloc_lock);
690 list_add(&node->next, &xenbus_valloc_pages);
691 spin_unlock(&xenbus_valloc_lock);
692
693 *vaddr = addr;
694 info->node = NULL;
695
696 return 0;
697
698 out_xenbus_unmap_ring:
699 if (!leaked)
700 xenbus_unmap_ring(dev, node->handles, nr_grefs, info->addrs);
701 else
702 pr_alert("leaking %p size %u page(s)",
703 addr, nr_pages);
704 out_free_ballooned_pages:
705 if (!leaked)
706 xen_free_unpopulated_pages(nr_pages, node->hvm.pages);
707 out_err:
708 return err;
709 }
710
711 /**
712 * xenbus_unmap_ring_vfree
713 * @dev: xenbus device
714 * @vaddr: addr to unmap
715 *
716 * Based on Rusty Russell's skeleton driver's unmap_page.
717 * Unmap a page of memory in this domain that was imported from another domain.
718 * Use xenbus_unmap_ring_vfree if you mapped in your memory with
719 * xenbus_map_ring_valloc (it will free the virtual address space).
720 * Returns 0 on success and returns GNTST_* on error
721 * (see xen/include/interface/grant_table.h).
722 */
xenbus_unmap_ring_vfree(struct xenbus_device * dev,void * vaddr)723 int xenbus_unmap_ring_vfree(struct xenbus_device *dev, void *vaddr)
724 {
725 return ring_ops->unmap(dev, vaddr);
726 }
727 EXPORT_SYMBOL_GPL(xenbus_unmap_ring_vfree);
728
729 #ifdef CONFIG_XEN_PV
map_ring_apply(pte_t * pte,unsigned long addr,void * data)730 static int map_ring_apply(pte_t *pte, unsigned long addr, void *data)
731 {
732 struct map_ring_valloc *info = data;
733
734 info->phys_addrs[info->idx++] = arbitrary_virt_to_machine(pte).maddr;
735 return 0;
736 }
737
xenbus_map_ring_pv(struct xenbus_device * dev,struct map_ring_valloc * info,grant_ref_t * gnt_refs,unsigned int nr_grefs,void ** vaddr)738 static int xenbus_map_ring_pv(struct xenbus_device *dev,
739 struct map_ring_valloc *info,
740 grant_ref_t *gnt_refs,
741 unsigned int nr_grefs,
742 void **vaddr)
743 {
744 struct xenbus_map_node *node = info->node;
745 struct vm_struct *area;
746 bool leaked = false;
747 int err = -ENOMEM;
748
749 area = get_vm_area(XEN_PAGE_SIZE * nr_grefs, VM_IOREMAP);
750 if (!area)
751 return -ENOMEM;
752 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
753 XEN_PAGE_SIZE * nr_grefs, map_ring_apply, info))
754 goto failed;
755 err = __xenbus_map_ring(dev, gnt_refs, nr_grefs, node->handles,
756 info, GNTMAP_host_map | GNTMAP_contains_pte,
757 &leaked);
758 if (err)
759 goto failed;
760
761 node->nr_handles = nr_grefs;
762 node->pv.area = area;
763
764 spin_lock(&xenbus_valloc_lock);
765 list_add(&node->next, &xenbus_valloc_pages);
766 spin_unlock(&xenbus_valloc_lock);
767
768 *vaddr = area->addr;
769 info->node = NULL;
770
771 return 0;
772
773 failed:
774 if (!leaked)
775 free_vm_area(area);
776 else
777 pr_alert("leaking VM area %p size %u page(s)", area, nr_grefs);
778
779 return err;
780 }
781
xenbus_unmap_ring_pv(struct xenbus_device * dev,void * vaddr)782 static int xenbus_unmap_ring_pv(struct xenbus_device *dev, void *vaddr)
783 {
784 struct xenbus_map_node *node;
785 struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS];
786 unsigned int level;
787 int i;
788 bool leaked = false;
789 int err;
790
791 spin_lock(&xenbus_valloc_lock);
792 list_for_each_entry(node, &xenbus_valloc_pages, next) {
793 if (node->pv.area->addr == vaddr) {
794 list_del(&node->next);
795 goto found;
796 }
797 }
798 node = NULL;
799 found:
800 spin_unlock(&xenbus_valloc_lock);
801
802 if (!node) {
803 xenbus_dev_error(dev, -ENOENT,
804 "can't find mapped virtual address %p", vaddr);
805 return GNTST_bad_virt_addr;
806 }
807
808 for (i = 0; i < node->nr_handles; i++) {
809 unsigned long addr;
810
811 memset(&unmap[i], 0, sizeof(unmap[i]));
812 addr = (unsigned long)vaddr + (XEN_PAGE_SIZE * i);
813 unmap[i].host_addr = arbitrary_virt_to_machine(
814 lookup_address(addr, &level)).maddr;
815 unmap[i].dev_bus_addr = 0;
816 unmap[i].handle = node->handles[i];
817 }
818
819 BUG_ON(HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, unmap, i));
820
821 err = GNTST_okay;
822 leaked = false;
823 for (i = 0; i < node->nr_handles; i++) {
824 if (unmap[i].status != GNTST_okay) {
825 leaked = true;
826 xenbus_dev_error(dev, unmap[i].status,
827 "unmapping page at handle %d error %d",
828 node->handles[i], unmap[i].status);
829 err = unmap[i].status;
830 break;
831 }
832 }
833
834 if (!leaked)
835 free_vm_area(node->pv.area);
836 else
837 pr_alert("leaking VM area %p size %u page(s)",
838 node->pv.area, node->nr_handles);
839
840 kfree(node);
841 return err;
842 }
843
844 static const struct xenbus_ring_ops ring_ops_pv = {
845 .map = xenbus_map_ring_pv,
846 .unmap = xenbus_unmap_ring_pv,
847 };
848 #endif
849
850 struct unmap_ring_hvm
851 {
852 unsigned int idx;
853 unsigned long addrs[XENBUS_MAX_RING_GRANTS];
854 };
855
xenbus_unmap_ring_setup_grant_hvm(unsigned long gfn,unsigned int goffset,unsigned int len,void * data)856 static void xenbus_unmap_ring_setup_grant_hvm(unsigned long gfn,
857 unsigned int goffset,
858 unsigned int len,
859 void *data)
860 {
861 struct unmap_ring_hvm *info = data;
862
863 info->addrs[info->idx] = (unsigned long)gfn_to_virt(gfn);
864
865 info->idx++;
866 }
867
xenbus_unmap_ring_hvm(struct xenbus_device * dev,void * vaddr)868 static int xenbus_unmap_ring_hvm(struct xenbus_device *dev, void *vaddr)
869 {
870 int rv;
871 struct xenbus_map_node *node;
872 void *addr;
873 struct unmap_ring_hvm info = {
874 .idx = 0,
875 };
876 unsigned int nr_pages;
877
878 spin_lock(&xenbus_valloc_lock);
879 list_for_each_entry(node, &xenbus_valloc_pages, next) {
880 addr = node->hvm.addr;
881 if (addr == vaddr) {
882 list_del(&node->next);
883 goto found;
884 }
885 }
886 node = addr = NULL;
887 found:
888 spin_unlock(&xenbus_valloc_lock);
889
890 if (!node) {
891 xenbus_dev_error(dev, -ENOENT,
892 "can't find mapped virtual address %p", vaddr);
893 return GNTST_bad_virt_addr;
894 }
895
896 nr_pages = XENBUS_PAGES(node->nr_handles);
897
898 gnttab_foreach_grant(node->hvm.pages, node->nr_handles,
899 xenbus_unmap_ring_setup_grant_hvm,
900 &info);
901
902 rv = xenbus_unmap_ring(dev, node->handles, node->nr_handles,
903 info.addrs);
904 if (!rv) {
905 vunmap(vaddr);
906 xen_free_unpopulated_pages(nr_pages, node->hvm.pages);
907 }
908 else
909 WARN(1, "Leaking %p, size %u page(s)\n", vaddr, nr_pages);
910
911 kfree(node);
912 return rv;
913 }
914
915 /**
916 * xenbus_read_driver_state
917 * @path: path for driver
918 *
919 * Return the state of the driver rooted at the given store path, or
920 * XenbusStateUnknown if no state can be read.
921 */
xenbus_read_driver_state(const char * path)922 enum xenbus_state xenbus_read_driver_state(const char *path)
923 {
924 enum xenbus_state result;
925 int err = xenbus_gather(XBT_NIL, path, "state", "%d", &result, NULL);
926 if (err)
927 result = XenbusStateUnknown;
928
929 return result;
930 }
931 EXPORT_SYMBOL_GPL(xenbus_read_driver_state);
932
933 static const struct xenbus_ring_ops ring_ops_hvm = {
934 .map = xenbus_map_ring_hvm,
935 .unmap = xenbus_unmap_ring_hvm,
936 };
937
xenbus_ring_ops_init(void)938 void __init xenbus_ring_ops_init(void)
939 {
940 #ifdef CONFIG_XEN_PV
941 if (!xen_feature(XENFEAT_auto_translated_physmap))
942 ring_ops = &ring_ops_pv;
943 else
944 #endif
945 ring_ops = &ring_ops_hvm;
946 }
947