1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * PCI Endpoint *Controller* (EPC) library
4 *
5 * Copyright (C) 2017 Texas Instruments
6 * Author: Kishon Vijay Abraham I <kishon@ti.com>
7 */
8
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/of_device.h>
13
14 #include <linux/pci-epc.h>
15 #include <linux/pci-epf.h>
16 #include <linux/pci-ep-cfs.h>
17
18 static struct class *pci_epc_class;
19
devm_pci_epc_release(struct device * dev,void * res)20 static void devm_pci_epc_release(struct device *dev, void *res)
21 {
22 struct pci_epc *epc = *(struct pci_epc **)res;
23
24 pci_epc_destroy(epc);
25 }
26
devm_pci_epc_match(struct device * dev,void * res,void * match_data)27 static int devm_pci_epc_match(struct device *dev, void *res, void *match_data)
28 {
29 struct pci_epc **epc = res;
30
31 return *epc == match_data;
32 }
33
34 /**
35 * pci_epc_put() - release the PCI endpoint controller
36 * @epc: epc returned by pci_epc_get()
37 *
38 * release the refcount the caller obtained by invoking pci_epc_get()
39 */
pci_epc_put(struct pci_epc * epc)40 void pci_epc_put(struct pci_epc *epc)
41 {
42 if (!epc || IS_ERR(epc))
43 return;
44
45 module_put(epc->ops->owner);
46 put_device(&epc->dev);
47 }
48 EXPORT_SYMBOL_GPL(pci_epc_put);
49
50 /**
51 * pci_epc_get() - get the PCI endpoint controller
52 * @epc_name: device name of the endpoint controller
53 *
54 * Invoke to get struct pci_epc * corresponding to the device name of the
55 * endpoint controller
56 */
pci_epc_get(const char * epc_name)57 struct pci_epc *pci_epc_get(const char *epc_name)
58 {
59 int ret = -EINVAL;
60 struct pci_epc *epc;
61 struct device *dev;
62 struct class_dev_iter iter;
63
64 class_dev_iter_init(&iter, pci_epc_class, NULL, NULL);
65 while ((dev = class_dev_iter_next(&iter))) {
66 if (strcmp(epc_name, dev_name(dev)))
67 continue;
68
69 epc = to_pci_epc(dev);
70 if (!try_module_get(epc->ops->owner)) {
71 ret = -EINVAL;
72 goto err;
73 }
74
75 class_dev_iter_exit(&iter);
76 get_device(&epc->dev);
77 return epc;
78 }
79
80 err:
81 class_dev_iter_exit(&iter);
82 return ERR_PTR(ret);
83 }
84 EXPORT_SYMBOL_GPL(pci_epc_get);
85
86 /**
87 * pci_epc_get_first_free_bar() - helper to get first unreserved BAR
88 * @epc_features: pci_epc_features structure that holds the reserved bar bitmap
89 *
90 * Invoke to get the first unreserved BAR that can be used by the endpoint
91 * function. For any incorrect value in reserved_bar return '0'.
92 */
93 enum pci_barno
pci_epc_get_first_free_bar(const struct pci_epc_features * epc_features)94 pci_epc_get_first_free_bar(const struct pci_epc_features *epc_features)
95 {
96 return pci_epc_get_next_free_bar(epc_features, BAR_0);
97 }
98 EXPORT_SYMBOL_GPL(pci_epc_get_first_free_bar);
99
100 /**
101 * pci_epc_get_next_free_bar() - helper to get unreserved BAR starting from @bar
102 * @epc_features: pci_epc_features structure that holds the reserved bar bitmap
103 * @bar: the starting BAR number from where unreserved BAR should be searched
104 *
105 * Invoke to get the next unreserved BAR starting from @bar that can be used
106 * for endpoint function. For any incorrect value in reserved_bar return '0'.
107 */
pci_epc_get_next_free_bar(const struct pci_epc_features * epc_features,enum pci_barno bar)108 enum pci_barno pci_epc_get_next_free_bar(const struct pci_epc_features
109 *epc_features, enum pci_barno bar)
110 {
111 unsigned long free_bar;
112
113 if (!epc_features)
114 return BAR_0;
115
116 /* If 'bar - 1' is a 64-bit BAR, move to the next BAR */
117 if ((epc_features->bar_fixed_64bit << 1) & 1 << bar)
118 bar++;
119
120 /* Find if the reserved BAR is also a 64-bit BAR */
121 free_bar = epc_features->reserved_bar & epc_features->bar_fixed_64bit;
122
123 /* Set the adjacent bit if the reserved BAR is also a 64-bit BAR */
124 free_bar <<= 1;
125 free_bar |= epc_features->reserved_bar;
126
127 free_bar = find_next_zero_bit(&free_bar, 6, bar);
128 if (free_bar > 5)
129 return NO_BAR;
130
131 return free_bar;
132 }
133 EXPORT_SYMBOL_GPL(pci_epc_get_next_free_bar);
134
135 /**
136 * pci_epc_get_features() - get the features supported by EPC
137 * @epc: the features supported by *this* EPC device will be returned
138 * @func_no: the features supported by the EPC device specific to the
139 * endpoint function with func_no will be returned
140 * @vfunc_no: the features supported by the EPC device specific to the
141 * virtual endpoint function with vfunc_no will be returned
142 *
143 * Invoke to get the features provided by the EPC which may be
144 * specific to an endpoint function. Returns pci_epc_features on success
145 * and NULL for any failures.
146 */
pci_epc_get_features(struct pci_epc * epc,u8 func_no,u8 vfunc_no)147 const struct pci_epc_features *pci_epc_get_features(struct pci_epc *epc,
148 u8 func_no, u8 vfunc_no)
149 {
150 const struct pci_epc_features *epc_features;
151
152 if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
153 return NULL;
154
155 if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
156 return NULL;
157
158 if (!epc->ops->get_features)
159 return NULL;
160
161 mutex_lock(&epc->lock);
162 epc_features = epc->ops->get_features(epc, func_no, vfunc_no);
163 mutex_unlock(&epc->lock);
164
165 return epc_features;
166 }
167 EXPORT_SYMBOL_GPL(pci_epc_get_features);
168
169 /**
170 * pci_epc_stop() - stop the PCI link
171 * @epc: the link of the EPC device that has to be stopped
172 *
173 * Invoke to stop the PCI link
174 */
pci_epc_stop(struct pci_epc * epc)175 void pci_epc_stop(struct pci_epc *epc)
176 {
177 if (IS_ERR(epc) || !epc->ops->stop)
178 return;
179
180 mutex_lock(&epc->lock);
181 epc->ops->stop(epc);
182 mutex_unlock(&epc->lock);
183 }
184 EXPORT_SYMBOL_GPL(pci_epc_stop);
185
186 /**
187 * pci_epc_start() - start the PCI link
188 * @epc: the link of *this* EPC device has to be started
189 *
190 * Invoke to start the PCI link
191 */
pci_epc_start(struct pci_epc * epc)192 int pci_epc_start(struct pci_epc *epc)
193 {
194 int ret;
195
196 if (IS_ERR(epc))
197 return -EINVAL;
198
199 if (!epc->ops->start)
200 return 0;
201
202 mutex_lock(&epc->lock);
203 ret = epc->ops->start(epc);
204 mutex_unlock(&epc->lock);
205
206 return ret;
207 }
208 EXPORT_SYMBOL_GPL(pci_epc_start);
209
210 /**
211 * pci_epc_raise_irq() - interrupt the host system
212 * @epc: the EPC device which has to interrupt the host
213 * @func_no: the physical endpoint function number in the EPC device
214 * @vfunc_no: the virtual endpoint function number in the physical function
215 * @type: specify the type of interrupt; legacy, MSI or MSI-X
216 * @interrupt_num: the MSI or MSI-X interrupt number
217 *
218 * Invoke to raise an legacy, MSI or MSI-X interrupt
219 */
pci_epc_raise_irq(struct pci_epc * epc,u8 func_no,u8 vfunc_no,enum pci_epc_irq_type type,u16 interrupt_num)220 int pci_epc_raise_irq(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
221 enum pci_epc_irq_type type, u16 interrupt_num)
222 {
223 int ret;
224
225 if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
226 return -EINVAL;
227
228 if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
229 return -EINVAL;
230
231 if (!epc->ops->raise_irq)
232 return 0;
233
234 mutex_lock(&epc->lock);
235 ret = epc->ops->raise_irq(epc, func_no, vfunc_no, type, interrupt_num);
236 mutex_unlock(&epc->lock);
237
238 return ret;
239 }
240 EXPORT_SYMBOL_GPL(pci_epc_raise_irq);
241
242 /**
243 * pci_epc_map_msi_irq() - Map physical address to MSI address and return
244 * MSI data
245 * @epc: the EPC device which has the MSI capability
246 * @func_no: the physical endpoint function number in the EPC device
247 * @vfunc_no: the virtual endpoint function number in the physical function
248 * @phys_addr: the physical address of the outbound region
249 * @interrupt_num: the MSI interrupt number
250 * @entry_size: Size of Outbound address region for each interrupt
251 * @msi_data: the data that should be written in order to raise MSI interrupt
252 * with interrupt number as 'interrupt num'
253 * @msi_addr_offset: Offset of MSI address from the aligned outbound address
254 * to which the MSI address is mapped
255 *
256 * Invoke to map physical address to MSI address and return MSI data. The
257 * physical address should be an address in the outbound region. This is
258 * required to implement doorbell functionality of NTB wherein EPC on either
259 * side of the interface (primary and secondary) can directly write to the
260 * physical address (in outbound region) of the other interface to ring
261 * doorbell.
262 */
pci_epc_map_msi_irq(struct pci_epc * epc,u8 func_no,u8 vfunc_no,phys_addr_t phys_addr,u8 interrupt_num,u32 entry_size,u32 * msi_data,u32 * msi_addr_offset)263 int pci_epc_map_msi_irq(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
264 phys_addr_t phys_addr, u8 interrupt_num, u32 entry_size,
265 u32 *msi_data, u32 *msi_addr_offset)
266 {
267 int ret;
268
269 if (IS_ERR_OR_NULL(epc))
270 return -EINVAL;
271
272 if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
273 return -EINVAL;
274
275 if (!epc->ops->map_msi_irq)
276 return -EINVAL;
277
278 mutex_lock(&epc->lock);
279 ret = epc->ops->map_msi_irq(epc, func_no, vfunc_no, phys_addr,
280 interrupt_num, entry_size, msi_data,
281 msi_addr_offset);
282 mutex_unlock(&epc->lock);
283
284 return ret;
285 }
286 EXPORT_SYMBOL_GPL(pci_epc_map_msi_irq);
287
288 /**
289 * pci_epc_get_msi() - get the number of MSI interrupt numbers allocated
290 * @epc: the EPC device to which MSI interrupts was requested
291 * @func_no: the physical endpoint function number in the EPC device
292 * @vfunc_no: the virtual endpoint function number in the physical function
293 *
294 * Invoke to get the number of MSI interrupts allocated by the RC
295 */
pci_epc_get_msi(struct pci_epc * epc,u8 func_no,u8 vfunc_no)296 int pci_epc_get_msi(struct pci_epc *epc, u8 func_no, u8 vfunc_no)
297 {
298 int interrupt;
299
300 if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
301 return 0;
302
303 if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
304 return 0;
305
306 if (!epc->ops->get_msi)
307 return 0;
308
309 mutex_lock(&epc->lock);
310 interrupt = epc->ops->get_msi(epc, func_no, vfunc_no);
311 mutex_unlock(&epc->lock);
312
313 if (interrupt < 0)
314 return 0;
315
316 interrupt = 1 << interrupt;
317
318 return interrupt;
319 }
320 EXPORT_SYMBOL_GPL(pci_epc_get_msi);
321
322 /**
323 * pci_epc_set_msi() - set the number of MSI interrupt numbers required
324 * @epc: the EPC device on which MSI has to be configured
325 * @func_no: the physical endpoint function number in the EPC device
326 * @vfunc_no: the virtual endpoint function number in the physical function
327 * @interrupts: number of MSI interrupts required by the EPF
328 *
329 * Invoke to set the required number of MSI interrupts.
330 */
pci_epc_set_msi(struct pci_epc * epc,u8 func_no,u8 vfunc_no,u8 interrupts)331 int pci_epc_set_msi(struct pci_epc *epc, u8 func_no, u8 vfunc_no, u8 interrupts)
332 {
333 int ret;
334 u8 encode_int;
335
336 if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions ||
337 interrupts < 1 || interrupts > 32)
338 return -EINVAL;
339
340 if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
341 return -EINVAL;
342
343 if (!epc->ops->set_msi)
344 return 0;
345
346 encode_int = order_base_2(interrupts);
347
348 mutex_lock(&epc->lock);
349 ret = epc->ops->set_msi(epc, func_no, vfunc_no, encode_int);
350 mutex_unlock(&epc->lock);
351
352 return ret;
353 }
354 EXPORT_SYMBOL_GPL(pci_epc_set_msi);
355
356 /**
357 * pci_epc_get_msix() - get the number of MSI-X interrupt numbers allocated
358 * @epc: the EPC device to which MSI-X interrupts was requested
359 * @func_no: the physical endpoint function number in the EPC device
360 * @vfunc_no: the virtual endpoint function number in the physical function
361 *
362 * Invoke to get the number of MSI-X interrupts allocated by the RC
363 */
pci_epc_get_msix(struct pci_epc * epc,u8 func_no,u8 vfunc_no)364 int pci_epc_get_msix(struct pci_epc *epc, u8 func_no, u8 vfunc_no)
365 {
366 int interrupt;
367
368 if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
369 return 0;
370
371 if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
372 return 0;
373
374 if (!epc->ops->get_msix)
375 return 0;
376
377 mutex_lock(&epc->lock);
378 interrupt = epc->ops->get_msix(epc, func_no, vfunc_no);
379 mutex_unlock(&epc->lock);
380
381 if (interrupt < 0)
382 return 0;
383
384 return interrupt + 1;
385 }
386 EXPORT_SYMBOL_GPL(pci_epc_get_msix);
387
388 /**
389 * pci_epc_set_msix() - set the number of MSI-X interrupt numbers required
390 * @epc: the EPC device on which MSI-X has to be configured
391 * @func_no: the physical endpoint function number in the EPC device
392 * @vfunc_no: the virtual endpoint function number in the physical function
393 * @interrupts: number of MSI-X interrupts required by the EPF
394 * @bir: BAR where the MSI-X table resides
395 * @offset: Offset pointing to the start of MSI-X table
396 *
397 * Invoke to set the required number of MSI-X interrupts.
398 */
pci_epc_set_msix(struct pci_epc * epc,u8 func_no,u8 vfunc_no,u16 interrupts,enum pci_barno bir,u32 offset)399 int pci_epc_set_msix(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
400 u16 interrupts, enum pci_barno bir, u32 offset)
401 {
402 int ret;
403
404 if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions ||
405 interrupts < 1 || interrupts > 2048)
406 return -EINVAL;
407
408 if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
409 return -EINVAL;
410
411 if (!epc->ops->set_msix)
412 return 0;
413
414 mutex_lock(&epc->lock);
415 ret = epc->ops->set_msix(epc, func_no, vfunc_no, interrupts - 1, bir,
416 offset);
417 mutex_unlock(&epc->lock);
418
419 return ret;
420 }
421 EXPORT_SYMBOL_GPL(pci_epc_set_msix);
422
423 /**
424 * pci_epc_unmap_addr() - unmap CPU address from PCI address
425 * @epc: the EPC device on which address is allocated
426 * @func_no: the physical endpoint function number in the EPC device
427 * @vfunc_no: the virtual endpoint function number in the physical function
428 * @phys_addr: physical address of the local system
429 *
430 * Invoke to unmap the CPU address from PCI address.
431 */
pci_epc_unmap_addr(struct pci_epc * epc,u8 func_no,u8 vfunc_no,phys_addr_t phys_addr)432 void pci_epc_unmap_addr(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
433 phys_addr_t phys_addr)
434 {
435 if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
436 return;
437
438 if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
439 return;
440
441 if (!epc->ops->unmap_addr)
442 return;
443
444 mutex_lock(&epc->lock);
445 epc->ops->unmap_addr(epc, func_no, vfunc_no, phys_addr);
446 mutex_unlock(&epc->lock);
447 }
448 EXPORT_SYMBOL_GPL(pci_epc_unmap_addr);
449
450 /**
451 * pci_epc_map_addr() - map CPU address to PCI address
452 * @epc: the EPC device on which address is allocated
453 * @func_no: the physical endpoint function number in the EPC device
454 * @vfunc_no: the virtual endpoint function number in the physical function
455 * @phys_addr: physical address of the local system
456 * @pci_addr: PCI address to which the physical address should be mapped
457 * @size: the size of the allocation
458 *
459 * Invoke to map CPU address with PCI address.
460 */
pci_epc_map_addr(struct pci_epc * epc,u8 func_no,u8 vfunc_no,phys_addr_t phys_addr,u64 pci_addr,size_t size)461 int pci_epc_map_addr(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
462 phys_addr_t phys_addr, u64 pci_addr, size_t size)
463 {
464 int ret;
465
466 if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
467 return -EINVAL;
468
469 if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
470 return -EINVAL;
471
472 if (!epc->ops->map_addr)
473 return 0;
474
475 mutex_lock(&epc->lock);
476 ret = epc->ops->map_addr(epc, func_no, vfunc_no, phys_addr, pci_addr,
477 size);
478 mutex_unlock(&epc->lock);
479
480 return ret;
481 }
482 EXPORT_SYMBOL_GPL(pci_epc_map_addr);
483
484 /**
485 * pci_epc_clear_bar() - reset the BAR
486 * @epc: the EPC device for which the BAR has to be cleared
487 * @func_no: the physical endpoint function number in the EPC device
488 * @vfunc_no: the virtual endpoint function number in the physical function
489 * @epf_bar: the struct epf_bar that contains the BAR information
490 *
491 * Invoke to reset the BAR of the endpoint device.
492 */
pci_epc_clear_bar(struct pci_epc * epc,u8 func_no,u8 vfunc_no,struct pci_epf_bar * epf_bar)493 void pci_epc_clear_bar(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
494 struct pci_epf_bar *epf_bar)
495 {
496 if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions ||
497 (epf_bar->barno == BAR_5 &&
498 epf_bar->flags & PCI_BASE_ADDRESS_MEM_TYPE_64))
499 return;
500
501 if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
502 return;
503
504 if (!epc->ops->clear_bar)
505 return;
506
507 mutex_lock(&epc->lock);
508 epc->ops->clear_bar(epc, func_no, vfunc_no, epf_bar);
509 mutex_unlock(&epc->lock);
510 }
511 EXPORT_SYMBOL_GPL(pci_epc_clear_bar);
512
513 /**
514 * pci_epc_set_bar() - configure BAR in order for host to assign PCI addr space
515 * @epc: the EPC device on which BAR has to be configured
516 * @func_no: the physical endpoint function number in the EPC device
517 * @vfunc_no: the virtual endpoint function number in the physical function
518 * @epf_bar: the struct epf_bar that contains the BAR information
519 *
520 * Invoke to configure the BAR of the endpoint device.
521 */
pci_epc_set_bar(struct pci_epc * epc,u8 func_no,u8 vfunc_no,struct pci_epf_bar * epf_bar)522 int pci_epc_set_bar(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
523 struct pci_epf_bar *epf_bar)
524 {
525 int ret;
526 int flags = epf_bar->flags;
527
528 if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions ||
529 (epf_bar->barno == BAR_5 &&
530 flags & PCI_BASE_ADDRESS_MEM_TYPE_64) ||
531 (flags & PCI_BASE_ADDRESS_SPACE_IO &&
532 flags & PCI_BASE_ADDRESS_IO_MASK) ||
533 (upper_32_bits(epf_bar->size) &&
534 !(flags & PCI_BASE_ADDRESS_MEM_TYPE_64)))
535 return -EINVAL;
536
537 if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
538 return -EINVAL;
539
540 if (!epc->ops->set_bar)
541 return 0;
542
543 mutex_lock(&epc->lock);
544 ret = epc->ops->set_bar(epc, func_no, vfunc_no, epf_bar);
545 mutex_unlock(&epc->lock);
546
547 return ret;
548 }
549 EXPORT_SYMBOL_GPL(pci_epc_set_bar);
550
551 /**
552 * pci_epc_write_header() - write standard configuration header
553 * @epc: the EPC device to which the configuration header should be written
554 * @func_no: the physical endpoint function number in the EPC device
555 * @vfunc_no: the virtual endpoint function number in the physical function
556 * @header: standard configuration header fields
557 *
558 * Invoke to write the configuration header to the endpoint controller. Every
559 * endpoint controller will have a dedicated location to which the standard
560 * configuration header would be written. The callback function should write
561 * the header fields to this dedicated location.
562 */
pci_epc_write_header(struct pci_epc * epc,u8 func_no,u8 vfunc_no,struct pci_epf_header * header)563 int pci_epc_write_header(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
564 struct pci_epf_header *header)
565 {
566 int ret;
567
568 if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
569 return -EINVAL;
570
571 if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
572 return -EINVAL;
573
574 /* Only Virtual Function #1 has deviceID */
575 if (vfunc_no > 1)
576 return -EINVAL;
577
578 if (!epc->ops->write_header)
579 return 0;
580
581 mutex_lock(&epc->lock);
582 ret = epc->ops->write_header(epc, func_no, vfunc_no, header);
583 mutex_unlock(&epc->lock);
584
585 return ret;
586 }
587 EXPORT_SYMBOL_GPL(pci_epc_write_header);
588
589 /**
590 * pci_epc_add_epf() - bind PCI endpoint function to an endpoint controller
591 * @epc: the EPC device to which the endpoint function should be added
592 * @epf: the endpoint function to be added
593 * @type: Identifies if the EPC is connected to the primary or secondary
594 * interface of EPF
595 *
596 * A PCI endpoint device can have one or more functions. In the case of PCIe,
597 * the specification allows up to 8 PCIe endpoint functions. Invoke
598 * pci_epc_add_epf() to add a PCI endpoint function to an endpoint controller.
599 */
pci_epc_add_epf(struct pci_epc * epc,struct pci_epf * epf,enum pci_epc_interface_type type)600 int pci_epc_add_epf(struct pci_epc *epc, struct pci_epf *epf,
601 enum pci_epc_interface_type type)
602 {
603 struct list_head *list;
604 u32 func_no;
605 int ret = 0;
606
607 if (IS_ERR_OR_NULL(epc) || epf->is_vf)
608 return -EINVAL;
609
610 if (type == PRIMARY_INTERFACE && epf->epc)
611 return -EBUSY;
612
613 if (type == SECONDARY_INTERFACE && epf->sec_epc)
614 return -EBUSY;
615
616 mutex_lock(&epc->lock);
617 func_no = find_first_zero_bit(&epc->function_num_map,
618 BITS_PER_LONG);
619 if (func_no >= BITS_PER_LONG) {
620 ret = -EINVAL;
621 goto ret;
622 }
623
624 if (func_no > epc->max_functions - 1) {
625 dev_err(&epc->dev, "Exceeding max supported Function Number\n");
626 ret = -EINVAL;
627 goto ret;
628 }
629
630 set_bit(func_no, &epc->function_num_map);
631 if (type == PRIMARY_INTERFACE) {
632 epf->func_no = func_no;
633 epf->epc = epc;
634 list = &epf->list;
635 } else {
636 epf->sec_epc_func_no = func_no;
637 epf->sec_epc = epc;
638 list = &epf->sec_epc_list;
639 }
640
641 list_add_tail(list, &epc->pci_epf);
642 ret:
643 mutex_unlock(&epc->lock);
644
645 return ret;
646 }
647 EXPORT_SYMBOL_GPL(pci_epc_add_epf);
648
649 /**
650 * pci_epc_remove_epf() - remove PCI endpoint function from endpoint controller
651 * @epc: the EPC device from which the endpoint function should be removed
652 * @epf: the endpoint function to be removed
653 * @type: identifies if the EPC is connected to the primary or secondary
654 * interface of EPF
655 *
656 * Invoke to remove PCI endpoint function from the endpoint controller.
657 */
pci_epc_remove_epf(struct pci_epc * epc,struct pci_epf * epf,enum pci_epc_interface_type type)658 void pci_epc_remove_epf(struct pci_epc *epc, struct pci_epf *epf,
659 enum pci_epc_interface_type type)
660 {
661 struct list_head *list;
662 u32 func_no = 0;
663
664 if (!epc || IS_ERR(epc) || !epf)
665 return;
666
667 if (type == PRIMARY_INTERFACE) {
668 func_no = epf->func_no;
669 list = &epf->list;
670 } else {
671 func_no = epf->sec_epc_func_no;
672 list = &epf->sec_epc_list;
673 }
674
675 mutex_lock(&epc->lock);
676 clear_bit(func_no, &epc->function_num_map);
677 list_del(list);
678 epf->epc = NULL;
679 mutex_unlock(&epc->lock);
680 }
681 EXPORT_SYMBOL_GPL(pci_epc_remove_epf);
682
683 /**
684 * pci_epc_linkup() - Notify the EPF device that EPC device has established a
685 * connection with the Root Complex.
686 * @epc: the EPC device which has established link with the host
687 *
688 * Invoke to Notify the EPF device that the EPC device has established a
689 * connection with the Root Complex.
690 */
pci_epc_linkup(struct pci_epc * epc)691 void pci_epc_linkup(struct pci_epc *epc)
692 {
693 if (!epc || IS_ERR(epc))
694 return;
695
696 atomic_notifier_call_chain(&epc->notifier, LINK_UP, NULL);
697 }
698 EXPORT_SYMBOL_GPL(pci_epc_linkup);
699
700 /**
701 * pci_epc_init_notify() - Notify the EPF device that EPC device's core
702 * initialization is completed.
703 * @epc: the EPC device whose core initialization is completed
704 *
705 * Invoke to Notify the EPF device that the EPC device's initialization
706 * is completed.
707 */
pci_epc_init_notify(struct pci_epc * epc)708 void pci_epc_init_notify(struct pci_epc *epc)
709 {
710 if (!epc || IS_ERR(epc))
711 return;
712
713 atomic_notifier_call_chain(&epc->notifier, CORE_INIT, NULL);
714 }
715 EXPORT_SYMBOL_GPL(pci_epc_init_notify);
716
717 /**
718 * pci_epc_destroy() - destroy the EPC device
719 * @epc: the EPC device that has to be destroyed
720 *
721 * Invoke to destroy the PCI EPC device
722 */
pci_epc_destroy(struct pci_epc * epc)723 void pci_epc_destroy(struct pci_epc *epc)
724 {
725 pci_ep_cfs_remove_epc_group(epc->group);
726 device_unregister(&epc->dev);
727 kfree(epc);
728 }
729 EXPORT_SYMBOL_GPL(pci_epc_destroy);
730
731 /**
732 * devm_pci_epc_destroy() - destroy the EPC device
733 * @dev: device that wants to destroy the EPC
734 * @epc: the EPC device that has to be destroyed
735 *
736 * Invoke to destroy the devres associated with this
737 * pci_epc and destroy the EPC device.
738 */
devm_pci_epc_destroy(struct device * dev,struct pci_epc * epc)739 void devm_pci_epc_destroy(struct device *dev, struct pci_epc *epc)
740 {
741 int r;
742
743 r = devres_destroy(dev, devm_pci_epc_release, devm_pci_epc_match,
744 epc);
745 dev_WARN_ONCE(dev, r, "couldn't find PCI EPC resource\n");
746 }
747 EXPORT_SYMBOL_GPL(devm_pci_epc_destroy);
748
749 /**
750 * __pci_epc_create() - create a new endpoint controller (EPC) device
751 * @dev: device that is creating the new EPC
752 * @ops: function pointers for performing EPC operations
753 * @owner: the owner of the module that creates the EPC device
754 *
755 * Invoke to create a new EPC device and add it to pci_epc class.
756 */
757 struct pci_epc *
__pci_epc_create(struct device * dev,const struct pci_epc_ops * ops,struct module * owner)758 __pci_epc_create(struct device *dev, const struct pci_epc_ops *ops,
759 struct module *owner)
760 {
761 int ret;
762 struct pci_epc *epc;
763
764 if (WARN_ON(!dev)) {
765 ret = -EINVAL;
766 goto err_ret;
767 }
768
769 epc = kzalloc(sizeof(*epc), GFP_KERNEL);
770 if (!epc) {
771 ret = -ENOMEM;
772 goto err_ret;
773 }
774
775 mutex_init(&epc->lock);
776 INIT_LIST_HEAD(&epc->pci_epf);
777 ATOMIC_INIT_NOTIFIER_HEAD(&epc->notifier);
778
779 device_initialize(&epc->dev);
780 epc->dev.class = pci_epc_class;
781 epc->dev.parent = dev;
782 epc->ops = ops;
783
784 ret = dev_set_name(&epc->dev, "%s", dev_name(dev));
785 if (ret)
786 goto put_dev;
787
788 ret = device_add(&epc->dev);
789 if (ret)
790 goto put_dev;
791
792 epc->group = pci_ep_cfs_add_epc_group(dev_name(dev));
793
794 return epc;
795
796 put_dev:
797 put_device(&epc->dev);
798 kfree(epc);
799
800 err_ret:
801 return ERR_PTR(ret);
802 }
803 EXPORT_SYMBOL_GPL(__pci_epc_create);
804
805 /**
806 * __devm_pci_epc_create() - create a new endpoint controller (EPC) device
807 * @dev: device that is creating the new EPC
808 * @ops: function pointers for performing EPC operations
809 * @owner: the owner of the module that creates the EPC device
810 *
811 * Invoke to create a new EPC device and add it to pci_epc class.
812 * While at that, it also associates the device with the pci_epc using devres.
813 * On driver detach, release function is invoked on the devres data,
814 * then, devres data is freed.
815 */
816 struct pci_epc *
__devm_pci_epc_create(struct device * dev,const struct pci_epc_ops * ops,struct module * owner)817 __devm_pci_epc_create(struct device *dev, const struct pci_epc_ops *ops,
818 struct module *owner)
819 {
820 struct pci_epc **ptr, *epc;
821
822 ptr = devres_alloc(devm_pci_epc_release, sizeof(*ptr), GFP_KERNEL);
823 if (!ptr)
824 return ERR_PTR(-ENOMEM);
825
826 epc = __pci_epc_create(dev, ops, owner);
827 if (!IS_ERR(epc)) {
828 *ptr = epc;
829 devres_add(dev, ptr);
830 } else {
831 devres_free(ptr);
832 }
833
834 return epc;
835 }
836 EXPORT_SYMBOL_GPL(__devm_pci_epc_create);
837
pci_epc_init(void)838 static int __init pci_epc_init(void)
839 {
840 pci_epc_class = class_create(THIS_MODULE, "pci_epc");
841 if (IS_ERR(pci_epc_class)) {
842 pr_err("failed to create pci epc class --> %ld\n",
843 PTR_ERR(pci_epc_class));
844 return PTR_ERR(pci_epc_class);
845 }
846
847 return 0;
848 }
849 module_init(pci_epc_init);
850
pci_epc_exit(void)851 static void __exit pci_epc_exit(void)
852 {
853 class_destroy(pci_epc_class);
854 }
855 module_exit(pci_epc_exit);
856
857 MODULE_DESCRIPTION("PCI EPC Library");
858 MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>");
859 MODULE_LICENSE("GPL v2");
860