1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * rcar_du_crtc.c  --  R-Car Display Unit CRTCs
4  *
5  * Copyright (C) 2013-2015 Renesas Electronics Corporation
6  *
7  * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/mutex.h>
12 #include <linux/platform_device.h>
13 #include <linux/sys_soc.h>
14 
15 #include <drm/drm_atomic.h>
16 #include <drm/drm_atomic_helper.h>
17 #include <drm/drm_bridge.h>
18 #include <drm/drm_crtc.h>
19 #include <drm/drm_device.h>
20 #include <drm/drm_fb_cma_helper.h>
21 #include <drm/drm_gem_cma_helper.h>
22 #include <drm/drm_plane_helper.h>
23 #include <drm/drm_vblank.h>
24 
25 #include "rcar_cmm.h"
26 #include "rcar_du_crtc.h"
27 #include "rcar_du_drv.h"
28 #include "rcar_du_encoder.h"
29 #include "rcar_du_kms.h"
30 #include "rcar_du_plane.h"
31 #include "rcar_du_regs.h"
32 #include "rcar_du_vsp.h"
33 #include "rcar_lvds.h"
34 
rcar_du_crtc_read(struct rcar_du_crtc * rcrtc,u32 reg)35 static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg)
36 {
37 	struct rcar_du_device *rcdu = rcrtc->dev;
38 
39 	return rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
40 }
41 
rcar_du_crtc_write(struct rcar_du_crtc * rcrtc,u32 reg,u32 data)42 static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data)
43 {
44 	struct rcar_du_device *rcdu = rcrtc->dev;
45 
46 	rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data);
47 }
48 
rcar_du_crtc_clr(struct rcar_du_crtc * rcrtc,u32 reg,u32 clr)49 static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr)
50 {
51 	struct rcar_du_device *rcdu = rcrtc->dev;
52 
53 	rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
54 		      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr);
55 }
56 
rcar_du_crtc_set(struct rcar_du_crtc * rcrtc,u32 reg,u32 set)57 static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set)
58 {
59 	struct rcar_du_device *rcdu = rcrtc->dev;
60 
61 	rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
62 		      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set);
63 }
64 
rcar_du_crtc_dsysr_clr_set(struct rcar_du_crtc * rcrtc,u32 clr,u32 set)65 void rcar_du_crtc_dsysr_clr_set(struct rcar_du_crtc *rcrtc, u32 clr, u32 set)
66 {
67 	struct rcar_du_device *rcdu = rcrtc->dev;
68 
69 	rcrtc->dsysr = (rcrtc->dsysr & ~clr) | set;
70 	rcar_du_write(rcdu, rcrtc->mmio_offset + DSYSR, rcrtc->dsysr);
71 }
72 
73 /* -----------------------------------------------------------------------------
74  * Hardware Setup
75  */
76 
77 struct dpll_info {
78 	unsigned int output;
79 	unsigned int fdpll;
80 	unsigned int n;
81 	unsigned int m;
82 };
83 
rcar_du_dpll_divider(struct rcar_du_crtc * rcrtc,struct dpll_info * dpll,unsigned long input,unsigned long target)84 static void rcar_du_dpll_divider(struct rcar_du_crtc *rcrtc,
85 				 struct dpll_info *dpll,
86 				 unsigned long input,
87 				 unsigned long target)
88 {
89 	unsigned long best_diff = (unsigned long)-1;
90 	unsigned long diff;
91 	unsigned int fdpll;
92 	unsigned int m;
93 	unsigned int n;
94 
95 	/*
96 	 *   fin                                 fvco        fout       fclkout
97 	 * in --> [1/M] --> |PD| -> [LPF] -> [VCO] -> [1/P] -+-> [1/FDPLL] -> out
98 	 *              +-> |  |                             |
99 	 *              |                                    |
100 	 *              +---------------- [1/N] <------------+
101 	 *
102 	 *	fclkout = fvco / P / FDPLL -- (1)
103 	 *
104 	 * fin/M = fvco/P/N
105 	 *
106 	 *	fvco = fin * P *  N / M -- (2)
107 	 *
108 	 * (1) + (2) indicates
109 	 *
110 	 *	fclkout = fin * N / M / FDPLL
111 	 *
112 	 * NOTES
113 	 *	N	: (n + 1)
114 	 *	M	: (m + 1)
115 	 *	FDPLL	: (fdpll + 1)
116 	 *	P	: 2
117 	 *	2kHz < fvco < 4096MHz
118 	 *
119 	 * To minimize the jitter,
120 	 * N : as large as possible
121 	 * M : as small as possible
122 	 */
123 	for (m = 0; m < 4; m++) {
124 		for (n = 119; n > 38; n--) {
125 			/*
126 			 * This code only runs on 64-bit architectures, the
127 			 * unsigned long type can thus be used for 64-bit
128 			 * computation. It will still compile without any
129 			 * warning on 32-bit architectures.
130 			 *
131 			 * To optimize calculations, use fout instead of fvco
132 			 * to verify the VCO frequency constraint.
133 			 */
134 			unsigned long fout = input * (n + 1) / (m + 1);
135 
136 			if (fout < 1000 || fout > 2048 * 1000 * 1000U)
137 				continue;
138 
139 			for (fdpll = 1; fdpll < 32; fdpll++) {
140 				unsigned long output;
141 
142 				output = fout / (fdpll + 1);
143 				if (output >= 400 * 1000 * 1000)
144 					continue;
145 
146 				diff = abs((long)output - (long)target);
147 				if (best_diff > diff) {
148 					best_diff = diff;
149 					dpll->n = n;
150 					dpll->m = m;
151 					dpll->fdpll = fdpll;
152 					dpll->output = output;
153 				}
154 
155 				if (diff == 0)
156 					goto done;
157 			}
158 		}
159 	}
160 
161 done:
162 	dev_dbg(rcrtc->dev->dev,
163 		"output:%u, fdpll:%u, n:%u, m:%u, diff:%lu\n",
164 		 dpll->output, dpll->fdpll, dpll->n, dpll->m, best_diff);
165 }
166 
167 struct du_clk_params {
168 	struct clk *clk;
169 	unsigned long rate;
170 	unsigned long diff;
171 	u32 escr;
172 };
173 
rcar_du_escr_divider(struct clk * clk,unsigned long target,u32 escr,struct du_clk_params * params)174 static void rcar_du_escr_divider(struct clk *clk, unsigned long target,
175 				 u32 escr, struct du_clk_params *params)
176 {
177 	unsigned long rate;
178 	unsigned long diff;
179 	u32 div;
180 
181 	/*
182 	 * If the target rate has already been achieved perfectly we can't do
183 	 * better.
184 	 */
185 	if (params->diff == 0)
186 		return;
187 
188 	/*
189 	 * Compute the input clock rate and internal divisor values to obtain
190 	 * the clock rate closest to the target frequency.
191 	 */
192 	rate = clk_round_rate(clk, target);
193 	div = clamp(DIV_ROUND_CLOSEST(rate, target), 1UL, 64UL) - 1;
194 	diff = abs(rate / (div + 1) - target);
195 
196 	/*
197 	 * Store the parameters if the resulting frequency is better than any
198 	 * previously calculated value.
199 	 */
200 	if (diff < params->diff) {
201 		params->clk = clk;
202 		params->rate = rate;
203 		params->diff = diff;
204 		params->escr = escr | div;
205 	}
206 }
207 
208 static const struct soc_device_attribute rcar_du_r8a7795_es1[] = {
209 	{ .soc_id = "r8a7795", .revision = "ES1.*" },
210 	{ /* sentinel */ }
211 };
212 
rcar_du_crtc_set_display_timing(struct rcar_du_crtc * rcrtc)213 static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc)
214 {
215 	const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode;
216 	struct rcar_du_device *rcdu = rcrtc->dev;
217 	unsigned long mode_clock = mode->clock * 1000;
218 	unsigned int hdse_offset;
219 	u32 dsmr;
220 	u32 escr;
221 
222 	if (rcdu->info->dpll_mask & (1 << rcrtc->index)) {
223 		unsigned long target = mode_clock;
224 		struct dpll_info dpll = { 0 };
225 		unsigned long extclk;
226 		u32 dpllcr;
227 		u32 div = 0;
228 
229 		/*
230 		 * DU channels that have a display PLL can't use the internal
231 		 * system clock, and have no internal clock divider.
232 		 */
233 
234 		/*
235 		 * The H3 ES1.x exhibits dot clock duty cycle stability issues.
236 		 * We can work around them by configuring the DPLL to twice the
237 		 * desired frequency, coupled with a /2 post-divider. Restrict
238 		 * the workaround to H3 ES1.x as ES2.0 and all other SoCs have
239 		 * no post-divider when a display PLL is present (as shown by
240 		 * the workaround breaking HDMI output on M3-W during testing).
241 		 */
242 		if (soc_device_match(rcar_du_r8a7795_es1)) {
243 			target *= 2;
244 			div = 1;
245 		}
246 
247 		extclk = clk_get_rate(rcrtc->extclock);
248 		rcar_du_dpll_divider(rcrtc, &dpll, extclk, target);
249 
250 		dpllcr = DPLLCR_CODE | DPLLCR_CLKE
251 		       | DPLLCR_FDPLL(dpll.fdpll)
252 		       | DPLLCR_N(dpll.n) | DPLLCR_M(dpll.m)
253 		       | DPLLCR_STBY;
254 
255 		if (rcrtc->index == 1)
256 			dpllcr |= DPLLCR_PLCS1
257 			       |  DPLLCR_INCS_DOTCLKIN1;
258 		else
259 			dpllcr |= DPLLCR_PLCS0
260 			       |  DPLLCR_INCS_DOTCLKIN0;
261 
262 		rcar_du_group_write(rcrtc->group, DPLLCR, dpllcr);
263 
264 		escr = ESCR_DCLKSEL_DCLKIN | div;
265 	} else if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) ||
266 		   rcdu->info->dsi_clk_mask & BIT(rcrtc->index)) {
267 		/*
268 		 * Use the external LVDS or DSI PLL output as the dot clock when
269 		 * outputting to the LVDS or DSI encoder on an SoC that supports
270 		 * this clock routing option. We use the clock directly in that
271 		 * case, without any additional divider.
272 		 */
273 		escr = ESCR_DCLKSEL_DCLKIN;
274 	} else {
275 		struct du_clk_params params = { .diff = (unsigned long)-1 };
276 
277 		rcar_du_escr_divider(rcrtc->clock, mode_clock,
278 				     ESCR_DCLKSEL_CLKS, &params);
279 		if (rcrtc->extclock)
280 			rcar_du_escr_divider(rcrtc->extclock, mode_clock,
281 					     ESCR_DCLKSEL_DCLKIN, &params);
282 
283 		dev_dbg(rcrtc->dev->dev, "mode clock %lu %s rate %lu\n",
284 			mode_clock, params.clk == rcrtc->clock ? "cpg" : "ext",
285 			params.rate);
286 
287 		clk_set_rate(params.clk, params.rate);
288 		escr = params.escr;
289 	}
290 
291 	dev_dbg(rcrtc->dev->dev, "%s: ESCR 0x%08x\n", __func__, escr);
292 
293 	rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? ESCR13 : ESCR02, escr);
294 	rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? OTAR13 : OTAR02, 0);
295 
296 	/* Signal polarities */
297 	dsmr = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? DSMR_VSL : 0)
298 	     | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? DSMR_HSL : 0)
299 	     | ((mode->flags & DRM_MODE_FLAG_INTERLACE) ? DSMR_ODEV : 0)
300 	     | DSMR_DIPM_DISP | DSMR_CSPM;
301 	rcar_du_crtc_write(rcrtc, DSMR, dsmr);
302 
303 	hdse_offset = 19;
304 	if (rcrtc->group->cmms_mask & BIT(rcrtc->index % 2))
305 		hdse_offset += 25;
306 
307 	/* Display timings */
308 	rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start -
309 					hdse_offset);
310 	rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start +
311 					mode->hdisplay - hdse_offset);
312 	rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end -
313 					mode->hsync_start - 1);
314 	rcar_du_crtc_write(rcrtc, HCR,  mode->htotal - 1);
315 
316 	rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal -
317 					mode->crtc_vsync_end - 2);
318 	rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal -
319 					mode->crtc_vsync_end +
320 					mode->crtc_vdisplay - 2);
321 	rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal -
322 					mode->crtc_vsync_end +
323 					mode->crtc_vsync_start - 1);
324 	rcar_du_crtc_write(rcrtc, VCR,  mode->crtc_vtotal - 1);
325 
326 	rcar_du_crtc_write(rcrtc, DESR,  mode->htotal - mode->hsync_start - 1);
327 	rcar_du_crtc_write(rcrtc, DEWR,  mode->hdisplay);
328 }
329 
plane_zpos(struct rcar_du_plane * plane)330 static unsigned int plane_zpos(struct rcar_du_plane *plane)
331 {
332 	return plane->plane.state->normalized_zpos;
333 }
334 
335 static const struct rcar_du_format_info *
plane_format(struct rcar_du_plane * plane)336 plane_format(struct rcar_du_plane *plane)
337 {
338 	return to_rcar_plane_state(plane->plane.state)->format;
339 }
340 
rcar_du_crtc_update_planes(struct rcar_du_crtc * rcrtc)341 static void rcar_du_crtc_update_planes(struct rcar_du_crtc *rcrtc)
342 {
343 	struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES];
344 	struct rcar_du_device *rcdu = rcrtc->dev;
345 	unsigned int num_planes = 0;
346 	unsigned int dptsr_planes;
347 	unsigned int hwplanes = 0;
348 	unsigned int prio = 0;
349 	unsigned int i;
350 	u32 dspr = 0;
351 
352 	for (i = 0; i < rcrtc->group->num_planes; ++i) {
353 		struct rcar_du_plane *plane = &rcrtc->group->planes[i];
354 		unsigned int j;
355 
356 		if (plane->plane.state->crtc != &rcrtc->crtc ||
357 		    !plane->plane.state->visible)
358 			continue;
359 
360 		/* Insert the plane in the sorted planes array. */
361 		for (j = num_planes++; j > 0; --j) {
362 			if (plane_zpos(planes[j-1]) <= plane_zpos(plane))
363 				break;
364 			planes[j] = planes[j-1];
365 		}
366 
367 		planes[j] = plane;
368 		prio += plane_format(plane)->planes * 4;
369 	}
370 
371 	for (i = 0; i < num_planes; ++i) {
372 		struct rcar_du_plane *plane = planes[i];
373 		struct drm_plane_state *state = plane->plane.state;
374 		unsigned int index = to_rcar_plane_state(state)->hwindex;
375 
376 		prio -= 4;
377 		dspr |= (index + 1) << prio;
378 		hwplanes |= 1 << index;
379 
380 		if (plane_format(plane)->planes == 2) {
381 			index = (index + 1) % 8;
382 
383 			prio -= 4;
384 			dspr |= (index + 1) << prio;
385 			hwplanes |= 1 << index;
386 		}
387 	}
388 
389 	/* If VSP+DU integration is enabled the plane assignment is fixed. */
390 	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) {
391 		if (rcdu->info->gen < 3) {
392 			dspr = (rcrtc->index % 2) + 1;
393 			hwplanes = 1 << (rcrtc->index % 2);
394 		} else {
395 			dspr = (rcrtc->index % 2) ? 3 : 1;
396 			hwplanes = 1 << ((rcrtc->index % 2) ? 2 : 0);
397 		}
398 	}
399 
400 	/*
401 	 * Update the planes to display timing and dot clock generator
402 	 * associations.
403 	 *
404 	 * Updating the DPTSR register requires restarting the CRTC group,
405 	 * resulting in visible flicker. To mitigate the issue only update the
406 	 * association if needed by enabled planes. Planes being disabled will
407 	 * keep their current association.
408 	 */
409 	mutex_lock(&rcrtc->group->lock);
410 
411 	dptsr_planes = rcrtc->index % 2 ? rcrtc->group->dptsr_planes | hwplanes
412 		     : rcrtc->group->dptsr_planes & ~hwplanes;
413 
414 	if (dptsr_planes != rcrtc->group->dptsr_planes) {
415 		rcar_du_group_write(rcrtc->group, DPTSR,
416 				    (dptsr_planes << 16) | dptsr_planes);
417 		rcrtc->group->dptsr_planes = dptsr_planes;
418 
419 		if (rcrtc->group->used_crtcs)
420 			rcar_du_group_restart(rcrtc->group);
421 	}
422 
423 	/* Restart the group if plane sources have changed. */
424 	if (rcrtc->group->need_restart)
425 		rcar_du_group_restart(rcrtc->group);
426 
427 	mutex_unlock(&rcrtc->group->lock);
428 
429 	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR,
430 			    dspr);
431 }
432 
433 /* -----------------------------------------------------------------------------
434  * Page Flip
435  */
436 
rcar_du_crtc_finish_page_flip(struct rcar_du_crtc * rcrtc)437 void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc)
438 {
439 	struct drm_pending_vblank_event *event;
440 	struct drm_device *dev = rcrtc->crtc.dev;
441 	unsigned long flags;
442 
443 	spin_lock_irqsave(&dev->event_lock, flags);
444 	event = rcrtc->event;
445 	rcrtc->event = NULL;
446 	spin_unlock_irqrestore(&dev->event_lock, flags);
447 
448 	if (event == NULL)
449 		return;
450 
451 	spin_lock_irqsave(&dev->event_lock, flags);
452 	drm_crtc_send_vblank_event(&rcrtc->crtc, event);
453 	wake_up(&rcrtc->flip_wait);
454 	spin_unlock_irqrestore(&dev->event_lock, flags);
455 
456 	drm_crtc_vblank_put(&rcrtc->crtc);
457 }
458 
rcar_du_crtc_page_flip_pending(struct rcar_du_crtc * rcrtc)459 static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc)
460 {
461 	struct drm_device *dev = rcrtc->crtc.dev;
462 	unsigned long flags;
463 	bool pending;
464 
465 	spin_lock_irqsave(&dev->event_lock, flags);
466 	pending = rcrtc->event != NULL;
467 	spin_unlock_irqrestore(&dev->event_lock, flags);
468 
469 	return pending;
470 }
471 
rcar_du_crtc_wait_page_flip(struct rcar_du_crtc * rcrtc)472 static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc)
473 {
474 	struct rcar_du_device *rcdu = rcrtc->dev;
475 
476 	if (wait_event_timeout(rcrtc->flip_wait,
477 			       !rcar_du_crtc_page_flip_pending(rcrtc),
478 			       msecs_to_jiffies(50)))
479 		return;
480 
481 	dev_warn(rcdu->dev, "page flip timeout\n");
482 
483 	rcar_du_crtc_finish_page_flip(rcrtc);
484 }
485 
486 /* -----------------------------------------------------------------------------
487  * Color Management Module (CMM)
488  */
489 
rcar_du_cmm_check(struct drm_crtc * crtc,struct drm_crtc_state * state)490 static int rcar_du_cmm_check(struct drm_crtc *crtc,
491 			     struct drm_crtc_state *state)
492 {
493 	struct drm_property_blob *drm_lut = state->gamma_lut;
494 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
495 	struct device *dev = rcrtc->dev->dev;
496 
497 	if (!drm_lut)
498 		return 0;
499 
500 	/* We only accept fully populated LUT tables. */
501 	if (drm_color_lut_size(drm_lut) != CM2_LUT_SIZE) {
502 		dev_err(dev, "invalid gamma lut size: %zu bytes\n",
503 			drm_lut->length);
504 		return -EINVAL;
505 	}
506 
507 	return 0;
508 }
509 
rcar_du_cmm_setup(struct drm_crtc * crtc)510 static void rcar_du_cmm_setup(struct drm_crtc *crtc)
511 {
512 	struct drm_property_blob *drm_lut = crtc->state->gamma_lut;
513 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
514 	struct rcar_cmm_config cmm_config = {};
515 
516 	if (!rcrtc->cmm)
517 		return;
518 
519 	if (drm_lut)
520 		cmm_config.lut.table = (struct drm_color_lut *)drm_lut->data;
521 
522 	rcar_cmm_setup(rcrtc->cmm, &cmm_config);
523 }
524 
525 /* -----------------------------------------------------------------------------
526  * Start/Stop and Suspend/Resume
527  */
528 
rcar_du_crtc_setup(struct rcar_du_crtc * rcrtc)529 static void rcar_du_crtc_setup(struct rcar_du_crtc *rcrtc)
530 {
531 	/* Set display off and background to black */
532 	rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0));
533 	rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0));
534 
535 	/* Configure display timings and output routing */
536 	rcar_du_crtc_set_display_timing(rcrtc);
537 	rcar_du_group_set_routing(rcrtc->group);
538 
539 	/* Start with all planes disabled. */
540 	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
541 
542 	/* Enable the VSP compositor. */
543 	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
544 		rcar_du_vsp_enable(rcrtc);
545 
546 	/* Turn vertical blanking interrupt reporting on. */
547 	drm_crtc_vblank_on(&rcrtc->crtc);
548 }
549 
rcar_du_crtc_get(struct rcar_du_crtc * rcrtc)550 static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc)
551 {
552 	int ret;
553 
554 	/*
555 	 * Guard against double-get, as the function is called from both the
556 	 * .atomic_enable() and .atomic_begin() handlers.
557 	 */
558 	if (rcrtc->initialized)
559 		return 0;
560 
561 	ret = clk_prepare_enable(rcrtc->clock);
562 	if (ret < 0)
563 		return ret;
564 
565 	ret = clk_prepare_enable(rcrtc->extclock);
566 	if (ret < 0)
567 		goto error_clock;
568 
569 	ret = rcar_du_group_get(rcrtc->group);
570 	if (ret < 0)
571 		goto error_group;
572 
573 	rcar_du_crtc_setup(rcrtc);
574 	rcrtc->initialized = true;
575 
576 	return 0;
577 
578 error_group:
579 	clk_disable_unprepare(rcrtc->extclock);
580 error_clock:
581 	clk_disable_unprepare(rcrtc->clock);
582 	return ret;
583 }
584 
rcar_du_crtc_put(struct rcar_du_crtc * rcrtc)585 static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc)
586 {
587 	rcar_du_group_put(rcrtc->group);
588 
589 	clk_disable_unprepare(rcrtc->extclock);
590 	clk_disable_unprepare(rcrtc->clock);
591 
592 	rcrtc->initialized = false;
593 }
594 
rcar_du_crtc_start(struct rcar_du_crtc * rcrtc)595 static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc)
596 {
597 	bool interlaced;
598 
599 	/*
600 	 * Select master sync mode. This enables display operation in master
601 	 * sync mode (with the HSYNC and VSYNC signals configured as outputs and
602 	 * actively driven).
603 	 */
604 	interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE;
605 	rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK | DSYSR_SCM_MASK,
606 				   (interlaced ? DSYSR_SCM_INT_VIDEO : 0) |
607 				   DSYSR_TVM_MASTER);
608 
609 	rcar_du_group_start_stop(rcrtc->group, true);
610 }
611 
rcar_du_crtc_disable_planes(struct rcar_du_crtc * rcrtc)612 static void rcar_du_crtc_disable_planes(struct rcar_du_crtc *rcrtc)
613 {
614 	struct rcar_du_device *rcdu = rcrtc->dev;
615 	struct drm_crtc *crtc = &rcrtc->crtc;
616 	u32 status;
617 
618 	/* Make sure vblank interrupts are enabled. */
619 	drm_crtc_vblank_get(crtc);
620 
621 	/*
622 	 * Disable planes and calculate how many vertical blanking interrupts we
623 	 * have to wait for. If a vertical blanking interrupt has been triggered
624 	 * but not processed yet, we don't know whether it occurred before or
625 	 * after the planes got disabled. We thus have to wait for two vblank
626 	 * interrupts in that case.
627 	 */
628 	spin_lock_irq(&rcrtc->vblank_lock);
629 	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
630 	status = rcar_du_crtc_read(rcrtc, DSSR);
631 	rcrtc->vblank_count = status & DSSR_VBK ? 2 : 1;
632 	spin_unlock_irq(&rcrtc->vblank_lock);
633 
634 	if (!wait_event_timeout(rcrtc->vblank_wait, rcrtc->vblank_count == 0,
635 				msecs_to_jiffies(100)))
636 		dev_warn(rcdu->dev, "vertical blanking timeout\n");
637 
638 	drm_crtc_vblank_put(crtc);
639 }
640 
rcar_du_crtc_stop(struct rcar_du_crtc * rcrtc)641 static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc)
642 {
643 	struct drm_crtc *crtc = &rcrtc->crtc;
644 
645 	/*
646 	 * Disable all planes and wait for the change to take effect. This is
647 	 * required as the plane enable registers are updated on vblank, and no
648 	 * vblank will occur once the CRTC is stopped. Disabling planes when
649 	 * starting the CRTC thus wouldn't be enough as it would start scanning
650 	 * out immediately from old frame buffers until the next vblank.
651 	 *
652 	 * This increases the CRTC stop delay, especially when multiple CRTCs
653 	 * are stopped in one operation as we now wait for one vblank per CRTC.
654 	 * Whether this can be improved needs to be researched.
655 	 */
656 	rcar_du_crtc_disable_planes(rcrtc);
657 
658 	/*
659 	 * Disable vertical blanking interrupt reporting. We first need to wait
660 	 * for page flip completion before stopping the CRTC as userspace
661 	 * expects page flips to eventually complete.
662 	 */
663 	rcar_du_crtc_wait_page_flip(rcrtc);
664 	drm_crtc_vblank_off(crtc);
665 
666 	/* Disable the VSP compositor. */
667 	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
668 		rcar_du_vsp_disable(rcrtc);
669 
670 	if (rcrtc->cmm)
671 		rcar_cmm_disable(rcrtc->cmm);
672 
673 	/*
674 	 * Select switch sync mode. This stops display operation and configures
675 	 * the HSYNC and VSYNC signals as inputs.
676 	 *
677 	 * TODO: Find another way to stop the display for DUs that don't support
678 	 * TVM sync.
679 	 */
680 	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_TVM_SYNC))
681 		rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK,
682 					   DSYSR_TVM_SWITCH);
683 
684 	rcar_du_group_start_stop(rcrtc->group, false);
685 }
686 
687 /* -----------------------------------------------------------------------------
688  * CRTC Functions
689  */
690 
rcar_du_crtc_atomic_check(struct drm_crtc * crtc,struct drm_atomic_state * state)691 static int rcar_du_crtc_atomic_check(struct drm_crtc *crtc,
692 				     struct drm_atomic_state *state)
693 {
694 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
695 									  crtc);
696 	struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(crtc_state);
697 	struct drm_encoder *encoder;
698 	int ret;
699 
700 	ret = rcar_du_cmm_check(crtc, crtc_state);
701 	if (ret)
702 		return ret;
703 
704 	/* Store the routes from the CRTC output to the DU outputs. */
705 	rstate->outputs = 0;
706 
707 	drm_for_each_encoder_mask(encoder, crtc->dev,
708 				  crtc_state->encoder_mask) {
709 		struct rcar_du_encoder *renc;
710 
711 		/* Skip the writeback encoder. */
712 		if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
713 			continue;
714 
715 		renc = to_rcar_encoder(encoder);
716 		rstate->outputs |= BIT(renc->output);
717 	}
718 
719 	return 0;
720 }
721 
rcar_du_crtc_atomic_enable(struct drm_crtc * crtc,struct drm_atomic_state * state)722 static void rcar_du_crtc_atomic_enable(struct drm_crtc *crtc,
723 				       struct drm_atomic_state *state)
724 {
725 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
726 	struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(crtc->state);
727 	struct rcar_du_device *rcdu = rcrtc->dev;
728 
729 	if (rcrtc->cmm)
730 		rcar_cmm_enable(rcrtc->cmm);
731 	rcar_du_crtc_get(rcrtc);
732 
733 	/*
734 	 * On D3/E3 the dot clock is provided by the LVDS encoder attached to
735 	 * the DU channel. We need to enable its clock output explicitly if
736 	 * the LVDS output is disabled.
737 	 */
738 	if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) &&
739 	    rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) {
740 		struct drm_bridge *bridge = rcdu->lvds[rcrtc->index];
741 		const struct drm_display_mode *mode =
742 			&crtc->state->adjusted_mode;
743 
744 		rcar_lvds_clk_enable(bridge, mode->clock * 1000);
745 	}
746 
747 	rcar_du_crtc_start(rcrtc);
748 
749 	/*
750 	 * TODO: The chip manual indicates that CMM tables should be written
751 	 * after the DU channel has been activated. Investigate the impact
752 	 * of this restriction on the first displayed frame.
753 	 */
754 	rcar_du_cmm_setup(crtc);
755 }
756 
rcar_du_crtc_atomic_disable(struct drm_crtc * crtc,struct drm_atomic_state * state)757 static void rcar_du_crtc_atomic_disable(struct drm_crtc *crtc,
758 					struct drm_atomic_state *state)
759 {
760 	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
761 									 crtc);
762 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
763 	struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(old_state);
764 	struct rcar_du_device *rcdu = rcrtc->dev;
765 
766 	rcar_du_crtc_stop(rcrtc);
767 	rcar_du_crtc_put(rcrtc);
768 
769 	if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) &&
770 	    rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) {
771 		struct drm_bridge *bridge = rcdu->lvds[rcrtc->index];
772 
773 		/*
774 		 * Disable the LVDS clock output, see
775 		 * rcar_du_crtc_atomic_enable().
776 		 */
777 		rcar_lvds_clk_disable(bridge);
778 	}
779 
780 	spin_lock_irq(&crtc->dev->event_lock);
781 	if (crtc->state->event) {
782 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
783 		crtc->state->event = NULL;
784 	}
785 	spin_unlock_irq(&crtc->dev->event_lock);
786 }
787 
rcar_du_crtc_atomic_begin(struct drm_crtc * crtc,struct drm_atomic_state * state)788 static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc,
789 				      struct drm_atomic_state *state)
790 {
791 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
792 
793 	WARN_ON(!crtc->state->enable);
794 
795 	/*
796 	 * If a mode set is in progress we can be called with the CRTC disabled.
797 	 * We thus need to first get and setup the CRTC in order to configure
798 	 * planes. We must *not* put the CRTC in .atomic_flush(), as it must be
799 	 * kept awake until the .atomic_enable() call that will follow. The get
800 	 * operation in .atomic_enable() will in that case be a no-op, and the
801 	 * CRTC will be put later in .atomic_disable().
802 	 *
803 	 * If a mode set is not in progress the CRTC is enabled, and the
804 	 * following get call will be a no-op. There is thus no need to balance
805 	 * it in .atomic_flush() either.
806 	 */
807 	rcar_du_crtc_get(rcrtc);
808 
809 	/* If the active state changed, we let .atomic_enable handle CMM. */
810 	if (crtc->state->color_mgmt_changed && !crtc->state->active_changed)
811 		rcar_du_cmm_setup(crtc);
812 
813 	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
814 		rcar_du_vsp_atomic_begin(rcrtc);
815 }
816 
rcar_du_crtc_atomic_flush(struct drm_crtc * crtc,struct drm_atomic_state * state)817 static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc,
818 				      struct drm_atomic_state *state)
819 {
820 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
821 	struct drm_device *dev = rcrtc->crtc.dev;
822 	unsigned long flags;
823 
824 	rcar_du_crtc_update_planes(rcrtc);
825 
826 	if (crtc->state->event) {
827 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
828 
829 		spin_lock_irqsave(&dev->event_lock, flags);
830 		rcrtc->event = crtc->state->event;
831 		crtc->state->event = NULL;
832 		spin_unlock_irqrestore(&dev->event_lock, flags);
833 	}
834 
835 	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
836 		rcar_du_vsp_atomic_flush(rcrtc);
837 }
838 
839 static enum drm_mode_status
rcar_du_crtc_mode_valid(struct drm_crtc * crtc,const struct drm_display_mode * mode)840 rcar_du_crtc_mode_valid(struct drm_crtc *crtc,
841 			const struct drm_display_mode *mode)
842 {
843 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
844 	struct rcar_du_device *rcdu = rcrtc->dev;
845 	bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
846 	unsigned int min_sync_porch;
847 	unsigned int vbp;
848 
849 	if (interlaced && !rcar_du_has(rcdu, RCAR_DU_FEATURE_INTERLACED))
850 		return MODE_NO_INTERLACE;
851 
852 	/*
853 	 * The hardware requires a minimum combined horizontal sync and back
854 	 * porch of 20 pixels (when CMM isn't used) or 45 pixels (when CMM is
855 	 * used), and a minimum vertical back porch of 3 lines.
856 	 */
857 	min_sync_porch = 20;
858 	if (rcrtc->group->cmms_mask & BIT(rcrtc->index % 2))
859 		min_sync_porch += 25;
860 
861 	if (mode->htotal - mode->hsync_start < min_sync_porch)
862 		return MODE_HBLANK_NARROW;
863 
864 	vbp = (mode->vtotal - mode->vsync_end) / (interlaced ? 2 : 1);
865 	if (vbp < 3)
866 		return MODE_VBLANK_NARROW;
867 
868 	return MODE_OK;
869 }
870 
871 static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
872 	.atomic_check = rcar_du_crtc_atomic_check,
873 	.atomic_begin = rcar_du_crtc_atomic_begin,
874 	.atomic_flush = rcar_du_crtc_atomic_flush,
875 	.atomic_enable = rcar_du_crtc_atomic_enable,
876 	.atomic_disable = rcar_du_crtc_atomic_disable,
877 	.mode_valid = rcar_du_crtc_mode_valid,
878 };
879 
rcar_du_crtc_crc_init(struct rcar_du_crtc * rcrtc)880 static void rcar_du_crtc_crc_init(struct rcar_du_crtc *rcrtc)
881 {
882 	struct rcar_du_device *rcdu = rcrtc->dev;
883 	const char **sources;
884 	unsigned int count;
885 	int i = -1;
886 
887 	/* CRC available only on Gen3 HW. */
888 	if (rcdu->info->gen < 3)
889 		return;
890 
891 	/* Reserve 1 for "auto" source. */
892 	count = rcrtc->vsp->num_planes + 1;
893 
894 	sources = kmalloc_array(count, sizeof(*sources), GFP_KERNEL);
895 	if (!sources)
896 		return;
897 
898 	sources[0] = kstrdup("auto", GFP_KERNEL);
899 	if (!sources[0])
900 		goto error;
901 
902 	for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
903 		struct drm_plane *plane = &rcrtc->vsp->planes[i].plane;
904 		char name[16];
905 
906 		sprintf(name, "plane%u", plane->base.id);
907 		sources[i + 1] = kstrdup(name, GFP_KERNEL);
908 		if (!sources[i + 1])
909 			goto error;
910 	}
911 
912 	rcrtc->sources = sources;
913 	rcrtc->sources_count = count;
914 	return;
915 
916 error:
917 	while (i >= 0) {
918 		kfree(sources[i]);
919 		i--;
920 	}
921 	kfree(sources);
922 }
923 
rcar_du_crtc_crc_cleanup(struct rcar_du_crtc * rcrtc)924 static void rcar_du_crtc_crc_cleanup(struct rcar_du_crtc *rcrtc)
925 {
926 	unsigned int i;
927 
928 	if (!rcrtc->sources)
929 		return;
930 
931 	for (i = 0; i < rcrtc->sources_count; i++)
932 		kfree(rcrtc->sources[i]);
933 	kfree(rcrtc->sources);
934 
935 	rcrtc->sources = NULL;
936 	rcrtc->sources_count = 0;
937 }
938 
939 static struct drm_crtc_state *
rcar_du_crtc_atomic_duplicate_state(struct drm_crtc * crtc)940 rcar_du_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
941 {
942 	struct rcar_du_crtc_state *state;
943 	struct rcar_du_crtc_state *copy;
944 
945 	if (WARN_ON(!crtc->state))
946 		return NULL;
947 
948 	state = to_rcar_crtc_state(crtc->state);
949 	copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
950 	if (copy == NULL)
951 		return NULL;
952 
953 	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->state);
954 
955 	return &copy->state;
956 }
957 
rcar_du_crtc_atomic_destroy_state(struct drm_crtc * crtc,struct drm_crtc_state * state)958 static void rcar_du_crtc_atomic_destroy_state(struct drm_crtc *crtc,
959 					      struct drm_crtc_state *state)
960 {
961 	__drm_atomic_helper_crtc_destroy_state(state);
962 	kfree(to_rcar_crtc_state(state));
963 }
964 
rcar_du_crtc_cleanup(struct drm_crtc * crtc)965 static void rcar_du_crtc_cleanup(struct drm_crtc *crtc)
966 {
967 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
968 
969 	rcar_du_crtc_crc_cleanup(rcrtc);
970 
971 	return drm_crtc_cleanup(crtc);
972 }
973 
rcar_du_crtc_reset(struct drm_crtc * crtc)974 static void rcar_du_crtc_reset(struct drm_crtc *crtc)
975 {
976 	struct rcar_du_crtc_state *state;
977 
978 	if (crtc->state) {
979 		rcar_du_crtc_atomic_destroy_state(crtc, crtc->state);
980 		crtc->state = NULL;
981 	}
982 
983 	state = kzalloc(sizeof(*state), GFP_KERNEL);
984 	if (state == NULL)
985 		return;
986 
987 	state->crc.source = VSP1_DU_CRC_NONE;
988 	state->crc.index = 0;
989 
990 	__drm_atomic_helper_crtc_reset(crtc, &state->state);
991 }
992 
rcar_du_crtc_enable_vblank(struct drm_crtc * crtc)993 static int rcar_du_crtc_enable_vblank(struct drm_crtc *crtc)
994 {
995 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
996 
997 	rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL);
998 	rcar_du_crtc_set(rcrtc, DIER, DIER_VBE);
999 	rcrtc->vblank_enable = true;
1000 
1001 	return 0;
1002 }
1003 
rcar_du_crtc_disable_vblank(struct drm_crtc * crtc)1004 static void rcar_du_crtc_disable_vblank(struct drm_crtc *crtc)
1005 {
1006 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1007 
1008 	rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE);
1009 	rcrtc->vblank_enable = false;
1010 }
1011 
rcar_du_crtc_parse_crc_source(struct rcar_du_crtc * rcrtc,const char * source_name,enum vsp1_du_crc_source * source)1012 static int rcar_du_crtc_parse_crc_source(struct rcar_du_crtc *rcrtc,
1013 					 const char *source_name,
1014 					 enum vsp1_du_crc_source *source)
1015 {
1016 	unsigned int index;
1017 	int ret;
1018 
1019 	/*
1020 	 * Parse the source name. Supported values are "plane%u" to compute the
1021 	 * CRC on an input plane (%u is the plane ID), and "auto" to compute the
1022 	 * CRC on the composer (VSP) output.
1023 	 */
1024 
1025 	if (!source_name) {
1026 		*source = VSP1_DU_CRC_NONE;
1027 		return 0;
1028 	} else if (!strcmp(source_name, "auto")) {
1029 		*source = VSP1_DU_CRC_OUTPUT;
1030 		return 0;
1031 	} else if (strstarts(source_name, "plane")) {
1032 		unsigned int i;
1033 
1034 		*source = VSP1_DU_CRC_PLANE;
1035 
1036 		ret = kstrtouint(source_name + strlen("plane"), 10, &index);
1037 		if (ret < 0)
1038 			return ret;
1039 
1040 		for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
1041 			if (index == rcrtc->vsp->planes[i].plane.base.id)
1042 				return i;
1043 		}
1044 	}
1045 
1046 	return -EINVAL;
1047 }
1048 
rcar_du_crtc_verify_crc_source(struct drm_crtc * crtc,const char * source_name,size_t * values_cnt)1049 static int rcar_du_crtc_verify_crc_source(struct drm_crtc *crtc,
1050 					  const char *source_name,
1051 					  size_t *values_cnt)
1052 {
1053 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1054 	enum vsp1_du_crc_source source;
1055 
1056 	if (rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source) < 0) {
1057 		DRM_DEBUG_DRIVER("unknown source %s\n", source_name);
1058 		return -EINVAL;
1059 	}
1060 
1061 	*values_cnt = 1;
1062 	return 0;
1063 }
1064 
1065 static const char *const *
rcar_du_crtc_get_crc_sources(struct drm_crtc * crtc,size_t * count)1066 rcar_du_crtc_get_crc_sources(struct drm_crtc *crtc, size_t *count)
1067 {
1068 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1069 
1070 	*count = rcrtc->sources_count;
1071 	return rcrtc->sources;
1072 }
1073 
rcar_du_crtc_set_crc_source(struct drm_crtc * crtc,const char * source_name)1074 static int rcar_du_crtc_set_crc_source(struct drm_crtc *crtc,
1075 				       const char *source_name)
1076 {
1077 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1078 	struct drm_modeset_acquire_ctx ctx;
1079 	struct drm_crtc_state *crtc_state;
1080 	struct drm_atomic_state *state;
1081 	enum vsp1_du_crc_source source;
1082 	unsigned int index;
1083 	int ret;
1084 
1085 	ret = rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source);
1086 	if (ret < 0)
1087 		return ret;
1088 
1089 	index = ret;
1090 
1091 	/* Perform an atomic commit to set the CRC source. */
1092 	drm_modeset_acquire_init(&ctx, 0);
1093 
1094 	state = drm_atomic_state_alloc(crtc->dev);
1095 	if (!state) {
1096 		ret = -ENOMEM;
1097 		goto unlock;
1098 	}
1099 
1100 	state->acquire_ctx = &ctx;
1101 
1102 retry:
1103 	crtc_state = drm_atomic_get_crtc_state(state, crtc);
1104 	if (!IS_ERR(crtc_state)) {
1105 		struct rcar_du_crtc_state *rcrtc_state;
1106 
1107 		rcrtc_state = to_rcar_crtc_state(crtc_state);
1108 		rcrtc_state->crc.source = source;
1109 		rcrtc_state->crc.index = index;
1110 
1111 		ret = drm_atomic_commit(state);
1112 	} else {
1113 		ret = PTR_ERR(crtc_state);
1114 	}
1115 
1116 	if (ret == -EDEADLK) {
1117 		drm_atomic_state_clear(state);
1118 		drm_modeset_backoff(&ctx);
1119 		goto retry;
1120 	}
1121 
1122 	drm_atomic_state_put(state);
1123 
1124 unlock:
1125 	drm_modeset_drop_locks(&ctx);
1126 	drm_modeset_acquire_fini(&ctx);
1127 
1128 	return ret;
1129 }
1130 
1131 static const struct drm_crtc_funcs crtc_funcs_gen2 = {
1132 	.reset = rcar_du_crtc_reset,
1133 	.destroy = drm_crtc_cleanup,
1134 	.set_config = drm_atomic_helper_set_config,
1135 	.page_flip = drm_atomic_helper_page_flip,
1136 	.atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
1137 	.atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
1138 	.enable_vblank = rcar_du_crtc_enable_vblank,
1139 	.disable_vblank = rcar_du_crtc_disable_vblank,
1140 };
1141 
1142 static const struct drm_crtc_funcs crtc_funcs_gen3 = {
1143 	.reset = rcar_du_crtc_reset,
1144 	.destroy = rcar_du_crtc_cleanup,
1145 	.set_config = drm_atomic_helper_set_config,
1146 	.page_flip = drm_atomic_helper_page_flip,
1147 	.atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
1148 	.atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
1149 	.enable_vblank = rcar_du_crtc_enable_vblank,
1150 	.disable_vblank = rcar_du_crtc_disable_vblank,
1151 	.set_crc_source = rcar_du_crtc_set_crc_source,
1152 	.verify_crc_source = rcar_du_crtc_verify_crc_source,
1153 	.get_crc_sources = rcar_du_crtc_get_crc_sources,
1154 };
1155 
1156 /* -----------------------------------------------------------------------------
1157  * Interrupt Handling
1158  */
1159 
rcar_du_crtc_irq(int irq,void * arg)1160 static irqreturn_t rcar_du_crtc_irq(int irq, void *arg)
1161 {
1162 	struct rcar_du_crtc *rcrtc = arg;
1163 	struct rcar_du_device *rcdu = rcrtc->dev;
1164 	irqreturn_t ret = IRQ_NONE;
1165 	u32 status;
1166 
1167 	spin_lock(&rcrtc->vblank_lock);
1168 
1169 	status = rcar_du_crtc_read(rcrtc, DSSR);
1170 	rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK);
1171 
1172 	if (status & DSSR_VBK) {
1173 		/*
1174 		 * Wake up the vblank wait if the counter reaches 0. This must
1175 		 * be protected by the vblank_lock to avoid races in
1176 		 * rcar_du_crtc_disable_planes().
1177 		 */
1178 		if (rcrtc->vblank_count) {
1179 			if (--rcrtc->vblank_count == 0)
1180 				wake_up(&rcrtc->vblank_wait);
1181 		}
1182 	}
1183 
1184 	spin_unlock(&rcrtc->vblank_lock);
1185 
1186 	if (status & DSSR_VBK) {
1187 		if (rcdu->info->gen < 3) {
1188 			drm_crtc_handle_vblank(&rcrtc->crtc);
1189 			rcar_du_crtc_finish_page_flip(rcrtc);
1190 		}
1191 
1192 		ret = IRQ_HANDLED;
1193 	}
1194 
1195 	return ret;
1196 }
1197 
1198 /* -----------------------------------------------------------------------------
1199  * Initialization
1200  */
1201 
rcar_du_crtc_create(struct rcar_du_group * rgrp,unsigned int swindex,unsigned int hwindex)1202 int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int swindex,
1203 			unsigned int hwindex)
1204 {
1205 	static const unsigned int mmio_offsets[] = {
1206 		DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET, DU3_REG_OFFSET
1207 	};
1208 
1209 	struct rcar_du_device *rcdu = rgrp->dev;
1210 	struct platform_device *pdev = to_platform_device(rcdu->dev);
1211 	struct rcar_du_crtc *rcrtc = &rcdu->crtcs[swindex];
1212 	struct drm_crtc *crtc = &rcrtc->crtc;
1213 	struct drm_plane *primary;
1214 	unsigned int irqflags;
1215 	struct clk *clk;
1216 	char clk_name[9];
1217 	char *name;
1218 	int irq;
1219 	int ret;
1220 
1221 	/* Get the CRTC clock and the optional external clock. */
1222 	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_CLOCK)) {
1223 		sprintf(clk_name, "du.%u", hwindex);
1224 		name = clk_name;
1225 	} else {
1226 		name = NULL;
1227 	}
1228 
1229 	rcrtc->clock = devm_clk_get(rcdu->dev, name);
1230 	if (IS_ERR(rcrtc->clock)) {
1231 		dev_err(rcdu->dev, "no clock for DU channel %u\n", hwindex);
1232 		return PTR_ERR(rcrtc->clock);
1233 	}
1234 
1235 	sprintf(clk_name, "dclkin.%u", hwindex);
1236 	clk = devm_clk_get(rcdu->dev, clk_name);
1237 	if (!IS_ERR(clk)) {
1238 		rcrtc->extclock = clk;
1239 	} else if (PTR_ERR(clk) == -EPROBE_DEFER) {
1240 		return -EPROBE_DEFER;
1241 	} else if (rcdu->info->dpll_mask & BIT(hwindex)) {
1242 		/*
1243 		 * DU channels that have a display PLL can't use the internal
1244 		 * system clock and thus require an external clock.
1245 		 */
1246 		ret = PTR_ERR(clk);
1247 		dev_err(rcdu->dev, "can't get dclkin.%u: %d\n", hwindex, ret);
1248 		return ret;
1249 	}
1250 
1251 	init_waitqueue_head(&rcrtc->flip_wait);
1252 	init_waitqueue_head(&rcrtc->vblank_wait);
1253 	spin_lock_init(&rcrtc->vblank_lock);
1254 
1255 	rcrtc->dev = rcdu;
1256 	rcrtc->group = rgrp;
1257 	rcrtc->mmio_offset = mmio_offsets[hwindex];
1258 	rcrtc->index = hwindex;
1259 	rcrtc->dsysr = rcrtc->index % 2 ? 0 : DSYSR_DRES;
1260 
1261 	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_TVM_SYNC))
1262 		rcrtc->dsysr |= DSYSR_TVM_TVSYNC;
1263 
1264 	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE))
1265 		primary = &rcrtc->vsp->planes[rcrtc->vsp_pipe].plane;
1266 	else
1267 		primary = &rgrp->planes[swindex % 2].plane;
1268 
1269 	ret = drm_crtc_init_with_planes(&rcdu->ddev, crtc, primary, NULL,
1270 					rcdu->info->gen <= 2 ?
1271 					&crtc_funcs_gen2 : &crtc_funcs_gen3,
1272 					NULL);
1273 	if (ret < 0)
1274 		return ret;
1275 
1276 	/* CMM might be disabled for this CRTC. */
1277 	if (rcdu->cmms[swindex]) {
1278 		rcrtc->cmm = rcdu->cmms[swindex];
1279 		rgrp->cmms_mask |= BIT(hwindex % 2);
1280 
1281 		drm_mode_crtc_set_gamma_size(crtc, CM2_LUT_SIZE);
1282 		drm_crtc_enable_color_mgmt(crtc, 0, false, CM2_LUT_SIZE);
1283 	}
1284 
1285 	drm_crtc_helper_add(crtc, &crtc_helper_funcs);
1286 
1287 	/* Register the interrupt handler. */
1288 	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ)) {
1289 		/* The IRQ's are associated with the CRTC (sw)index. */
1290 		irq = platform_get_irq(pdev, swindex);
1291 		irqflags = 0;
1292 	} else {
1293 		irq = platform_get_irq(pdev, 0);
1294 		irqflags = IRQF_SHARED;
1295 	}
1296 
1297 	if (irq < 0) {
1298 		dev_err(rcdu->dev, "no IRQ for CRTC %u\n", swindex);
1299 		return irq;
1300 	}
1301 
1302 	ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags,
1303 			       dev_name(rcdu->dev), rcrtc);
1304 	if (ret < 0) {
1305 		dev_err(rcdu->dev,
1306 			"failed to register IRQ for CRTC %u\n", swindex);
1307 		return ret;
1308 	}
1309 
1310 	rcar_du_crtc_crc_init(rcrtc);
1311 
1312 	return 0;
1313 }
1314