1 /*
2 * Copyright 2012 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Ben Skeggs
23 */
24 #include <nvif/push006c.h>
25
26 #include <nvif/class.h>
27 #include <nvif/cl0002.h>
28 #include <nvif/cl006b.h>
29 #include <nvif/cl506f.h>
30 #include <nvif/cl906f.h>
31 #include <nvif/cla06f.h>
32 #include <nvif/clc36f.h>
33 #include <nvif/ioctl.h>
34
35 #include "nouveau_drv.h"
36 #include "nouveau_dma.h"
37 #include "nouveau_bo.h"
38 #include "nouveau_chan.h"
39 #include "nouveau_fence.h"
40 #include "nouveau_abi16.h"
41 #include "nouveau_vmm.h"
42 #include "nouveau_svm.h"
43
44 MODULE_PARM_DESC(vram_pushbuf, "Create DMA push buffers in VRAM");
45 int nouveau_vram_pushbuf;
46 module_param_named(vram_pushbuf, nouveau_vram_pushbuf, int, 0400);
47
48 static int
nouveau_channel_killed(struct nvif_notify * ntfy)49 nouveau_channel_killed(struct nvif_notify *ntfy)
50 {
51 struct nouveau_channel *chan = container_of(ntfy, typeof(*chan), kill);
52 struct nouveau_cli *cli = (void *)chan->user.client;
53 NV_PRINTK(warn, cli, "channel %d killed!\n", chan->chid);
54 atomic_set(&chan->killed, 1);
55 if (chan->fence)
56 nouveau_fence_context_kill(chan->fence, -ENODEV);
57 return NVIF_NOTIFY_DROP;
58 }
59
60 int
nouveau_channel_idle(struct nouveau_channel * chan)61 nouveau_channel_idle(struct nouveau_channel *chan)
62 {
63 if (likely(chan && chan->fence && !atomic_read(&chan->killed))) {
64 struct nouveau_cli *cli = (void *)chan->user.client;
65 struct nouveau_fence *fence = NULL;
66 int ret;
67
68 ret = nouveau_fence_new(chan, false, &fence);
69 if (!ret) {
70 ret = nouveau_fence_wait(fence, false, false);
71 nouveau_fence_unref(&fence);
72 }
73
74 if (ret) {
75 NV_PRINTK(err, cli, "failed to idle channel %d [%s]\n",
76 chan->chid, nvxx_client(&cli->base)->name);
77 return ret;
78 }
79 }
80 return 0;
81 }
82
83 void
nouveau_channel_del(struct nouveau_channel ** pchan)84 nouveau_channel_del(struct nouveau_channel **pchan)
85 {
86 struct nouveau_channel *chan = *pchan;
87 if (chan) {
88 struct nouveau_cli *cli = (void *)chan->user.client;
89
90 if (chan->fence)
91 nouveau_fence(chan->drm)->context_del(chan);
92
93 if (cli)
94 nouveau_svmm_part(chan->vmm->svmm, chan->inst);
95
96 nvif_object_dtor(&chan->nvsw);
97 nvif_object_dtor(&chan->gart);
98 nvif_object_dtor(&chan->vram);
99 nvif_notify_dtor(&chan->kill);
100 nvif_object_dtor(&chan->user);
101 nvif_object_dtor(&chan->push.ctxdma);
102 nouveau_vma_del(&chan->push.vma);
103 nouveau_bo_unmap(chan->push.buffer);
104 if (chan->push.buffer && chan->push.buffer->bo.pin_count)
105 nouveau_bo_unpin(chan->push.buffer);
106 nouveau_bo_ref(NULL, &chan->push.buffer);
107 kfree(chan);
108 }
109 *pchan = NULL;
110 }
111
112 static void
nouveau_channel_kick(struct nvif_push * push)113 nouveau_channel_kick(struct nvif_push *push)
114 {
115 struct nouveau_channel *chan = container_of(push, typeof(*chan), chan._push);
116 chan->dma.cur = chan->dma.cur + (chan->chan._push.cur - chan->chan._push.bgn);
117 FIRE_RING(chan);
118 chan->chan._push.bgn = chan->chan._push.cur;
119 }
120
121 static int
nouveau_channel_wait(struct nvif_push * push,u32 size)122 nouveau_channel_wait(struct nvif_push *push, u32 size)
123 {
124 struct nouveau_channel *chan = container_of(push, typeof(*chan), chan._push);
125 int ret;
126 chan->dma.cur = chan->dma.cur + (chan->chan._push.cur - chan->chan._push.bgn);
127 ret = RING_SPACE(chan, size);
128 if (ret == 0) {
129 chan->chan._push.bgn = chan->chan._push.mem.object.map.ptr;
130 chan->chan._push.bgn = chan->chan._push.bgn + chan->dma.cur;
131 chan->chan._push.cur = chan->chan._push.bgn;
132 chan->chan._push.end = chan->chan._push.bgn + size;
133 }
134 return ret;
135 }
136
137 static int
nouveau_channel_prep(struct nouveau_drm * drm,struct nvif_device * device,u32 size,struct nouveau_channel ** pchan)138 nouveau_channel_prep(struct nouveau_drm *drm, struct nvif_device *device,
139 u32 size, struct nouveau_channel **pchan)
140 {
141 struct nouveau_cli *cli = (void *)device->object.client;
142 struct nv_dma_v0 args = {};
143 struct nouveau_channel *chan;
144 u32 target;
145 int ret;
146
147 chan = *pchan = kzalloc(sizeof(*chan), GFP_KERNEL);
148 if (!chan)
149 return -ENOMEM;
150
151 chan->device = device;
152 chan->drm = drm;
153 chan->vmm = cli->svm.cli ? &cli->svm : &cli->vmm;
154 atomic_set(&chan->killed, 0);
155
156 /* allocate memory for dma push buffer */
157 target = NOUVEAU_GEM_DOMAIN_GART | NOUVEAU_GEM_DOMAIN_COHERENT;
158 if (nouveau_vram_pushbuf)
159 target = NOUVEAU_GEM_DOMAIN_VRAM;
160
161 ret = nouveau_bo_new(cli, size, 0, target, 0, 0, NULL, NULL,
162 &chan->push.buffer);
163 if (ret == 0) {
164 ret = nouveau_bo_pin(chan->push.buffer, target, false);
165 if (ret == 0)
166 ret = nouveau_bo_map(chan->push.buffer);
167 }
168
169 if (ret) {
170 nouveau_channel_del(pchan);
171 return ret;
172 }
173
174 chan->chan._push.mem.object.parent = cli->base.object.parent;
175 chan->chan._push.mem.object.client = &cli->base;
176 chan->chan._push.mem.object.name = "chanPush";
177 chan->chan._push.mem.object.map.ptr = chan->push.buffer->kmap.virtual;
178 chan->chan._push.wait = nouveau_channel_wait;
179 chan->chan._push.kick = nouveau_channel_kick;
180 chan->chan.push = &chan->chan._push;
181
182 /* create dma object covering the *entire* memory space that the
183 * pushbuf lives in, this is because the GEM code requires that
184 * we be able to call out to other (indirect) push buffers
185 */
186 chan->push.addr = chan->push.buffer->offset;
187
188 if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) {
189 ret = nouveau_vma_new(chan->push.buffer, chan->vmm,
190 &chan->push.vma);
191 if (ret) {
192 nouveau_channel_del(pchan);
193 return ret;
194 }
195
196 chan->push.addr = chan->push.vma->addr;
197
198 if (device->info.family >= NV_DEVICE_INFO_V0_FERMI)
199 return 0;
200
201 args.target = NV_DMA_V0_TARGET_VM;
202 args.access = NV_DMA_V0_ACCESS_VM;
203 args.start = 0;
204 args.limit = chan->vmm->vmm.limit - 1;
205 } else
206 if (chan->push.buffer->bo.resource->mem_type == TTM_PL_VRAM) {
207 if (device->info.family == NV_DEVICE_INFO_V0_TNT) {
208 /* nv04 vram pushbuf hack, retarget to its location in
209 * the framebuffer bar rather than direct vram access..
210 * nfi why this exists, it came from the -nv ddx.
211 */
212 args.target = NV_DMA_V0_TARGET_PCI;
213 args.access = NV_DMA_V0_ACCESS_RDWR;
214 args.start = nvxx_device(device)->func->
215 resource_addr(nvxx_device(device), 1);
216 args.limit = args.start + device->info.ram_user - 1;
217 } else {
218 args.target = NV_DMA_V0_TARGET_VRAM;
219 args.access = NV_DMA_V0_ACCESS_RDWR;
220 args.start = 0;
221 args.limit = device->info.ram_user - 1;
222 }
223 } else {
224 if (chan->drm->agp.bridge) {
225 args.target = NV_DMA_V0_TARGET_AGP;
226 args.access = NV_DMA_V0_ACCESS_RDWR;
227 args.start = chan->drm->agp.base;
228 args.limit = chan->drm->agp.base +
229 chan->drm->agp.size - 1;
230 } else {
231 args.target = NV_DMA_V0_TARGET_VM;
232 args.access = NV_DMA_V0_ACCESS_RDWR;
233 args.start = 0;
234 args.limit = chan->vmm->vmm.limit - 1;
235 }
236 }
237
238 ret = nvif_object_ctor(&device->object, "abi16PushCtxDma", 0,
239 NV_DMA_FROM_MEMORY, &args, sizeof(args),
240 &chan->push.ctxdma);
241 if (ret) {
242 nouveau_channel_del(pchan);
243 return ret;
244 }
245
246 return 0;
247 }
248
249 static int
nouveau_channel_ind(struct nouveau_drm * drm,struct nvif_device * device,u64 runlist,bool priv,struct nouveau_channel ** pchan)250 nouveau_channel_ind(struct nouveau_drm *drm, struct nvif_device *device,
251 u64 runlist, bool priv, struct nouveau_channel **pchan)
252 {
253 static const u16 oclasses[] = { AMPERE_CHANNEL_GPFIFO_B,
254 TURING_CHANNEL_GPFIFO_A,
255 VOLTA_CHANNEL_GPFIFO_A,
256 PASCAL_CHANNEL_GPFIFO_A,
257 MAXWELL_CHANNEL_GPFIFO_A,
258 KEPLER_CHANNEL_GPFIFO_B,
259 KEPLER_CHANNEL_GPFIFO_A,
260 FERMI_CHANNEL_GPFIFO,
261 G82_CHANNEL_GPFIFO,
262 NV50_CHANNEL_GPFIFO,
263 0 };
264 const u16 *oclass = oclasses;
265 union {
266 struct nv50_channel_gpfifo_v0 nv50;
267 struct fermi_channel_gpfifo_v0 fermi;
268 struct kepler_channel_gpfifo_a_v0 kepler;
269 struct volta_channel_gpfifo_a_v0 volta;
270 } args;
271 struct nouveau_channel *chan;
272 u32 size;
273 int ret;
274
275 /* allocate dma push buffer */
276 ret = nouveau_channel_prep(drm, device, 0x12000, &chan);
277 *pchan = chan;
278 if (ret)
279 return ret;
280
281 /* create channel object */
282 do {
283 if (oclass[0] >= VOLTA_CHANNEL_GPFIFO_A) {
284 args.volta.version = 0;
285 args.volta.ilength = 0x02000;
286 args.volta.ioffset = 0x10000 + chan->push.addr;
287 args.volta.runlist = runlist;
288 args.volta.vmm = nvif_handle(&chan->vmm->vmm.object);
289 args.volta.priv = priv;
290 size = sizeof(args.volta);
291 } else
292 if (oclass[0] >= KEPLER_CHANNEL_GPFIFO_A) {
293 args.kepler.version = 0;
294 args.kepler.ilength = 0x02000;
295 args.kepler.ioffset = 0x10000 + chan->push.addr;
296 args.kepler.runlist = runlist;
297 args.kepler.vmm = nvif_handle(&chan->vmm->vmm.object);
298 args.kepler.priv = priv;
299 size = sizeof(args.kepler);
300 } else
301 if (oclass[0] >= FERMI_CHANNEL_GPFIFO) {
302 args.fermi.version = 0;
303 args.fermi.ilength = 0x02000;
304 args.fermi.ioffset = 0x10000 + chan->push.addr;
305 args.fermi.vmm = nvif_handle(&chan->vmm->vmm.object);
306 size = sizeof(args.fermi);
307 } else {
308 args.nv50.version = 0;
309 args.nv50.ilength = 0x02000;
310 args.nv50.ioffset = 0x10000 + chan->push.addr;
311 args.nv50.pushbuf = nvif_handle(&chan->push.ctxdma);
312 args.nv50.vmm = nvif_handle(&chan->vmm->vmm.object);
313 size = sizeof(args.nv50);
314 }
315
316 ret = nvif_object_ctor(&device->object, "abi16ChanUser", 0,
317 *oclass++, &args, size, &chan->user);
318 if (ret == 0) {
319 if (chan->user.oclass >= VOLTA_CHANNEL_GPFIFO_A) {
320 chan->chid = args.volta.chid;
321 chan->inst = args.volta.inst;
322 chan->token = args.volta.token;
323 } else
324 if (chan->user.oclass >= KEPLER_CHANNEL_GPFIFO_A) {
325 chan->chid = args.kepler.chid;
326 chan->inst = args.kepler.inst;
327 } else
328 if (chan->user.oclass >= FERMI_CHANNEL_GPFIFO) {
329 chan->chid = args.fermi.chid;
330 } else {
331 chan->chid = args.nv50.chid;
332 }
333 return ret;
334 }
335 } while (*oclass);
336
337 nouveau_channel_del(pchan);
338 return ret;
339 }
340
341 static int
nouveau_channel_dma(struct nouveau_drm * drm,struct nvif_device * device,struct nouveau_channel ** pchan)342 nouveau_channel_dma(struct nouveau_drm *drm, struct nvif_device *device,
343 struct nouveau_channel **pchan)
344 {
345 static const u16 oclasses[] = { NV40_CHANNEL_DMA,
346 NV17_CHANNEL_DMA,
347 NV10_CHANNEL_DMA,
348 NV03_CHANNEL_DMA,
349 0 };
350 const u16 *oclass = oclasses;
351 struct nv03_channel_dma_v0 args;
352 struct nouveau_channel *chan;
353 int ret;
354
355 /* allocate dma push buffer */
356 ret = nouveau_channel_prep(drm, device, 0x10000, &chan);
357 *pchan = chan;
358 if (ret)
359 return ret;
360
361 /* create channel object */
362 args.version = 0;
363 args.pushbuf = nvif_handle(&chan->push.ctxdma);
364 args.offset = chan->push.addr;
365
366 do {
367 ret = nvif_object_ctor(&device->object, "abi16ChanUser", 0,
368 *oclass++, &args, sizeof(args),
369 &chan->user);
370 if (ret == 0) {
371 chan->chid = args.chid;
372 return ret;
373 }
374 } while (ret && *oclass);
375
376 nouveau_channel_del(pchan);
377 return ret;
378 }
379
380 static int
nouveau_channel_init(struct nouveau_channel * chan,u32 vram,u32 gart)381 nouveau_channel_init(struct nouveau_channel *chan, u32 vram, u32 gart)
382 {
383 struct nvif_device *device = chan->device;
384 struct nouveau_drm *drm = chan->drm;
385 struct nv_dma_v0 args = {};
386 int ret, i;
387
388 nvif_object_map(&chan->user, NULL, 0);
389
390 if (chan->user.oclass >= FERMI_CHANNEL_GPFIFO &&
391 chan->user.oclass < AMPERE_CHANNEL_GPFIFO_B) {
392 ret = nvif_notify_ctor(&chan->user, "abi16ChanKilled",
393 nouveau_channel_killed,
394 true, NV906F_V0_NTFY_KILLED,
395 NULL, 0, 0, &chan->kill);
396 if (ret == 0)
397 ret = nvif_notify_get(&chan->kill);
398 if (ret) {
399 NV_ERROR(drm, "Failed to request channel kill "
400 "notification: %d\n", ret);
401 return ret;
402 }
403 }
404
405 /* allocate dma objects to cover all allowed vram, and gart */
406 if (device->info.family < NV_DEVICE_INFO_V0_FERMI) {
407 if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) {
408 args.target = NV_DMA_V0_TARGET_VM;
409 args.access = NV_DMA_V0_ACCESS_VM;
410 args.start = 0;
411 args.limit = chan->vmm->vmm.limit - 1;
412 } else {
413 args.target = NV_DMA_V0_TARGET_VRAM;
414 args.access = NV_DMA_V0_ACCESS_RDWR;
415 args.start = 0;
416 args.limit = device->info.ram_user - 1;
417 }
418
419 ret = nvif_object_ctor(&chan->user, "abi16ChanVramCtxDma", vram,
420 NV_DMA_IN_MEMORY, &args, sizeof(args),
421 &chan->vram);
422 if (ret)
423 return ret;
424
425 if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) {
426 args.target = NV_DMA_V0_TARGET_VM;
427 args.access = NV_DMA_V0_ACCESS_VM;
428 args.start = 0;
429 args.limit = chan->vmm->vmm.limit - 1;
430 } else
431 if (chan->drm->agp.bridge) {
432 args.target = NV_DMA_V0_TARGET_AGP;
433 args.access = NV_DMA_V0_ACCESS_RDWR;
434 args.start = chan->drm->agp.base;
435 args.limit = chan->drm->agp.base +
436 chan->drm->agp.size - 1;
437 } else {
438 args.target = NV_DMA_V0_TARGET_VM;
439 args.access = NV_DMA_V0_ACCESS_RDWR;
440 args.start = 0;
441 args.limit = chan->vmm->vmm.limit - 1;
442 }
443
444 ret = nvif_object_ctor(&chan->user, "abi16ChanGartCtxDma", gart,
445 NV_DMA_IN_MEMORY, &args, sizeof(args),
446 &chan->gart);
447 if (ret)
448 return ret;
449 }
450
451 /* initialise dma tracking parameters */
452 switch (chan->user.oclass & 0x00ff) {
453 case 0x006b:
454 case 0x006e:
455 chan->user_put = 0x40;
456 chan->user_get = 0x44;
457 chan->dma.max = (0x10000 / 4) - 2;
458 break;
459 default:
460 chan->user_put = 0x40;
461 chan->user_get = 0x44;
462 chan->user_get_hi = 0x60;
463 chan->dma.ib_base = 0x10000 / 4;
464 chan->dma.ib_max = (0x02000 / 8) - 1;
465 chan->dma.ib_put = 0;
466 chan->dma.ib_free = chan->dma.ib_max - chan->dma.ib_put;
467 chan->dma.max = chan->dma.ib_base;
468 break;
469 }
470
471 chan->dma.put = 0;
472 chan->dma.cur = chan->dma.put;
473 chan->dma.free = chan->dma.max - chan->dma.cur;
474
475 ret = PUSH_WAIT(chan->chan.push, NOUVEAU_DMA_SKIPS);
476 if (ret)
477 return ret;
478
479 for (i = 0; i < NOUVEAU_DMA_SKIPS; i++)
480 PUSH_DATA(chan->chan.push, 0x00000000);
481
482 /* allocate software object class (used for fences on <= nv05) */
483 if (device->info.family < NV_DEVICE_INFO_V0_CELSIUS) {
484 ret = nvif_object_ctor(&chan->user, "abi16NvswFence", 0x006e,
485 NVIF_CLASS_SW_NV04,
486 NULL, 0, &chan->nvsw);
487 if (ret)
488 return ret;
489
490 ret = PUSH_WAIT(chan->chan.push, 2);
491 if (ret)
492 return ret;
493
494 PUSH_NVSQ(chan->chan.push, NV_SW, 0x0000, chan->nvsw.handle);
495 PUSH_KICK(chan->chan.push);
496 }
497
498 /* initialise synchronisation */
499 return nouveau_fence(chan->drm)->context_new(chan);
500 }
501
502 int
nouveau_channel_new(struct nouveau_drm * drm,struct nvif_device * device,u32 arg0,u32 arg1,bool priv,struct nouveau_channel ** pchan)503 nouveau_channel_new(struct nouveau_drm *drm, struct nvif_device *device,
504 u32 arg0, u32 arg1, bool priv,
505 struct nouveau_channel **pchan)
506 {
507 struct nouveau_cli *cli = (void *)device->object.client;
508 int ret;
509
510 /* hack until fencenv50 is fixed, and agp access relaxed */
511 ret = nouveau_channel_ind(drm, device, arg0, priv, pchan);
512 if (ret) {
513 NV_PRINTK(dbg, cli, "ib channel create, %d\n", ret);
514 ret = nouveau_channel_dma(drm, device, pchan);
515 if (ret) {
516 NV_PRINTK(dbg, cli, "dma channel create, %d\n", ret);
517 return ret;
518 }
519 }
520
521 ret = nouveau_channel_init(*pchan, arg0, arg1);
522 if (ret) {
523 NV_PRINTK(err, cli, "channel failed to initialise, %d\n", ret);
524 nouveau_channel_del(pchan);
525 return ret;
526 }
527
528 ret = nouveau_svmm_join((*pchan)->vmm->svmm, (*pchan)->inst);
529 if (ret)
530 nouveau_channel_del(pchan);
531
532 return ret;
533 }
534
535 int
nouveau_channels_init(struct nouveau_drm * drm)536 nouveau_channels_init(struct nouveau_drm *drm)
537 {
538 struct {
539 struct nv_device_info_v1 m;
540 struct {
541 struct nv_device_info_v1_data channels;
542 } v;
543 } args = {
544 .m.version = 1,
545 .m.count = sizeof(args.v) / sizeof(args.v.channels),
546 .v.channels.mthd = NV_DEVICE_HOST_CHANNELS,
547 };
548 struct nvif_object *device = &drm->client.device.object;
549 int ret;
550
551 ret = nvif_object_mthd(device, NV_DEVICE_V0_INFO, &args, sizeof(args));
552 if (ret || args.v.channels.mthd == NV_DEVICE_INFO_INVALID)
553 return -ENODEV;
554
555 drm->chan.nr = args.v.channels.data;
556 drm->chan.context_base = dma_fence_context_alloc(drm->chan.nr);
557 return 0;
558 }
559