1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright © 2019-2020 Intel Corporation
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/delay.h>
8 #include <linux/of_graph.h>
9 #include <linux/mfd/syscon.h>
10 #include <linux/platform_device.h>
11 #include <linux/regmap.h>
12 
13 #include <drm/drm_atomic_helper.h>
14 #include <drm/drm_bridge.h>
15 #include <drm/drm_bridge_connector.h>
16 #include <drm/drm_mipi_dsi.h>
17 #include <drm/drm_simple_kms_helper.h>
18 #include <drm/drm_print.h>
19 #include <drm/drm_probe_helper.h>
20 
21 #include "kmb_dsi.h"
22 #include "kmb_regs.h"
23 
24 static struct mipi_dsi_host *dsi_host;
25 static struct mipi_dsi_device *dsi_device;
26 static struct drm_bridge *adv_bridge;
27 
28 /* Default setting is 1080p, 4 lanes */
29 #define IMG_HEIGHT_LINES  1080
30 #define IMG_WIDTH_PX      1920
31 #define MIPI_TX_ACTIVE_LANES 4
32 
33 static struct mipi_tx_frame_section_cfg mipi_tx_frame0_sect_cfg = {
34 	.width_pixels = IMG_WIDTH_PX,
35 	.height_lines = IMG_HEIGHT_LINES,
36 	.data_type = DSI_LP_DT_PPS_RGB888_24B,
37 	.data_mode = MIPI_DATA_MODE1,
38 	.dma_packed = 0
39 };
40 
41 static struct mipi_tx_frame_cfg mipitx_frame0_cfg = {
42 	.sections[0] = &mipi_tx_frame0_sect_cfg,
43 	.sections[1] = NULL,
44 	.sections[2] = NULL,
45 	.sections[3] = NULL,
46 	.vsync_width = 5,
47 	.v_backporch = 36,
48 	.v_frontporch = 4,
49 	.hsync_width = 44,
50 	.h_backporch = 148,
51 	.h_frontporch = 88
52 };
53 
54 static const struct mipi_tx_dsi_cfg mipitx_dsi_cfg = {
55 	.hfp_blank_en = 0,
56 	.eotp_en = 0,
57 	.lpm_last_vfp_line = 0,
58 	.lpm_first_vsa_line = 0,
59 	.sync_pulse_eventn = DSI_VIDEO_MODE_NO_BURST_EVENT,
60 	.hfp_blanking = SEND_BLANK_PACKET,
61 	.hbp_blanking = SEND_BLANK_PACKET,
62 	.hsa_blanking = SEND_BLANK_PACKET,
63 	.v_blanking = SEND_BLANK_PACKET,
64 };
65 
66 static struct mipi_ctrl_cfg mipi_tx_init_cfg = {
67 	.active_lanes = MIPI_TX_ACTIVE_LANES,
68 	.lane_rate_mbps = MIPI_TX_LANE_DATA_RATE_MBPS,
69 	.ref_clk_khz = MIPI_TX_REF_CLK_KHZ,
70 	.cfg_clk_khz = MIPI_TX_CFG_CLK_KHZ,
71 	.tx_ctrl_cfg = {
72 			.frames[0] = &mipitx_frame0_cfg,
73 			.frames[1] = NULL,
74 			.frames[2] = NULL,
75 			.frames[3] = NULL,
76 			.tx_dsi_cfg = &mipitx_dsi_cfg,
77 			.line_sync_pkt_en = 0,
78 			.line_counter_active = 0,
79 			.frame_counter_active = 0,
80 			.tx_always_use_hact = 1,
81 			.tx_hact_wait_stop = 1,
82 			}
83 };
84 
85 struct  mipi_hs_freq_range_cfg {
86 	u16 default_bit_rate_mbps;
87 	u8 hsfreqrange_code;
88 };
89 
90 struct vco_params {
91 	u32 freq;
92 	u32 range;
93 	u32 divider;
94 };
95 
96 static const struct vco_params vco_table[] = {
97 	{52, 0x3f, 8},
98 	{80, 0x39, 8},
99 	{105, 0x2f, 4},
100 	{160, 0x29, 4},
101 	{210, 0x1f, 2},
102 	{320, 0x19, 2},
103 	{420, 0x0f, 1},
104 	{630, 0x09, 1},
105 	{1100, 0x03, 1},
106 	{0xffff, 0x01, 1},
107 };
108 
109 static const struct mipi_hs_freq_range_cfg
110 mipi_hs_freq_range[MIPI_DPHY_DEFAULT_BIT_RATES] = {
111 	{.default_bit_rate_mbps = 80, .hsfreqrange_code = 0x00},
112 	{.default_bit_rate_mbps = 90, .hsfreqrange_code = 0x10},
113 	{.default_bit_rate_mbps = 100, .hsfreqrange_code = 0x20},
114 	{.default_bit_rate_mbps = 110, .hsfreqrange_code = 0x30},
115 	{.default_bit_rate_mbps = 120, .hsfreqrange_code = 0x01},
116 	{.default_bit_rate_mbps = 130, .hsfreqrange_code = 0x11},
117 	{.default_bit_rate_mbps = 140, .hsfreqrange_code = 0x21},
118 	{.default_bit_rate_mbps = 150, .hsfreqrange_code = 0x31},
119 	{.default_bit_rate_mbps = 160, .hsfreqrange_code = 0x02},
120 	{.default_bit_rate_mbps = 170, .hsfreqrange_code = 0x12},
121 	{.default_bit_rate_mbps = 180, .hsfreqrange_code = 0x22},
122 	{.default_bit_rate_mbps = 190, .hsfreqrange_code = 0x32},
123 	{.default_bit_rate_mbps = 205, .hsfreqrange_code = 0x03},
124 	{.default_bit_rate_mbps = 220, .hsfreqrange_code = 0x13},
125 	{.default_bit_rate_mbps = 235, .hsfreqrange_code = 0x23},
126 	{.default_bit_rate_mbps = 250, .hsfreqrange_code = 0x33},
127 	{.default_bit_rate_mbps = 275, .hsfreqrange_code = 0x04},
128 	{.default_bit_rate_mbps = 300, .hsfreqrange_code = 0x14},
129 	{.default_bit_rate_mbps = 325, .hsfreqrange_code = 0x25},
130 	{.default_bit_rate_mbps = 350, .hsfreqrange_code = 0x35},
131 	{.default_bit_rate_mbps = 400, .hsfreqrange_code = 0x05},
132 	{.default_bit_rate_mbps = 450, .hsfreqrange_code = 0x16},
133 	{.default_bit_rate_mbps = 500, .hsfreqrange_code = 0x26},
134 	{.default_bit_rate_mbps = 550, .hsfreqrange_code = 0x37},
135 	{.default_bit_rate_mbps = 600, .hsfreqrange_code = 0x07},
136 	{.default_bit_rate_mbps = 650, .hsfreqrange_code = 0x18},
137 	{.default_bit_rate_mbps = 700, .hsfreqrange_code = 0x28},
138 	{.default_bit_rate_mbps = 750, .hsfreqrange_code = 0x39},
139 	{.default_bit_rate_mbps = 800, .hsfreqrange_code = 0x09},
140 	{.default_bit_rate_mbps = 850, .hsfreqrange_code = 0x19},
141 	{.default_bit_rate_mbps = 900, .hsfreqrange_code = 0x29},
142 	{.default_bit_rate_mbps = 1000, .hsfreqrange_code = 0x0A},
143 	{.default_bit_rate_mbps = 1050, .hsfreqrange_code = 0x1A},
144 	{.default_bit_rate_mbps = 1100, .hsfreqrange_code = 0x2A},
145 	{.default_bit_rate_mbps = 1150, .hsfreqrange_code = 0x3B},
146 	{.default_bit_rate_mbps = 1200, .hsfreqrange_code = 0x0B},
147 	{.default_bit_rate_mbps = 1250, .hsfreqrange_code = 0x1B},
148 	{.default_bit_rate_mbps = 1300, .hsfreqrange_code = 0x2B},
149 	{.default_bit_rate_mbps = 1350, .hsfreqrange_code = 0x3C},
150 	{.default_bit_rate_mbps = 1400, .hsfreqrange_code = 0x0C},
151 	{.default_bit_rate_mbps = 1450, .hsfreqrange_code = 0x1C},
152 	{.default_bit_rate_mbps = 1500, .hsfreqrange_code = 0x2C},
153 	{.default_bit_rate_mbps = 1550, .hsfreqrange_code = 0x3D},
154 	{.default_bit_rate_mbps = 1600, .hsfreqrange_code = 0x0D},
155 	{.default_bit_rate_mbps = 1650, .hsfreqrange_code = 0x1D},
156 	{.default_bit_rate_mbps = 1700, .hsfreqrange_code = 0x2E},
157 	{.default_bit_rate_mbps = 1750, .hsfreqrange_code = 0x3E},
158 	{.default_bit_rate_mbps = 1800, .hsfreqrange_code = 0x0E},
159 	{.default_bit_rate_mbps = 1850, .hsfreqrange_code = 0x1E},
160 	{.default_bit_rate_mbps = 1900, .hsfreqrange_code = 0x2F},
161 	{.default_bit_rate_mbps = 1950, .hsfreqrange_code = 0x3F},
162 	{.default_bit_rate_mbps = 2000, .hsfreqrange_code = 0x0F},
163 	{.default_bit_rate_mbps = 2050, .hsfreqrange_code = 0x40},
164 	{.default_bit_rate_mbps = 2100, .hsfreqrange_code = 0x41},
165 	{.default_bit_rate_mbps = 2150, .hsfreqrange_code = 0x42},
166 	{.default_bit_rate_mbps = 2200, .hsfreqrange_code = 0x43},
167 	{.default_bit_rate_mbps = 2250, .hsfreqrange_code = 0x44},
168 	{.default_bit_rate_mbps = 2300, .hsfreqrange_code = 0x45},
169 	{.default_bit_rate_mbps = 2350, .hsfreqrange_code = 0x46},
170 	{.default_bit_rate_mbps = 2400, .hsfreqrange_code = 0x47},
171 	{.default_bit_rate_mbps = 2450, .hsfreqrange_code = 0x48},
172 	{.default_bit_rate_mbps = 2500, .hsfreqrange_code = 0x49}
173 };
174 
kmb_dsi_clk_disable(struct kmb_dsi * kmb_dsi)175 static void kmb_dsi_clk_disable(struct kmb_dsi *kmb_dsi)
176 {
177 	clk_disable_unprepare(kmb_dsi->clk_mipi);
178 	clk_disable_unprepare(kmb_dsi->clk_mipi_ecfg);
179 	clk_disable_unprepare(kmb_dsi->clk_mipi_cfg);
180 }
181 
kmb_dsi_host_unregister(struct kmb_dsi * kmb_dsi)182 void kmb_dsi_host_unregister(struct kmb_dsi *kmb_dsi)
183 {
184 	kmb_dsi_clk_disable(kmb_dsi);
185 	mipi_dsi_host_unregister(kmb_dsi->host);
186 }
187 
188 /*
189  * This DSI can only be paired with bridges that do config through i2c
190  * which is ADV 7535 in the KMB EVM
191  */
kmb_dsi_host_transfer(struct mipi_dsi_host * host,const struct mipi_dsi_msg * msg)192 static ssize_t kmb_dsi_host_transfer(struct mipi_dsi_host *host,
193 				     const struct mipi_dsi_msg *msg)
194 {
195 	return 0;
196 }
197 
kmb_dsi_host_attach(struct mipi_dsi_host * host,struct mipi_dsi_device * dev)198 static int kmb_dsi_host_attach(struct mipi_dsi_host *host,
199 			       struct mipi_dsi_device *dev)
200 {
201 	return 0;
202 }
203 
kmb_dsi_host_detach(struct mipi_dsi_host * host,struct mipi_dsi_device * dev)204 static int kmb_dsi_host_detach(struct mipi_dsi_host *host,
205 			       struct mipi_dsi_device *dev)
206 {
207 	return 0;
208 }
209 
210 static const struct mipi_dsi_host_ops kmb_dsi_host_ops = {
211 	.attach = kmb_dsi_host_attach,
212 	.detach = kmb_dsi_host_detach,
213 	.transfer = kmb_dsi_host_transfer,
214 };
215 
kmb_dsi_host_bridge_init(struct device * dev)216 int kmb_dsi_host_bridge_init(struct device *dev)
217 {
218 	struct device_node *encoder_node, *dsi_out;
219 
220 	/* Create and register MIPI DSI host */
221 	if (!dsi_host) {
222 		dsi_host = kzalloc(sizeof(*dsi_host), GFP_KERNEL);
223 		if (!dsi_host)
224 			return -ENOMEM;
225 
226 		dsi_host->ops = &kmb_dsi_host_ops;
227 
228 		if (!dsi_device) {
229 			dsi_device = kzalloc(sizeof(*dsi_device), GFP_KERNEL);
230 			if (!dsi_device) {
231 				kfree(dsi_host);
232 				return -ENOMEM;
233 			}
234 		}
235 
236 		dsi_host->dev = dev;
237 		mipi_dsi_host_register(dsi_host);
238 	}
239 
240 	/* Find ADV7535 node and initialize it */
241 	dsi_out = of_graph_get_endpoint_by_regs(dev->of_node, 0, 1);
242 	if (!dsi_out) {
243 		DRM_ERROR("Failed to get dsi_out node info from DT\n");
244 		return -EINVAL;
245 	}
246 	encoder_node = of_graph_get_remote_port_parent(dsi_out);
247 	if (!encoder_node) {
248 		of_node_put(dsi_out);
249 		DRM_ERROR("Failed to get bridge info from DT\n");
250 		return -EINVAL;
251 	}
252 	/* Locate drm bridge from the hdmi encoder DT node */
253 	adv_bridge = of_drm_find_bridge(encoder_node);
254 	of_node_put(dsi_out);
255 	of_node_put(encoder_node);
256 	if (!adv_bridge) {
257 		DRM_DEBUG("Wait for external bridge driver DT\n");
258 		return -EPROBE_DEFER;
259 	}
260 
261 	return 0;
262 }
263 
mipi_get_datatype_params(u32 data_type,u32 data_mode,struct mipi_data_type_params * params)264 static u32 mipi_get_datatype_params(u32 data_type, u32 data_mode,
265 				    struct mipi_data_type_params *params)
266 {
267 	struct mipi_data_type_params data_type_param;
268 
269 	switch (data_type) {
270 	case DSI_LP_DT_PPS_YCBCR420_12B:
271 		data_type_param.size_constraint_pixels = 2;
272 		data_type_param.size_constraint_bytes = 3;
273 		switch (data_mode) {
274 			/* Case 0 not supported according to MDK */
275 		case 1:
276 		case 2:
277 		case 3:
278 			data_type_param.pixels_per_pclk = 2;
279 			data_type_param.bits_per_pclk = 24;
280 			break;
281 		default:
282 			DRM_ERROR("DSI: Invalid data_mode %d\n", data_mode);
283 			return -EINVAL;
284 		}
285 		break;
286 	case DSI_LP_DT_PPS_YCBCR422_16B:
287 		data_type_param.size_constraint_pixels = 2;
288 		data_type_param.size_constraint_bytes = 4;
289 		switch (data_mode) {
290 			/* Case 0 and 1 not supported according
291 			 * to MDK
292 			 */
293 		case 2:
294 			data_type_param.pixels_per_pclk = 1;
295 			data_type_param.bits_per_pclk = 16;
296 			break;
297 		case 3:
298 			data_type_param.pixels_per_pclk = 2;
299 			data_type_param.bits_per_pclk = 32;
300 			break;
301 		default:
302 			DRM_ERROR("DSI: Invalid data_mode %d\n", data_mode);
303 			return -EINVAL;
304 		}
305 		break;
306 	case DSI_LP_DT_LPPS_YCBCR422_20B:
307 	case DSI_LP_DT_PPS_YCBCR422_24B:
308 		data_type_param.size_constraint_pixels = 2;
309 		data_type_param.size_constraint_bytes = 6;
310 		switch (data_mode) {
311 			/* Case 0 not supported according to MDK */
312 		case 1:
313 		case 2:
314 		case 3:
315 			data_type_param.pixels_per_pclk = 1;
316 			data_type_param.bits_per_pclk = 24;
317 			break;
318 		default:
319 			DRM_ERROR("DSI: Invalid data_mode %d\n", data_mode);
320 			return -EINVAL;
321 		}
322 		break;
323 	case DSI_LP_DT_PPS_RGB565_16B:
324 		data_type_param.size_constraint_pixels = 1;
325 		data_type_param.size_constraint_bytes = 2;
326 		switch (data_mode) {
327 		case 0:
328 		case 1:
329 			data_type_param.pixels_per_pclk = 1;
330 			data_type_param.bits_per_pclk = 16;
331 			break;
332 		case 2:
333 		case 3:
334 			data_type_param.pixels_per_pclk = 2;
335 			data_type_param.bits_per_pclk = 32;
336 			break;
337 		default:
338 			DRM_ERROR("DSI: Invalid data_mode %d\n", data_mode);
339 			return -EINVAL;
340 		}
341 		break;
342 	case DSI_LP_DT_PPS_RGB666_18B:
343 		data_type_param.size_constraint_pixels = 4;
344 		data_type_param.size_constraint_bytes = 9;
345 		data_type_param.bits_per_pclk = 18;
346 		data_type_param.pixels_per_pclk = 1;
347 		break;
348 	case DSI_LP_DT_LPPS_RGB666_18B:
349 	case DSI_LP_DT_PPS_RGB888_24B:
350 		data_type_param.size_constraint_pixels = 1;
351 		data_type_param.size_constraint_bytes = 3;
352 		data_type_param.bits_per_pclk = 24;
353 		data_type_param.pixels_per_pclk = 1;
354 		break;
355 	case DSI_LP_DT_PPS_RGB101010_30B:
356 		data_type_param.size_constraint_pixels = 4;
357 		data_type_param.size_constraint_bytes = 15;
358 		data_type_param.bits_per_pclk = 30;
359 		data_type_param.pixels_per_pclk = 1;
360 		break;
361 	default:
362 		DRM_ERROR("DSI: Invalid data_type %d\n", data_type);
363 		return -EINVAL;
364 	}
365 
366 	*params = data_type_param;
367 	return 0;
368 }
369 
compute_wc(u32 width_px,u8 size_constr_p,u8 size_constr_b)370 static u32 compute_wc(u32 width_px, u8 size_constr_p, u8 size_constr_b)
371 {
372 	/* Calculate the word count for each long packet */
373 	return (((width_px / size_constr_p) * size_constr_b) & 0xffff);
374 }
375 
compute_unpacked_bytes(u32 wc,u8 bits_per_pclk)376 static u32 compute_unpacked_bytes(u32 wc, u8 bits_per_pclk)
377 {
378 	/* Number of PCLK cycles needed to transfer a line
379 	 * with each PCLK cycle, 4 Bytes are sent through the PPL module
380 	 */
381 	return ((wc * 8) / bits_per_pclk) * 4;
382 }
383 
mipi_tx_fg_section_cfg_regs(struct kmb_dsi * kmb_dsi,u8 frame_id,u8 section,u32 height_lines,u32 unpacked_bytes,struct mipi_tx_frame_sect_phcfg * ph_cfg)384 static u32 mipi_tx_fg_section_cfg_regs(struct kmb_dsi *kmb_dsi,
385 				       u8 frame_id, u8 section,
386 				       u32 height_lines, u32 unpacked_bytes,
387 				       struct mipi_tx_frame_sect_phcfg *ph_cfg)
388 {
389 	u32 cfg = 0;
390 	u32 ctrl_no = MIPI_CTRL6;
391 	u32 reg_adr;
392 
393 	/* Frame section packet header */
394 	/* Word count bits [15:0] */
395 	cfg = (ph_cfg->wc & MIPI_TX_SECT_WC_MASK) << 0;
396 
397 	/* Data type (bits [21:16]) */
398 	cfg |= ((ph_cfg->data_type & MIPI_TX_SECT_DT_MASK)
399 		<< MIPI_TX_SECT_DT_SHIFT);
400 
401 	/* Virtual channel (bits [23:22]) */
402 	cfg |= ((ph_cfg->vchannel & MIPI_TX_SECT_VC_MASK)
403 		<< MIPI_TX_SECT_VC_SHIFT);
404 
405 	/* Data mode (bits [24:25]) */
406 	cfg |= ((ph_cfg->data_mode & MIPI_TX_SECT_DM_MASK)
407 		<< MIPI_TX_SECT_DM_SHIFT);
408 	if (ph_cfg->dma_packed)
409 		cfg |= MIPI_TX_SECT_DMA_PACKED;
410 
411 	dev_dbg(kmb_dsi->dev,
412 		"ctrl=%d frame_id=%d section=%d cfg=%x packed=%d\n",
413 		  ctrl_no, frame_id, section, cfg, ph_cfg->dma_packed);
414 	kmb_write_mipi(kmb_dsi,
415 		       (MIPI_TXm_HS_FGn_SECTo_PH(ctrl_no, frame_id, section)),
416 		       cfg);
417 
418 	/* Unpacked bytes */
419 
420 	/* There are 4 frame generators and each fg has 4 sections
421 	 * There are 2 registers for unpacked bytes (# bytes each
422 	 * section occupies in memory)
423 	 * REG_UNPACKED_BYTES0: [15:0]-BYTES0, [31:16]-BYTES1
424 	 * REG_UNPACKED_BYTES1: [15:0]-BYTES2, [31:16]-BYTES3
425 	 */
426 	reg_adr =
427 	    MIPI_TXm_HS_FGn_SECT_UNPACKED_BYTES0(ctrl_no,
428 						 frame_id) + (section / 2) * 4;
429 	kmb_write_bits_mipi(kmb_dsi, reg_adr, (section % 2) * 16, 16,
430 			    unpacked_bytes);
431 	dev_dbg(kmb_dsi->dev,
432 		"unpacked_bytes = %d, wordcount = %d\n", unpacked_bytes,
433 		  ph_cfg->wc);
434 
435 	/* Line config */
436 	reg_adr = MIPI_TXm_HS_FGn_SECTo_LINE_CFG(ctrl_no, frame_id, section);
437 	kmb_write_mipi(kmb_dsi, reg_adr, height_lines);
438 	return 0;
439 }
440 
mipi_tx_fg_section_cfg(struct kmb_dsi * kmb_dsi,u8 frame_id,u8 section,struct mipi_tx_frame_section_cfg * frame_scfg,u32 * bits_per_pclk,u32 * wc)441 static u32 mipi_tx_fg_section_cfg(struct kmb_dsi *kmb_dsi,
442 				  u8 frame_id, u8 section,
443 				  struct mipi_tx_frame_section_cfg *frame_scfg,
444 				  u32 *bits_per_pclk, u32 *wc)
445 {
446 	u32 ret = 0;
447 	u32 unpacked_bytes;
448 	struct mipi_data_type_params data_type_parameters;
449 	struct mipi_tx_frame_sect_phcfg ph_cfg;
450 
451 	ret = mipi_get_datatype_params(frame_scfg->data_type,
452 				       frame_scfg->data_mode,
453 				       &data_type_parameters);
454 	if (ret)
455 		return ret;
456 
457 	/* Packet width has to be a multiple of the minimum packet width
458 	 * (in pixels) set for each data type
459 	 */
460 	if (frame_scfg->width_pixels %
461 	    data_type_parameters.size_constraint_pixels != 0)
462 		return -EINVAL;
463 
464 	*wc = compute_wc(frame_scfg->width_pixels,
465 			 data_type_parameters.size_constraint_pixels,
466 			 data_type_parameters.size_constraint_bytes);
467 	unpacked_bytes = compute_unpacked_bytes(*wc,
468 						data_type_parameters.bits_per_pclk);
469 	ph_cfg.wc = *wc;
470 	ph_cfg.data_mode = frame_scfg->data_mode;
471 	ph_cfg.data_type = frame_scfg->data_type;
472 	ph_cfg.dma_packed = frame_scfg->dma_packed;
473 	ph_cfg.vchannel = frame_id;
474 
475 	mipi_tx_fg_section_cfg_regs(kmb_dsi, frame_id, section,
476 				    frame_scfg->height_lines,
477 				    unpacked_bytes, &ph_cfg);
478 
479 	/* Caller needs bits_per_clk for additional caluclations */
480 	*bits_per_pclk = data_type_parameters.bits_per_pclk;
481 
482 	return 0;
483 }
484 
485 #define CLK_DIFF_LOW 50
486 #define CLK_DIFF_HI 60
487 #define SYSCLK_500  500
488 
mipi_tx_fg_cfg_regs(struct kmb_dsi * kmb_dsi,u8 frame_gen,struct mipi_tx_frame_timing_cfg * fg_cfg)489 static void mipi_tx_fg_cfg_regs(struct kmb_dsi *kmb_dsi, u8 frame_gen,
490 				struct mipi_tx_frame_timing_cfg *fg_cfg)
491 {
492 	u32 sysclk;
493 	u32 ppl_llp_ratio;
494 	u32 ctrl_no = MIPI_CTRL6, reg_adr, val, offset;
495 
496 	/* 500 Mhz system clock minus 50 to account for the difference in
497 	 * MIPI clock speed in RTL tests
498 	 */
499 	if (kmb_dsi->sys_clk_mhz == SYSCLK_500) {
500 		sysclk = kmb_dsi->sys_clk_mhz - CLK_DIFF_LOW;
501 	} else {
502 		/* 700 Mhz clk*/
503 		sysclk = kmb_dsi->sys_clk_mhz - CLK_DIFF_HI;
504 	}
505 
506 	/* PPL-Pixel Packing Layer, LLP-Low Level Protocol
507 	 * Frame genartor timing parameters are clocked on the system clock,
508 	 * whereas as the equivalent parameters in the LLP blocks are clocked
509 	 * on LLP Tx clock from the D-PHY - BYTE clock
510 	 */
511 
512 	/* Multiply by 1000 to maintain precision */
513 	ppl_llp_ratio = ((fg_cfg->bpp / 8) * sysclk * 1000) /
514 	    ((fg_cfg->lane_rate_mbps / 8) * fg_cfg->active_lanes);
515 
516 	dev_dbg(kmb_dsi->dev, "ppl_llp_ratio=%d\n", ppl_llp_ratio);
517 	dev_dbg(kmb_dsi->dev, "bpp=%d sysclk=%d lane-rate=%d active-lanes=%d\n",
518 		fg_cfg->bpp, sysclk, fg_cfg->lane_rate_mbps,
519 		 fg_cfg->active_lanes);
520 
521 	/* Frame generator number of lines */
522 	reg_adr = MIPI_TXm_HS_FGn_NUM_LINES(ctrl_no, frame_gen);
523 	kmb_write_mipi(kmb_dsi, reg_adr, fg_cfg->v_active);
524 
525 	/* vsync width
526 	 * There are 2 registers for vsync width (VSA in lines for
527 	 * channels 0-3)
528 	 * REG_VSYNC_WIDTH0: [15:0]-VSA for channel0, [31:16]-VSA for channel1
529 	 * REG_VSYNC_WIDTH1: [15:0]-VSA for channel2, [31:16]-VSA for channel3
530 	 */
531 	offset = (frame_gen % 2) * 16;
532 	reg_adr = MIPI_TXm_HS_VSYNC_WIDTHn(ctrl_no, frame_gen / 2);
533 	kmb_write_bits_mipi(kmb_dsi, reg_adr, offset, 16, fg_cfg->vsync_width);
534 
535 	/* vertical backporch (vbp) */
536 	reg_adr = MIPI_TXm_HS_V_BACKPORCHESn(ctrl_no, frame_gen / 2);
537 	kmb_write_bits_mipi(kmb_dsi, reg_adr, offset, 16, fg_cfg->v_backporch);
538 
539 	/* vertical frontporch (vfp) */
540 	reg_adr = MIPI_TXm_HS_V_FRONTPORCHESn(ctrl_no, frame_gen / 2);
541 	kmb_write_bits_mipi(kmb_dsi, reg_adr, offset, 16, fg_cfg->v_frontporch);
542 
543 	/* vertical active (vactive) */
544 	reg_adr = MIPI_TXm_HS_V_ACTIVEn(ctrl_no, frame_gen / 2);
545 	kmb_write_bits_mipi(kmb_dsi, reg_adr, offset, 16, fg_cfg->v_active);
546 
547 	/* hsync width */
548 	reg_adr = MIPI_TXm_HS_HSYNC_WIDTHn(ctrl_no, frame_gen);
549 	kmb_write_mipi(kmb_dsi, reg_adr,
550 		       (fg_cfg->hsync_width * ppl_llp_ratio) / 1000);
551 
552 	/* horizontal backporch (hbp) */
553 	reg_adr = MIPI_TXm_HS_H_BACKPORCHn(ctrl_no, frame_gen);
554 	kmb_write_mipi(kmb_dsi, reg_adr,
555 		       (fg_cfg->h_backporch * ppl_llp_ratio) / 1000);
556 
557 	/* horizontal frontporch (hfp) */
558 	reg_adr = MIPI_TXm_HS_H_FRONTPORCHn(ctrl_no, frame_gen);
559 	kmb_write_mipi(kmb_dsi, reg_adr,
560 		       (fg_cfg->h_frontporch * ppl_llp_ratio) / 1000);
561 
562 	/* horizontal active (ha) */
563 	reg_adr = MIPI_TXm_HS_H_ACTIVEn(ctrl_no, frame_gen);
564 
565 	/* convert h_active which is wc in bytes to cycles */
566 	val = (fg_cfg->h_active * sysclk * 1000) /
567 	    ((fg_cfg->lane_rate_mbps / 8) * fg_cfg->active_lanes);
568 	val /= 1000;
569 	kmb_write_mipi(kmb_dsi, reg_adr, val);
570 
571 	/* llp hsync width */
572 	reg_adr = MIPI_TXm_HS_LLP_HSYNC_WIDTHn(ctrl_no, frame_gen);
573 	kmb_write_mipi(kmb_dsi, reg_adr, fg_cfg->hsync_width * (fg_cfg->bpp / 8));
574 
575 	/* llp h backporch */
576 	reg_adr = MIPI_TXm_HS_LLP_H_BACKPORCHn(ctrl_no, frame_gen);
577 	kmb_write_mipi(kmb_dsi, reg_adr, fg_cfg->h_backporch * (fg_cfg->bpp / 8));
578 
579 	/* llp h frontporch */
580 	reg_adr = MIPI_TXm_HS_LLP_H_FRONTPORCHn(ctrl_no, frame_gen);
581 	kmb_write_mipi(kmb_dsi, reg_adr,
582 		       fg_cfg->h_frontporch * (fg_cfg->bpp / 8));
583 }
584 
mipi_tx_fg_cfg(struct kmb_dsi * kmb_dsi,u8 frame_gen,u8 active_lanes,u32 bpp,u32 wc,u32 lane_rate_mbps,struct mipi_tx_frame_cfg * fg_cfg)585 static void mipi_tx_fg_cfg(struct kmb_dsi *kmb_dsi, u8 frame_gen,
586 			   u8 active_lanes, u32 bpp, u32 wc,
587 			   u32 lane_rate_mbps, struct mipi_tx_frame_cfg *fg_cfg)
588 {
589 	u32 i, fg_num_lines = 0;
590 	struct mipi_tx_frame_timing_cfg fg_t_cfg;
591 
592 	/* Calculate the total frame generator number of
593 	 * lines based on it's active sections
594 	 */
595 	for (i = 0; i < MIPI_TX_FRAME_GEN_SECTIONS; i++) {
596 		if (fg_cfg->sections[i])
597 			fg_num_lines += fg_cfg->sections[i]->height_lines;
598 	}
599 
600 	fg_t_cfg.bpp = bpp;
601 	fg_t_cfg.lane_rate_mbps = lane_rate_mbps;
602 	fg_t_cfg.hsync_width = fg_cfg->hsync_width;
603 	fg_t_cfg.h_backporch = fg_cfg->h_backporch;
604 	fg_t_cfg.h_frontporch = fg_cfg->h_frontporch;
605 	fg_t_cfg.h_active = wc;
606 	fg_t_cfg.vsync_width = fg_cfg->vsync_width;
607 	fg_t_cfg.v_backporch = fg_cfg->v_backporch;
608 	fg_t_cfg.v_frontporch = fg_cfg->v_frontporch;
609 	fg_t_cfg.v_active = fg_num_lines;
610 	fg_t_cfg.active_lanes = active_lanes;
611 
612 	/* Apply frame generator timing setting */
613 	mipi_tx_fg_cfg_regs(kmb_dsi, frame_gen, &fg_t_cfg);
614 }
615 
mipi_tx_multichannel_fifo_cfg(struct kmb_dsi * kmb_dsi,u8 active_lanes,u8 vchannel_id)616 static void mipi_tx_multichannel_fifo_cfg(struct kmb_dsi *kmb_dsi,
617 					  u8 active_lanes, u8 vchannel_id)
618 {
619 	u32 fifo_size, fifo_rthreshold;
620 	u32 ctrl_no = MIPI_CTRL6;
621 
622 	/* Clear all mc fifo channel sizes and thresholds */
623 	kmb_write_mipi(kmb_dsi, MIPI_TX_HS_MC_FIFO_CTRL_EN, 0);
624 	kmb_write_mipi(kmb_dsi, MIPI_TX_HS_MC_FIFO_CHAN_ALLOC0, 0);
625 	kmb_write_mipi(kmb_dsi, MIPI_TX_HS_MC_FIFO_CHAN_ALLOC1, 0);
626 	kmb_write_mipi(kmb_dsi, MIPI_TX_HS_MC_FIFO_RTHRESHOLD0, 0);
627 	kmb_write_mipi(kmb_dsi, MIPI_TX_HS_MC_FIFO_RTHRESHOLD1, 0);
628 
629 	fifo_size = ((active_lanes > MIPI_D_LANES_PER_DPHY) ?
630 		     MIPI_CTRL_4LANE_MAX_MC_FIFO_LOC :
631 		     MIPI_CTRL_2LANE_MAX_MC_FIFO_LOC) - 1;
632 
633 	/* MC fifo size for virtual channels 0-3
634 	 * REG_MC_FIFO_CHAN_ALLOC0: [8:0]-channel0, [24:16]-channel1
635 	 * REG_MC_FIFO_CHAN_ALLOC1: [8:0]-2, [24:16]-channel3
636 	 */
637 	SET_MC_FIFO_CHAN_ALLOC(kmb_dsi, ctrl_no, vchannel_id, fifo_size);
638 
639 	/* Set threshold to half the fifo size, actual size=size*16 */
640 	fifo_rthreshold = ((fifo_size) * 8) & BIT_MASK_16;
641 	SET_MC_FIFO_RTHRESHOLD(kmb_dsi, ctrl_no, vchannel_id, fifo_rthreshold);
642 
643 	/* Enable the MC FIFO channel corresponding to the Virtual Channel */
644 	kmb_set_bit_mipi(kmb_dsi, MIPI_TXm_HS_MC_FIFO_CTRL_EN(ctrl_no),
645 			 vchannel_id);
646 }
647 
mipi_tx_ctrl_cfg(struct kmb_dsi * kmb_dsi,u8 fg_id,struct mipi_ctrl_cfg * ctrl_cfg)648 static void mipi_tx_ctrl_cfg(struct kmb_dsi *kmb_dsi, u8 fg_id,
649 			     struct mipi_ctrl_cfg *ctrl_cfg)
650 {
651 	u32 sync_cfg = 0, ctrl = 0, fg_en;
652 	u32 ctrl_no = MIPI_CTRL6;
653 
654 	/* MIPI_TX_HS_SYNC_CFG */
655 	if (ctrl_cfg->tx_ctrl_cfg.line_sync_pkt_en)
656 		sync_cfg |= LINE_SYNC_PKT_ENABLE;
657 	if (ctrl_cfg->tx_ctrl_cfg.frame_counter_active)
658 		sync_cfg |= FRAME_COUNTER_ACTIVE;
659 	if (ctrl_cfg->tx_ctrl_cfg.line_counter_active)
660 		sync_cfg |= LINE_COUNTER_ACTIVE;
661 	if (ctrl_cfg->tx_ctrl_cfg.tx_dsi_cfg->v_blanking)
662 		sync_cfg |= DSI_V_BLANKING;
663 	if (ctrl_cfg->tx_ctrl_cfg.tx_dsi_cfg->hsa_blanking)
664 		sync_cfg |= DSI_HSA_BLANKING;
665 	if (ctrl_cfg->tx_ctrl_cfg.tx_dsi_cfg->hbp_blanking)
666 		sync_cfg |= DSI_HBP_BLANKING;
667 	if (ctrl_cfg->tx_ctrl_cfg.tx_dsi_cfg->hfp_blanking)
668 		sync_cfg |= DSI_HFP_BLANKING;
669 	if (ctrl_cfg->tx_ctrl_cfg.tx_dsi_cfg->sync_pulse_eventn)
670 		sync_cfg |= DSI_SYNC_PULSE_EVENTN;
671 	if (ctrl_cfg->tx_ctrl_cfg.tx_dsi_cfg->lpm_first_vsa_line)
672 		sync_cfg |= DSI_LPM_FIRST_VSA_LINE;
673 	if (ctrl_cfg->tx_ctrl_cfg.tx_dsi_cfg->lpm_last_vfp_line)
674 		sync_cfg |= DSI_LPM_LAST_VFP_LINE;
675 
676 	/* Enable frame generator */
677 	fg_en = 1 << fg_id;
678 	sync_cfg |= FRAME_GEN_EN(fg_en);
679 
680 	if (ctrl_cfg->tx_ctrl_cfg.tx_always_use_hact)
681 		sync_cfg |= ALWAYS_USE_HACT(fg_en);
682 	if (ctrl_cfg->tx_ctrl_cfg.tx_hact_wait_stop)
683 		sync_cfg |= HACT_WAIT_STOP(fg_en);
684 
685 	dev_dbg(kmb_dsi->dev, "sync_cfg=%d fg_en=%d\n", sync_cfg, fg_en);
686 
687 	/* MIPI_TX_HS_CTRL */
688 
689 	/* type:DSI, source:LCD */
690 	ctrl = HS_CTRL_EN | TX_SOURCE;
691 	ctrl |= LCD_VC(fg_id);
692 	ctrl |= ACTIVE_LANES(ctrl_cfg->active_lanes - 1);
693 	if (ctrl_cfg->tx_ctrl_cfg.tx_dsi_cfg->eotp_en)
694 		ctrl |= DSI_EOTP_EN;
695 	if (ctrl_cfg->tx_ctrl_cfg.tx_dsi_cfg->hfp_blank_en)
696 		ctrl |= DSI_CMD_HFP_EN;
697 
698 	/*67 ns stop time */
699 	ctrl |= HSEXIT_CNT(0x43);
700 
701 	kmb_write_mipi(kmb_dsi, MIPI_TXm_HS_SYNC_CFG(ctrl_no), sync_cfg);
702 	kmb_write_mipi(kmb_dsi, MIPI_TXm_HS_CTRL(ctrl_no), ctrl);
703 }
704 
mipi_tx_init_cntrl(struct kmb_dsi * kmb_dsi,struct mipi_ctrl_cfg * ctrl_cfg)705 static u32 mipi_tx_init_cntrl(struct kmb_dsi *kmb_dsi,
706 			      struct mipi_ctrl_cfg *ctrl_cfg)
707 {
708 	u32 ret = 0;
709 	u8 active_vchannels = 0;
710 	u8 frame_id, sect;
711 	u32 bits_per_pclk = 0;
712 	u32 word_count = 0;
713 	struct mipi_tx_frame_cfg *frame;
714 
715 	/* This is the order to initialize MIPI TX:
716 	 * 1. set frame section parameters
717 	 * 2. set frame specific parameters
718 	 * 3. connect lcd to mipi
719 	 * 4. multi channel fifo cfg
720 	 * 5. set mipitxcctrlcfg
721 	 */
722 
723 	for (frame_id = 0; frame_id < 4; frame_id++) {
724 		frame = ctrl_cfg->tx_ctrl_cfg.frames[frame_id];
725 
726 		/* Find valid frame, assume only one valid frame */
727 		if (!frame)
728 			continue;
729 
730 		/* Frame Section configuration */
731 		/* TODO - assume there is only one valid section in a frame,
732 		 * so bits_per_pclk and word_count are only set once
733 		 */
734 		for (sect = 0; sect < MIPI_CTRL_VIRTUAL_CHANNELS; sect++) {
735 			if (!frame->sections[sect])
736 				continue;
737 
738 			ret = mipi_tx_fg_section_cfg(kmb_dsi, frame_id, sect,
739 						     frame->sections[sect],
740 						     &bits_per_pclk,
741 						     &word_count);
742 			if (ret)
743 				return ret;
744 		}
745 
746 		/* Set frame specific parameters */
747 		mipi_tx_fg_cfg(kmb_dsi, frame_id, ctrl_cfg->active_lanes,
748 			       bits_per_pclk, word_count,
749 			       ctrl_cfg->lane_rate_mbps, frame);
750 
751 		active_vchannels++;
752 
753 		/* Stop iterating as only one virtual channel
754 		 * shall be used for LCD connection
755 		 */
756 		break;
757 	}
758 
759 	if (active_vchannels == 0)
760 		return -EINVAL;
761 	/* Multi-Channel FIFO Configuration */
762 	mipi_tx_multichannel_fifo_cfg(kmb_dsi, ctrl_cfg->active_lanes, frame_id);
763 
764 	/* Frame Generator Enable */
765 	mipi_tx_ctrl_cfg(kmb_dsi, frame_id, ctrl_cfg);
766 
767 	return ret;
768 }
769 
test_mode_send(struct kmb_dsi * kmb_dsi,u32 dphy_no,u32 test_code,u32 test_data)770 static void test_mode_send(struct kmb_dsi *kmb_dsi, u32 dphy_no,
771 			   u32 test_code, u32 test_data)
772 {
773 	/* Steps to send test code:
774 	 * - set testclk HIGH
775 	 * - set testdin with test code
776 	 * - set testen HIGH
777 	 * - set testclk LOW
778 	 * - set testen LOW
779 	 */
780 
781 	/* Set testclk high */
782 	SET_DPHY_TEST_CTRL1_CLK(kmb_dsi, dphy_no);
783 
784 	/* Set testdin */
785 	SET_TEST_DIN0_3(kmb_dsi, dphy_no, test_code);
786 
787 	/* Set testen high */
788 	SET_DPHY_TEST_CTRL1_EN(kmb_dsi, dphy_no);
789 
790 	/* Set testclk low */
791 	CLR_DPHY_TEST_CTRL1_CLK(kmb_dsi, dphy_no);
792 
793 	/* Set testen low */
794 	CLR_DPHY_TEST_CTRL1_EN(kmb_dsi, dphy_no);
795 
796 	if (test_code) {
797 		/*  Steps to send test data:
798 		 * - set testen LOW
799 		 * - set testclk LOW
800 		 * - set testdin with data
801 		 * - set testclk HIGH
802 		 */
803 
804 		/* Set testen low */
805 		CLR_DPHY_TEST_CTRL1_EN(kmb_dsi, dphy_no);
806 
807 		/* Set testclk low */
808 		CLR_DPHY_TEST_CTRL1_CLK(kmb_dsi, dphy_no);
809 
810 		/* Set data in testdin */
811 		kmb_write_mipi(kmb_dsi,
812 			       DPHY_TEST_DIN0_3 + ((dphy_no / 0x4) * 0x4),
813 			       test_data << ((dphy_no % 4) * 8));
814 
815 		/* Set testclk high */
816 		SET_DPHY_TEST_CTRL1_CLK(kmb_dsi, dphy_no);
817 	}
818 }
819 
820 static inline void
set_test_mode_src_osc_freq_target_low_bits(struct kmb_dsi * kmb_dsi,u32 dphy_no,u32 freq)821 	set_test_mode_src_osc_freq_target_low_bits(struct kmb_dsi *kmb_dsi,
822 						   u32 dphy_no,
823 						   u32 freq)
824 {
825 	/* Typical rise/fall time=166, refer Table 1207 databook,
826 	 * sr_osc_freq_target[7:0]
827 	 */
828 	test_mode_send(kmb_dsi, dphy_no, TEST_CODE_SLEW_RATE_DDL_CYCLES,
829 		       (freq & 0x7f));
830 }
831 
832 static inline void
set_test_mode_src_osc_freq_target_hi_bits(struct kmb_dsi * kmb_dsi,u32 dphy_no,u32 freq)833 	set_test_mode_src_osc_freq_target_hi_bits(struct kmb_dsi *kmb_dsi,
834 						  u32 dphy_no,
835 						  u32 freq)
836 {
837 	u32 data;
838 
839 	/* Flag this as high nibble */
840 	data = ((freq >> 6) & 0x1f) | (1 << 7);
841 
842 	/* Typical rise/fall time=166, refer Table 1207 databook,
843 	 * sr_osc_freq_target[11:7]
844 	 */
845 	test_mode_send(kmb_dsi, dphy_no, TEST_CODE_SLEW_RATE_DDL_CYCLES, data);
846 }
847 
mipi_tx_get_vco_params(struct vco_params * vco)848 static void mipi_tx_get_vco_params(struct vco_params *vco)
849 {
850 	int i;
851 
852 	for (i = 0; i < ARRAY_SIZE(vco_table); i++) {
853 		if (vco->freq < vco_table[i].freq) {
854 			*vco = vco_table[i];
855 			return;
856 		}
857 	}
858 
859 	WARN_ONCE(1, "Invalid vco freq = %u for PLL setup\n", vco->freq);
860 }
861 
mipi_tx_pll_setup(struct kmb_dsi * kmb_dsi,u32 dphy_no,u32 ref_clk_mhz,u32 target_freq_mhz)862 static void mipi_tx_pll_setup(struct kmb_dsi *kmb_dsi, u32 dphy_no,
863 			      u32 ref_clk_mhz, u32 target_freq_mhz)
864 {
865 	u32 best_n = 0, best_m = 0;
866 	u32 n = 0, m = 0, div = 0, delta, freq = 0, t_freq;
867 	u32 best_freq_delta = 3000;
868 
869 	/* pll_ref_clk: - valid range: 2~64 MHz; Typically 24 MHz
870 	 * Fvco: - valid range: 320~1250 MHz (Gen3 D-PHY)
871 	 * Fout: - valid range: 40~1250 MHz (Gen3 D-PHY)
872 	 * n: - valid range [0 15]
873 	 * N: - N = n + 1
874 	 *      -valid range: [1 16]
875 	 *      -conditions: - (pll_ref_clk / N) >= 2 MHz
876 	 *             -(pll_ref_clk / N) <= 8 MHz
877 	 * m: valid range [62 623]
878 	 * M: - M = m + 2
879 	 *      -valid range [64 625]
880 	 *      -Fvco = (M/N) * pll_ref_clk
881 	 */
882 	struct vco_params vco_p = {
883 		.range = 0,
884 		.divider = 1,
885 	};
886 
887 	vco_p.freq = target_freq_mhz;
888 	mipi_tx_get_vco_params(&vco_p);
889 
890 	/* Search pll n parameter */
891 	for (n = PLL_N_MIN; n <= PLL_N_MAX; n++) {
892 		/* Calculate the pll input frequency division ratio
893 		 * multiply by 1000 for precision -
894 		 * no floating point, add n for rounding
895 		 */
896 		div = ((ref_clk_mhz * 1000) + n) / (n + 1);
897 
898 		/* Found a valid n parameter */
899 		if ((div < 2000 || div > 8000))
900 			continue;
901 
902 		/* Search pll m parameter */
903 		for (m = PLL_M_MIN; m <= PLL_M_MAX; m++) {
904 			/* Calculate the Fvco(DPHY PLL output frequency)
905 			 * using the current n,m params
906 			 */
907 			freq = div * (m + 2);
908 			freq /= 1000;
909 
910 			/* Trim the potential pll freq to max supported */
911 			if (freq > PLL_FVCO_MAX)
912 				continue;
913 
914 			delta = abs(freq - target_freq_mhz);
915 
916 			/* Select the best (closest to target pll freq)
917 			 * n,m parameters so far
918 			 */
919 			if (delta < best_freq_delta) {
920 				best_n = n;
921 				best_m = m;
922 				best_freq_delta = delta;
923 			}
924 		}
925 	}
926 
927 	/* Program vco_cntrl parameter
928 	 * PLL_VCO_Control[5:0] = pll_vco_cntrl_ovr,
929 	 * PLL_VCO_Control[6]   = pll_vco_cntrl_ovr_en
930 	 */
931 	test_mode_send(kmb_dsi, dphy_no, TEST_CODE_PLL_VCO_CTRL, (vco_p.range
932 								| (1 << 6)));
933 
934 	/* Program m, n pll parameters */
935 	dev_dbg(kmb_dsi->dev, "m = %d n = %d\n", best_m, best_n);
936 
937 	/* PLL_Input_Divider_Ratio[3:0] = pll_n_ovr */
938 	test_mode_send(kmb_dsi, dphy_no, TEST_CODE_PLL_INPUT_DIVIDER,
939 		       (best_n & 0x0f));
940 
941 	/* m - low nibble PLL_Loop_Divider_Ratio[4:0]
942 	 * pll_m_ovr[4:0]
943 	 */
944 	test_mode_send(kmb_dsi, dphy_no, TEST_CODE_PLL_FEEDBACK_DIVIDER,
945 		       (best_m & 0x1f));
946 
947 	/* m - high nibble PLL_Loop_Divider_Ratio[4:0]
948 	 * pll_m_ovr[9:5]
949 	 */
950 	test_mode_send(kmb_dsi, dphy_no, TEST_CODE_PLL_FEEDBACK_DIVIDER,
951 		       ((best_m >> 5) & 0x1f) | PLL_FEEDBACK_DIVIDER_HIGH);
952 
953 	/* Enable overwrite of n,m parameters :pll_n_ovr_en, pll_m_ovr_en */
954 	test_mode_send(kmb_dsi, dphy_no, TEST_CODE_PLL_OUTPUT_CLK_SEL,
955 		       (PLL_N_OVR_EN | PLL_M_OVR_EN));
956 
957 	/* Program Charge-Pump parameters */
958 
959 	/* pll_prop_cntrl-fixed values for prop_cntrl from DPHY doc */
960 	t_freq = target_freq_mhz * vco_p.divider;
961 	test_mode_send(kmb_dsi, dphy_no,
962 		       TEST_CODE_PLL_PROPORTIONAL_CHARGE_PUMP_CTRL,
963 		       ((t_freq > 1150) ? 0x0C : 0x0B));
964 
965 	/* pll_int_cntrl-fixed value for int_cntrl from DPHY doc */
966 	test_mode_send(kmb_dsi, dphy_no, TEST_CODE_PLL_INTEGRAL_CHARGE_PUMP_CTRL,
967 		       0x00);
968 
969 	/* pll_gmp_cntrl-fixed value for gmp_cntrl from DPHY doci */
970 	test_mode_send(kmb_dsi, dphy_no, TEST_CODE_PLL_GMP_CTRL, 0x10);
971 
972 	/* pll_cpbias_cntrl-fixed value for cpbias_cntrl from DPHY doc */
973 	test_mode_send(kmb_dsi, dphy_no, TEST_CODE_PLL_CHARGE_PUMP_BIAS, 0x10);
974 
975 	/* pll_th1 -Lock Detector Phase error threshold,
976 	 * document gives fixed value
977 	 */
978 	test_mode_send(kmb_dsi, dphy_no, TEST_CODE_PLL_PHASE_ERR_CTRL, 0x02);
979 
980 	/* PLL Lock Configuration */
981 
982 	/* pll_th2 - Lock Filter length, document gives fixed value */
983 	test_mode_send(kmb_dsi, dphy_no, TEST_CODE_PLL_LOCK_FILTER, 0x60);
984 
985 	/* pll_th3- PLL Unlocking filter, document gives fixed value */
986 	test_mode_send(kmb_dsi, dphy_no, TEST_CODE_PLL_UNLOCK_FILTER, 0x03);
987 
988 	/* pll_lock_sel-PLL Lock Detector Selection,
989 	 * document gives fixed value
990 	 */
991 	test_mode_send(kmb_dsi, dphy_no, TEST_CODE_PLL_LOCK_DETECTOR, 0x02);
992 }
993 
set_slewrate_gt_1500(struct kmb_dsi * kmb_dsi,u32 dphy_no)994 static void set_slewrate_gt_1500(struct kmb_dsi *kmb_dsi, u32 dphy_no)
995 {
996 	u32 test_code = 0, test_data = 0;
997 	/* Bypass slew rate calibration algorithm
998 	 * bits[1:0} srcal_en_ovr_en, srcal_en_ovr
999 	 */
1000 	test_code = TEST_CODE_SLEW_RATE_OVERRIDE_CTRL;
1001 	test_data = 0x02;
1002 	test_mode_send(kmb_dsi, dphy_no, test_code, test_data);
1003 
1004 	/* Disable slew rate calibration */
1005 	test_code = TEST_CODE_SLEW_RATE_DDL_LOOP_CTRL;
1006 	test_data = 0x00;
1007 	test_mode_send(kmb_dsi, dphy_no, test_code, test_data);
1008 }
1009 
set_slewrate_gt_1000(struct kmb_dsi * kmb_dsi,u32 dphy_no)1010 static void set_slewrate_gt_1000(struct kmb_dsi *kmb_dsi, u32 dphy_no)
1011 {
1012 	u32 test_code = 0, test_data = 0;
1013 
1014 	/* BitRate: > 1 Gbps && <= 1.5 Gbps: - slew rate control ON
1015 	 * typical rise/fall times: 166 ps
1016 	 */
1017 
1018 	/* Do not bypass slew rate calibration algorithm
1019 	 * bits[1:0}=srcal_en_ovr_en, srcal_en_ovr, bit[6]=sr_range
1020 	 */
1021 	test_code = TEST_CODE_SLEW_RATE_OVERRIDE_CTRL;
1022 	test_data = (0x03 | (1 << 6));
1023 	test_mode_send(kmb_dsi, dphy_no, test_code, test_data);
1024 
1025 	/* Enable slew rate calibration */
1026 	test_code = TEST_CODE_SLEW_RATE_DDL_LOOP_CTRL;
1027 	test_data = 0x01;
1028 	test_mode_send(kmb_dsi, dphy_no, test_code, test_data);
1029 
1030 	/* Set sr_osc_freq_target[6:0] low nibble
1031 	 * typical rise/fall time=166, refer Table 1207 databook
1032 	 */
1033 	test_code = TEST_CODE_SLEW_RATE_DDL_CYCLES;
1034 	test_data = (0x72f & 0x7f);
1035 	test_mode_send(kmb_dsi, dphy_no, test_code, test_data);
1036 
1037 	/* Set sr_osc_freq_target[11:7] high nibble
1038 	 * Typical rise/fall time=166, refer Table 1207 databook
1039 	 */
1040 	test_code = TEST_CODE_SLEW_RATE_DDL_CYCLES;
1041 	test_data = ((0x72f >> 6) & 0x1f) | (1 << 7);
1042 	test_mode_send(kmb_dsi, dphy_no, test_code, test_data);
1043 }
1044 
set_slewrate_lt_1000(struct kmb_dsi * kmb_dsi,u32 dphy_no)1045 static void set_slewrate_lt_1000(struct kmb_dsi *kmb_dsi, u32 dphy_no)
1046 {
1047 	u32 test_code = 0, test_data = 0;
1048 
1049 	/* lane_rate_mbps <= 1000 Mbps
1050 	 * BitRate:  <= 1 Gbps:
1051 	 * - slew rate control ON
1052 	 * - typical rise/fall times: 225 ps
1053 	 */
1054 
1055 	/* Do not bypass slew rate calibration algorithm */
1056 	test_code = TEST_CODE_SLEW_RATE_OVERRIDE_CTRL;
1057 	test_data = (0x03 | (1 << 6));
1058 	test_mode_send(kmb_dsi, dphy_no, test_code, test_data);
1059 
1060 	/* Enable slew rate calibration */
1061 	test_code = TEST_CODE_SLEW_RATE_DDL_LOOP_CTRL;
1062 	test_data = 0x01;
1063 	test_mode_send(kmb_dsi, dphy_no, test_code, test_data);
1064 
1065 	/* Typical rise/fall time=255, refer Table 1207 databook */
1066 	test_code = TEST_CODE_SLEW_RATE_DDL_CYCLES;
1067 	test_data = (0x523 & 0x7f);
1068 	test_mode_send(kmb_dsi, dphy_no, test_code, test_data);
1069 
1070 	/* Set sr_osc_freq_target[11:7] high nibble */
1071 	test_code = TEST_CODE_SLEW_RATE_DDL_CYCLES;
1072 	test_data = ((0x523 >> 6) & 0x1f) | (1 << 7);
1073 	test_mode_send(kmb_dsi, dphy_no, test_code, test_data);
1074 }
1075 
setup_pll(struct kmb_dsi * kmb_dsi,u32 dphy_no,struct mipi_ctrl_cfg * cfg)1076 static void setup_pll(struct kmb_dsi *kmb_dsi, u32 dphy_no,
1077 		      struct mipi_ctrl_cfg *cfg)
1078 {
1079 	u32 test_code = 0, test_data = 0;
1080 
1081 	/* Set PLL regulator in bypass */
1082 	test_code = TEST_CODE_PLL_ANALOG_PROG;
1083 	test_data = 0x01;
1084 	test_mode_send(kmb_dsi, dphy_no, test_code, test_data);
1085 
1086 	/* PLL Parameters Setup */
1087 	mipi_tx_pll_setup(kmb_dsi, dphy_no, cfg->ref_clk_khz / 1000,
1088 			  cfg->lane_rate_mbps / 2);
1089 
1090 	/* Set clksel */
1091 	kmb_write_bits_mipi(kmb_dsi, DPHY_INIT_CTRL1, PLL_CLKSEL_0, 2, 0x01);
1092 
1093 	/* Set pll_shadow_control */
1094 	kmb_set_bit_mipi(kmb_dsi, DPHY_INIT_CTRL1, PLL_SHADOW_CTRL);
1095 }
1096 
set_lane_data_rate(struct kmb_dsi * kmb_dsi,u32 dphy_no,struct mipi_ctrl_cfg * cfg)1097 static void set_lane_data_rate(struct kmb_dsi *kmb_dsi, u32 dphy_no,
1098 			       struct mipi_ctrl_cfg *cfg)
1099 {
1100 	u32 i, test_code = 0, test_data = 0;
1101 
1102 	for (i = 0; i < MIPI_DPHY_DEFAULT_BIT_RATES; i++) {
1103 		if (mipi_hs_freq_range[i].default_bit_rate_mbps <
1104 		    cfg->lane_rate_mbps)
1105 			continue;
1106 
1107 		/* Send the test code and data */
1108 		/* bit[6:0] = hsfreqrange_ovr bit[7] = hsfreqrange_ovr_en */
1109 		test_code = TEST_CODE_HS_FREQ_RANGE_CFG;
1110 		test_data = (mipi_hs_freq_range[i].hsfreqrange_code & 0x7f) |
1111 		    (1 << 7);
1112 		test_mode_send(kmb_dsi, dphy_no, test_code, test_data);
1113 		break;
1114 	}
1115 }
1116 
dphy_init_sequence(struct kmb_dsi * kmb_dsi,struct mipi_ctrl_cfg * cfg,u32 dphy_no,int active_lanes,enum dphy_mode mode)1117 static void dphy_init_sequence(struct kmb_dsi *kmb_dsi,
1118 			       struct mipi_ctrl_cfg *cfg, u32 dphy_no,
1119 			       int active_lanes, enum dphy_mode mode)
1120 {
1121 	u32 test_code = 0, test_data = 0, val;
1122 
1123 	/* Set D-PHY in shutdown mode */
1124 	/* Assert RSTZ signal */
1125 	CLR_DPHY_INIT_CTRL0(kmb_dsi, dphy_no, RESETZ);
1126 
1127 	/* Assert SHUTDOWNZ signal */
1128 	CLR_DPHY_INIT_CTRL0(kmb_dsi, dphy_no, SHUTDOWNZ);
1129 	val = kmb_read_mipi(kmb_dsi, DPHY_INIT_CTRL0);
1130 
1131 	/* Init D-PHY_n
1132 	 * Pulse testclear signal to make sure the d-phy configuration
1133 	 * starts from a clean base
1134 	 */
1135 	CLR_DPHY_TEST_CTRL0(kmb_dsi, dphy_no);
1136 	ndelay(15);
1137 	SET_DPHY_TEST_CTRL0(kmb_dsi, dphy_no);
1138 	ndelay(15);
1139 	CLR_DPHY_TEST_CTRL0(kmb_dsi, dphy_no);
1140 	ndelay(15);
1141 
1142 	/* Set mastermacro bit - Master or slave mode */
1143 	test_code = TEST_CODE_MULTIPLE_PHY_CTRL;
1144 
1145 	/* DPHY has its own clock lane enabled (master) */
1146 	if (mode == MIPI_DPHY_MASTER)
1147 		test_data = 0x01;
1148 	else
1149 		test_data = 0x00;
1150 
1151 	/* Send the test code and data */
1152 	test_mode_send(kmb_dsi, dphy_no, test_code, test_data);
1153 
1154 	/* Set the lane data rate */
1155 	set_lane_data_rate(kmb_dsi, dphy_no, cfg);
1156 
1157 	/* High-Speed Tx Slew Rate Calibration
1158 	 * BitRate: > 1.5 Gbps && <= 2.5 Gbps: slew rate control OFF
1159 	 */
1160 	if (cfg->lane_rate_mbps > 1500)
1161 		set_slewrate_gt_1500(kmb_dsi, dphy_no);
1162 	else if (cfg->lane_rate_mbps > 1000)
1163 		set_slewrate_gt_1000(kmb_dsi, dphy_no);
1164 	else
1165 		set_slewrate_lt_1000(kmb_dsi, dphy_no);
1166 
1167 	/* Set cfgclkfreqrange */
1168 	val = (((cfg->cfg_clk_khz / 1000) - 17) * 4) & 0x3f;
1169 	SET_DPHY_FREQ_CTRL0_3(kmb_dsi, dphy_no, val);
1170 
1171 	/* Enable config clk for the corresponding d-phy */
1172 	kmb_set_bit_mipi(kmb_dsi, DPHY_CFG_CLK_EN, dphy_no);
1173 
1174 	/* PLL setup */
1175 	if (mode == MIPI_DPHY_MASTER)
1176 		setup_pll(kmb_dsi, dphy_no, cfg);
1177 
1178 	/* Send NORMAL OPERATION test code */
1179 	test_code = 0x0;
1180 	test_data = 0x0;
1181 	test_mode_send(kmb_dsi, dphy_no, test_code, test_data);
1182 
1183 	/* Configure BASEDIR for data lanes
1184 	 * NOTE: basedir only applies to LANE_0 of each D-PHY.
1185 	 * The other lanes keep their direction based on the D-PHY type,
1186 	 * either Rx or Tx.
1187 	 * bits[5:0]  - BaseDir: 1 = Rx
1188 	 * bits[9:6] - BaseDir: 0 = Tx
1189 	 */
1190 	kmb_write_bits_mipi(kmb_dsi, DPHY_INIT_CTRL2, 0, 9, 0x03f);
1191 	ndelay(15);
1192 
1193 	/* Enable CLOCK LANE
1194 	 * Clock lane should be enabled regardless of the direction
1195 	 * set for the D-PHY (Rx/Tx)
1196 	 */
1197 	kmb_set_bit_mipi(kmb_dsi, DPHY_INIT_CTRL2, 12 + dphy_no);
1198 
1199 	/* Enable DATA LANES */
1200 	kmb_write_bits_mipi(kmb_dsi, DPHY_ENABLE, dphy_no * 2, 2,
1201 			    ((1 << active_lanes) - 1));
1202 
1203 	ndelay(15);
1204 
1205 	/* Take D-PHY out of shutdown mode */
1206 	/* Deassert SHUTDOWNZ signal */
1207 	SET_DPHY_INIT_CTRL0(kmb_dsi, dphy_no, SHUTDOWNZ);
1208 	ndelay(15);
1209 
1210 	/* Deassert RSTZ signal */
1211 	SET_DPHY_INIT_CTRL0(kmb_dsi, dphy_no, RESETZ);
1212 }
1213 
dphy_wait_fsm(struct kmb_dsi * kmb_dsi,u32 dphy_no,enum dphy_tx_fsm fsm_state)1214 static void dphy_wait_fsm(struct kmb_dsi *kmb_dsi, u32 dphy_no,
1215 			  enum dphy_tx_fsm fsm_state)
1216 {
1217 	enum dphy_tx_fsm val = DPHY_TX_POWERDWN;
1218 	int i = 0;
1219 	int status = 1;
1220 
1221 	do {
1222 		test_mode_send(kmb_dsi, dphy_no, TEST_CODE_FSM_CONTROL, 0x80);
1223 
1224 		val = GET_TEST_DOUT4_7(kmb_dsi, dphy_no);
1225 		i++;
1226 		if (i > TIMEOUT) {
1227 			status = 0;
1228 			break;
1229 		}
1230 	} while (val != fsm_state);
1231 
1232 	dev_dbg(kmb_dsi->dev, "%s: dphy %d val = %x", __func__, dphy_no, val);
1233 	dev_dbg(kmb_dsi->dev, "* DPHY %d WAIT_FSM %s *",
1234 		dphy_no, status ? "SUCCESS" : "FAILED");
1235 }
1236 
wait_init_done(struct kmb_dsi * kmb_dsi,u32 dphy_no,u32 active_lanes)1237 static void wait_init_done(struct kmb_dsi *kmb_dsi, u32 dphy_no,
1238 			   u32 active_lanes)
1239 {
1240 	u32 stopstatedata = 0;
1241 	u32 data_lanes = (1 << active_lanes) - 1;
1242 	int i = 0;
1243 	int status = 1;
1244 
1245 	do {
1246 		stopstatedata = GET_STOPSTATE_DATA(kmb_dsi, dphy_no)
1247 				& data_lanes;
1248 
1249 		/* TODO-need to add a time out and return failure */
1250 		i++;
1251 
1252 		if (i > TIMEOUT) {
1253 			status = 0;
1254 			dev_dbg(kmb_dsi->dev,
1255 				"! WAIT_INIT_DONE: TIMING OUT!(err_stat=%d)",
1256 				kmb_read_mipi(kmb_dsi, MIPI_DPHY_ERR_STAT6_7));
1257 			break;
1258 		}
1259 	} while (stopstatedata != data_lanes);
1260 
1261 	dev_dbg(kmb_dsi->dev, "* DPHY %d INIT - %s *",
1262 		dphy_no, status ? "SUCCESS" : "FAILED");
1263 }
1264 
wait_pll_lock(struct kmb_dsi * kmb_dsi,u32 dphy_no)1265 static void wait_pll_lock(struct kmb_dsi *kmb_dsi, u32 dphy_no)
1266 {
1267 	int i = 0;
1268 	int status = 1;
1269 
1270 	do {
1271 		/* TODO-need to add a time out and return failure */
1272 		i++;
1273 		if (i > TIMEOUT) {
1274 			status = 0;
1275 			dev_dbg(kmb_dsi->dev, "%s: timing out", __func__);
1276 			break;
1277 		}
1278 	} while (!GET_PLL_LOCK(kmb_dsi, dphy_no));
1279 
1280 	dev_dbg(kmb_dsi->dev, "* PLL Locked for DPHY %d - %s *",
1281 		dphy_no, status ? "SUCCESS" : "FAILED");
1282 }
1283 
mipi_tx_init_dphy(struct kmb_dsi * kmb_dsi,struct mipi_ctrl_cfg * cfg)1284 static u32 mipi_tx_init_dphy(struct kmb_dsi *kmb_dsi,
1285 			     struct mipi_ctrl_cfg *cfg)
1286 {
1287 	u32 dphy_no = MIPI_DPHY6;
1288 
1289 	/* Multiple D-PHYs needed */
1290 	if (cfg->active_lanes > MIPI_DPHY_D_LANES) {
1291 		/*
1292 		 *Initialization for Tx aggregation mode is done according to
1293 		 *a. start init PHY1
1294 		 *b. poll for PHY1 FSM state LOCK
1295 		 *   b1. reg addr 0x03[3:0] - state_main[3:0] == 5 (LOCK)
1296 		 *c. poll for PHY1 calibrations done :
1297 		 *   c1. termination calibration lower section: addr 0x22[5]
1298 		 *   - rescal_done
1299 		 *   c2. slewrate calibration (if data rate < = 1500 Mbps):
1300 		 *     addr 0xA7[3:2] - srcal_done, sr_finished
1301 		 *d. start init PHY0
1302 		 *e. poll for PHY0 stopstate
1303 		 *f. poll for PHY1 stopstate
1304 		 */
1305 		/* PHY #N+1 ('slave') */
1306 
1307 		dphy_init_sequence(kmb_dsi, cfg, dphy_no + 1,
1308 				   (cfg->active_lanes - MIPI_DPHY_D_LANES),
1309 				   MIPI_DPHY_SLAVE);
1310 		dphy_wait_fsm(kmb_dsi, dphy_no + 1, DPHY_TX_LOCK);
1311 
1312 		/* PHY #N master */
1313 		dphy_init_sequence(kmb_dsi, cfg, dphy_no, MIPI_DPHY_D_LANES,
1314 				   MIPI_DPHY_MASTER);
1315 
1316 		/* Wait for DPHY init to complete */
1317 		wait_init_done(kmb_dsi, dphy_no, MIPI_DPHY_D_LANES);
1318 		wait_init_done(kmb_dsi, dphy_no + 1,
1319 			       cfg->active_lanes - MIPI_DPHY_D_LANES);
1320 		wait_pll_lock(kmb_dsi, dphy_no);
1321 		wait_pll_lock(kmb_dsi, dphy_no + 1);
1322 		dphy_wait_fsm(kmb_dsi, dphy_no, DPHY_TX_IDLE);
1323 	} else {		/* Single DPHY */
1324 		dphy_init_sequence(kmb_dsi, cfg, dphy_no, cfg->active_lanes,
1325 				   MIPI_DPHY_MASTER);
1326 		dphy_wait_fsm(kmb_dsi, dphy_no, DPHY_TX_IDLE);
1327 		wait_init_done(kmb_dsi, dphy_no, cfg->active_lanes);
1328 		wait_pll_lock(kmb_dsi, dphy_no);
1329 	}
1330 
1331 	return 0;
1332 }
1333 
connect_lcd_to_mipi(struct kmb_dsi * kmb_dsi,struct drm_atomic_state * old_state)1334 static void connect_lcd_to_mipi(struct kmb_dsi *kmb_dsi,
1335 				struct drm_atomic_state *old_state)
1336 {
1337 	struct regmap *msscam;
1338 
1339 	msscam = syscon_regmap_lookup_by_compatible("intel,keembay-msscam");
1340 	if (IS_ERR(msscam)) {
1341 		dev_dbg(kmb_dsi->dev, "failed to get msscam syscon");
1342 		return;
1343 	}
1344 	drm_atomic_bridge_chain_enable(adv_bridge, old_state);
1345 	/* DISABLE MIPI->CIF CONNECTION */
1346 	regmap_write(msscam, MSS_MIPI_CIF_CFG, 0);
1347 
1348 	/* ENABLE LCD->MIPI CONNECTION */
1349 	regmap_write(msscam, MSS_LCD_MIPI_CFG, 1);
1350 	/* DISABLE LCD->CIF LOOPBACK */
1351 	regmap_write(msscam, MSS_LOOPBACK_CFG, 1);
1352 }
1353 
kmb_dsi_mode_set(struct kmb_dsi * kmb_dsi,struct drm_display_mode * mode,int sys_clk_mhz,struct drm_atomic_state * old_state)1354 int kmb_dsi_mode_set(struct kmb_dsi *kmb_dsi, struct drm_display_mode *mode,
1355 		     int sys_clk_mhz, struct drm_atomic_state *old_state)
1356 {
1357 	u64 data_rate;
1358 
1359 	kmb_dsi->sys_clk_mhz = sys_clk_mhz;
1360 	mipi_tx_init_cfg.active_lanes = MIPI_TX_ACTIVE_LANES;
1361 
1362 	mipi_tx_frame0_sect_cfg.width_pixels = mode->crtc_hdisplay;
1363 	mipi_tx_frame0_sect_cfg.height_lines = mode->crtc_vdisplay;
1364 	mipitx_frame0_cfg.vsync_width =
1365 		mode->crtc_vsync_end - mode->crtc_vsync_start;
1366 	mipitx_frame0_cfg.v_backporch =
1367 		mode->crtc_vtotal - mode->crtc_vsync_end;
1368 	mipitx_frame0_cfg.v_frontporch =
1369 		mode->crtc_vsync_start - mode->crtc_vdisplay;
1370 	mipitx_frame0_cfg.hsync_width =
1371 		mode->crtc_hsync_end - mode->crtc_hsync_start;
1372 	mipitx_frame0_cfg.h_backporch =
1373 		mode->crtc_htotal - mode->crtc_hsync_end;
1374 	mipitx_frame0_cfg.h_frontporch =
1375 		mode->crtc_hsync_start - mode->crtc_hdisplay;
1376 
1377 	/* Lane rate = (vtotal*htotal*fps*bpp)/4 / 1000000
1378 	 * to convert to Mbps
1379 	 */
1380 	data_rate = ((((u32)mode->crtc_vtotal *	(u32)mode->crtc_htotal) *
1381 			(u32)(drm_mode_vrefresh(mode)) *
1382 			MIPI_TX_BPP) / mipi_tx_init_cfg.active_lanes) /	1000000;
1383 
1384 	dev_dbg(kmb_dsi->dev, "data_rate=%u active_lanes=%d\n",
1385 		(u32)data_rate, mipi_tx_init_cfg.active_lanes);
1386 
1387 	/* When late rate < 800, modeset fails with 4 lanes,
1388 	 * so switch to 2 lanes
1389 	 */
1390 	if (data_rate < 800) {
1391 		mipi_tx_init_cfg.active_lanes = 2;
1392 		mipi_tx_init_cfg.lane_rate_mbps = data_rate * 2;
1393 	} else {
1394 		mipi_tx_init_cfg.lane_rate_mbps = data_rate;
1395 	}
1396 
1397 	/* Initialize mipi controller */
1398 	mipi_tx_init_cntrl(kmb_dsi, &mipi_tx_init_cfg);
1399 
1400 	/* Dphy initialization */
1401 	mipi_tx_init_dphy(kmb_dsi, &mipi_tx_init_cfg);
1402 
1403 	connect_lcd_to_mipi(kmb_dsi, old_state);
1404 	dev_info(kmb_dsi->dev, "mipi hw initialized");
1405 
1406 	return 0;
1407 }
1408 
kmb_dsi_init(struct platform_device * pdev)1409 struct kmb_dsi *kmb_dsi_init(struct platform_device *pdev)
1410 {
1411 	struct kmb_dsi *kmb_dsi;
1412 	struct device *dev = get_device(&pdev->dev);
1413 
1414 	kmb_dsi = devm_kzalloc(dev, sizeof(*kmb_dsi), GFP_KERNEL);
1415 	if (!kmb_dsi) {
1416 		dev_err(dev, "failed to allocate kmb_dsi\n");
1417 		return ERR_PTR(-ENOMEM);
1418 	}
1419 
1420 	kmb_dsi->host = dsi_host;
1421 	kmb_dsi->host->ops = &kmb_dsi_host_ops;
1422 
1423 	dsi_device->host = kmb_dsi->host;
1424 	kmb_dsi->device = dsi_device;
1425 
1426 	return kmb_dsi;
1427 }
1428 
kmb_dsi_encoder_init(struct drm_device * dev,struct kmb_dsi * kmb_dsi)1429 int kmb_dsi_encoder_init(struct drm_device *dev, struct kmb_dsi *kmb_dsi)
1430 {
1431 	struct drm_encoder *encoder;
1432 	struct drm_connector *connector;
1433 	int ret = 0;
1434 
1435 	encoder = &kmb_dsi->base;
1436 	encoder->possible_crtcs = 1;
1437 	encoder->possible_clones = 0;
1438 
1439 	ret = drm_simple_encoder_init(dev, encoder, DRM_MODE_ENCODER_DSI);
1440 	if (ret) {
1441 		dev_err(kmb_dsi->dev, "Failed to init encoder %d\n", ret);
1442 		return ret;
1443 	}
1444 
1445 	/* Link drm_bridge to encoder */
1446 	ret = drm_bridge_attach(encoder, adv_bridge, NULL,
1447 				DRM_BRIDGE_ATTACH_NO_CONNECTOR);
1448 	if (ret) {
1449 		drm_encoder_cleanup(encoder);
1450 		return ret;
1451 	}
1452 	drm_info(dev, "Bridge attached : SUCCESS");
1453 	connector = drm_bridge_connector_init(dev, encoder);
1454 	if (IS_ERR(connector)) {
1455 		DRM_ERROR("Unable to create bridge connector");
1456 		drm_encoder_cleanup(encoder);
1457 		return PTR_ERR(connector);
1458 	}
1459 	drm_connector_attach_encoder(connector, encoder);
1460 	return 0;
1461 }
1462 
kmb_dsi_map_mmio(struct kmb_dsi * kmb_dsi)1463 int kmb_dsi_map_mmio(struct kmb_dsi *kmb_dsi)
1464 {
1465 	struct resource *res;
1466 	struct device *dev = kmb_dsi->dev;
1467 
1468 	res = platform_get_resource_byname(kmb_dsi->pdev, IORESOURCE_MEM,
1469 					   "mipi");
1470 	if (!res) {
1471 		dev_err(dev, "failed to get resource for mipi");
1472 		return -ENOMEM;
1473 	}
1474 	kmb_dsi->mipi_mmio = devm_ioremap_resource(dev, res);
1475 	if (IS_ERR(kmb_dsi->mipi_mmio)) {
1476 		dev_err(dev, "failed to ioremap mipi registers");
1477 		return PTR_ERR(kmb_dsi->mipi_mmio);
1478 	}
1479 	return 0;
1480 }
1481 
kmb_dsi_clk_enable(struct kmb_dsi * kmb_dsi)1482 static int kmb_dsi_clk_enable(struct kmb_dsi *kmb_dsi)
1483 {
1484 	int ret;
1485 	struct device *dev = kmb_dsi->dev;
1486 
1487 	ret = clk_prepare_enable(kmb_dsi->clk_mipi);
1488 	if (ret) {
1489 		dev_err(dev, "Failed to enable MIPI clock: %d\n", ret);
1490 		return ret;
1491 	}
1492 
1493 	ret = clk_prepare_enable(kmb_dsi->clk_mipi_ecfg);
1494 	if (ret) {
1495 		dev_err(dev, "Failed to enable MIPI_ECFG clock: %d\n", ret);
1496 		return ret;
1497 	}
1498 
1499 	ret = clk_prepare_enable(kmb_dsi->clk_mipi_cfg);
1500 	if (ret) {
1501 		dev_err(dev, "Failed to enable MIPI_CFG clock: %d\n", ret);
1502 		return ret;
1503 	}
1504 
1505 	dev_info(dev, "SUCCESS : enabled MIPI clocks\n");
1506 	return 0;
1507 }
1508 
kmb_dsi_clk_init(struct kmb_dsi * kmb_dsi)1509 int kmb_dsi_clk_init(struct kmb_dsi *kmb_dsi)
1510 {
1511 	struct device *dev = kmb_dsi->dev;
1512 	unsigned long clk;
1513 
1514 	kmb_dsi->clk_mipi = devm_clk_get(dev, "clk_mipi");
1515 	if (IS_ERR(kmb_dsi->clk_mipi)) {
1516 		dev_err(dev, "devm_clk_get() failed clk_mipi\n");
1517 		return PTR_ERR(kmb_dsi->clk_mipi);
1518 	}
1519 
1520 	kmb_dsi->clk_mipi_ecfg = devm_clk_get(dev, "clk_mipi_ecfg");
1521 	if (IS_ERR(kmb_dsi->clk_mipi_ecfg)) {
1522 		dev_err(dev, "devm_clk_get() failed clk_mipi_ecfg\n");
1523 		return PTR_ERR(kmb_dsi->clk_mipi_ecfg);
1524 	}
1525 
1526 	kmb_dsi->clk_mipi_cfg = devm_clk_get(dev, "clk_mipi_cfg");
1527 	if (IS_ERR(kmb_dsi->clk_mipi_cfg)) {
1528 		dev_err(dev, "devm_clk_get() failed clk_mipi_cfg\n");
1529 		return PTR_ERR(kmb_dsi->clk_mipi_cfg);
1530 	}
1531 	/* Set MIPI clock to 24 Mhz */
1532 	clk_set_rate(kmb_dsi->clk_mipi, KMB_MIPI_DEFAULT_CLK);
1533 	if (clk_get_rate(kmb_dsi->clk_mipi) != KMB_MIPI_DEFAULT_CLK) {
1534 		dev_err(dev, "failed to set to clk_mipi to %d\n",
1535 			KMB_MIPI_DEFAULT_CLK);
1536 		return -1;
1537 	}
1538 	dev_dbg(dev, "clk_mipi = %ld\n", clk_get_rate(kmb_dsi->clk_mipi));
1539 
1540 	clk = clk_get_rate(kmb_dsi->clk_mipi_ecfg);
1541 	if (clk != KMB_MIPI_DEFAULT_CFG_CLK) {
1542 		/* Set MIPI_ECFG clock to 24 Mhz */
1543 		clk_set_rate(kmb_dsi->clk_mipi_ecfg, KMB_MIPI_DEFAULT_CFG_CLK);
1544 		clk = clk_get_rate(kmb_dsi->clk_mipi_ecfg);
1545 		if (clk != KMB_MIPI_DEFAULT_CFG_CLK) {
1546 			dev_err(dev, "failed to set to clk_mipi_ecfg to %d\n",
1547 				KMB_MIPI_DEFAULT_CFG_CLK);
1548 			return -1;
1549 		}
1550 	}
1551 
1552 	clk = clk_get_rate(kmb_dsi->clk_mipi_cfg);
1553 	if (clk != KMB_MIPI_DEFAULT_CFG_CLK) {
1554 		/* Set MIPI_CFG clock to 24 Mhz */
1555 		clk_set_rate(kmb_dsi->clk_mipi_cfg, 24000000);
1556 		clk = clk_get_rate(kmb_dsi->clk_mipi_cfg);
1557 		if (clk != KMB_MIPI_DEFAULT_CFG_CLK) {
1558 			dev_err(dev, "failed to set clk_mipi_cfg to %d\n",
1559 				KMB_MIPI_DEFAULT_CFG_CLK);
1560 			return -1;
1561 		}
1562 	}
1563 
1564 	return kmb_dsi_clk_enable(kmb_dsi);
1565 }
1566