1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/arch/x86_64/mm/init.c
4 *
5 * Copyright (C) 1995 Linus Torvalds
6 * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
7 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
8 */
9
10 #include <linux/signal.h>
11 #include <linux/sched.h>
12 #include <linux/kernel.h>
13 #include <linux/errno.h>
14 #include <linux/string.h>
15 #include <linux/types.h>
16 #include <linux/ptrace.h>
17 #include <linux/mman.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/smp.h>
21 #include <linux/init.h>
22 #include <linux/initrd.h>
23 #include <linux/pagemap.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/memory.h>
31 #include <linux/memory_hotplug.h>
32 #include <linux/memremap.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35 #include <linux/kcore.h>
36 #include <linux/bootmem_info.h>
37
38 #include <asm/processor.h>
39 #include <asm/bios_ebda.h>
40 #include <linux/uaccess.h>
41 #include <asm/pgalloc.h>
42 #include <asm/dma.h>
43 #include <asm/fixmap.h>
44 #include <asm/e820/api.h>
45 #include <asm/apic.h>
46 #include <asm/tlb.h>
47 #include <asm/mmu_context.h>
48 #include <asm/proto.h>
49 #include <asm/smp.h>
50 #include <asm/sections.h>
51 #include <asm/kdebug.h>
52 #include <asm/numa.h>
53 #include <asm/set_memory.h>
54 #include <asm/init.h>
55 #include <asm/uv/uv.h>
56 #include <asm/setup.h>
57 #include <asm/ftrace.h>
58
59 #include "mm_internal.h"
60
61 #include "ident_map.c"
62
63 #define DEFINE_POPULATE(fname, type1, type2, init) \
64 static inline void fname##_init(struct mm_struct *mm, \
65 type1##_t *arg1, type2##_t *arg2, bool init) \
66 { \
67 if (init) \
68 fname##_safe(mm, arg1, arg2); \
69 else \
70 fname(mm, arg1, arg2); \
71 }
72
73 DEFINE_POPULATE(p4d_populate, p4d, pud, init)
74 DEFINE_POPULATE(pgd_populate, pgd, p4d, init)
75 DEFINE_POPULATE(pud_populate, pud, pmd, init)
76 DEFINE_POPULATE(pmd_populate_kernel, pmd, pte, init)
77
78 #define DEFINE_ENTRY(type1, type2, init) \
79 static inline void set_##type1##_init(type1##_t *arg1, \
80 type2##_t arg2, bool init) \
81 { \
82 if (init) \
83 set_##type1##_safe(arg1, arg2); \
84 else \
85 set_##type1(arg1, arg2); \
86 }
87
88 DEFINE_ENTRY(p4d, p4d, init)
89 DEFINE_ENTRY(pud, pud, init)
90 DEFINE_ENTRY(pmd, pmd, init)
91 DEFINE_ENTRY(pte, pte, init)
92
93
94 /*
95 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
96 * physical space so we can cache the place of the first one and move
97 * around without checking the pgd every time.
98 */
99
100 /* Bits supported by the hardware: */
101 pteval_t __supported_pte_mask __read_mostly = ~0;
102 /* Bits allowed in normal kernel mappings: */
103 pteval_t __default_kernel_pte_mask __read_mostly = ~0;
104 EXPORT_SYMBOL_GPL(__supported_pte_mask);
105 /* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */
106 EXPORT_SYMBOL(__default_kernel_pte_mask);
107
108 int force_personality32;
109
110 /*
111 * noexec32=on|off
112 * Control non executable heap for 32bit processes.
113 *
114 * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
115 * off PROT_READ implies PROT_EXEC
116 */
nonx32_setup(char * str)117 static int __init nonx32_setup(char *str)
118 {
119 if (!strcmp(str, "on"))
120 force_personality32 &= ~READ_IMPLIES_EXEC;
121 else if (!strcmp(str, "off"))
122 force_personality32 |= READ_IMPLIES_EXEC;
123 return 1;
124 }
125 __setup("noexec32=", nonx32_setup);
126
sync_global_pgds_l5(unsigned long start,unsigned long end)127 static void sync_global_pgds_l5(unsigned long start, unsigned long end)
128 {
129 unsigned long addr;
130
131 for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
132 const pgd_t *pgd_ref = pgd_offset_k(addr);
133 struct page *page;
134
135 /* Check for overflow */
136 if (addr < start)
137 break;
138
139 if (pgd_none(*pgd_ref))
140 continue;
141
142 spin_lock(&pgd_lock);
143 list_for_each_entry(page, &pgd_list, lru) {
144 pgd_t *pgd;
145 spinlock_t *pgt_lock;
146
147 pgd = (pgd_t *)page_address(page) + pgd_index(addr);
148 /* the pgt_lock only for Xen */
149 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
150 spin_lock(pgt_lock);
151
152 if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
153 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
154
155 if (pgd_none(*pgd))
156 set_pgd(pgd, *pgd_ref);
157
158 spin_unlock(pgt_lock);
159 }
160 spin_unlock(&pgd_lock);
161 }
162 }
163
sync_global_pgds_l4(unsigned long start,unsigned long end)164 static void sync_global_pgds_l4(unsigned long start, unsigned long end)
165 {
166 unsigned long addr;
167
168 for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
169 pgd_t *pgd_ref = pgd_offset_k(addr);
170 const p4d_t *p4d_ref;
171 struct page *page;
172
173 /*
174 * With folded p4d, pgd_none() is always false, we need to
175 * handle synchronization on p4d level.
176 */
177 MAYBE_BUILD_BUG_ON(pgd_none(*pgd_ref));
178 p4d_ref = p4d_offset(pgd_ref, addr);
179
180 if (p4d_none(*p4d_ref))
181 continue;
182
183 spin_lock(&pgd_lock);
184 list_for_each_entry(page, &pgd_list, lru) {
185 pgd_t *pgd;
186 p4d_t *p4d;
187 spinlock_t *pgt_lock;
188
189 pgd = (pgd_t *)page_address(page) + pgd_index(addr);
190 p4d = p4d_offset(pgd, addr);
191 /* the pgt_lock only for Xen */
192 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
193 spin_lock(pgt_lock);
194
195 if (!p4d_none(*p4d_ref) && !p4d_none(*p4d))
196 BUG_ON(p4d_pgtable(*p4d)
197 != p4d_pgtable(*p4d_ref));
198
199 if (p4d_none(*p4d))
200 set_p4d(p4d, *p4d_ref);
201
202 spin_unlock(pgt_lock);
203 }
204 spin_unlock(&pgd_lock);
205 }
206 }
207
208 /*
209 * When memory was added make sure all the processes MM have
210 * suitable PGD entries in the local PGD level page.
211 */
sync_global_pgds(unsigned long start,unsigned long end)212 static void sync_global_pgds(unsigned long start, unsigned long end)
213 {
214 if (pgtable_l5_enabled())
215 sync_global_pgds_l5(start, end);
216 else
217 sync_global_pgds_l4(start, end);
218 }
219
220 /*
221 * NOTE: This function is marked __ref because it calls __init function
222 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
223 */
spp_getpage(void)224 static __ref void *spp_getpage(void)
225 {
226 void *ptr;
227
228 if (after_bootmem)
229 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
230 else
231 ptr = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
232
233 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
234 panic("set_pte_phys: cannot allocate page data %s\n",
235 after_bootmem ? "after bootmem" : "");
236 }
237
238 pr_debug("spp_getpage %p\n", ptr);
239
240 return ptr;
241 }
242
fill_p4d(pgd_t * pgd,unsigned long vaddr)243 static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr)
244 {
245 if (pgd_none(*pgd)) {
246 p4d_t *p4d = (p4d_t *)spp_getpage();
247 pgd_populate(&init_mm, pgd, p4d);
248 if (p4d != p4d_offset(pgd, 0))
249 printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
250 p4d, p4d_offset(pgd, 0));
251 }
252 return p4d_offset(pgd, vaddr);
253 }
254
fill_pud(p4d_t * p4d,unsigned long vaddr)255 static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr)
256 {
257 if (p4d_none(*p4d)) {
258 pud_t *pud = (pud_t *)spp_getpage();
259 p4d_populate(&init_mm, p4d, pud);
260 if (pud != pud_offset(p4d, 0))
261 printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
262 pud, pud_offset(p4d, 0));
263 }
264 return pud_offset(p4d, vaddr);
265 }
266
fill_pmd(pud_t * pud,unsigned long vaddr)267 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
268 {
269 if (pud_none(*pud)) {
270 pmd_t *pmd = (pmd_t *) spp_getpage();
271 pud_populate(&init_mm, pud, pmd);
272 if (pmd != pmd_offset(pud, 0))
273 printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n",
274 pmd, pmd_offset(pud, 0));
275 }
276 return pmd_offset(pud, vaddr);
277 }
278
fill_pte(pmd_t * pmd,unsigned long vaddr)279 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
280 {
281 if (pmd_none(*pmd)) {
282 pte_t *pte = (pte_t *) spp_getpage();
283 pmd_populate_kernel(&init_mm, pmd, pte);
284 if (pte != pte_offset_kernel(pmd, 0))
285 printk(KERN_ERR "PAGETABLE BUG #03!\n");
286 }
287 return pte_offset_kernel(pmd, vaddr);
288 }
289
__set_pte_vaddr(pud_t * pud,unsigned long vaddr,pte_t new_pte)290 static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte)
291 {
292 pmd_t *pmd = fill_pmd(pud, vaddr);
293 pte_t *pte = fill_pte(pmd, vaddr);
294
295 set_pte(pte, new_pte);
296
297 /*
298 * It's enough to flush this one mapping.
299 * (PGE mappings get flushed as well)
300 */
301 flush_tlb_one_kernel(vaddr);
302 }
303
set_pte_vaddr_p4d(p4d_t * p4d_page,unsigned long vaddr,pte_t new_pte)304 void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte)
305 {
306 p4d_t *p4d = p4d_page + p4d_index(vaddr);
307 pud_t *pud = fill_pud(p4d, vaddr);
308
309 __set_pte_vaddr(pud, vaddr, new_pte);
310 }
311
set_pte_vaddr_pud(pud_t * pud_page,unsigned long vaddr,pte_t new_pte)312 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
313 {
314 pud_t *pud = pud_page + pud_index(vaddr);
315
316 __set_pte_vaddr(pud, vaddr, new_pte);
317 }
318
set_pte_vaddr(unsigned long vaddr,pte_t pteval)319 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
320 {
321 pgd_t *pgd;
322 p4d_t *p4d_page;
323
324 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
325
326 pgd = pgd_offset_k(vaddr);
327 if (pgd_none(*pgd)) {
328 printk(KERN_ERR
329 "PGD FIXMAP MISSING, it should be setup in head.S!\n");
330 return;
331 }
332
333 p4d_page = p4d_offset(pgd, 0);
334 set_pte_vaddr_p4d(p4d_page, vaddr, pteval);
335 }
336
populate_extra_pmd(unsigned long vaddr)337 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
338 {
339 pgd_t *pgd;
340 p4d_t *p4d;
341 pud_t *pud;
342
343 pgd = pgd_offset_k(vaddr);
344 p4d = fill_p4d(pgd, vaddr);
345 pud = fill_pud(p4d, vaddr);
346 return fill_pmd(pud, vaddr);
347 }
348
populate_extra_pte(unsigned long vaddr)349 pte_t * __init populate_extra_pte(unsigned long vaddr)
350 {
351 pmd_t *pmd;
352
353 pmd = populate_extra_pmd(vaddr);
354 return fill_pte(pmd, vaddr);
355 }
356
357 /*
358 * Create large page table mappings for a range of physical addresses.
359 */
__init_extra_mapping(unsigned long phys,unsigned long size,enum page_cache_mode cache)360 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
361 enum page_cache_mode cache)
362 {
363 pgd_t *pgd;
364 p4d_t *p4d;
365 pud_t *pud;
366 pmd_t *pmd;
367 pgprot_t prot;
368
369 pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
370 protval_4k_2_large(cachemode2protval(cache));
371 BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
372 for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
373 pgd = pgd_offset_k((unsigned long)__va(phys));
374 if (pgd_none(*pgd)) {
375 p4d = (p4d_t *) spp_getpage();
376 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE |
377 _PAGE_USER));
378 }
379 p4d = p4d_offset(pgd, (unsigned long)__va(phys));
380 if (p4d_none(*p4d)) {
381 pud = (pud_t *) spp_getpage();
382 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE |
383 _PAGE_USER));
384 }
385 pud = pud_offset(p4d, (unsigned long)__va(phys));
386 if (pud_none(*pud)) {
387 pmd = (pmd_t *) spp_getpage();
388 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
389 _PAGE_USER));
390 }
391 pmd = pmd_offset(pud, phys);
392 BUG_ON(!pmd_none(*pmd));
393 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
394 }
395 }
396
init_extra_mapping_wb(unsigned long phys,unsigned long size)397 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
398 {
399 __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
400 }
401
init_extra_mapping_uc(unsigned long phys,unsigned long size)402 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
403 {
404 __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
405 }
406
407 /*
408 * The head.S code sets up the kernel high mapping:
409 *
410 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
411 *
412 * phys_base holds the negative offset to the kernel, which is added
413 * to the compile time generated pmds. This results in invalid pmds up
414 * to the point where we hit the physaddr 0 mapping.
415 *
416 * We limit the mappings to the region from _text to _brk_end. _brk_end
417 * is rounded up to the 2MB boundary. This catches the invalid pmds as
418 * well, as they are located before _text:
419 */
cleanup_highmap(void)420 void __init cleanup_highmap(void)
421 {
422 unsigned long vaddr = __START_KERNEL_map;
423 unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
424 unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
425 pmd_t *pmd = level2_kernel_pgt;
426
427 /*
428 * Native path, max_pfn_mapped is not set yet.
429 * Xen has valid max_pfn_mapped set in
430 * arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
431 */
432 if (max_pfn_mapped)
433 vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
434
435 for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
436 if (pmd_none(*pmd))
437 continue;
438 if (vaddr < (unsigned long) _text || vaddr > end)
439 set_pmd(pmd, __pmd(0));
440 }
441 }
442
443 /*
444 * Create PTE level page table mapping for physical addresses.
445 * It returns the last physical address mapped.
446 */
447 static unsigned long __meminit
phys_pte_init(pte_t * pte_page,unsigned long paddr,unsigned long paddr_end,pgprot_t prot,bool init)448 phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
449 pgprot_t prot, bool init)
450 {
451 unsigned long pages = 0, paddr_next;
452 unsigned long paddr_last = paddr_end;
453 pte_t *pte;
454 int i;
455
456 pte = pte_page + pte_index(paddr);
457 i = pte_index(paddr);
458
459 for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) {
460 paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE;
461 if (paddr >= paddr_end) {
462 if (!after_bootmem &&
463 !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
464 E820_TYPE_RAM) &&
465 !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
466 E820_TYPE_RESERVED_KERN))
467 set_pte_init(pte, __pte(0), init);
468 continue;
469 }
470
471 /*
472 * We will re-use the existing mapping.
473 * Xen for example has some special requirements, like mapping
474 * pagetable pages as RO. So assume someone who pre-setup
475 * these mappings are more intelligent.
476 */
477 if (!pte_none(*pte)) {
478 if (!after_bootmem)
479 pages++;
480 continue;
481 }
482
483 if (0)
484 pr_info(" pte=%p addr=%lx pte=%016lx\n", pte, paddr,
485 pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte);
486 pages++;
487 set_pte_init(pte, pfn_pte(paddr >> PAGE_SHIFT, prot), init);
488 paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
489 }
490
491 update_page_count(PG_LEVEL_4K, pages);
492
493 return paddr_last;
494 }
495
496 /*
497 * Create PMD level page table mapping for physical addresses. The virtual
498 * and physical address have to be aligned at this level.
499 * It returns the last physical address mapped.
500 */
501 static unsigned long __meminit
phys_pmd_init(pmd_t * pmd_page,unsigned long paddr,unsigned long paddr_end,unsigned long page_size_mask,pgprot_t prot,bool init)502 phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
503 unsigned long page_size_mask, pgprot_t prot, bool init)
504 {
505 unsigned long pages = 0, paddr_next;
506 unsigned long paddr_last = paddr_end;
507
508 int i = pmd_index(paddr);
509
510 for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) {
511 pmd_t *pmd = pmd_page + pmd_index(paddr);
512 pte_t *pte;
513 pgprot_t new_prot = prot;
514
515 paddr_next = (paddr & PMD_MASK) + PMD_SIZE;
516 if (paddr >= paddr_end) {
517 if (!after_bootmem &&
518 !e820__mapped_any(paddr & PMD_MASK, paddr_next,
519 E820_TYPE_RAM) &&
520 !e820__mapped_any(paddr & PMD_MASK, paddr_next,
521 E820_TYPE_RESERVED_KERN))
522 set_pmd_init(pmd, __pmd(0), init);
523 continue;
524 }
525
526 if (!pmd_none(*pmd)) {
527 if (!pmd_large(*pmd)) {
528 spin_lock(&init_mm.page_table_lock);
529 pte = (pte_t *)pmd_page_vaddr(*pmd);
530 paddr_last = phys_pte_init(pte, paddr,
531 paddr_end, prot,
532 init);
533 spin_unlock(&init_mm.page_table_lock);
534 continue;
535 }
536 /*
537 * If we are ok with PG_LEVEL_2M mapping, then we will
538 * use the existing mapping,
539 *
540 * Otherwise, we will split the large page mapping but
541 * use the same existing protection bits except for
542 * large page, so that we don't violate Intel's TLB
543 * Application note (317080) which says, while changing
544 * the page sizes, new and old translations should
545 * not differ with respect to page frame and
546 * attributes.
547 */
548 if (page_size_mask & (1 << PG_LEVEL_2M)) {
549 if (!after_bootmem)
550 pages++;
551 paddr_last = paddr_next;
552 continue;
553 }
554 new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
555 }
556
557 if (page_size_mask & (1<<PG_LEVEL_2M)) {
558 pages++;
559 spin_lock(&init_mm.page_table_lock);
560 set_pte_init((pte_t *)pmd,
561 pfn_pte((paddr & PMD_MASK) >> PAGE_SHIFT,
562 __pgprot(pgprot_val(prot) | _PAGE_PSE)),
563 init);
564 spin_unlock(&init_mm.page_table_lock);
565 paddr_last = paddr_next;
566 continue;
567 }
568
569 pte = alloc_low_page();
570 paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot, init);
571
572 spin_lock(&init_mm.page_table_lock);
573 pmd_populate_kernel_init(&init_mm, pmd, pte, init);
574 spin_unlock(&init_mm.page_table_lock);
575 }
576 update_page_count(PG_LEVEL_2M, pages);
577 return paddr_last;
578 }
579
580 /*
581 * Create PUD level page table mapping for physical addresses. The virtual
582 * and physical address do not have to be aligned at this level. KASLR can
583 * randomize virtual addresses up to this level.
584 * It returns the last physical address mapped.
585 */
586 static unsigned long __meminit
phys_pud_init(pud_t * pud_page,unsigned long paddr,unsigned long paddr_end,unsigned long page_size_mask,pgprot_t _prot,bool init)587 phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
588 unsigned long page_size_mask, pgprot_t _prot, bool init)
589 {
590 unsigned long pages = 0, paddr_next;
591 unsigned long paddr_last = paddr_end;
592 unsigned long vaddr = (unsigned long)__va(paddr);
593 int i = pud_index(vaddr);
594
595 for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) {
596 pud_t *pud;
597 pmd_t *pmd;
598 pgprot_t prot = _prot;
599
600 vaddr = (unsigned long)__va(paddr);
601 pud = pud_page + pud_index(vaddr);
602 paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
603
604 if (paddr >= paddr_end) {
605 if (!after_bootmem &&
606 !e820__mapped_any(paddr & PUD_MASK, paddr_next,
607 E820_TYPE_RAM) &&
608 !e820__mapped_any(paddr & PUD_MASK, paddr_next,
609 E820_TYPE_RESERVED_KERN))
610 set_pud_init(pud, __pud(0), init);
611 continue;
612 }
613
614 if (!pud_none(*pud)) {
615 if (!pud_large(*pud)) {
616 pmd = pmd_offset(pud, 0);
617 paddr_last = phys_pmd_init(pmd, paddr,
618 paddr_end,
619 page_size_mask,
620 prot, init);
621 continue;
622 }
623 /*
624 * If we are ok with PG_LEVEL_1G mapping, then we will
625 * use the existing mapping.
626 *
627 * Otherwise, we will split the gbpage mapping but use
628 * the same existing protection bits except for large
629 * page, so that we don't violate Intel's TLB
630 * Application note (317080) which says, while changing
631 * the page sizes, new and old translations should
632 * not differ with respect to page frame and
633 * attributes.
634 */
635 if (page_size_mask & (1 << PG_LEVEL_1G)) {
636 if (!after_bootmem)
637 pages++;
638 paddr_last = paddr_next;
639 continue;
640 }
641 prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
642 }
643
644 if (page_size_mask & (1<<PG_LEVEL_1G)) {
645 pages++;
646 spin_lock(&init_mm.page_table_lock);
647
648 prot = __pgprot(pgprot_val(prot) | _PAGE_PSE);
649
650 set_pte_init((pte_t *)pud,
651 pfn_pte((paddr & PUD_MASK) >> PAGE_SHIFT,
652 prot),
653 init);
654 spin_unlock(&init_mm.page_table_lock);
655 paddr_last = paddr_next;
656 continue;
657 }
658
659 pmd = alloc_low_page();
660 paddr_last = phys_pmd_init(pmd, paddr, paddr_end,
661 page_size_mask, prot, init);
662
663 spin_lock(&init_mm.page_table_lock);
664 pud_populate_init(&init_mm, pud, pmd, init);
665 spin_unlock(&init_mm.page_table_lock);
666 }
667
668 update_page_count(PG_LEVEL_1G, pages);
669
670 return paddr_last;
671 }
672
673 static unsigned long __meminit
phys_p4d_init(p4d_t * p4d_page,unsigned long paddr,unsigned long paddr_end,unsigned long page_size_mask,pgprot_t prot,bool init)674 phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end,
675 unsigned long page_size_mask, pgprot_t prot, bool init)
676 {
677 unsigned long vaddr, vaddr_end, vaddr_next, paddr_next, paddr_last;
678
679 paddr_last = paddr_end;
680 vaddr = (unsigned long)__va(paddr);
681 vaddr_end = (unsigned long)__va(paddr_end);
682
683 if (!pgtable_l5_enabled())
684 return phys_pud_init((pud_t *) p4d_page, paddr, paddr_end,
685 page_size_mask, prot, init);
686
687 for (; vaddr < vaddr_end; vaddr = vaddr_next) {
688 p4d_t *p4d = p4d_page + p4d_index(vaddr);
689 pud_t *pud;
690
691 vaddr_next = (vaddr & P4D_MASK) + P4D_SIZE;
692 paddr = __pa(vaddr);
693
694 if (paddr >= paddr_end) {
695 paddr_next = __pa(vaddr_next);
696 if (!after_bootmem &&
697 !e820__mapped_any(paddr & P4D_MASK, paddr_next,
698 E820_TYPE_RAM) &&
699 !e820__mapped_any(paddr & P4D_MASK, paddr_next,
700 E820_TYPE_RESERVED_KERN))
701 set_p4d_init(p4d, __p4d(0), init);
702 continue;
703 }
704
705 if (!p4d_none(*p4d)) {
706 pud = pud_offset(p4d, 0);
707 paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
708 page_size_mask, prot, init);
709 continue;
710 }
711
712 pud = alloc_low_page();
713 paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
714 page_size_mask, prot, init);
715
716 spin_lock(&init_mm.page_table_lock);
717 p4d_populate_init(&init_mm, p4d, pud, init);
718 spin_unlock(&init_mm.page_table_lock);
719 }
720
721 return paddr_last;
722 }
723
724 static unsigned long __meminit
__kernel_physical_mapping_init(unsigned long paddr_start,unsigned long paddr_end,unsigned long page_size_mask,pgprot_t prot,bool init)725 __kernel_physical_mapping_init(unsigned long paddr_start,
726 unsigned long paddr_end,
727 unsigned long page_size_mask,
728 pgprot_t prot, bool init)
729 {
730 bool pgd_changed = false;
731 unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;
732
733 paddr_last = paddr_end;
734 vaddr = (unsigned long)__va(paddr_start);
735 vaddr_end = (unsigned long)__va(paddr_end);
736 vaddr_start = vaddr;
737
738 for (; vaddr < vaddr_end; vaddr = vaddr_next) {
739 pgd_t *pgd = pgd_offset_k(vaddr);
740 p4d_t *p4d;
741
742 vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;
743
744 if (pgd_val(*pgd)) {
745 p4d = (p4d_t *)pgd_page_vaddr(*pgd);
746 paddr_last = phys_p4d_init(p4d, __pa(vaddr),
747 __pa(vaddr_end),
748 page_size_mask,
749 prot, init);
750 continue;
751 }
752
753 p4d = alloc_low_page();
754 paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end),
755 page_size_mask, prot, init);
756
757 spin_lock(&init_mm.page_table_lock);
758 if (pgtable_l5_enabled())
759 pgd_populate_init(&init_mm, pgd, p4d, init);
760 else
761 p4d_populate_init(&init_mm, p4d_offset(pgd, vaddr),
762 (pud_t *) p4d, init);
763
764 spin_unlock(&init_mm.page_table_lock);
765 pgd_changed = true;
766 }
767
768 if (pgd_changed)
769 sync_global_pgds(vaddr_start, vaddr_end - 1);
770
771 return paddr_last;
772 }
773
774
775 /*
776 * Create page table mapping for the physical memory for specific physical
777 * addresses. Note that it can only be used to populate non-present entries.
778 * The virtual and physical addresses have to be aligned on PMD level
779 * down. It returns the last physical address mapped.
780 */
781 unsigned long __meminit
kernel_physical_mapping_init(unsigned long paddr_start,unsigned long paddr_end,unsigned long page_size_mask,pgprot_t prot)782 kernel_physical_mapping_init(unsigned long paddr_start,
783 unsigned long paddr_end,
784 unsigned long page_size_mask, pgprot_t prot)
785 {
786 return __kernel_physical_mapping_init(paddr_start, paddr_end,
787 page_size_mask, prot, true);
788 }
789
790 /*
791 * This function is similar to kernel_physical_mapping_init() above with the
792 * exception that it uses set_{pud,pmd}() instead of the set_{pud,pte}_safe()
793 * when updating the mapping. The caller is responsible to flush the TLBs after
794 * the function returns.
795 */
796 unsigned long __meminit
kernel_physical_mapping_change(unsigned long paddr_start,unsigned long paddr_end,unsigned long page_size_mask)797 kernel_physical_mapping_change(unsigned long paddr_start,
798 unsigned long paddr_end,
799 unsigned long page_size_mask)
800 {
801 return __kernel_physical_mapping_init(paddr_start, paddr_end,
802 page_size_mask, PAGE_KERNEL,
803 false);
804 }
805
806 #ifndef CONFIG_NUMA
initmem_init(void)807 void __init initmem_init(void)
808 {
809 memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
810 }
811 #endif
812
paging_init(void)813 void __init paging_init(void)
814 {
815 sparse_init();
816
817 /*
818 * clear the default setting with node 0
819 * note: don't use nodes_clear here, that is really clearing when
820 * numa support is not compiled in, and later node_set_state
821 * will not set it back.
822 */
823 node_clear_state(0, N_MEMORY);
824 node_clear_state(0, N_NORMAL_MEMORY);
825
826 zone_sizes_init();
827 }
828
829 #ifdef CONFIG_SPARSEMEM_VMEMMAP
830 #define PAGE_UNUSED 0xFD
831
832 /*
833 * The unused vmemmap range, which was not yet memset(PAGE_UNUSED), ranges
834 * from unused_pmd_start to next PMD_SIZE boundary.
835 */
836 static unsigned long unused_pmd_start __meminitdata;
837
vmemmap_flush_unused_pmd(void)838 static void __meminit vmemmap_flush_unused_pmd(void)
839 {
840 if (!unused_pmd_start)
841 return;
842 /*
843 * Clears (unused_pmd_start, PMD_END]
844 */
845 memset((void *)unused_pmd_start, PAGE_UNUSED,
846 ALIGN(unused_pmd_start, PMD_SIZE) - unused_pmd_start);
847 unused_pmd_start = 0;
848 }
849
850 #ifdef CONFIG_MEMORY_HOTPLUG
851 /* Returns true if the PMD is completely unused and thus it can be freed */
vmemmap_pmd_is_unused(unsigned long addr,unsigned long end)852 static bool __meminit vmemmap_pmd_is_unused(unsigned long addr, unsigned long end)
853 {
854 unsigned long start = ALIGN_DOWN(addr, PMD_SIZE);
855
856 /*
857 * Flush the unused range cache to ensure that memchr_inv() will work
858 * for the whole range.
859 */
860 vmemmap_flush_unused_pmd();
861 memset((void *)addr, PAGE_UNUSED, end - addr);
862
863 return !memchr_inv((void *)start, PAGE_UNUSED, PMD_SIZE);
864 }
865 #endif
866
__vmemmap_use_sub_pmd(unsigned long start)867 static void __meminit __vmemmap_use_sub_pmd(unsigned long start)
868 {
869 /*
870 * As we expect to add in the same granularity as we remove, it's
871 * sufficient to mark only some piece used to block the memmap page from
872 * getting removed when removing some other adjacent memmap (just in
873 * case the first memmap never gets initialized e.g., because the memory
874 * block never gets onlined).
875 */
876 memset((void *)start, 0, sizeof(struct page));
877 }
878
vmemmap_use_sub_pmd(unsigned long start,unsigned long end)879 static void __meminit vmemmap_use_sub_pmd(unsigned long start, unsigned long end)
880 {
881 /*
882 * We only optimize if the new used range directly follows the
883 * previously unused range (esp., when populating consecutive sections).
884 */
885 if (unused_pmd_start == start) {
886 if (likely(IS_ALIGNED(end, PMD_SIZE)))
887 unused_pmd_start = 0;
888 else
889 unused_pmd_start = end;
890 return;
891 }
892
893 /*
894 * If the range does not contiguously follows previous one, make sure
895 * to mark the unused range of the previous one so it can be removed.
896 */
897 vmemmap_flush_unused_pmd();
898 __vmemmap_use_sub_pmd(start);
899 }
900
901
vmemmap_use_new_sub_pmd(unsigned long start,unsigned long end)902 static void __meminit vmemmap_use_new_sub_pmd(unsigned long start, unsigned long end)
903 {
904 const unsigned long page = ALIGN_DOWN(start, PMD_SIZE);
905
906 vmemmap_flush_unused_pmd();
907
908 /*
909 * Could be our memmap page is filled with PAGE_UNUSED already from a
910 * previous remove. Make sure to reset it.
911 */
912 __vmemmap_use_sub_pmd(start);
913
914 /*
915 * Mark with PAGE_UNUSED the unused parts of the new memmap range
916 */
917 if (!IS_ALIGNED(start, PMD_SIZE))
918 memset((void *)page, PAGE_UNUSED, start - page);
919
920 /*
921 * We want to avoid memset(PAGE_UNUSED) when populating the vmemmap of
922 * consecutive sections. Remember for the last added PMD where the
923 * unused range begins.
924 */
925 if (!IS_ALIGNED(end, PMD_SIZE))
926 unused_pmd_start = end;
927 }
928 #endif
929
930 /*
931 * Memory hotplug specific functions
932 */
933 #ifdef CONFIG_MEMORY_HOTPLUG
934 /*
935 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
936 * updating.
937 */
update_end_of_memory_vars(u64 start,u64 size)938 static void update_end_of_memory_vars(u64 start, u64 size)
939 {
940 unsigned long end_pfn = PFN_UP(start + size);
941
942 if (end_pfn > max_pfn) {
943 max_pfn = end_pfn;
944 max_low_pfn = end_pfn;
945 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
946 }
947 }
948
add_pages(int nid,unsigned long start_pfn,unsigned long nr_pages,struct mhp_params * params)949 int add_pages(int nid, unsigned long start_pfn, unsigned long nr_pages,
950 struct mhp_params *params)
951 {
952 int ret;
953
954 ret = __add_pages(nid, start_pfn, nr_pages, params);
955 WARN_ON_ONCE(ret);
956
957 /* update max_pfn, max_low_pfn and high_memory */
958 update_end_of_memory_vars(start_pfn << PAGE_SHIFT,
959 nr_pages << PAGE_SHIFT);
960
961 return ret;
962 }
963
arch_add_memory(int nid,u64 start,u64 size,struct mhp_params * params)964 int arch_add_memory(int nid, u64 start, u64 size,
965 struct mhp_params *params)
966 {
967 unsigned long start_pfn = start >> PAGE_SHIFT;
968 unsigned long nr_pages = size >> PAGE_SHIFT;
969
970 init_memory_mapping(start, start + size, params->pgprot);
971
972 return add_pages(nid, start_pfn, nr_pages, params);
973 }
974
free_pagetable(struct page * page,int order)975 static void __meminit free_pagetable(struct page *page, int order)
976 {
977 unsigned long magic;
978 unsigned int nr_pages = 1 << order;
979
980 /* bootmem page has reserved flag */
981 if (PageReserved(page)) {
982 __ClearPageReserved(page);
983
984 magic = page->index;
985 if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
986 while (nr_pages--)
987 put_page_bootmem(page++);
988 } else
989 while (nr_pages--)
990 free_reserved_page(page++);
991 } else
992 free_pages((unsigned long)page_address(page), order);
993 }
994
free_hugepage_table(struct page * page,struct vmem_altmap * altmap)995 static void __meminit free_hugepage_table(struct page *page,
996 struct vmem_altmap *altmap)
997 {
998 if (altmap)
999 vmem_altmap_free(altmap, PMD_SIZE / PAGE_SIZE);
1000 else
1001 free_pagetable(page, get_order(PMD_SIZE));
1002 }
1003
free_pte_table(pte_t * pte_start,pmd_t * pmd)1004 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
1005 {
1006 pte_t *pte;
1007 int i;
1008
1009 for (i = 0; i < PTRS_PER_PTE; i++) {
1010 pte = pte_start + i;
1011 if (!pte_none(*pte))
1012 return;
1013 }
1014
1015 /* free a pte talbe */
1016 free_pagetable(pmd_page(*pmd), 0);
1017 spin_lock(&init_mm.page_table_lock);
1018 pmd_clear(pmd);
1019 spin_unlock(&init_mm.page_table_lock);
1020 }
1021
free_pmd_table(pmd_t * pmd_start,pud_t * pud)1022 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
1023 {
1024 pmd_t *pmd;
1025 int i;
1026
1027 for (i = 0; i < PTRS_PER_PMD; i++) {
1028 pmd = pmd_start + i;
1029 if (!pmd_none(*pmd))
1030 return;
1031 }
1032
1033 /* free a pmd talbe */
1034 free_pagetable(pud_page(*pud), 0);
1035 spin_lock(&init_mm.page_table_lock);
1036 pud_clear(pud);
1037 spin_unlock(&init_mm.page_table_lock);
1038 }
1039
free_pud_table(pud_t * pud_start,p4d_t * p4d)1040 static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
1041 {
1042 pud_t *pud;
1043 int i;
1044
1045 for (i = 0; i < PTRS_PER_PUD; i++) {
1046 pud = pud_start + i;
1047 if (!pud_none(*pud))
1048 return;
1049 }
1050
1051 /* free a pud talbe */
1052 free_pagetable(p4d_page(*p4d), 0);
1053 spin_lock(&init_mm.page_table_lock);
1054 p4d_clear(p4d);
1055 spin_unlock(&init_mm.page_table_lock);
1056 }
1057
1058 static void __meminit
remove_pte_table(pte_t * pte_start,unsigned long addr,unsigned long end,bool direct)1059 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
1060 bool direct)
1061 {
1062 unsigned long next, pages = 0;
1063 pte_t *pte;
1064 phys_addr_t phys_addr;
1065
1066 pte = pte_start + pte_index(addr);
1067 for (; addr < end; addr = next, pte++) {
1068 next = (addr + PAGE_SIZE) & PAGE_MASK;
1069 if (next > end)
1070 next = end;
1071
1072 if (!pte_present(*pte))
1073 continue;
1074
1075 /*
1076 * We mapped [0,1G) memory as identity mapping when
1077 * initializing, in arch/x86/kernel/head_64.S. These
1078 * pagetables cannot be removed.
1079 */
1080 phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
1081 if (phys_addr < (phys_addr_t)0x40000000)
1082 return;
1083
1084 if (!direct)
1085 free_pagetable(pte_page(*pte), 0);
1086
1087 spin_lock(&init_mm.page_table_lock);
1088 pte_clear(&init_mm, addr, pte);
1089 spin_unlock(&init_mm.page_table_lock);
1090
1091 /* For non-direct mapping, pages means nothing. */
1092 pages++;
1093 }
1094
1095 /* Call free_pte_table() in remove_pmd_table(). */
1096 flush_tlb_all();
1097 if (direct)
1098 update_page_count(PG_LEVEL_4K, -pages);
1099 }
1100
1101 static void __meminit
remove_pmd_table(pmd_t * pmd_start,unsigned long addr,unsigned long end,bool direct,struct vmem_altmap * altmap)1102 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
1103 bool direct, struct vmem_altmap *altmap)
1104 {
1105 unsigned long next, pages = 0;
1106 pte_t *pte_base;
1107 pmd_t *pmd;
1108
1109 pmd = pmd_start + pmd_index(addr);
1110 for (; addr < end; addr = next, pmd++) {
1111 next = pmd_addr_end(addr, end);
1112
1113 if (!pmd_present(*pmd))
1114 continue;
1115
1116 if (pmd_large(*pmd)) {
1117 if (IS_ALIGNED(addr, PMD_SIZE) &&
1118 IS_ALIGNED(next, PMD_SIZE)) {
1119 if (!direct)
1120 free_hugepage_table(pmd_page(*pmd),
1121 altmap);
1122
1123 spin_lock(&init_mm.page_table_lock);
1124 pmd_clear(pmd);
1125 spin_unlock(&init_mm.page_table_lock);
1126 pages++;
1127 }
1128 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1129 else if (vmemmap_pmd_is_unused(addr, next)) {
1130 free_hugepage_table(pmd_page(*pmd),
1131 altmap);
1132 spin_lock(&init_mm.page_table_lock);
1133 pmd_clear(pmd);
1134 spin_unlock(&init_mm.page_table_lock);
1135 }
1136 #endif
1137 continue;
1138 }
1139
1140 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
1141 remove_pte_table(pte_base, addr, next, direct);
1142 free_pte_table(pte_base, pmd);
1143 }
1144
1145 /* Call free_pmd_table() in remove_pud_table(). */
1146 if (direct)
1147 update_page_count(PG_LEVEL_2M, -pages);
1148 }
1149
1150 static void __meminit
remove_pud_table(pud_t * pud_start,unsigned long addr,unsigned long end,struct vmem_altmap * altmap,bool direct)1151 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
1152 struct vmem_altmap *altmap, bool direct)
1153 {
1154 unsigned long next, pages = 0;
1155 pmd_t *pmd_base;
1156 pud_t *pud;
1157
1158 pud = pud_start + pud_index(addr);
1159 for (; addr < end; addr = next, pud++) {
1160 next = pud_addr_end(addr, end);
1161
1162 if (!pud_present(*pud))
1163 continue;
1164
1165 if (pud_large(*pud) &&
1166 IS_ALIGNED(addr, PUD_SIZE) &&
1167 IS_ALIGNED(next, PUD_SIZE)) {
1168 spin_lock(&init_mm.page_table_lock);
1169 pud_clear(pud);
1170 spin_unlock(&init_mm.page_table_lock);
1171 pages++;
1172 continue;
1173 }
1174
1175 pmd_base = pmd_offset(pud, 0);
1176 remove_pmd_table(pmd_base, addr, next, direct, altmap);
1177 free_pmd_table(pmd_base, pud);
1178 }
1179
1180 if (direct)
1181 update_page_count(PG_LEVEL_1G, -pages);
1182 }
1183
1184 static void __meminit
remove_p4d_table(p4d_t * p4d_start,unsigned long addr,unsigned long end,struct vmem_altmap * altmap,bool direct)1185 remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end,
1186 struct vmem_altmap *altmap, bool direct)
1187 {
1188 unsigned long next, pages = 0;
1189 pud_t *pud_base;
1190 p4d_t *p4d;
1191
1192 p4d = p4d_start + p4d_index(addr);
1193 for (; addr < end; addr = next, p4d++) {
1194 next = p4d_addr_end(addr, end);
1195
1196 if (!p4d_present(*p4d))
1197 continue;
1198
1199 BUILD_BUG_ON(p4d_large(*p4d));
1200
1201 pud_base = pud_offset(p4d, 0);
1202 remove_pud_table(pud_base, addr, next, altmap, direct);
1203 /*
1204 * For 4-level page tables we do not want to free PUDs, but in the
1205 * 5-level case we should free them. This code will have to change
1206 * to adapt for boot-time switching between 4 and 5 level page tables.
1207 */
1208 if (pgtable_l5_enabled())
1209 free_pud_table(pud_base, p4d);
1210 }
1211
1212 if (direct)
1213 update_page_count(PG_LEVEL_512G, -pages);
1214 }
1215
1216 /* start and end are both virtual address. */
1217 static void __meminit
remove_pagetable(unsigned long start,unsigned long end,bool direct,struct vmem_altmap * altmap)1218 remove_pagetable(unsigned long start, unsigned long end, bool direct,
1219 struct vmem_altmap *altmap)
1220 {
1221 unsigned long next;
1222 unsigned long addr;
1223 pgd_t *pgd;
1224 p4d_t *p4d;
1225
1226 for (addr = start; addr < end; addr = next) {
1227 next = pgd_addr_end(addr, end);
1228
1229 pgd = pgd_offset_k(addr);
1230 if (!pgd_present(*pgd))
1231 continue;
1232
1233 p4d = p4d_offset(pgd, 0);
1234 remove_p4d_table(p4d, addr, next, altmap, direct);
1235 }
1236
1237 flush_tlb_all();
1238 }
1239
vmemmap_free(unsigned long start,unsigned long end,struct vmem_altmap * altmap)1240 void __ref vmemmap_free(unsigned long start, unsigned long end,
1241 struct vmem_altmap *altmap)
1242 {
1243 VM_BUG_ON(!PAGE_ALIGNED(start));
1244 VM_BUG_ON(!PAGE_ALIGNED(end));
1245
1246 remove_pagetable(start, end, false, altmap);
1247 }
1248
1249 static void __meminit
kernel_physical_mapping_remove(unsigned long start,unsigned long end)1250 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1251 {
1252 start = (unsigned long)__va(start);
1253 end = (unsigned long)__va(end);
1254
1255 remove_pagetable(start, end, true, NULL);
1256 }
1257
arch_remove_memory(u64 start,u64 size,struct vmem_altmap * altmap)1258 void __ref arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
1259 {
1260 unsigned long start_pfn = start >> PAGE_SHIFT;
1261 unsigned long nr_pages = size >> PAGE_SHIFT;
1262
1263 __remove_pages(start_pfn, nr_pages, altmap);
1264 kernel_physical_mapping_remove(start, start + size);
1265 }
1266 #endif /* CONFIG_MEMORY_HOTPLUG */
1267
1268 static struct kcore_list kcore_vsyscall;
1269
register_page_bootmem_info(void)1270 static void __init register_page_bootmem_info(void)
1271 {
1272 #if defined(CONFIG_NUMA) || defined(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP)
1273 int i;
1274
1275 for_each_online_node(i)
1276 register_page_bootmem_info_node(NODE_DATA(i));
1277 #endif
1278 }
1279
1280 /*
1281 * Pre-allocates page-table pages for the vmalloc area in the kernel page-table.
1282 * Only the level which needs to be synchronized between all page-tables is
1283 * allocated because the synchronization can be expensive.
1284 */
preallocate_vmalloc_pages(void)1285 static void __init preallocate_vmalloc_pages(void)
1286 {
1287 unsigned long addr;
1288 const char *lvl;
1289
1290 for (addr = VMALLOC_START; addr <= VMALLOC_END; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
1291 pgd_t *pgd = pgd_offset_k(addr);
1292 p4d_t *p4d;
1293 pud_t *pud;
1294
1295 lvl = "p4d";
1296 p4d = p4d_alloc(&init_mm, pgd, addr);
1297 if (!p4d)
1298 goto failed;
1299
1300 if (pgtable_l5_enabled())
1301 continue;
1302
1303 /*
1304 * The goal here is to allocate all possibly required
1305 * hardware page tables pointed to by the top hardware
1306 * level.
1307 *
1308 * On 4-level systems, the P4D layer is folded away and
1309 * the above code does no preallocation. Below, go down
1310 * to the pud _software_ level to ensure the second
1311 * hardware level is allocated on 4-level systems too.
1312 */
1313 lvl = "pud";
1314 pud = pud_alloc(&init_mm, p4d, addr);
1315 if (!pud)
1316 goto failed;
1317 }
1318
1319 return;
1320
1321 failed:
1322
1323 /*
1324 * The pages have to be there now or they will be missing in
1325 * process page-tables later.
1326 */
1327 panic("Failed to pre-allocate %s pages for vmalloc area\n", lvl);
1328 }
1329
mem_init(void)1330 void __init mem_init(void)
1331 {
1332 pci_iommu_alloc();
1333
1334 /* clear_bss() already clear the empty_zero_page */
1335
1336 /* this will put all memory onto the freelists */
1337 memblock_free_all();
1338 after_bootmem = 1;
1339 x86_init.hyper.init_after_bootmem();
1340
1341 /*
1342 * Must be done after boot memory is put on freelist, because here we
1343 * might set fields in deferred struct pages that have not yet been
1344 * initialized, and memblock_free_all() initializes all the reserved
1345 * deferred pages for us.
1346 */
1347 register_page_bootmem_info();
1348
1349 /* Register memory areas for /proc/kcore */
1350 if (get_gate_vma(&init_mm))
1351 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER);
1352
1353 preallocate_vmalloc_pages();
1354 }
1355
1356 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
deferred_page_init_max_threads(const struct cpumask * node_cpumask)1357 int __init deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1358 {
1359 /*
1360 * More CPUs always led to greater speedups on tested systems, up to
1361 * all the nodes' CPUs. Use all since the system is otherwise idle
1362 * now.
1363 */
1364 return max_t(int, cpumask_weight(node_cpumask), 1);
1365 }
1366 #endif
1367
1368 int kernel_set_to_readonly;
1369
mark_rodata_ro(void)1370 void mark_rodata_ro(void)
1371 {
1372 unsigned long start = PFN_ALIGN(_text);
1373 unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1374 unsigned long end = (unsigned long)__end_rodata_hpage_align;
1375 unsigned long text_end = PFN_ALIGN(_etext);
1376 unsigned long rodata_end = PFN_ALIGN(__end_rodata);
1377 unsigned long all_end;
1378
1379 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1380 (end - start) >> 10);
1381 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1382
1383 kernel_set_to_readonly = 1;
1384
1385 /*
1386 * The rodata/data/bss/brk section (but not the kernel text!)
1387 * should also be not-executable.
1388 *
1389 * We align all_end to PMD_SIZE because the existing mapping
1390 * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1391 * split the PMD and the reminder between _brk_end and the end
1392 * of the PMD will remain mapped executable.
1393 *
1394 * Any PMD which was setup after the one which covers _brk_end
1395 * has been zapped already via cleanup_highmem().
1396 */
1397 all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1398 set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1399
1400 set_ftrace_ops_ro();
1401
1402 #ifdef CONFIG_CPA_DEBUG
1403 printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1404 set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1405
1406 printk(KERN_INFO "Testing CPA: again\n");
1407 set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1408 #endif
1409
1410 free_kernel_image_pages("unused kernel image (text/rodata gap)",
1411 (void *)text_end, (void *)rodata_start);
1412 free_kernel_image_pages("unused kernel image (rodata/data gap)",
1413 (void *)rodata_end, (void *)_sdata);
1414
1415 debug_checkwx();
1416 }
1417
kern_addr_valid(unsigned long addr)1418 int kern_addr_valid(unsigned long addr)
1419 {
1420 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1421 pgd_t *pgd;
1422 p4d_t *p4d;
1423 pud_t *pud;
1424 pmd_t *pmd;
1425 pte_t *pte;
1426
1427 if (above != 0 && above != -1UL)
1428 return 0;
1429
1430 pgd = pgd_offset_k(addr);
1431 if (pgd_none(*pgd))
1432 return 0;
1433
1434 p4d = p4d_offset(pgd, addr);
1435 if (!p4d_present(*p4d))
1436 return 0;
1437
1438 pud = pud_offset(p4d, addr);
1439 if (!pud_present(*pud))
1440 return 0;
1441
1442 if (pud_large(*pud))
1443 return pfn_valid(pud_pfn(*pud));
1444
1445 pmd = pmd_offset(pud, addr);
1446 if (!pmd_present(*pmd))
1447 return 0;
1448
1449 if (pmd_large(*pmd))
1450 return pfn_valid(pmd_pfn(*pmd));
1451
1452 pte = pte_offset_kernel(pmd, addr);
1453 if (pte_none(*pte))
1454 return 0;
1455
1456 return pfn_valid(pte_pfn(*pte));
1457 }
1458
1459 /*
1460 * Block size is the minimum amount of memory which can be hotplugged or
1461 * hotremoved. It must be power of two and must be equal or larger than
1462 * MIN_MEMORY_BLOCK_SIZE.
1463 */
1464 #define MAX_BLOCK_SIZE (2UL << 30)
1465
1466 /* Amount of ram needed to start using large blocks */
1467 #define MEM_SIZE_FOR_LARGE_BLOCK (64UL << 30)
1468
1469 /* Adjustable memory block size */
1470 static unsigned long set_memory_block_size;
set_memory_block_size_order(unsigned int order)1471 int __init set_memory_block_size_order(unsigned int order)
1472 {
1473 unsigned long size = 1UL << order;
1474
1475 if (size > MEM_SIZE_FOR_LARGE_BLOCK || size < MIN_MEMORY_BLOCK_SIZE)
1476 return -EINVAL;
1477
1478 set_memory_block_size = size;
1479 return 0;
1480 }
1481
probe_memory_block_size(void)1482 static unsigned long probe_memory_block_size(void)
1483 {
1484 unsigned long boot_mem_end = max_pfn << PAGE_SHIFT;
1485 unsigned long bz;
1486
1487 /* If memory block size has been set, then use it */
1488 bz = set_memory_block_size;
1489 if (bz)
1490 goto done;
1491
1492 /* Use regular block if RAM is smaller than MEM_SIZE_FOR_LARGE_BLOCK */
1493 if (boot_mem_end < MEM_SIZE_FOR_LARGE_BLOCK) {
1494 bz = MIN_MEMORY_BLOCK_SIZE;
1495 goto done;
1496 }
1497
1498 /*
1499 * Use max block size to minimize overhead on bare metal, where
1500 * alignment for memory hotplug isn't a concern.
1501 */
1502 if (!boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
1503 bz = MAX_BLOCK_SIZE;
1504 goto done;
1505 }
1506
1507 /* Find the largest allowed block size that aligns to memory end */
1508 for (bz = MAX_BLOCK_SIZE; bz > MIN_MEMORY_BLOCK_SIZE; bz >>= 1) {
1509 if (IS_ALIGNED(boot_mem_end, bz))
1510 break;
1511 }
1512 done:
1513 pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
1514
1515 return bz;
1516 }
1517
1518 static unsigned long memory_block_size_probed;
memory_block_size_bytes(void)1519 unsigned long memory_block_size_bytes(void)
1520 {
1521 if (!memory_block_size_probed)
1522 memory_block_size_probed = probe_memory_block_size();
1523
1524 return memory_block_size_probed;
1525 }
1526
1527 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1528 /*
1529 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1530 */
1531 static long __meminitdata addr_start, addr_end;
1532 static void __meminitdata *p_start, *p_end;
1533 static int __meminitdata node_start;
1534
vmemmap_populate_hugepages(unsigned long start,unsigned long end,int node,struct vmem_altmap * altmap)1535 static int __meminit vmemmap_populate_hugepages(unsigned long start,
1536 unsigned long end, int node, struct vmem_altmap *altmap)
1537 {
1538 unsigned long addr;
1539 unsigned long next;
1540 pgd_t *pgd;
1541 p4d_t *p4d;
1542 pud_t *pud;
1543 pmd_t *pmd;
1544
1545 for (addr = start; addr < end; addr = next) {
1546 next = pmd_addr_end(addr, end);
1547
1548 pgd = vmemmap_pgd_populate(addr, node);
1549 if (!pgd)
1550 return -ENOMEM;
1551
1552 p4d = vmemmap_p4d_populate(pgd, addr, node);
1553 if (!p4d)
1554 return -ENOMEM;
1555
1556 pud = vmemmap_pud_populate(p4d, addr, node);
1557 if (!pud)
1558 return -ENOMEM;
1559
1560 pmd = pmd_offset(pud, addr);
1561 if (pmd_none(*pmd)) {
1562 void *p;
1563
1564 p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
1565 if (p) {
1566 pte_t entry;
1567
1568 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1569 PAGE_KERNEL_LARGE);
1570 set_pmd(pmd, __pmd(pte_val(entry)));
1571
1572 /* check to see if we have contiguous blocks */
1573 if (p_end != p || node_start != node) {
1574 if (p_start)
1575 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1576 addr_start, addr_end-1, p_start, p_end-1, node_start);
1577 addr_start = addr;
1578 node_start = node;
1579 p_start = p;
1580 }
1581
1582 addr_end = addr + PMD_SIZE;
1583 p_end = p + PMD_SIZE;
1584
1585 if (!IS_ALIGNED(addr, PMD_SIZE) ||
1586 !IS_ALIGNED(next, PMD_SIZE))
1587 vmemmap_use_new_sub_pmd(addr, next);
1588
1589 continue;
1590 } else if (altmap)
1591 return -ENOMEM; /* no fallback */
1592 } else if (pmd_large(*pmd)) {
1593 vmemmap_verify((pte_t *)pmd, node, addr, next);
1594 vmemmap_use_sub_pmd(addr, next);
1595 continue;
1596 }
1597 if (vmemmap_populate_basepages(addr, next, node, NULL))
1598 return -ENOMEM;
1599 }
1600 return 0;
1601 }
1602
vmemmap_populate(unsigned long start,unsigned long end,int node,struct vmem_altmap * altmap)1603 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1604 struct vmem_altmap *altmap)
1605 {
1606 int err;
1607
1608 VM_BUG_ON(!PAGE_ALIGNED(start));
1609 VM_BUG_ON(!PAGE_ALIGNED(end));
1610
1611 if (end - start < PAGES_PER_SECTION * sizeof(struct page))
1612 err = vmemmap_populate_basepages(start, end, node, NULL);
1613 else if (boot_cpu_has(X86_FEATURE_PSE))
1614 err = vmemmap_populate_hugepages(start, end, node, altmap);
1615 else if (altmap) {
1616 pr_err_once("%s: no cpu support for altmap allocations\n",
1617 __func__);
1618 err = -ENOMEM;
1619 } else
1620 err = vmemmap_populate_basepages(start, end, node, NULL);
1621 if (!err)
1622 sync_global_pgds(start, end - 1);
1623 return err;
1624 }
1625
1626 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
register_page_bootmem_memmap(unsigned long section_nr,struct page * start_page,unsigned long nr_pages)1627 void register_page_bootmem_memmap(unsigned long section_nr,
1628 struct page *start_page, unsigned long nr_pages)
1629 {
1630 unsigned long addr = (unsigned long)start_page;
1631 unsigned long end = (unsigned long)(start_page + nr_pages);
1632 unsigned long next;
1633 pgd_t *pgd;
1634 p4d_t *p4d;
1635 pud_t *pud;
1636 pmd_t *pmd;
1637 unsigned int nr_pmd_pages;
1638 struct page *page;
1639
1640 for (; addr < end; addr = next) {
1641 pte_t *pte = NULL;
1642
1643 pgd = pgd_offset_k(addr);
1644 if (pgd_none(*pgd)) {
1645 next = (addr + PAGE_SIZE) & PAGE_MASK;
1646 continue;
1647 }
1648 get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1649
1650 p4d = p4d_offset(pgd, addr);
1651 if (p4d_none(*p4d)) {
1652 next = (addr + PAGE_SIZE) & PAGE_MASK;
1653 continue;
1654 }
1655 get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO);
1656
1657 pud = pud_offset(p4d, addr);
1658 if (pud_none(*pud)) {
1659 next = (addr + PAGE_SIZE) & PAGE_MASK;
1660 continue;
1661 }
1662 get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1663
1664 if (!boot_cpu_has(X86_FEATURE_PSE)) {
1665 next = (addr + PAGE_SIZE) & PAGE_MASK;
1666 pmd = pmd_offset(pud, addr);
1667 if (pmd_none(*pmd))
1668 continue;
1669 get_page_bootmem(section_nr, pmd_page(*pmd),
1670 MIX_SECTION_INFO);
1671
1672 pte = pte_offset_kernel(pmd, addr);
1673 if (pte_none(*pte))
1674 continue;
1675 get_page_bootmem(section_nr, pte_page(*pte),
1676 SECTION_INFO);
1677 } else {
1678 next = pmd_addr_end(addr, end);
1679
1680 pmd = pmd_offset(pud, addr);
1681 if (pmd_none(*pmd))
1682 continue;
1683
1684 nr_pmd_pages = 1 << get_order(PMD_SIZE);
1685 page = pmd_page(*pmd);
1686 while (nr_pmd_pages--)
1687 get_page_bootmem(section_nr, page++,
1688 SECTION_INFO);
1689 }
1690 }
1691 }
1692 #endif
1693
vmemmap_populate_print_last(void)1694 void __meminit vmemmap_populate_print_last(void)
1695 {
1696 if (p_start) {
1697 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1698 addr_start, addr_end-1, p_start, p_end-1, node_start);
1699 p_start = NULL;
1700 p_end = NULL;
1701 node_start = 0;
1702 }
1703 }
1704 #endif
1705