1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * arch/sparc64/mm/init.c
4 *
5 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
6 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
7 */
8
9 #include <linux/extable.h>
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/string.h>
13 #include <linux/init.h>
14 #include <linux/memblock.h>
15 #include <linux/mm.h>
16 #include <linux/hugetlb.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
21 #include <linux/fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26 #include <linux/ioport.h>
27 #include <linux/percpu.h>
28 #include <linux/mmzone.h>
29 #include <linux/gfp.h>
30 #include <linux/bootmem_info.h>
31
32 #include <asm/head.h>
33 #include <asm/page.h>
34 #include <asm/pgalloc.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <linux/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/setup.h>
52 #include <asm/irq.h>
53
54 #include "init_64.h"
55
56 unsigned long kern_linear_pte_xor[4] __read_mostly;
57 static unsigned long page_cache4v_flag;
58
59 /* A bitmap, two bits for every 256MB of physical memory. These two
60 * bits determine what page size we use for kernel linear
61 * translations. They form an index into kern_linear_pte_xor[]. The
62 * value in the indexed slot is XOR'd with the TLB miss virtual
63 * address to form the resulting TTE. The mapping is:
64 *
65 * 0 ==> 4MB
66 * 1 ==> 256MB
67 * 2 ==> 2GB
68 * 3 ==> 16GB
69 *
70 * All sun4v chips support 256MB pages. Only SPARC-T4 and later
71 * support 2GB pages, and hopefully future cpus will support the 16GB
72 * pages as well. For slots 2 and 3, we encode a 256MB TTE xor there
73 * if these larger page sizes are not supported by the cpu.
74 *
75 * It would be nice to determine this from the machine description
76 * 'cpu' properties, but we need to have this table setup before the
77 * MDESC is initialized.
78 */
79
80 #ifndef CONFIG_DEBUG_PAGEALLOC
81 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
82 * Space is allocated for this right after the trap table in
83 * arch/sparc64/kernel/head.S
84 */
85 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
86 #endif
87 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
88
89 static unsigned long cpu_pgsz_mask;
90
91 #define MAX_BANKS 1024
92
93 static struct linux_prom64_registers pavail[MAX_BANKS];
94 static int pavail_ents;
95
96 u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
97
cmp_p64(const void * a,const void * b)98 static int cmp_p64(const void *a, const void *b)
99 {
100 const struct linux_prom64_registers *x = a, *y = b;
101
102 if (x->phys_addr > y->phys_addr)
103 return 1;
104 if (x->phys_addr < y->phys_addr)
105 return -1;
106 return 0;
107 }
108
read_obp_memory(const char * property,struct linux_prom64_registers * regs,int * num_ents)109 static void __init read_obp_memory(const char *property,
110 struct linux_prom64_registers *regs,
111 int *num_ents)
112 {
113 phandle node = prom_finddevice("/memory");
114 int prop_size = prom_getproplen(node, property);
115 int ents, ret, i;
116
117 ents = prop_size / sizeof(struct linux_prom64_registers);
118 if (ents > MAX_BANKS) {
119 prom_printf("The machine has more %s property entries than "
120 "this kernel can support (%d).\n",
121 property, MAX_BANKS);
122 prom_halt();
123 }
124
125 ret = prom_getproperty(node, property, (char *) regs, prop_size);
126 if (ret == -1) {
127 prom_printf("Couldn't get %s property from /memory.\n",
128 property);
129 prom_halt();
130 }
131
132 /* Sanitize what we got from the firmware, by page aligning
133 * everything.
134 */
135 for (i = 0; i < ents; i++) {
136 unsigned long base, size;
137
138 base = regs[i].phys_addr;
139 size = regs[i].reg_size;
140
141 size &= PAGE_MASK;
142 if (base & ~PAGE_MASK) {
143 unsigned long new_base = PAGE_ALIGN(base);
144
145 size -= new_base - base;
146 if ((long) size < 0L)
147 size = 0UL;
148 base = new_base;
149 }
150 if (size == 0UL) {
151 /* If it is empty, simply get rid of it.
152 * This simplifies the logic of the other
153 * functions that process these arrays.
154 */
155 memmove(®s[i], ®s[i + 1],
156 (ents - i - 1) * sizeof(regs[0]));
157 i--;
158 ents--;
159 continue;
160 }
161 regs[i].phys_addr = base;
162 regs[i].reg_size = size;
163 }
164
165 *num_ents = ents;
166
167 sort(regs, ents, sizeof(struct linux_prom64_registers),
168 cmp_p64, NULL);
169 }
170
171 /* Kernel physical address base and size in bytes. */
172 unsigned long kern_base __read_mostly;
173 unsigned long kern_size __read_mostly;
174
175 /* Initial ramdisk setup */
176 extern unsigned long sparc_ramdisk_image64;
177 extern unsigned int sparc_ramdisk_image;
178 extern unsigned int sparc_ramdisk_size;
179
180 struct page *mem_map_zero __read_mostly;
181 EXPORT_SYMBOL(mem_map_zero);
182
183 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
184
185 unsigned long sparc64_kern_pri_context __read_mostly;
186 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
187 unsigned long sparc64_kern_sec_context __read_mostly;
188
189 int num_kernel_image_mappings;
190
191 #ifdef CONFIG_DEBUG_DCFLUSH
192 atomic_t dcpage_flushes = ATOMIC_INIT(0);
193 #ifdef CONFIG_SMP
194 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
195 #endif
196 #endif
197
flush_dcache_page_impl(struct page * page)198 inline void flush_dcache_page_impl(struct page *page)
199 {
200 BUG_ON(tlb_type == hypervisor);
201 #ifdef CONFIG_DEBUG_DCFLUSH
202 atomic_inc(&dcpage_flushes);
203 #endif
204
205 #ifdef DCACHE_ALIASING_POSSIBLE
206 __flush_dcache_page(page_address(page),
207 ((tlb_type == spitfire) &&
208 page_mapping_file(page) != NULL));
209 #else
210 if (page_mapping_file(page) != NULL &&
211 tlb_type == spitfire)
212 __flush_icache_page(__pa(page_address(page)));
213 #endif
214 }
215
216 #define PG_dcache_dirty PG_arch_1
217 #define PG_dcache_cpu_shift 32UL
218 #define PG_dcache_cpu_mask \
219 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
220
221 #define dcache_dirty_cpu(page) \
222 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
223
set_dcache_dirty(struct page * page,int this_cpu)224 static inline void set_dcache_dirty(struct page *page, int this_cpu)
225 {
226 unsigned long mask = this_cpu;
227 unsigned long non_cpu_bits;
228
229 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
230 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
231
232 __asm__ __volatile__("1:\n\t"
233 "ldx [%2], %%g7\n\t"
234 "and %%g7, %1, %%g1\n\t"
235 "or %%g1, %0, %%g1\n\t"
236 "casx [%2], %%g7, %%g1\n\t"
237 "cmp %%g7, %%g1\n\t"
238 "bne,pn %%xcc, 1b\n\t"
239 " nop"
240 : /* no outputs */
241 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
242 : "g1", "g7");
243 }
244
clear_dcache_dirty_cpu(struct page * page,unsigned long cpu)245 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
246 {
247 unsigned long mask = (1UL << PG_dcache_dirty);
248
249 __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
250 "1:\n\t"
251 "ldx [%2], %%g7\n\t"
252 "srlx %%g7, %4, %%g1\n\t"
253 "and %%g1, %3, %%g1\n\t"
254 "cmp %%g1, %0\n\t"
255 "bne,pn %%icc, 2f\n\t"
256 " andn %%g7, %1, %%g1\n\t"
257 "casx [%2], %%g7, %%g1\n\t"
258 "cmp %%g7, %%g1\n\t"
259 "bne,pn %%xcc, 1b\n\t"
260 " nop\n"
261 "2:"
262 : /* no outputs */
263 : "r" (cpu), "r" (mask), "r" (&page->flags),
264 "i" (PG_dcache_cpu_mask),
265 "i" (PG_dcache_cpu_shift)
266 : "g1", "g7");
267 }
268
tsb_insert(struct tsb * ent,unsigned long tag,unsigned long pte)269 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
270 {
271 unsigned long tsb_addr = (unsigned long) ent;
272
273 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
274 tsb_addr = __pa(tsb_addr);
275
276 __tsb_insert(tsb_addr, tag, pte);
277 }
278
279 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
280
flush_dcache(unsigned long pfn)281 static void flush_dcache(unsigned long pfn)
282 {
283 struct page *page;
284
285 page = pfn_to_page(pfn);
286 if (page) {
287 unsigned long pg_flags;
288
289 pg_flags = page->flags;
290 if (pg_flags & (1UL << PG_dcache_dirty)) {
291 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
292 PG_dcache_cpu_mask);
293 int this_cpu = get_cpu();
294
295 /* This is just to optimize away some function calls
296 * in the SMP case.
297 */
298 if (cpu == this_cpu)
299 flush_dcache_page_impl(page);
300 else
301 smp_flush_dcache_page_impl(page, cpu);
302
303 clear_dcache_dirty_cpu(page, cpu);
304
305 put_cpu();
306 }
307 }
308 }
309
310 /* mm->context.lock must be held */
__update_mmu_tsb_insert(struct mm_struct * mm,unsigned long tsb_index,unsigned long tsb_hash_shift,unsigned long address,unsigned long tte)311 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
312 unsigned long tsb_hash_shift, unsigned long address,
313 unsigned long tte)
314 {
315 struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
316 unsigned long tag;
317
318 if (unlikely(!tsb))
319 return;
320
321 tsb += ((address >> tsb_hash_shift) &
322 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
323 tag = (address >> 22UL);
324 tsb_insert(tsb, tag, tte);
325 }
326
327 #ifdef CONFIG_HUGETLB_PAGE
hugetlbpage_init(void)328 static int __init hugetlbpage_init(void)
329 {
330 hugetlb_add_hstate(HPAGE_64K_SHIFT - PAGE_SHIFT);
331 hugetlb_add_hstate(HPAGE_SHIFT - PAGE_SHIFT);
332 hugetlb_add_hstate(HPAGE_256MB_SHIFT - PAGE_SHIFT);
333 hugetlb_add_hstate(HPAGE_2GB_SHIFT - PAGE_SHIFT);
334
335 return 0;
336 }
337
338 arch_initcall(hugetlbpage_init);
339
pud_huge_patch(void)340 static void __init pud_huge_patch(void)
341 {
342 struct pud_huge_patch_entry *p;
343 unsigned long addr;
344
345 p = &__pud_huge_patch;
346 addr = p->addr;
347 *(unsigned int *)addr = p->insn;
348
349 __asm__ __volatile__("flush %0" : : "r" (addr));
350 }
351
arch_hugetlb_valid_size(unsigned long size)352 bool __init arch_hugetlb_valid_size(unsigned long size)
353 {
354 unsigned int hugepage_shift = ilog2(size);
355 unsigned short hv_pgsz_idx;
356 unsigned int hv_pgsz_mask;
357
358 switch (hugepage_shift) {
359 case HPAGE_16GB_SHIFT:
360 hv_pgsz_mask = HV_PGSZ_MASK_16GB;
361 hv_pgsz_idx = HV_PGSZ_IDX_16GB;
362 pud_huge_patch();
363 break;
364 case HPAGE_2GB_SHIFT:
365 hv_pgsz_mask = HV_PGSZ_MASK_2GB;
366 hv_pgsz_idx = HV_PGSZ_IDX_2GB;
367 break;
368 case HPAGE_256MB_SHIFT:
369 hv_pgsz_mask = HV_PGSZ_MASK_256MB;
370 hv_pgsz_idx = HV_PGSZ_IDX_256MB;
371 break;
372 case HPAGE_SHIFT:
373 hv_pgsz_mask = HV_PGSZ_MASK_4MB;
374 hv_pgsz_idx = HV_PGSZ_IDX_4MB;
375 break;
376 case HPAGE_64K_SHIFT:
377 hv_pgsz_mask = HV_PGSZ_MASK_64K;
378 hv_pgsz_idx = HV_PGSZ_IDX_64K;
379 break;
380 default:
381 hv_pgsz_mask = 0;
382 }
383
384 if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U)
385 return false;
386
387 return true;
388 }
389 #endif /* CONFIG_HUGETLB_PAGE */
390
update_mmu_cache(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)391 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
392 {
393 struct mm_struct *mm;
394 unsigned long flags;
395 bool is_huge_tsb;
396 pte_t pte = *ptep;
397
398 if (tlb_type != hypervisor) {
399 unsigned long pfn = pte_pfn(pte);
400
401 if (pfn_valid(pfn))
402 flush_dcache(pfn);
403 }
404
405 mm = vma->vm_mm;
406
407 /* Don't insert a non-valid PTE into the TSB, we'll deadlock. */
408 if (!pte_accessible(mm, pte))
409 return;
410
411 spin_lock_irqsave(&mm->context.lock, flags);
412
413 is_huge_tsb = false;
414 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
415 if (mm->context.hugetlb_pte_count || mm->context.thp_pte_count) {
416 unsigned long hugepage_size = PAGE_SIZE;
417
418 if (is_vm_hugetlb_page(vma))
419 hugepage_size = huge_page_size(hstate_vma(vma));
420
421 if (hugepage_size >= PUD_SIZE) {
422 unsigned long mask = 0x1ffc00000UL;
423
424 /* Transfer bits [32:22] from address to resolve
425 * at 4M granularity.
426 */
427 pte_val(pte) &= ~mask;
428 pte_val(pte) |= (address & mask);
429 } else if (hugepage_size >= PMD_SIZE) {
430 /* We are fabricating 8MB pages using 4MB
431 * real hw pages.
432 */
433 pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
434 }
435
436 if (hugepage_size >= PMD_SIZE) {
437 __update_mmu_tsb_insert(mm, MM_TSB_HUGE,
438 REAL_HPAGE_SHIFT, address, pte_val(pte));
439 is_huge_tsb = true;
440 }
441 }
442 #endif
443 if (!is_huge_tsb)
444 __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
445 address, pte_val(pte));
446
447 spin_unlock_irqrestore(&mm->context.lock, flags);
448 }
449
flush_dcache_page(struct page * page)450 void flush_dcache_page(struct page *page)
451 {
452 struct address_space *mapping;
453 int this_cpu;
454
455 if (tlb_type == hypervisor)
456 return;
457
458 /* Do not bother with the expensive D-cache flush if it
459 * is merely the zero page. The 'bigcore' testcase in GDB
460 * causes this case to run millions of times.
461 */
462 if (page == ZERO_PAGE(0))
463 return;
464
465 this_cpu = get_cpu();
466
467 mapping = page_mapping_file(page);
468 if (mapping && !mapping_mapped(mapping)) {
469 int dirty = test_bit(PG_dcache_dirty, &page->flags);
470 if (dirty) {
471 int dirty_cpu = dcache_dirty_cpu(page);
472
473 if (dirty_cpu == this_cpu)
474 goto out;
475 smp_flush_dcache_page_impl(page, dirty_cpu);
476 }
477 set_dcache_dirty(page, this_cpu);
478 } else {
479 /* We could delay the flush for the !page_mapping
480 * case too. But that case is for exec env/arg
481 * pages and those are %99 certainly going to get
482 * faulted into the tlb (and thus flushed) anyways.
483 */
484 flush_dcache_page_impl(page);
485 }
486
487 out:
488 put_cpu();
489 }
490 EXPORT_SYMBOL(flush_dcache_page);
491
flush_icache_range(unsigned long start,unsigned long end)492 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
493 {
494 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
495 if (tlb_type == spitfire) {
496 unsigned long kaddr;
497
498 /* This code only runs on Spitfire cpus so this is
499 * why we can assume _PAGE_PADDR_4U.
500 */
501 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
502 unsigned long paddr, mask = _PAGE_PADDR_4U;
503
504 if (kaddr >= PAGE_OFFSET)
505 paddr = kaddr & mask;
506 else {
507 pte_t *ptep = virt_to_kpte(kaddr);
508
509 paddr = pte_val(*ptep) & mask;
510 }
511 __flush_icache_page(paddr);
512 }
513 }
514 }
515 EXPORT_SYMBOL(flush_icache_range);
516
mmu_info(struct seq_file * m)517 void mmu_info(struct seq_file *m)
518 {
519 static const char *pgsz_strings[] = {
520 "8K", "64K", "512K", "4MB", "32MB",
521 "256MB", "2GB", "16GB",
522 };
523 int i, printed;
524
525 if (tlb_type == cheetah)
526 seq_printf(m, "MMU Type\t: Cheetah\n");
527 else if (tlb_type == cheetah_plus)
528 seq_printf(m, "MMU Type\t: Cheetah+\n");
529 else if (tlb_type == spitfire)
530 seq_printf(m, "MMU Type\t: Spitfire\n");
531 else if (tlb_type == hypervisor)
532 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
533 else
534 seq_printf(m, "MMU Type\t: ???\n");
535
536 seq_printf(m, "MMU PGSZs\t: ");
537 printed = 0;
538 for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
539 if (cpu_pgsz_mask & (1UL << i)) {
540 seq_printf(m, "%s%s",
541 printed ? "," : "", pgsz_strings[i]);
542 printed++;
543 }
544 }
545 seq_putc(m, '\n');
546
547 #ifdef CONFIG_DEBUG_DCFLUSH
548 seq_printf(m, "DCPageFlushes\t: %d\n",
549 atomic_read(&dcpage_flushes));
550 #ifdef CONFIG_SMP
551 seq_printf(m, "DCPageFlushesXC\t: %d\n",
552 atomic_read(&dcpage_flushes_xcall));
553 #endif /* CONFIG_SMP */
554 #endif /* CONFIG_DEBUG_DCFLUSH */
555 }
556
557 struct linux_prom_translation prom_trans[512] __read_mostly;
558 unsigned int prom_trans_ents __read_mostly;
559
560 unsigned long kern_locked_tte_data;
561
562 /* The obp translations are saved based on 8k pagesize, since obp can
563 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
564 * HI_OBP_ADDRESS range are handled in ktlb.S.
565 */
in_obp_range(unsigned long vaddr)566 static inline int in_obp_range(unsigned long vaddr)
567 {
568 return (vaddr >= LOW_OBP_ADDRESS &&
569 vaddr < HI_OBP_ADDRESS);
570 }
571
cmp_ptrans(const void * a,const void * b)572 static int cmp_ptrans(const void *a, const void *b)
573 {
574 const struct linux_prom_translation *x = a, *y = b;
575
576 if (x->virt > y->virt)
577 return 1;
578 if (x->virt < y->virt)
579 return -1;
580 return 0;
581 }
582
583 /* Read OBP translations property into 'prom_trans[]'. */
read_obp_translations(void)584 static void __init read_obp_translations(void)
585 {
586 int n, node, ents, first, last, i;
587
588 node = prom_finddevice("/virtual-memory");
589 n = prom_getproplen(node, "translations");
590 if (unlikely(n == 0 || n == -1)) {
591 prom_printf("prom_mappings: Couldn't get size.\n");
592 prom_halt();
593 }
594 if (unlikely(n > sizeof(prom_trans))) {
595 prom_printf("prom_mappings: Size %d is too big.\n", n);
596 prom_halt();
597 }
598
599 if ((n = prom_getproperty(node, "translations",
600 (char *)&prom_trans[0],
601 sizeof(prom_trans))) == -1) {
602 prom_printf("prom_mappings: Couldn't get property.\n");
603 prom_halt();
604 }
605
606 n = n / sizeof(struct linux_prom_translation);
607
608 ents = n;
609
610 sort(prom_trans, ents, sizeof(struct linux_prom_translation),
611 cmp_ptrans, NULL);
612
613 /* Now kick out all the non-OBP entries. */
614 for (i = 0; i < ents; i++) {
615 if (in_obp_range(prom_trans[i].virt))
616 break;
617 }
618 first = i;
619 for (; i < ents; i++) {
620 if (!in_obp_range(prom_trans[i].virt))
621 break;
622 }
623 last = i;
624
625 for (i = 0; i < (last - first); i++) {
626 struct linux_prom_translation *src = &prom_trans[i + first];
627 struct linux_prom_translation *dest = &prom_trans[i];
628
629 *dest = *src;
630 }
631 for (; i < ents; i++) {
632 struct linux_prom_translation *dest = &prom_trans[i];
633 dest->virt = dest->size = dest->data = 0x0UL;
634 }
635
636 prom_trans_ents = last - first;
637
638 if (tlb_type == spitfire) {
639 /* Clear diag TTE bits. */
640 for (i = 0; i < prom_trans_ents; i++)
641 prom_trans[i].data &= ~0x0003fe0000000000UL;
642 }
643
644 /* Force execute bit on. */
645 for (i = 0; i < prom_trans_ents; i++)
646 prom_trans[i].data |= (tlb_type == hypervisor ?
647 _PAGE_EXEC_4V : _PAGE_EXEC_4U);
648 }
649
hypervisor_tlb_lock(unsigned long vaddr,unsigned long pte,unsigned long mmu)650 static void __init hypervisor_tlb_lock(unsigned long vaddr,
651 unsigned long pte,
652 unsigned long mmu)
653 {
654 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
655
656 if (ret != 0) {
657 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
658 "errors with %lx\n", vaddr, 0, pte, mmu, ret);
659 prom_halt();
660 }
661 }
662
663 static unsigned long kern_large_tte(unsigned long paddr);
664
remap_kernel(void)665 static void __init remap_kernel(void)
666 {
667 unsigned long phys_page, tte_vaddr, tte_data;
668 int i, tlb_ent = sparc64_highest_locked_tlbent();
669
670 tte_vaddr = (unsigned long) KERNBASE;
671 phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
672 tte_data = kern_large_tte(phys_page);
673
674 kern_locked_tte_data = tte_data;
675
676 /* Now lock us into the TLBs via Hypervisor or OBP. */
677 if (tlb_type == hypervisor) {
678 for (i = 0; i < num_kernel_image_mappings; i++) {
679 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
680 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
681 tte_vaddr += 0x400000;
682 tte_data += 0x400000;
683 }
684 } else {
685 for (i = 0; i < num_kernel_image_mappings; i++) {
686 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
687 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
688 tte_vaddr += 0x400000;
689 tte_data += 0x400000;
690 }
691 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
692 }
693 if (tlb_type == cheetah_plus) {
694 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
695 CTX_CHEETAH_PLUS_NUC);
696 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
697 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
698 }
699 }
700
701
inherit_prom_mappings(void)702 static void __init inherit_prom_mappings(void)
703 {
704 /* Now fixup OBP's idea about where we really are mapped. */
705 printk("Remapping the kernel... ");
706 remap_kernel();
707 printk("done.\n");
708 }
709
prom_world(int enter)710 void prom_world(int enter)
711 {
712 /*
713 * No need to change the address space any more, just flush
714 * the register windows
715 */
716 __asm__ __volatile__("flushw");
717 }
718
__flush_dcache_range(unsigned long start,unsigned long end)719 void __flush_dcache_range(unsigned long start, unsigned long end)
720 {
721 unsigned long va;
722
723 if (tlb_type == spitfire) {
724 int n = 0;
725
726 for (va = start; va < end; va += 32) {
727 spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
728 if (++n >= 512)
729 break;
730 }
731 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
732 start = __pa(start);
733 end = __pa(end);
734 for (va = start; va < end; va += 32)
735 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
736 "membar #Sync"
737 : /* no outputs */
738 : "r" (va),
739 "i" (ASI_DCACHE_INVALIDATE));
740 }
741 }
742 EXPORT_SYMBOL(__flush_dcache_range);
743
744 /* get_new_mmu_context() uses "cache + 1". */
745 DEFINE_SPINLOCK(ctx_alloc_lock);
746 unsigned long tlb_context_cache = CTX_FIRST_VERSION;
747 #define MAX_CTX_NR (1UL << CTX_NR_BITS)
748 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
749 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
750 DEFINE_PER_CPU(struct mm_struct *, per_cpu_secondary_mm) = {0};
751
mmu_context_wrap(void)752 static void mmu_context_wrap(void)
753 {
754 unsigned long old_ver = tlb_context_cache & CTX_VERSION_MASK;
755 unsigned long new_ver, new_ctx, old_ctx;
756 struct mm_struct *mm;
757 int cpu;
758
759 bitmap_zero(mmu_context_bmap, 1 << CTX_NR_BITS);
760
761 /* Reserve kernel context */
762 set_bit(0, mmu_context_bmap);
763
764 new_ver = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION;
765 if (unlikely(new_ver == 0))
766 new_ver = CTX_FIRST_VERSION;
767 tlb_context_cache = new_ver;
768
769 /*
770 * Make sure that any new mm that are added into per_cpu_secondary_mm,
771 * are going to go through get_new_mmu_context() path.
772 */
773 mb();
774
775 /*
776 * Updated versions to current on those CPUs that had valid secondary
777 * contexts
778 */
779 for_each_online_cpu(cpu) {
780 /*
781 * If a new mm is stored after we took this mm from the array,
782 * it will go into get_new_mmu_context() path, because we
783 * already bumped the version in tlb_context_cache.
784 */
785 mm = per_cpu(per_cpu_secondary_mm, cpu);
786
787 if (unlikely(!mm || mm == &init_mm))
788 continue;
789
790 old_ctx = mm->context.sparc64_ctx_val;
791 if (likely((old_ctx & CTX_VERSION_MASK) == old_ver)) {
792 new_ctx = (old_ctx & ~CTX_VERSION_MASK) | new_ver;
793 set_bit(new_ctx & CTX_NR_MASK, mmu_context_bmap);
794 mm->context.sparc64_ctx_val = new_ctx;
795 }
796 }
797 }
798
799 /* Caller does TLB context flushing on local CPU if necessary.
800 * The caller also ensures that CTX_VALID(mm->context) is false.
801 *
802 * We must be careful about boundary cases so that we never
803 * let the user have CTX 0 (nucleus) or we ever use a CTX
804 * version of zero (and thus NO_CONTEXT would not be caught
805 * by version mis-match tests in mmu_context.h).
806 *
807 * Always invoked with interrupts disabled.
808 */
get_new_mmu_context(struct mm_struct * mm)809 void get_new_mmu_context(struct mm_struct *mm)
810 {
811 unsigned long ctx, new_ctx;
812 unsigned long orig_pgsz_bits;
813
814 spin_lock(&ctx_alloc_lock);
815 retry:
816 /* wrap might have happened, test again if our context became valid */
817 if (unlikely(CTX_VALID(mm->context)))
818 goto out;
819 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
820 ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
821 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
822 if (new_ctx >= (1 << CTX_NR_BITS)) {
823 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
824 if (new_ctx >= ctx) {
825 mmu_context_wrap();
826 goto retry;
827 }
828 }
829 if (mm->context.sparc64_ctx_val)
830 cpumask_clear(mm_cpumask(mm));
831 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
832 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
833 tlb_context_cache = new_ctx;
834 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
835 out:
836 spin_unlock(&ctx_alloc_lock);
837 }
838
839 static int numa_enabled = 1;
840 static int numa_debug;
841
early_numa(char * p)842 static int __init early_numa(char *p)
843 {
844 if (!p)
845 return 0;
846
847 if (strstr(p, "off"))
848 numa_enabled = 0;
849
850 if (strstr(p, "debug"))
851 numa_debug = 1;
852
853 return 0;
854 }
855 early_param("numa", early_numa);
856
857 #define numadbg(f, a...) \
858 do { if (numa_debug) \
859 printk(KERN_INFO f, ## a); \
860 } while (0)
861
find_ramdisk(unsigned long phys_base)862 static void __init find_ramdisk(unsigned long phys_base)
863 {
864 #ifdef CONFIG_BLK_DEV_INITRD
865 if (sparc_ramdisk_image || sparc_ramdisk_image64) {
866 unsigned long ramdisk_image;
867
868 /* Older versions of the bootloader only supported a
869 * 32-bit physical address for the ramdisk image
870 * location, stored at sparc_ramdisk_image. Newer
871 * SILO versions set sparc_ramdisk_image to zero and
872 * provide a full 64-bit physical address at
873 * sparc_ramdisk_image64.
874 */
875 ramdisk_image = sparc_ramdisk_image;
876 if (!ramdisk_image)
877 ramdisk_image = sparc_ramdisk_image64;
878
879 /* Another bootloader quirk. The bootloader normalizes
880 * the physical address to KERNBASE, so we have to
881 * factor that back out and add in the lowest valid
882 * physical page address to get the true physical address.
883 */
884 ramdisk_image -= KERNBASE;
885 ramdisk_image += phys_base;
886
887 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
888 ramdisk_image, sparc_ramdisk_size);
889
890 initrd_start = ramdisk_image;
891 initrd_end = ramdisk_image + sparc_ramdisk_size;
892
893 memblock_reserve(initrd_start, sparc_ramdisk_size);
894
895 initrd_start += PAGE_OFFSET;
896 initrd_end += PAGE_OFFSET;
897 }
898 #endif
899 }
900
901 struct node_mem_mask {
902 unsigned long mask;
903 unsigned long match;
904 };
905 static struct node_mem_mask node_masks[MAX_NUMNODES];
906 static int num_node_masks;
907
908 #ifdef CONFIG_NUMA
909
910 struct mdesc_mlgroup {
911 u64 node;
912 u64 latency;
913 u64 match;
914 u64 mask;
915 };
916
917 static struct mdesc_mlgroup *mlgroups;
918 static int num_mlgroups;
919
920 int numa_cpu_lookup_table[NR_CPUS];
921 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
922
923 struct mdesc_mblock {
924 u64 base;
925 u64 size;
926 u64 offset; /* RA-to-PA */
927 };
928 static struct mdesc_mblock *mblocks;
929 static int num_mblocks;
930
addr_to_mblock(unsigned long addr)931 static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr)
932 {
933 struct mdesc_mblock *m = NULL;
934 int i;
935
936 for (i = 0; i < num_mblocks; i++) {
937 m = &mblocks[i];
938
939 if (addr >= m->base &&
940 addr < (m->base + m->size)) {
941 break;
942 }
943 }
944
945 return m;
946 }
947
memblock_nid_range_sun4u(u64 start,u64 end,int * nid)948 static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid)
949 {
950 int prev_nid, new_nid;
951
952 prev_nid = NUMA_NO_NODE;
953 for ( ; start < end; start += PAGE_SIZE) {
954 for (new_nid = 0; new_nid < num_node_masks; new_nid++) {
955 struct node_mem_mask *p = &node_masks[new_nid];
956
957 if ((start & p->mask) == p->match) {
958 if (prev_nid == NUMA_NO_NODE)
959 prev_nid = new_nid;
960 break;
961 }
962 }
963
964 if (new_nid == num_node_masks) {
965 prev_nid = 0;
966 WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
967 start);
968 break;
969 }
970
971 if (prev_nid != new_nid)
972 break;
973 }
974 *nid = prev_nid;
975
976 return start > end ? end : start;
977 }
978
memblock_nid_range(u64 start,u64 end,int * nid)979 static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
980 {
981 u64 ret_end, pa_start, m_mask, m_match, m_end;
982 struct mdesc_mblock *mblock;
983 int _nid, i;
984
985 if (tlb_type != hypervisor)
986 return memblock_nid_range_sun4u(start, end, nid);
987
988 mblock = addr_to_mblock(start);
989 if (!mblock) {
990 WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
991 start);
992
993 _nid = 0;
994 ret_end = end;
995 goto done;
996 }
997
998 pa_start = start + mblock->offset;
999 m_match = 0;
1000 m_mask = 0;
1001
1002 for (_nid = 0; _nid < num_node_masks; _nid++) {
1003 struct node_mem_mask *const m = &node_masks[_nid];
1004
1005 if ((pa_start & m->mask) == m->match) {
1006 m_match = m->match;
1007 m_mask = m->mask;
1008 break;
1009 }
1010 }
1011
1012 if (num_node_masks == _nid) {
1013 /* We could not find NUMA group, so default to 0, but lets
1014 * search for latency group, so we could calculate the correct
1015 * end address that we return
1016 */
1017 _nid = 0;
1018
1019 for (i = 0; i < num_mlgroups; i++) {
1020 struct mdesc_mlgroup *const m = &mlgroups[i];
1021
1022 if ((pa_start & m->mask) == m->match) {
1023 m_match = m->match;
1024 m_mask = m->mask;
1025 break;
1026 }
1027 }
1028
1029 if (i == num_mlgroups) {
1030 WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
1031 start);
1032
1033 ret_end = end;
1034 goto done;
1035 }
1036 }
1037
1038 /*
1039 * Each latency group has match and mask, and each memory block has an
1040 * offset. An address belongs to a latency group if its address matches
1041 * the following formula: ((addr + offset) & mask) == match
1042 * It is, however, slow to check every single page if it matches a
1043 * particular latency group. As optimization we calculate end value by
1044 * using bit arithmetics.
1045 */
1046 m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset;
1047 m_end += pa_start & ~((1ul << fls64(m_mask)) - 1);
1048 ret_end = m_end > end ? end : m_end;
1049
1050 done:
1051 *nid = _nid;
1052 return ret_end;
1053 }
1054 #endif
1055
1056 /* This must be invoked after performing all of the necessary
1057 * memblock_set_node() calls for 'nid'. We need to be able to get
1058 * correct data from get_pfn_range_for_nid().
1059 */
allocate_node_data(int nid)1060 static void __init allocate_node_data(int nid)
1061 {
1062 struct pglist_data *p;
1063 unsigned long start_pfn, end_pfn;
1064 #ifdef CONFIG_NUMA
1065
1066 NODE_DATA(nid) = memblock_alloc_node(sizeof(struct pglist_data),
1067 SMP_CACHE_BYTES, nid);
1068 if (!NODE_DATA(nid)) {
1069 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
1070 prom_halt();
1071 }
1072
1073 NODE_DATA(nid)->node_id = nid;
1074 #endif
1075
1076 p = NODE_DATA(nid);
1077
1078 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1079 p->node_start_pfn = start_pfn;
1080 p->node_spanned_pages = end_pfn - start_pfn;
1081 }
1082
init_node_masks_nonnuma(void)1083 static void init_node_masks_nonnuma(void)
1084 {
1085 #ifdef CONFIG_NUMA
1086 int i;
1087 #endif
1088
1089 numadbg("Initializing tables for non-numa.\n");
1090
1091 node_masks[0].mask = 0;
1092 node_masks[0].match = 0;
1093 num_node_masks = 1;
1094
1095 #ifdef CONFIG_NUMA
1096 for (i = 0; i < NR_CPUS; i++)
1097 numa_cpu_lookup_table[i] = 0;
1098
1099 cpumask_setall(&numa_cpumask_lookup_table[0]);
1100 #endif
1101 }
1102
1103 #ifdef CONFIG_NUMA
1104 struct pglist_data *node_data[MAX_NUMNODES];
1105
1106 EXPORT_SYMBOL(numa_cpu_lookup_table);
1107 EXPORT_SYMBOL(numa_cpumask_lookup_table);
1108 EXPORT_SYMBOL(node_data);
1109
scan_pio_for_cfg_handle(struct mdesc_handle * md,u64 pio,u32 cfg_handle)1110 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
1111 u32 cfg_handle)
1112 {
1113 u64 arc;
1114
1115 mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
1116 u64 target = mdesc_arc_target(md, arc);
1117 const u64 *val;
1118
1119 val = mdesc_get_property(md, target,
1120 "cfg-handle", NULL);
1121 if (val && *val == cfg_handle)
1122 return 0;
1123 }
1124 return -ENODEV;
1125 }
1126
scan_arcs_for_cfg_handle(struct mdesc_handle * md,u64 grp,u32 cfg_handle)1127 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
1128 u32 cfg_handle)
1129 {
1130 u64 arc, candidate, best_latency = ~(u64)0;
1131
1132 candidate = MDESC_NODE_NULL;
1133 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1134 u64 target = mdesc_arc_target(md, arc);
1135 const char *name = mdesc_node_name(md, target);
1136 const u64 *val;
1137
1138 if (strcmp(name, "pio-latency-group"))
1139 continue;
1140
1141 val = mdesc_get_property(md, target, "latency", NULL);
1142 if (!val)
1143 continue;
1144
1145 if (*val < best_latency) {
1146 candidate = target;
1147 best_latency = *val;
1148 }
1149 }
1150
1151 if (candidate == MDESC_NODE_NULL)
1152 return -ENODEV;
1153
1154 return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
1155 }
1156
of_node_to_nid(struct device_node * dp)1157 int of_node_to_nid(struct device_node *dp)
1158 {
1159 const struct linux_prom64_registers *regs;
1160 struct mdesc_handle *md;
1161 u32 cfg_handle;
1162 int count, nid;
1163 u64 grp;
1164
1165 /* This is the right thing to do on currently supported
1166 * SUN4U NUMA platforms as well, as the PCI controller does
1167 * not sit behind any particular memory controller.
1168 */
1169 if (!mlgroups)
1170 return -1;
1171
1172 regs = of_get_property(dp, "reg", NULL);
1173 if (!regs)
1174 return -1;
1175
1176 cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
1177
1178 md = mdesc_grab();
1179
1180 count = 0;
1181 nid = NUMA_NO_NODE;
1182 mdesc_for_each_node_by_name(md, grp, "group") {
1183 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1184 nid = count;
1185 break;
1186 }
1187 count++;
1188 }
1189
1190 mdesc_release(md);
1191
1192 return nid;
1193 }
1194
add_node_ranges(void)1195 static void __init add_node_ranges(void)
1196 {
1197 phys_addr_t start, end;
1198 unsigned long prev_max;
1199 u64 i;
1200
1201 memblock_resized:
1202 prev_max = memblock.memory.max;
1203
1204 for_each_mem_range(i, &start, &end) {
1205 while (start < end) {
1206 unsigned long this_end;
1207 int nid;
1208
1209 this_end = memblock_nid_range(start, end, &nid);
1210
1211 numadbg("Setting memblock NUMA node nid[%d] "
1212 "start[%llx] end[%lx]\n",
1213 nid, start, this_end);
1214
1215 memblock_set_node(start, this_end - start,
1216 &memblock.memory, nid);
1217 if (memblock.memory.max != prev_max)
1218 goto memblock_resized;
1219 start = this_end;
1220 }
1221 }
1222 }
1223
grab_mlgroups(struct mdesc_handle * md)1224 static int __init grab_mlgroups(struct mdesc_handle *md)
1225 {
1226 unsigned long paddr;
1227 int count = 0;
1228 u64 node;
1229
1230 mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1231 count++;
1232 if (!count)
1233 return -ENOENT;
1234
1235 paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mlgroup),
1236 SMP_CACHE_BYTES);
1237 if (!paddr)
1238 return -ENOMEM;
1239
1240 mlgroups = __va(paddr);
1241 num_mlgroups = count;
1242
1243 count = 0;
1244 mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1245 struct mdesc_mlgroup *m = &mlgroups[count++];
1246 const u64 *val;
1247
1248 m->node = node;
1249
1250 val = mdesc_get_property(md, node, "latency", NULL);
1251 m->latency = *val;
1252 val = mdesc_get_property(md, node, "address-match", NULL);
1253 m->match = *val;
1254 val = mdesc_get_property(md, node, "address-mask", NULL);
1255 m->mask = *val;
1256
1257 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1258 "match[%llx] mask[%llx]\n",
1259 count - 1, m->node, m->latency, m->match, m->mask);
1260 }
1261
1262 return 0;
1263 }
1264
grab_mblocks(struct mdesc_handle * md)1265 static int __init grab_mblocks(struct mdesc_handle *md)
1266 {
1267 unsigned long paddr;
1268 int count = 0;
1269 u64 node;
1270
1271 mdesc_for_each_node_by_name(md, node, "mblock")
1272 count++;
1273 if (!count)
1274 return -ENOENT;
1275
1276 paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mblock),
1277 SMP_CACHE_BYTES);
1278 if (!paddr)
1279 return -ENOMEM;
1280
1281 mblocks = __va(paddr);
1282 num_mblocks = count;
1283
1284 count = 0;
1285 mdesc_for_each_node_by_name(md, node, "mblock") {
1286 struct mdesc_mblock *m = &mblocks[count++];
1287 const u64 *val;
1288
1289 val = mdesc_get_property(md, node, "base", NULL);
1290 m->base = *val;
1291 val = mdesc_get_property(md, node, "size", NULL);
1292 m->size = *val;
1293 val = mdesc_get_property(md, node,
1294 "address-congruence-offset", NULL);
1295
1296 /* The address-congruence-offset property is optional.
1297 * Explicity zero it be identifty this.
1298 */
1299 if (val)
1300 m->offset = *val;
1301 else
1302 m->offset = 0UL;
1303
1304 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1305 count - 1, m->base, m->size, m->offset);
1306 }
1307
1308 return 0;
1309 }
1310
numa_parse_mdesc_group_cpus(struct mdesc_handle * md,u64 grp,cpumask_t * mask)1311 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1312 u64 grp, cpumask_t *mask)
1313 {
1314 u64 arc;
1315
1316 cpumask_clear(mask);
1317
1318 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1319 u64 target = mdesc_arc_target(md, arc);
1320 const char *name = mdesc_node_name(md, target);
1321 const u64 *id;
1322
1323 if (strcmp(name, "cpu"))
1324 continue;
1325 id = mdesc_get_property(md, target, "id", NULL);
1326 if (*id < nr_cpu_ids)
1327 cpumask_set_cpu(*id, mask);
1328 }
1329 }
1330
find_mlgroup(u64 node)1331 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1332 {
1333 int i;
1334
1335 for (i = 0; i < num_mlgroups; i++) {
1336 struct mdesc_mlgroup *m = &mlgroups[i];
1337 if (m->node == node)
1338 return m;
1339 }
1340 return NULL;
1341 }
1342
__node_distance(int from,int to)1343 int __node_distance(int from, int to)
1344 {
1345 if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1346 pr_warn("Returning default NUMA distance value for %d->%d\n",
1347 from, to);
1348 return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1349 }
1350 return numa_latency[from][to];
1351 }
1352 EXPORT_SYMBOL(__node_distance);
1353
find_best_numa_node_for_mlgroup(struct mdesc_mlgroup * grp)1354 static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1355 {
1356 int i;
1357
1358 for (i = 0; i < MAX_NUMNODES; i++) {
1359 struct node_mem_mask *n = &node_masks[i];
1360
1361 if ((grp->mask == n->mask) && (grp->match == n->match))
1362 break;
1363 }
1364 return i;
1365 }
1366
find_numa_latencies_for_group(struct mdesc_handle * md,u64 grp,int index)1367 static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
1368 u64 grp, int index)
1369 {
1370 u64 arc;
1371
1372 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1373 int tnode;
1374 u64 target = mdesc_arc_target(md, arc);
1375 struct mdesc_mlgroup *m = find_mlgroup(target);
1376
1377 if (!m)
1378 continue;
1379 tnode = find_best_numa_node_for_mlgroup(m);
1380 if (tnode == MAX_NUMNODES)
1381 continue;
1382 numa_latency[index][tnode] = m->latency;
1383 }
1384 }
1385
numa_attach_mlgroup(struct mdesc_handle * md,u64 grp,int index)1386 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1387 int index)
1388 {
1389 struct mdesc_mlgroup *candidate = NULL;
1390 u64 arc, best_latency = ~(u64)0;
1391 struct node_mem_mask *n;
1392
1393 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1394 u64 target = mdesc_arc_target(md, arc);
1395 struct mdesc_mlgroup *m = find_mlgroup(target);
1396 if (!m)
1397 continue;
1398 if (m->latency < best_latency) {
1399 candidate = m;
1400 best_latency = m->latency;
1401 }
1402 }
1403 if (!candidate)
1404 return -ENOENT;
1405
1406 if (num_node_masks != index) {
1407 printk(KERN_ERR "Inconsistent NUMA state, "
1408 "index[%d] != num_node_masks[%d]\n",
1409 index, num_node_masks);
1410 return -EINVAL;
1411 }
1412
1413 n = &node_masks[num_node_masks++];
1414
1415 n->mask = candidate->mask;
1416 n->match = candidate->match;
1417
1418 numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
1419 index, n->mask, n->match, candidate->latency);
1420
1421 return 0;
1422 }
1423
numa_parse_mdesc_group(struct mdesc_handle * md,u64 grp,int index)1424 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1425 int index)
1426 {
1427 cpumask_t mask;
1428 int cpu;
1429
1430 numa_parse_mdesc_group_cpus(md, grp, &mask);
1431
1432 for_each_cpu(cpu, &mask)
1433 numa_cpu_lookup_table[cpu] = index;
1434 cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1435
1436 if (numa_debug) {
1437 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1438 for_each_cpu(cpu, &mask)
1439 printk("%d ", cpu);
1440 printk("]\n");
1441 }
1442
1443 return numa_attach_mlgroup(md, grp, index);
1444 }
1445
numa_parse_mdesc(void)1446 static int __init numa_parse_mdesc(void)
1447 {
1448 struct mdesc_handle *md = mdesc_grab();
1449 int i, j, err, count;
1450 u64 node;
1451
1452 node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1453 if (node == MDESC_NODE_NULL) {
1454 mdesc_release(md);
1455 return -ENOENT;
1456 }
1457
1458 err = grab_mblocks(md);
1459 if (err < 0)
1460 goto out;
1461
1462 err = grab_mlgroups(md);
1463 if (err < 0)
1464 goto out;
1465
1466 count = 0;
1467 mdesc_for_each_node_by_name(md, node, "group") {
1468 err = numa_parse_mdesc_group(md, node, count);
1469 if (err < 0)
1470 break;
1471 count++;
1472 }
1473
1474 count = 0;
1475 mdesc_for_each_node_by_name(md, node, "group") {
1476 find_numa_latencies_for_group(md, node, count);
1477 count++;
1478 }
1479
1480 /* Normalize numa latency matrix according to ACPI SLIT spec. */
1481 for (i = 0; i < MAX_NUMNODES; i++) {
1482 u64 self_latency = numa_latency[i][i];
1483
1484 for (j = 0; j < MAX_NUMNODES; j++) {
1485 numa_latency[i][j] =
1486 (numa_latency[i][j] * LOCAL_DISTANCE) /
1487 self_latency;
1488 }
1489 }
1490
1491 add_node_ranges();
1492
1493 for (i = 0; i < num_node_masks; i++) {
1494 allocate_node_data(i);
1495 node_set_online(i);
1496 }
1497
1498 err = 0;
1499 out:
1500 mdesc_release(md);
1501 return err;
1502 }
1503
numa_parse_jbus(void)1504 static int __init numa_parse_jbus(void)
1505 {
1506 unsigned long cpu, index;
1507
1508 /* NUMA node id is encoded in bits 36 and higher, and there is
1509 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1510 */
1511 index = 0;
1512 for_each_present_cpu(cpu) {
1513 numa_cpu_lookup_table[cpu] = index;
1514 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1515 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1516 node_masks[index].match = cpu << 36UL;
1517
1518 index++;
1519 }
1520 num_node_masks = index;
1521
1522 add_node_ranges();
1523
1524 for (index = 0; index < num_node_masks; index++) {
1525 allocate_node_data(index);
1526 node_set_online(index);
1527 }
1528
1529 return 0;
1530 }
1531
numa_parse_sun4u(void)1532 static int __init numa_parse_sun4u(void)
1533 {
1534 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1535 unsigned long ver;
1536
1537 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1538 if ((ver >> 32UL) == __JALAPENO_ID ||
1539 (ver >> 32UL) == __SERRANO_ID)
1540 return numa_parse_jbus();
1541 }
1542 return -1;
1543 }
1544
bootmem_init_numa(void)1545 static int __init bootmem_init_numa(void)
1546 {
1547 int i, j;
1548 int err = -1;
1549
1550 numadbg("bootmem_init_numa()\n");
1551
1552 /* Some sane defaults for numa latency values */
1553 for (i = 0; i < MAX_NUMNODES; i++) {
1554 for (j = 0; j < MAX_NUMNODES; j++)
1555 numa_latency[i][j] = (i == j) ?
1556 LOCAL_DISTANCE : REMOTE_DISTANCE;
1557 }
1558
1559 if (numa_enabled) {
1560 if (tlb_type == hypervisor)
1561 err = numa_parse_mdesc();
1562 else
1563 err = numa_parse_sun4u();
1564 }
1565 return err;
1566 }
1567
1568 #else
1569
bootmem_init_numa(void)1570 static int bootmem_init_numa(void)
1571 {
1572 return -1;
1573 }
1574
1575 #endif
1576
bootmem_init_nonnuma(void)1577 static void __init bootmem_init_nonnuma(void)
1578 {
1579 unsigned long top_of_ram = memblock_end_of_DRAM();
1580 unsigned long total_ram = memblock_phys_mem_size();
1581
1582 numadbg("bootmem_init_nonnuma()\n");
1583
1584 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1585 top_of_ram, total_ram);
1586 printk(KERN_INFO "Memory hole size: %ldMB\n",
1587 (top_of_ram - total_ram) >> 20);
1588
1589 init_node_masks_nonnuma();
1590 memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
1591 allocate_node_data(0);
1592 node_set_online(0);
1593 }
1594
bootmem_init(unsigned long phys_base)1595 static unsigned long __init bootmem_init(unsigned long phys_base)
1596 {
1597 unsigned long end_pfn;
1598
1599 end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1600 max_pfn = max_low_pfn = end_pfn;
1601 min_low_pfn = (phys_base >> PAGE_SHIFT);
1602
1603 if (bootmem_init_numa() < 0)
1604 bootmem_init_nonnuma();
1605
1606 /* Dump memblock with node info. */
1607 memblock_dump_all();
1608
1609 /* XXX cpu notifier XXX */
1610
1611 sparse_init();
1612
1613 return end_pfn;
1614 }
1615
1616 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1617 static int pall_ents __initdata;
1618
1619 static unsigned long max_phys_bits = 40;
1620
kern_addr_valid(unsigned long addr)1621 bool kern_addr_valid(unsigned long addr)
1622 {
1623 pgd_t *pgd;
1624 p4d_t *p4d;
1625 pud_t *pud;
1626 pmd_t *pmd;
1627 pte_t *pte;
1628
1629 if ((long)addr < 0L) {
1630 unsigned long pa = __pa(addr);
1631
1632 if ((pa >> max_phys_bits) != 0UL)
1633 return false;
1634
1635 return pfn_valid(pa >> PAGE_SHIFT);
1636 }
1637
1638 if (addr >= (unsigned long) KERNBASE &&
1639 addr < (unsigned long)&_end)
1640 return true;
1641
1642 pgd = pgd_offset_k(addr);
1643 if (pgd_none(*pgd))
1644 return false;
1645
1646 p4d = p4d_offset(pgd, addr);
1647 if (p4d_none(*p4d))
1648 return false;
1649
1650 pud = pud_offset(p4d, addr);
1651 if (pud_none(*pud))
1652 return false;
1653
1654 if (pud_large(*pud))
1655 return pfn_valid(pud_pfn(*pud));
1656
1657 pmd = pmd_offset(pud, addr);
1658 if (pmd_none(*pmd))
1659 return false;
1660
1661 if (pmd_large(*pmd))
1662 return pfn_valid(pmd_pfn(*pmd));
1663
1664 pte = pte_offset_kernel(pmd, addr);
1665 if (pte_none(*pte))
1666 return false;
1667
1668 return pfn_valid(pte_pfn(*pte));
1669 }
1670 EXPORT_SYMBOL(kern_addr_valid);
1671
kernel_map_hugepud(unsigned long vstart,unsigned long vend,pud_t * pud)1672 static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1673 unsigned long vend,
1674 pud_t *pud)
1675 {
1676 const unsigned long mask16gb = (1UL << 34) - 1UL;
1677 u64 pte_val = vstart;
1678
1679 /* Each PUD is 8GB */
1680 if ((vstart & mask16gb) ||
1681 (vend - vstart <= mask16gb)) {
1682 pte_val ^= kern_linear_pte_xor[2];
1683 pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1684
1685 return vstart + PUD_SIZE;
1686 }
1687
1688 pte_val ^= kern_linear_pte_xor[3];
1689 pte_val |= _PAGE_PUD_HUGE;
1690
1691 vend = vstart + mask16gb + 1UL;
1692 while (vstart < vend) {
1693 pud_val(*pud) = pte_val;
1694
1695 pte_val += PUD_SIZE;
1696 vstart += PUD_SIZE;
1697 pud++;
1698 }
1699 return vstart;
1700 }
1701
kernel_can_map_hugepud(unsigned long vstart,unsigned long vend,bool guard)1702 static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1703 bool guard)
1704 {
1705 if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1706 return true;
1707
1708 return false;
1709 }
1710
kernel_map_hugepmd(unsigned long vstart,unsigned long vend,pmd_t * pmd)1711 static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1712 unsigned long vend,
1713 pmd_t *pmd)
1714 {
1715 const unsigned long mask256mb = (1UL << 28) - 1UL;
1716 const unsigned long mask2gb = (1UL << 31) - 1UL;
1717 u64 pte_val = vstart;
1718
1719 /* Each PMD is 8MB */
1720 if ((vstart & mask256mb) ||
1721 (vend - vstart <= mask256mb)) {
1722 pte_val ^= kern_linear_pte_xor[0];
1723 pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1724
1725 return vstart + PMD_SIZE;
1726 }
1727
1728 if ((vstart & mask2gb) ||
1729 (vend - vstart <= mask2gb)) {
1730 pte_val ^= kern_linear_pte_xor[1];
1731 pte_val |= _PAGE_PMD_HUGE;
1732 vend = vstart + mask256mb + 1UL;
1733 } else {
1734 pte_val ^= kern_linear_pte_xor[2];
1735 pte_val |= _PAGE_PMD_HUGE;
1736 vend = vstart + mask2gb + 1UL;
1737 }
1738
1739 while (vstart < vend) {
1740 pmd_val(*pmd) = pte_val;
1741
1742 pte_val += PMD_SIZE;
1743 vstart += PMD_SIZE;
1744 pmd++;
1745 }
1746
1747 return vstart;
1748 }
1749
kernel_can_map_hugepmd(unsigned long vstart,unsigned long vend,bool guard)1750 static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1751 bool guard)
1752 {
1753 if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1754 return true;
1755
1756 return false;
1757 }
1758
kernel_map_range(unsigned long pstart,unsigned long pend,pgprot_t prot,bool use_huge)1759 static unsigned long __ref kernel_map_range(unsigned long pstart,
1760 unsigned long pend, pgprot_t prot,
1761 bool use_huge)
1762 {
1763 unsigned long vstart = PAGE_OFFSET + pstart;
1764 unsigned long vend = PAGE_OFFSET + pend;
1765 unsigned long alloc_bytes = 0UL;
1766
1767 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1768 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1769 vstart, vend);
1770 prom_halt();
1771 }
1772
1773 while (vstart < vend) {
1774 unsigned long this_end, paddr = __pa(vstart);
1775 pgd_t *pgd = pgd_offset_k(vstart);
1776 p4d_t *p4d;
1777 pud_t *pud;
1778 pmd_t *pmd;
1779 pte_t *pte;
1780
1781 if (pgd_none(*pgd)) {
1782 pud_t *new;
1783
1784 new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1785 PAGE_SIZE);
1786 if (!new)
1787 goto err_alloc;
1788 alloc_bytes += PAGE_SIZE;
1789 pgd_populate(&init_mm, pgd, new);
1790 }
1791
1792 p4d = p4d_offset(pgd, vstart);
1793 if (p4d_none(*p4d)) {
1794 pud_t *new;
1795
1796 new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1797 PAGE_SIZE);
1798 if (!new)
1799 goto err_alloc;
1800 alloc_bytes += PAGE_SIZE;
1801 p4d_populate(&init_mm, p4d, new);
1802 }
1803
1804 pud = pud_offset(p4d, vstart);
1805 if (pud_none(*pud)) {
1806 pmd_t *new;
1807
1808 if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1809 vstart = kernel_map_hugepud(vstart, vend, pud);
1810 continue;
1811 }
1812 new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1813 PAGE_SIZE);
1814 if (!new)
1815 goto err_alloc;
1816 alloc_bytes += PAGE_SIZE;
1817 pud_populate(&init_mm, pud, new);
1818 }
1819
1820 pmd = pmd_offset(pud, vstart);
1821 if (pmd_none(*pmd)) {
1822 pte_t *new;
1823
1824 if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1825 vstart = kernel_map_hugepmd(vstart, vend, pmd);
1826 continue;
1827 }
1828 new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1829 PAGE_SIZE);
1830 if (!new)
1831 goto err_alloc;
1832 alloc_bytes += PAGE_SIZE;
1833 pmd_populate_kernel(&init_mm, pmd, new);
1834 }
1835
1836 pte = pte_offset_kernel(pmd, vstart);
1837 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1838 if (this_end > vend)
1839 this_end = vend;
1840
1841 while (vstart < this_end) {
1842 pte_val(*pte) = (paddr | pgprot_val(prot));
1843
1844 vstart += PAGE_SIZE;
1845 paddr += PAGE_SIZE;
1846 pte++;
1847 }
1848 }
1849
1850 return alloc_bytes;
1851
1852 err_alloc:
1853 panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n",
1854 __func__, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1855 return -ENOMEM;
1856 }
1857
flush_all_kernel_tsbs(void)1858 static void __init flush_all_kernel_tsbs(void)
1859 {
1860 int i;
1861
1862 for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1863 struct tsb *ent = &swapper_tsb[i];
1864
1865 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1866 }
1867 #ifndef CONFIG_DEBUG_PAGEALLOC
1868 for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1869 struct tsb *ent = &swapper_4m_tsb[i];
1870
1871 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1872 }
1873 #endif
1874 }
1875
1876 extern unsigned int kvmap_linear_patch[1];
1877
kernel_physical_mapping_init(void)1878 static void __init kernel_physical_mapping_init(void)
1879 {
1880 unsigned long i, mem_alloced = 0UL;
1881 bool use_huge = true;
1882
1883 #ifdef CONFIG_DEBUG_PAGEALLOC
1884 use_huge = false;
1885 #endif
1886 for (i = 0; i < pall_ents; i++) {
1887 unsigned long phys_start, phys_end;
1888
1889 phys_start = pall[i].phys_addr;
1890 phys_end = phys_start + pall[i].reg_size;
1891
1892 mem_alloced += kernel_map_range(phys_start, phys_end,
1893 PAGE_KERNEL, use_huge);
1894 }
1895
1896 printk("Allocated %ld bytes for kernel page tables.\n",
1897 mem_alloced);
1898
1899 kvmap_linear_patch[0] = 0x01000000; /* nop */
1900 flushi(&kvmap_linear_patch[0]);
1901
1902 flush_all_kernel_tsbs();
1903
1904 __flush_tlb_all();
1905 }
1906
1907 #ifdef CONFIG_DEBUG_PAGEALLOC
__kernel_map_pages(struct page * page,int numpages,int enable)1908 void __kernel_map_pages(struct page *page, int numpages, int enable)
1909 {
1910 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1911 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1912
1913 kernel_map_range(phys_start, phys_end,
1914 (enable ? PAGE_KERNEL : __pgprot(0)), false);
1915
1916 flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1917 PAGE_OFFSET + phys_end);
1918
1919 /* we should perform an IPI and flush all tlbs,
1920 * but that can deadlock->flush only current cpu.
1921 */
1922 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1923 PAGE_OFFSET + phys_end);
1924 }
1925 #endif
1926
find_ecache_flush_span(unsigned long size)1927 unsigned long __init find_ecache_flush_span(unsigned long size)
1928 {
1929 int i;
1930
1931 for (i = 0; i < pavail_ents; i++) {
1932 if (pavail[i].reg_size >= size)
1933 return pavail[i].phys_addr;
1934 }
1935
1936 return ~0UL;
1937 }
1938
1939 unsigned long PAGE_OFFSET;
1940 EXPORT_SYMBOL(PAGE_OFFSET);
1941
1942 unsigned long VMALLOC_END = 0x0000010000000000UL;
1943 EXPORT_SYMBOL(VMALLOC_END);
1944
1945 unsigned long sparc64_va_hole_top = 0xfffff80000000000UL;
1946 unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1947
setup_page_offset(void)1948 static void __init setup_page_offset(void)
1949 {
1950 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1951 /* Cheetah/Panther support a full 64-bit virtual
1952 * address, so we can use all that our page tables
1953 * support.
1954 */
1955 sparc64_va_hole_top = 0xfff0000000000000UL;
1956 sparc64_va_hole_bottom = 0x0010000000000000UL;
1957
1958 max_phys_bits = 42;
1959 } else if (tlb_type == hypervisor) {
1960 switch (sun4v_chip_type) {
1961 case SUN4V_CHIP_NIAGARA1:
1962 case SUN4V_CHIP_NIAGARA2:
1963 /* T1 and T2 support 48-bit virtual addresses. */
1964 sparc64_va_hole_top = 0xffff800000000000UL;
1965 sparc64_va_hole_bottom = 0x0000800000000000UL;
1966
1967 max_phys_bits = 39;
1968 break;
1969 case SUN4V_CHIP_NIAGARA3:
1970 /* T3 supports 48-bit virtual addresses. */
1971 sparc64_va_hole_top = 0xffff800000000000UL;
1972 sparc64_va_hole_bottom = 0x0000800000000000UL;
1973
1974 max_phys_bits = 43;
1975 break;
1976 case SUN4V_CHIP_NIAGARA4:
1977 case SUN4V_CHIP_NIAGARA5:
1978 case SUN4V_CHIP_SPARC64X:
1979 case SUN4V_CHIP_SPARC_M6:
1980 /* T4 and later support 52-bit virtual addresses. */
1981 sparc64_va_hole_top = 0xfff8000000000000UL;
1982 sparc64_va_hole_bottom = 0x0008000000000000UL;
1983 max_phys_bits = 47;
1984 break;
1985 case SUN4V_CHIP_SPARC_M7:
1986 case SUN4V_CHIP_SPARC_SN:
1987 /* M7 and later support 52-bit virtual addresses. */
1988 sparc64_va_hole_top = 0xfff8000000000000UL;
1989 sparc64_va_hole_bottom = 0x0008000000000000UL;
1990 max_phys_bits = 49;
1991 break;
1992 case SUN4V_CHIP_SPARC_M8:
1993 default:
1994 /* M8 and later support 54-bit virtual addresses.
1995 * However, restricting M8 and above VA bits to 53
1996 * as 4-level page table cannot support more than
1997 * 53 VA bits.
1998 */
1999 sparc64_va_hole_top = 0xfff0000000000000UL;
2000 sparc64_va_hole_bottom = 0x0010000000000000UL;
2001 max_phys_bits = 51;
2002 break;
2003 }
2004 }
2005
2006 if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
2007 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
2008 max_phys_bits);
2009 prom_halt();
2010 }
2011
2012 PAGE_OFFSET = sparc64_va_hole_top;
2013 VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
2014 (sparc64_va_hole_bottom >> 2));
2015
2016 pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
2017 PAGE_OFFSET, max_phys_bits);
2018 pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
2019 VMALLOC_START, VMALLOC_END);
2020 pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
2021 VMEMMAP_BASE, VMEMMAP_BASE << 1);
2022 }
2023
tsb_phys_patch(void)2024 static void __init tsb_phys_patch(void)
2025 {
2026 struct tsb_ldquad_phys_patch_entry *pquad;
2027 struct tsb_phys_patch_entry *p;
2028
2029 pquad = &__tsb_ldquad_phys_patch;
2030 while (pquad < &__tsb_ldquad_phys_patch_end) {
2031 unsigned long addr = pquad->addr;
2032
2033 if (tlb_type == hypervisor)
2034 *(unsigned int *) addr = pquad->sun4v_insn;
2035 else
2036 *(unsigned int *) addr = pquad->sun4u_insn;
2037 wmb();
2038 __asm__ __volatile__("flush %0"
2039 : /* no outputs */
2040 : "r" (addr));
2041
2042 pquad++;
2043 }
2044
2045 p = &__tsb_phys_patch;
2046 while (p < &__tsb_phys_patch_end) {
2047 unsigned long addr = p->addr;
2048
2049 *(unsigned int *) addr = p->insn;
2050 wmb();
2051 __asm__ __volatile__("flush %0"
2052 : /* no outputs */
2053 : "r" (addr));
2054
2055 p++;
2056 }
2057 }
2058
2059 /* Don't mark as init, we give this to the Hypervisor. */
2060 #ifndef CONFIG_DEBUG_PAGEALLOC
2061 #define NUM_KTSB_DESCR 2
2062 #else
2063 #define NUM_KTSB_DESCR 1
2064 #endif
2065 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
2066
2067 /* The swapper TSBs are loaded with a base sequence of:
2068 *
2069 * sethi %uhi(SYMBOL), REG1
2070 * sethi %hi(SYMBOL), REG2
2071 * or REG1, %ulo(SYMBOL), REG1
2072 * or REG2, %lo(SYMBOL), REG2
2073 * sllx REG1, 32, REG1
2074 * or REG1, REG2, REG1
2075 *
2076 * When we use physical addressing for the TSB accesses, we patch the
2077 * first four instructions in the above sequence.
2078 */
2079
patch_one_ktsb_phys(unsigned int * start,unsigned int * end,unsigned long pa)2080 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
2081 {
2082 unsigned long high_bits, low_bits;
2083
2084 high_bits = (pa >> 32) & 0xffffffff;
2085 low_bits = (pa >> 0) & 0xffffffff;
2086
2087 while (start < end) {
2088 unsigned int *ia = (unsigned int *)(unsigned long)*start;
2089
2090 ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
2091 __asm__ __volatile__("flush %0" : : "r" (ia));
2092
2093 ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
2094 __asm__ __volatile__("flush %0" : : "r" (ia + 1));
2095
2096 ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
2097 __asm__ __volatile__("flush %0" : : "r" (ia + 2));
2098
2099 ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
2100 __asm__ __volatile__("flush %0" : : "r" (ia + 3));
2101
2102 start++;
2103 }
2104 }
2105
ktsb_phys_patch(void)2106 static void ktsb_phys_patch(void)
2107 {
2108 extern unsigned int __swapper_tsb_phys_patch;
2109 extern unsigned int __swapper_tsb_phys_patch_end;
2110 unsigned long ktsb_pa;
2111
2112 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2113 patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
2114 &__swapper_tsb_phys_patch_end, ktsb_pa);
2115 #ifndef CONFIG_DEBUG_PAGEALLOC
2116 {
2117 extern unsigned int __swapper_4m_tsb_phys_patch;
2118 extern unsigned int __swapper_4m_tsb_phys_patch_end;
2119 ktsb_pa = (kern_base +
2120 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2121 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
2122 &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
2123 }
2124 #endif
2125 }
2126
sun4v_ktsb_init(void)2127 static void __init sun4v_ktsb_init(void)
2128 {
2129 unsigned long ktsb_pa;
2130
2131 /* First KTSB for PAGE_SIZE mappings. */
2132 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2133
2134 switch (PAGE_SIZE) {
2135 case 8 * 1024:
2136 default:
2137 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
2138 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
2139 break;
2140
2141 case 64 * 1024:
2142 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
2143 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
2144 break;
2145
2146 case 512 * 1024:
2147 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
2148 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
2149 break;
2150
2151 case 4 * 1024 * 1024:
2152 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
2153 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
2154 break;
2155 }
2156
2157 ktsb_descr[0].assoc = 1;
2158 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
2159 ktsb_descr[0].ctx_idx = 0;
2160 ktsb_descr[0].tsb_base = ktsb_pa;
2161 ktsb_descr[0].resv = 0;
2162
2163 #ifndef CONFIG_DEBUG_PAGEALLOC
2164 /* Second KTSB for 4MB/256MB/2GB/16GB mappings. */
2165 ktsb_pa = (kern_base +
2166 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2167
2168 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
2169 ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
2170 HV_PGSZ_MASK_256MB |
2171 HV_PGSZ_MASK_2GB |
2172 HV_PGSZ_MASK_16GB) &
2173 cpu_pgsz_mask);
2174 ktsb_descr[1].assoc = 1;
2175 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
2176 ktsb_descr[1].ctx_idx = 0;
2177 ktsb_descr[1].tsb_base = ktsb_pa;
2178 ktsb_descr[1].resv = 0;
2179 #endif
2180 }
2181
sun4v_ktsb_register(void)2182 void sun4v_ktsb_register(void)
2183 {
2184 unsigned long pa, ret;
2185
2186 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
2187
2188 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
2189 if (ret != 0) {
2190 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2191 "errors with %lx\n", pa, ret);
2192 prom_halt();
2193 }
2194 }
2195
sun4u_linear_pte_xor_finalize(void)2196 static void __init sun4u_linear_pte_xor_finalize(void)
2197 {
2198 #ifndef CONFIG_DEBUG_PAGEALLOC
2199 /* This is where we would add Panther support for
2200 * 32MB and 256MB pages.
2201 */
2202 #endif
2203 }
2204
sun4v_linear_pte_xor_finalize(void)2205 static void __init sun4v_linear_pte_xor_finalize(void)
2206 {
2207 unsigned long pagecv_flag;
2208
2209 /* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2210 * enables MCD error. Do not set bit 9 on M7 processor.
2211 */
2212 switch (sun4v_chip_type) {
2213 case SUN4V_CHIP_SPARC_M7:
2214 case SUN4V_CHIP_SPARC_M8:
2215 case SUN4V_CHIP_SPARC_SN:
2216 pagecv_flag = 0x00;
2217 break;
2218 default:
2219 pagecv_flag = _PAGE_CV_4V;
2220 break;
2221 }
2222 #ifndef CONFIG_DEBUG_PAGEALLOC
2223 if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
2224 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2225 PAGE_OFFSET;
2226 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
2227 _PAGE_P_4V | _PAGE_W_4V);
2228 } else {
2229 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2230 }
2231
2232 if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
2233 kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
2234 PAGE_OFFSET;
2235 kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
2236 _PAGE_P_4V | _PAGE_W_4V);
2237 } else {
2238 kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2239 }
2240
2241 if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2242 kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2243 PAGE_OFFSET;
2244 kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2245 _PAGE_P_4V | _PAGE_W_4V);
2246 } else {
2247 kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2248 }
2249 #endif
2250 }
2251
2252 /* paging_init() sets up the page tables */
2253
2254 static unsigned long last_valid_pfn;
2255
2256 static void sun4u_pgprot_init(void);
2257 static void sun4v_pgprot_init(void);
2258
2259 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2260 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2261 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2262 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2263 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2264 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2265
2266 /* We need to exclude reserved regions. This exclusion will include
2267 * vmlinux and initrd. To be more precise the initrd size could be used to
2268 * compute a new lower limit because it is freed later during initialization.
2269 */
reduce_memory(phys_addr_t limit_ram)2270 static void __init reduce_memory(phys_addr_t limit_ram)
2271 {
2272 limit_ram += memblock_reserved_size();
2273 memblock_enforce_memory_limit(limit_ram);
2274 }
2275
paging_init(void)2276 void __init paging_init(void)
2277 {
2278 unsigned long end_pfn, shift, phys_base;
2279 unsigned long real_end, i;
2280
2281 setup_page_offset();
2282
2283 /* These build time checkes make sure that the dcache_dirty_cpu()
2284 * page->flags usage will work.
2285 *
2286 * When a page gets marked as dcache-dirty, we store the
2287 * cpu number starting at bit 32 in the page->flags. Also,
2288 * functions like clear_dcache_dirty_cpu use the cpu mask
2289 * in 13-bit signed-immediate instruction fields.
2290 */
2291
2292 /*
2293 * Page flags must not reach into upper 32 bits that are used
2294 * for the cpu number
2295 */
2296 BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2297
2298 /*
2299 * The bit fields placed in the high range must not reach below
2300 * the 32 bit boundary. Otherwise we cannot place the cpu field
2301 * at the 32 bit boundary.
2302 */
2303 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2304 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2305
2306 BUILD_BUG_ON(NR_CPUS > 4096);
2307
2308 kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2309 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2310
2311 /* Invalidate both kernel TSBs. */
2312 memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2313 #ifndef CONFIG_DEBUG_PAGEALLOC
2314 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2315 #endif
2316
2317 /* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2318 * bit on M7 processor. This is a conflicting usage of the same
2319 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2320 * Detection error on all pages and this will lead to problems
2321 * later. Kernel does not run with MCD enabled and hence rest
2322 * of the required steps to fully configure memory corruption
2323 * detection are not taken. We need to ensure TTE.mcde is not
2324 * set on M7 processor. Compute the value of cacheability
2325 * flag for use later taking this into consideration.
2326 */
2327 switch (sun4v_chip_type) {
2328 case SUN4V_CHIP_SPARC_M7:
2329 case SUN4V_CHIP_SPARC_M8:
2330 case SUN4V_CHIP_SPARC_SN:
2331 page_cache4v_flag = _PAGE_CP_4V;
2332 break;
2333 default:
2334 page_cache4v_flag = _PAGE_CACHE_4V;
2335 break;
2336 }
2337
2338 if (tlb_type == hypervisor)
2339 sun4v_pgprot_init();
2340 else
2341 sun4u_pgprot_init();
2342
2343 if (tlb_type == cheetah_plus ||
2344 tlb_type == hypervisor) {
2345 tsb_phys_patch();
2346 ktsb_phys_patch();
2347 }
2348
2349 if (tlb_type == hypervisor)
2350 sun4v_patch_tlb_handlers();
2351
2352 /* Find available physical memory...
2353 *
2354 * Read it twice in order to work around a bug in openfirmware.
2355 * The call to grab this table itself can cause openfirmware to
2356 * allocate memory, which in turn can take away some space from
2357 * the list of available memory. Reading it twice makes sure
2358 * we really do get the final value.
2359 */
2360 read_obp_translations();
2361 read_obp_memory("reg", &pall[0], &pall_ents);
2362 read_obp_memory("available", &pavail[0], &pavail_ents);
2363 read_obp_memory("available", &pavail[0], &pavail_ents);
2364
2365 phys_base = 0xffffffffffffffffUL;
2366 for (i = 0; i < pavail_ents; i++) {
2367 phys_base = min(phys_base, pavail[i].phys_addr);
2368 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2369 }
2370
2371 memblock_reserve(kern_base, kern_size);
2372
2373 find_ramdisk(phys_base);
2374
2375 if (cmdline_memory_size)
2376 reduce_memory(cmdline_memory_size);
2377
2378 memblock_allow_resize();
2379 memblock_dump_all();
2380
2381 set_bit(0, mmu_context_bmap);
2382
2383 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2384
2385 real_end = (unsigned long)_end;
2386 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2387 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2388 num_kernel_image_mappings);
2389
2390 /* Set kernel pgd to upper alias so physical page computations
2391 * work.
2392 */
2393 init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2394
2395 memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2396
2397 inherit_prom_mappings();
2398
2399 /* Ok, we can use our TLB miss and window trap handlers safely. */
2400 setup_tba();
2401
2402 __flush_tlb_all();
2403
2404 prom_build_devicetree();
2405 of_populate_present_mask();
2406 #ifndef CONFIG_SMP
2407 of_fill_in_cpu_data();
2408 #endif
2409
2410 if (tlb_type == hypervisor) {
2411 sun4v_mdesc_init();
2412 mdesc_populate_present_mask(cpu_all_mask);
2413 #ifndef CONFIG_SMP
2414 mdesc_fill_in_cpu_data(cpu_all_mask);
2415 #endif
2416 mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2417
2418 sun4v_linear_pte_xor_finalize();
2419
2420 sun4v_ktsb_init();
2421 sun4v_ktsb_register();
2422 } else {
2423 unsigned long impl, ver;
2424
2425 cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2426 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2427
2428 __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2429 impl = ((ver >> 32) & 0xffff);
2430 if (impl == PANTHER_IMPL)
2431 cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2432 HV_PGSZ_MASK_256MB);
2433
2434 sun4u_linear_pte_xor_finalize();
2435 }
2436
2437 /* Flush the TLBs and the 4M TSB so that the updated linear
2438 * pte XOR settings are realized for all mappings.
2439 */
2440 __flush_tlb_all();
2441 #ifndef CONFIG_DEBUG_PAGEALLOC
2442 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2443 #endif
2444 __flush_tlb_all();
2445
2446 /* Setup bootmem... */
2447 last_valid_pfn = end_pfn = bootmem_init(phys_base);
2448
2449 kernel_physical_mapping_init();
2450
2451 {
2452 unsigned long max_zone_pfns[MAX_NR_ZONES];
2453
2454 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2455
2456 max_zone_pfns[ZONE_NORMAL] = end_pfn;
2457
2458 free_area_init(max_zone_pfns);
2459 }
2460
2461 printk("Booting Linux...\n");
2462 }
2463
page_in_phys_avail(unsigned long paddr)2464 int page_in_phys_avail(unsigned long paddr)
2465 {
2466 int i;
2467
2468 paddr &= PAGE_MASK;
2469
2470 for (i = 0; i < pavail_ents; i++) {
2471 unsigned long start, end;
2472
2473 start = pavail[i].phys_addr;
2474 end = start + pavail[i].reg_size;
2475
2476 if (paddr >= start && paddr < end)
2477 return 1;
2478 }
2479 if (paddr >= kern_base && paddr < (kern_base + kern_size))
2480 return 1;
2481 #ifdef CONFIG_BLK_DEV_INITRD
2482 if (paddr >= __pa(initrd_start) &&
2483 paddr < __pa(PAGE_ALIGN(initrd_end)))
2484 return 1;
2485 #endif
2486
2487 return 0;
2488 }
2489
register_page_bootmem_info(void)2490 static void __init register_page_bootmem_info(void)
2491 {
2492 #ifdef CONFIG_NUMA
2493 int i;
2494
2495 for_each_online_node(i)
2496 if (NODE_DATA(i)->node_spanned_pages)
2497 register_page_bootmem_info_node(NODE_DATA(i));
2498 #endif
2499 }
mem_init(void)2500 void __init mem_init(void)
2501 {
2502 high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2503
2504 memblock_free_all();
2505
2506 /*
2507 * Must be done after boot memory is put on freelist, because here we
2508 * might set fields in deferred struct pages that have not yet been
2509 * initialized, and memblock_free_all() initializes all the reserved
2510 * deferred pages for us.
2511 */
2512 register_page_bootmem_info();
2513
2514 /*
2515 * Set up the zero page, mark it reserved, so that page count
2516 * is not manipulated when freeing the page from user ptes.
2517 */
2518 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2519 if (mem_map_zero == NULL) {
2520 prom_printf("paging_init: Cannot alloc zero page.\n");
2521 prom_halt();
2522 }
2523 mark_page_reserved(mem_map_zero);
2524
2525
2526 if (tlb_type == cheetah || tlb_type == cheetah_plus)
2527 cheetah_ecache_flush_init();
2528 }
2529
free_initmem(void)2530 void free_initmem(void)
2531 {
2532 unsigned long addr, initend;
2533 int do_free = 1;
2534
2535 /* If the physical memory maps were trimmed by kernel command
2536 * line options, don't even try freeing this initmem stuff up.
2537 * The kernel image could have been in the trimmed out region
2538 * and if so the freeing below will free invalid page structs.
2539 */
2540 if (cmdline_memory_size)
2541 do_free = 0;
2542
2543 /*
2544 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2545 */
2546 addr = PAGE_ALIGN((unsigned long)(__init_begin));
2547 initend = (unsigned long)(__init_end) & PAGE_MASK;
2548 for (; addr < initend; addr += PAGE_SIZE) {
2549 unsigned long page;
2550
2551 page = (addr +
2552 ((unsigned long) __va(kern_base)) -
2553 ((unsigned long) KERNBASE));
2554 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2555
2556 if (do_free)
2557 free_reserved_page(virt_to_page(page));
2558 }
2559 }
2560
2561 pgprot_t PAGE_KERNEL __read_mostly;
2562 EXPORT_SYMBOL(PAGE_KERNEL);
2563
2564 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2565 pgprot_t PAGE_COPY __read_mostly;
2566
2567 pgprot_t PAGE_SHARED __read_mostly;
2568 EXPORT_SYMBOL(PAGE_SHARED);
2569
2570 unsigned long pg_iobits __read_mostly;
2571
2572 unsigned long _PAGE_IE __read_mostly;
2573 EXPORT_SYMBOL(_PAGE_IE);
2574
2575 unsigned long _PAGE_E __read_mostly;
2576 EXPORT_SYMBOL(_PAGE_E);
2577
2578 unsigned long _PAGE_CACHE __read_mostly;
2579 EXPORT_SYMBOL(_PAGE_CACHE);
2580
2581 #ifdef CONFIG_SPARSEMEM_VMEMMAP
vmemmap_populate(unsigned long vstart,unsigned long vend,int node,struct vmem_altmap * altmap)2582 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2583 int node, struct vmem_altmap *altmap)
2584 {
2585 unsigned long pte_base;
2586
2587 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2588 _PAGE_CP_4U | _PAGE_CV_4U |
2589 _PAGE_P_4U | _PAGE_W_4U);
2590 if (tlb_type == hypervisor)
2591 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2592 page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2593
2594 pte_base |= _PAGE_PMD_HUGE;
2595
2596 vstart = vstart & PMD_MASK;
2597 vend = ALIGN(vend, PMD_SIZE);
2598 for (; vstart < vend; vstart += PMD_SIZE) {
2599 pgd_t *pgd = vmemmap_pgd_populate(vstart, node);
2600 unsigned long pte;
2601 p4d_t *p4d;
2602 pud_t *pud;
2603 pmd_t *pmd;
2604
2605 if (!pgd)
2606 return -ENOMEM;
2607
2608 p4d = vmemmap_p4d_populate(pgd, vstart, node);
2609 if (!p4d)
2610 return -ENOMEM;
2611
2612 pud = vmemmap_pud_populate(p4d, vstart, node);
2613 if (!pud)
2614 return -ENOMEM;
2615
2616 pmd = pmd_offset(pud, vstart);
2617 pte = pmd_val(*pmd);
2618 if (!(pte & _PAGE_VALID)) {
2619 void *block = vmemmap_alloc_block(PMD_SIZE, node);
2620
2621 if (!block)
2622 return -ENOMEM;
2623
2624 pmd_val(*pmd) = pte_base | __pa(block);
2625 }
2626 }
2627
2628 return 0;
2629 }
2630
vmemmap_free(unsigned long start,unsigned long end,struct vmem_altmap * altmap)2631 void vmemmap_free(unsigned long start, unsigned long end,
2632 struct vmem_altmap *altmap)
2633 {
2634 }
2635 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2636
prot_init_common(unsigned long page_none,unsigned long page_shared,unsigned long page_copy,unsigned long page_readonly,unsigned long page_exec_bit)2637 static void prot_init_common(unsigned long page_none,
2638 unsigned long page_shared,
2639 unsigned long page_copy,
2640 unsigned long page_readonly,
2641 unsigned long page_exec_bit)
2642 {
2643 PAGE_COPY = __pgprot(page_copy);
2644 PAGE_SHARED = __pgprot(page_shared);
2645
2646 protection_map[0x0] = __pgprot(page_none);
2647 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2648 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2649 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2650 protection_map[0x4] = __pgprot(page_readonly);
2651 protection_map[0x5] = __pgprot(page_readonly);
2652 protection_map[0x6] = __pgprot(page_copy);
2653 protection_map[0x7] = __pgprot(page_copy);
2654 protection_map[0x8] = __pgprot(page_none);
2655 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2656 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2657 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2658 protection_map[0xc] = __pgprot(page_readonly);
2659 protection_map[0xd] = __pgprot(page_readonly);
2660 protection_map[0xe] = __pgprot(page_shared);
2661 protection_map[0xf] = __pgprot(page_shared);
2662 }
2663
sun4u_pgprot_init(void)2664 static void __init sun4u_pgprot_init(void)
2665 {
2666 unsigned long page_none, page_shared, page_copy, page_readonly;
2667 unsigned long page_exec_bit;
2668 int i;
2669
2670 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2671 _PAGE_CACHE_4U | _PAGE_P_4U |
2672 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2673 _PAGE_EXEC_4U);
2674 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2675 _PAGE_CACHE_4U | _PAGE_P_4U |
2676 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2677 _PAGE_EXEC_4U | _PAGE_L_4U);
2678
2679 _PAGE_IE = _PAGE_IE_4U;
2680 _PAGE_E = _PAGE_E_4U;
2681 _PAGE_CACHE = _PAGE_CACHE_4U;
2682
2683 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2684 __ACCESS_BITS_4U | _PAGE_E_4U);
2685
2686 #ifdef CONFIG_DEBUG_PAGEALLOC
2687 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2688 #else
2689 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2690 PAGE_OFFSET;
2691 #endif
2692 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2693 _PAGE_P_4U | _PAGE_W_4U);
2694
2695 for (i = 1; i < 4; i++)
2696 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2697
2698 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2699 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2700 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2701
2702
2703 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2704 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2705 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2706 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2707 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2708 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2709 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2710
2711 page_exec_bit = _PAGE_EXEC_4U;
2712
2713 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2714 page_exec_bit);
2715 }
2716
sun4v_pgprot_init(void)2717 static void __init sun4v_pgprot_init(void)
2718 {
2719 unsigned long page_none, page_shared, page_copy, page_readonly;
2720 unsigned long page_exec_bit;
2721 int i;
2722
2723 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2724 page_cache4v_flag | _PAGE_P_4V |
2725 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2726 _PAGE_EXEC_4V);
2727 PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2728
2729 _PAGE_IE = _PAGE_IE_4V;
2730 _PAGE_E = _PAGE_E_4V;
2731 _PAGE_CACHE = page_cache4v_flag;
2732
2733 #ifdef CONFIG_DEBUG_PAGEALLOC
2734 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2735 #else
2736 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2737 PAGE_OFFSET;
2738 #endif
2739 kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2740 _PAGE_W_4V);
2741
2742 for (i = 1; i < 4; i++)
2743 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2744
2745 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2746 __ACCESS_BITS_4V | _PAGE_E_4V);
2747
2748 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2749 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2750 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2751 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2752
2753 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2754 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2755 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2756 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2757 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2758 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2759 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2760
2761 page_exec_bit = _PAGE_EXEC_4V;
2762
2763 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2764 page_exec_bit);
2765 }
2766
pte_sz_bits(unsigned long sz)2767 unsigned long pte_sz_bits(unsigned long sz)
2768 {
2769 if (tlb_type == hypervisor) {
2770 switch (sz) {
2771 case 8 * 1024:
2772 default:
2773 return _PAGE_SZ8K_4V;
2774 case 64 * 1024:
2775 return _PAGE_SZ64K_4V;
2776 case 512 * 1024:
2777 return _PAGE_SZ512K_4V;
2778 case 4 * 1024 * 1024:
2779 return _PAGE_SZ4MB_4V;
2780 }
2781 } else {
2782 switch (sz) {
2783 case 8 * 1024:
2784 default:
2785 return _PAGE_SZ8K_4U;
2786 case 64 * 1024:
2787 return _PAGE_SZ64K_4U;
2788 case 512 * 1024:
2789 return _PAGE_SZ512K_4U;
2790 case 4 * 1024 * 1024:
2791 return _PAGE_SZ4MB_4U;
2792 }
2793 }
2794 }
2795
mk_pte_io(unsigned long page,pgprot_t prot,int space,unsigned long page_size)2796 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2797 {
2798 pte_t pte;
2799
2800 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
2801 pte_val(pte) |= (((unsigned long)space) << 32);
2802 pte_val(pte) |= pte_sz_bits(page_size);
2803
2804 return pte;
2805 }
2806
kern_large_tte(unsigned long paddr)2807 static unsigned long kern_large_tte(unsigned long paddr)
2808 {
2809 unsigned long val;
2810
2811 val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2812 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2813 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2814 if (tlb_type == hypervisor)
2815 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2816 page_cache4v_flag | _PAGE_P_4V |
2817 _PAGE_EXEC_4V | _PAGE_W_4V);
2818
2819 return val | paddr;
2820 }
2821
2822 /* If not locked, zap it. */
__flush_tlb_all(void)2823 void __flush_tlb_all(void)
2824 {
2825 unsigned long pstate;
2826 int i;
2827
2828 __asm__ __volatile__("flushw\n\t"
2829 "rdpr %%pstate, %0\n\t"
2830 "wrpr %0, %1, %%pstate"
2831 : "=r" (pstate)
2832 : "i" (PSTATE_IE));
2833 if (tlb_type == hypervisor) {
2834 sun4v_mmu_demap_all();
2835 } else if (tlb_type == spitfire) {
2836 for (i = 0; i < 64; i++) {
2837 /* Spitfire Errata #32 workaround */
2838 /* NOTE: Always runs on spitfire, so no
2839 * cheetah+ page size encodings.
2840 */
2841 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2842 "flush %%g6"
2843 : /* No outputs */
2844 : "r" (0),
2845 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2846
2847 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2848 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2849 "membar #Sync"
2850 : /* no outputs */
2851 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2852 spitfire_put_dtlb_data(i, 0x0UL);
2853 }
2854
2855 /* Spitfire Errata #32 workaround */
2856 /* NOTE: Always runs on spitfire, so no
2857 * cheetah+ page size encodings.
2858 */
2859 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2860 "flush %%g6"
2861 : /* No outputs */
2862 : "r" (0),
2863 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2864
2865 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2866 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2867 "membar #Sync"
2868 : /* no outputs */
2869 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2870 spitfire_put_itlb_data(i, 0x0UL);
2871 }
2872 }
2873 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2874 cheetah_flush_dtlb_all();
2875 cheetah_flush_itlb_all();
2876 }
2877 __asm__ __volatile__("wrpr %0, 0, %%pstate"
2878 : : "r" (pstate));
2879 }
2880
pte_alloc_one_kernel(struct mm_struct * mm)2881 pte_t *pte_alloc_one_kernel(struct mm_struct *mm)
2882 {
2883 struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2884 pte_t *pte = NULL;
2885
2886 if (page)
2887 pte = (pte_t *) page_address(page);
2888
2889 return pte;
2890 }
2891
pte_alloc_one(struct mm_struct * mm)2892 pgtable_t pte_alloc_one(struct mm_struct *mm)
2893 {
2894 struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2895 if (!page)
2896 return NULL;
2897 if (!pgtable_pte_page_ctor(page)) {
2898 __free_page(page);
2899 return NULL;
2900 }
2901 return (pte_t *) page_address(page);
2902 }
2903
pte_free_kernel(struct mm_struct * mm,pte_t * pte)2904 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2905 {
2906 free_page((unsigned long)pte);
2907 }
2908
__pte_free(pgtable_t pte)2909 static void __pte_free(pgtable_t pte)
2910 {
2911 struct page *page = virt_to_page(pte);
2912
2913 pgtable_pte_page_dtor(page);
2914 __free_page(page);
2915 }
2916
pte_free(struct mm_struct * mm,pgtable_t pte)2917 void pte_free(struct mm_struct *mm, pgtable_t pte)
2918 {
2919 __pte_free(pte);
2920 }
2921
pgtable_free(void * table,bool is_page)2922 void pgtable_free(void *table, bool is_page)
2923 {
2924 if (is_page)
2925 __pte_free(table);
2926 else
2927 kmem_cache_free(pgtable_cache, table);
2928 }
2929
2930 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
update_mmu_cache_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd)2931 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2932 pmd_t *pmd)
2933 {
2934 unsigned long pte, flags;
2935 struct mm_struct *mm;
2936 pmd_t entry = *pmd;
2937
2938 if (!pmd_large(entry) || !pmd_young(entry))
2939 return;
2940
2941 pte = pmd_val(entry);
2942
2943 /* Don't insert a non-valid PMD into the TSB, we'll deadlock. */
2944 if (!(pte & _PAGE_VALID))
2945 return;
2946
2947 /* We are fabricating 8MB pages using 4MB real hw pages. */
2948 pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2949
2950 mm = vma->vm_mm;
2951
2952 spin_lock_irqsave(&mm->context.lock, flags);
2953
2954 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2955 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2956 addr, pte);
2957
2958 spin_unlock_irqrestore(&mm->context.lock, flags);
2959 }
2960 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2961
2962 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
context_reload(void * __data)2963 static void context_reload(void *__data)
2964 {
2965 struct mm_struct *mm = __data;
2966
2967 if (mm == current->mm)
2968 load_secondary_context(mm);
2969 }
2970
hugetlb_setup(struct pt_regs * regs)2971 void hugetlb_setup(struct pt_regs *regs)
2972 {
2973 struct mm_struct *mm = current->mm;
2974 struct tsb_config *tp;
2975
2976 if (faulthandler_disabled() || !mm) {
2977 const struct exception_table_entry *entry;
2978
2979 entry = search_exception_tables(regs->tpc);
2980 if (entry) {
2981 regs->tpc = entry->fixup;
2982 regs->tnpc = regs->tpc + 4;
2983 return;
2984 }
2985 pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2986 die_if_kernel("HugeTSB in atomic", regs);
2987 }
2988
2989 tp = &mm->context.tsb_block[MM_TSB_HUGE];
2990 if (likely(tp->tsb == NULL))
2991 tsb_grow(mm, MM_TSB_HUGE, 0);
2992
2993 tsb_context_switch(mm);
2994 smp_tsb_sync(mm);
2995
2996 /* On UltraSPARC-III+ and later, configure the second half of
2997 * the Data-TLB for huge pages.
2998 */
2999 if (tlb_type == cheetah_plus) {
3000 bool need_context_reload = false;
3001 unsigned long ctx;
3002
3003 spin_lock_irq(&ctx_alloc_lock);
3004 ctx = mm->context.sparc64_ctx_val;
3005 ctx &= ~CTX_PGSZ_MASK;
3006 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
3007 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
3008
3009 if (ctx != mm->context.sparc64_ctx_val) {
3010 /* When changing the page size fields, we
3011 * must perform a context flush so that no
3012 * stale entries match. This flush must
3013 * occur with the original context register
3014 * settings.
3015 */
3016 do_flush_tlb_mm(mm);
3017
3018 /* Reload the context register of all processors
3019 * also executing in this address space.
3020 */
3021 mm->context.sparc64_ctx_val = ctx;
3022 need_context_reload = true;
3023 }
3024 spin_unlock_irq(&ctx_alloc_lock);
3025
3026 if (need_context_reload)
3027 on_each_cpu(context_reload, mm, 0);
3028 }
3029 }
3030 #endif
3031
3032 static struct resource code_resource = {
3033 .name = "Kernel code",
3034 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3035 };
3036
3037 static struct resource data_resource = {
3038 .name = "Kernel data",
3039 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3040 };
3041
3042 static struct resource bss_resource = {
3043 .name = "Kernel bss",
3044 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3045 };
3046
compute_kern_paddr(void * addr)3047 static inline resource_size_t compute_kern_paddr(void *addr)
3048 {
3049 return (resource_size_t) (addr - KERNBASE + kern_base);
3050 }
3051
kernel_lds_init(void)3052 static void __init kernel_lds_init(void)
3053 {
3054 code_resource.start = compute_kern_paddr(_text);
3055 code_resource.end = compute_kern_paddr(_etext - 1);
3056 data_resource.start = compute_kern_paddr(_etext);
3057 data_resource.end = compute_kern_paddr(_edata - 1);
3058 bss_resource.start = compute_kern_paddr(__bss_start);
3059 bss_resource.end = compute_kern_paddr(_end - 1);
3060 }
3061
report_memory(void)3062 static int __init report_memory(void)
3063 {
3064 int i;
3065 struct resource *res;
3066
3067 kernel_lds_init();
3068
3069 for (i = 0; i < pavail_ents; i++) {
3070 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
3071
3072 if (!res) {
3073 pr_warn("Failed to allocate source.\n");
3074 break;
3075 }
3076
3077 res->name = "System RAM";
3078 res->start = pavail[i].phys_addr;
3079 res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
3080 res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
3081
3082 if (insert_resource(&iomem_resource, res) < 0) {
3083 pr_warn("Resource insertion failed.\n");
3084 break;
3085 }
3086
3087 insert_resource(res, &code_resource);
3088 insert_resource(res, &data_resource);
3089 insert_resource(res, &bss_resource);
3090 }
3091
3092 return 0;
3093 }
3094 arch_initcall(report_memory);
3095
3096 #ifdef CONFIG_SMP
3097 #define do_flush_tlb_kernel_range smp_flush_tlb_kernel_range
3098 #else
3099 #define do_flush_tlb_kernel_range __flush_tlb_kernel_range
3100 #endif
3101
flush_tlb_kernel_range(unsigned long start,unsigned long end)3102 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
3103 {
3104 if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
3105 if (start < LOW_OBP_ADDRESS) {
3106 flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
3107 do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
3108 }
3109 if (end > HI_OBP_ADDRESS) {
3110 flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
3111 do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
3112 }
3113 } else {
3114 flush_tsb_kernel_range(start, end);
3115 do_flush_tlb_kernel_range(start, end);
3116 }
3117 }
3118
copy_user_highpage(struct page * to,struct page * from,unsigned long vaddr,struct vm_area_struct * vma)3119 void copy_user_highpage(struct page *to, struct page *from,
3120 unsigned long vaddr, struct vm_area_struct *vma)
3121 {
3122 char *vfrom, *vto;
3123
3124 vfrom = kmap_atomic(from);
3125 vto = kmap_atomic(to);
3126 copy_user_page(vto, vfrom, vaddr, to);
3127 kunmap_atomic(vto);
3128 kunmap_atomic(vfrom);
3129
3130 /* If this page has ADI enabled, copy over any ADI tags
3131 * as well
3132 */
3133 if (vma->vm_flags & VM_SPARC_ADI) {
3134 unsigned long pfrom, pto, i, adi_tag;
3135
3136 pfrom = page_to_phys(from);
3137 pto = page_to_phys(to);
3138
3139 for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3140 asm volatile("ldxa [%1] %2, %0\n\t"
3141 : "=r" (adi_tag)
3142 : "r" (i), "i" (ASI_MCD_REAL));
3143 asm volatile("stxa %0, [%1] %2\n\t"
3144 :
3145 : "r" (adi_tag), "r" (pto),
3146 "i" (ASI_MCD_REAL));
3147 pto += adi_blksize();
3148 }
3149 asm volatile("membar #Sync\n\t");
3150 }
3151 }
3152 EXPORT_SYMBOL(copy_user_highpage);
3153
copy_highpage(struct page * to,struct page * from)3154 void copy_highpage(struct page *to, struct page *from)
3155 {
3156 char *vfrom, *vto;
3157
3158 vfrom = kmap_atomic(from);
3159 vto = kmap_atomic(to);
3160 copy_page(vto, vfrom);
3161 kunmap_atomic(vto);
3162 kunmap_atomic(vfrom);
3163
3164 /* If this platform is ADI enabled, copy any ADI tags
3165 * as well
3166 */
3167 if (adi_capable()) {
3168 unsigned long pfrom, pto, i, adi_tag;
3169
3170 pfrom = page_to_phys(from);
3171 pto = page_to_phys(to);
3172
3173 for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3174 asm volatile("ldxa [%1] %2, %0\n\t"
3175 : "=r" (adi_tag)
3176 : "r" (i), "i" (ASI_MCD_REAL));
3177 asm volatile("stxa %0, [%1] %2\n\t"
3178 :
3179 : "r" (adi_tag), "r" (pto),
3180 "i" (ASI_MCD_REAL));
3181 pto += adi_blksize();
3182 }
3183 asm volatile("membar #Sync\n\t");
3184 }
3185 }
3186 EXPORT_SYMBOL(copy_highpage);
3187
vm_get_page_prot(unsigned long vm_flags)3188 pgprot_t vm_get_page_prot(unsigned long vm_flags)
3189 {
3190 unsigned long prot = pgprot_val(protection_map[vm_flags &
3191 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]);
3192
3193 if (vm_flags & VM_SPARC_ADI)
3194 prot |= _PAGE_MCD_4V;
3195
3196 return __pgprot(prot);
3197 }
3198 EXPORT_SYMBOL(vm_get_page_prot);
3199