1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4 *
5 * Authors:
6 * Alexander Graf <agraf@suse.de>
7 * Kevin Wolf <mail@kevin-wolf.de>
8 * Paul Mackerras <paulus@samba.org>
9 *
10 * Description:
11 * Functions relating to running KVM on Book 3S processors where
12 * we don't have access to hypervisor mode, and we run the guest
13 * in problem state (user mode).
14 *
15 * This file is derived from arch/powerpc/kvm/44x.c,
16 * by Hollis Blanchard <hollisb@us.ibm.com>.
17 */
18
19 #include <linux/kvm_host.h>
20 #include <linux/export.h>
21 #include <linux/err.h>
22 #include <linux/slab.h>
23
24 #include <asm/reg.h>
25 #include <asm/cputable.h>
26 #include <asm/cacheflush.h>
27 #include <linux/uaccess.h>
28 #include <asm/interrupt.h>
29 #include <asm/io.h>
30 #include <asm/kvm_ppc.h>
31 #include <asm/kvm_book3s.h>
32 #include <asm/mmu_context.h>
33 #include <asm/switch_to.h>
34 #include <asm/firmware.h>
35 #include <asm/setup.h>
36 #include <linux/gfp.h>
37 #include <linux/sched.h>
38 #include <linux/vmalloc.h>
39 #include <linux/highmem.h>
40 #include <linux/module.h>
41 #include <linux/miscdevice.h>
42 #include <asm/asm-prototypes.h>
43 #include <asm/tm.h>
44
45 #include "book3s.h"
46
47 #define CREATE_TRACE_POINTS
48 #include "trace_pr.h"
49
50 /* #define EXIT_DEBUG */
51 /* #define DEBUG_EXT */
52
53 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
54 ulong msr);
55 #ifdef CONFIG_PPC_BOOK3S_64
56 static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac);
57 #endif
58
59 /* Some compatibility defines */
60 #ifdef CONFIG_PPC_BOOK3S_32
61 #define MSR_USER32 MSR_USER
62 #define MSR_USER64 MSR_USER
63 #define HW_PAGE_SIZE PAGE_SIZE
64 #define HPTE_R_M _PAGE_COHERENT
65 #endif
66
kvmppc_is_split_real(struct kvm_vcpu * vcpu)67 static bool kvmppc_is_split_real(struct kvm_vcpu *vcpu)
68 {
69 ulong msr = kvmppc_get_msr(vcpu);
70 return (msr & (MSR_IR|MSR_DR)) == MSR_DR;
71 }
72
kvmppc_fixup_split_real(struct kvm_vcpu * vcpu)73 static void kvmppc_fixup_split_real(struct kvm_vcpu *vcpu)
74 {
75 ulong msr = kvmppc_get_msr(vcpu);
76 ulong pc = kvmppc_get_pc(vcpu);
77
78 /* We are in DR only split real mode */
79 if ((msr & (MSR_IR|MSR_DR)) != MSR_DR)
80 return;
81
82 /* We have not fixed up the guest already */
83 if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK)
84 return;
85
86 /* The code is in fixupable address space */
87 if (pc & SPLIT_HACK_MASK)
88 return;
89
90 vcpu->arch.hflags |= BOOK3S_HFLAG_SPLIT_HACK;
91 kvmppc_set_pc(vcpu, pc | SPLIT_HACK_OFFS);
92 }
93
kvmppc_unfixup_split_real(struct kvm_vcpu * vcpu)94 static void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu)
95 {
96 if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) {
97 ulong pc = kvmppc_get_pc(vcpu);
98 ulong lr = kvmppc_get_lr(vcpu);
99 if ((pc & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)
100 kvmppc_set_pc(vcpu, pc & ~SPLIT_HACK_MASK);
101 if ((lr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)
102 kvmppc_set_lr(vcpu, lr & ~SPLIT_HACK_MASK);
103 vcpu->arch.hflags &= ~BOOK3S_HFLAG_SPLIT_HACK;
104 }
105 }
106
kvmppc_inject_interrupt_pr(struct kvm_vcpu * vcpu,int vec,u64 srr1_flags)107 static void kvmppc_inject_interrupt_pr(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
108 {
109 unsigned long msr, pc, new_msr, new_pc;
110
111 kvmppc_unfixup_split_real(vcpu);
112
113 msr = kvmppc_get_msr(vcpu);
114 pc = kvmppc_get_pc(vcpu);
115 new_msr = vcpu->arch.intr_msr;
116 new_pc = to_book3s(vcpu)->hior + vec;
117
118 #ifdef CONFIG_PPC_BOOK3S_64
119 /* If transactional, change to suspend mode on IRQ delivery */
120 if (MSR_TM_TRANSACTIONAL(msr))
121 new_msr |= MSR_TS_S;
122 else
123 new_msr |= msr & MSR_TS_MASK;
124 #endif
125
126 kvmppc_set_srr0(vcpu, pc);
127 kvmppc_set_srr1(vcpu, (msr & SRR1_MSR_BITS) | srr1_flags);
128 kvmppc_set_pc(vcpu, new_pc);
129 kvmppc_set_msr(vcpu, new_msr);
130 }
131
kvmppc_core_vcpu_load_pr(struct kvm_vcpu * vcpu,int cpu)132 static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu)
133 {
134 #ifdef CONFIG_PPC_BOOK3S_64
135 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
136 memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
137 svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
138 svcpu->in_use = 0;
139 svcpu_put(svcpu);
140
141 /* Disable AIL if supported */
142 if (cpu_has_feature(CPU_FTR_HVMODE)) {
143 if (cpu_has_feature(CPU_FTR_ARCH_207S))
144 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_AIL);
145 if (cpu_has_feature(CPU_FTR_ARCH_300) && (current->thread.fscr & FSCR_SCV))
146 mtspr(SPRN_FSCR, mfspr(SPRN_FSCR) & ~FSCR_SCV);
147 }
148 #endif
149
150 vcpu->cpu = smp_processor_id();
151 #ifdef CONFIG_PPC_BOOK3S_32
152 current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu;
153 #endif
154
155 if (kvmppc_is_split_real(vcpu))
156 kvmppc_fixup_split_real(vcpu);
157
158 kvmppc_restore_tm_pr(vcpu);
159 }
160
kvmppc_core_vcpu_put_pr(struct kvm_vcpu * vcpu)161 static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu)
162 {
163 #ifdef CONFIG_PPC_BOOK3S_64
164 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
165 if (svcpu->in_use) {
166 kvmppc_copy_from_svcpu(vcpu);
167 }
168 memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
169 to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
170 svcpu_put(svcpu);
171
172 /* Enable AIL if supported */
173 if (cpu_has_feature(CPU_FTR_HVMODE)) {
174 if (cpu_has_feature(CPU_FTR_ARCH_207S))
175 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_AIL_3);
176 if (cpu_has_feature(CPU_FTR_ARCH_300) && (current->thread.fscr & FSCR_SCV))
177 mtspr(SPRN_FSCR, mfspr(SPRN_FSCR) | FSCR_SCV);
178 }
179 #endif
180
181 if (kvmppc_is_split_real(vcpu))
182 kvmppc_unfixup_split_real(vcpu);
183
184 kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
185 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
186 kvmppc_save_tm_pr(vcpu);
187
188 vcpu->cpu = -1;
189 }
190
191 /* Copy data needed by real-mode code from vcpu to shadow vcpu */
kvmppc_copy_to_svcpu(struct kvm_vcpu * vcpu)192 void kvmppc_copy_to_svcpu(struct kvm_vcpu *vcpu)
193 {
194 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
195
196 svcpu->gpr[0] = vcpu->arch.regs.gpr[0];
197 svcpu->gpr[1] = vcpu->arch.regs.gpr[1];
198 svcpu->gpr[2] = vcpu->arch.regs.gpr[2];
199 svcpu->gpr[3] = vcpu->arch.regs.gpr[3];
200 svcpu->gpr[4] = vcpu->arch.regs.gpr[4];
201 svcpu->gpr[5] = vcpu->arch.regs.gpr[5];
202 svcpu->gpr[6] = vcpu->arch.regs.gpr[6];
203 svcpu->gpr[7] = vcpu->arch.regs.gpr[7];
204 svcpu->gpr[8] = vcpu->arch.regs.gpr[8];
205 svcpu->gpr[9] = vcpu->arch.regs.gpr[9];
206 svcpu->gpr[10] = vcpu->arch.regs.gpr[10];
207 svcpu->gpr[11] = vcpu->arch.regs.gpr[11];
208 svcpu->gpr[12] = vcpu->arch.regs.gpr[12];
209 svcpu->gpr[13] = vcpu->arch.regs.gpr[13];
210 svcpu->cr = vcpu->arch.regs.ccr;
211 svcpu->xer = vcpu->arch.regs.xer;
212 svcpu->ctr = vcpu->arch.regs.ctr;
213 svcpu->lr = vcpu->arch.regs.link;
214 svcpu->pc = vcpu->arch.regs.nip;
215 #ifdef CONFIG_PPC_BOOK3S_64
216 svcpu->shadow_fscr = vcpu->arch.shadow_fscr;
217 #endif
218 /*
219 * Now also save the current time base value. We use this
220 * to find the guest purr and spurr value.
221 */
222 vcpu->arch.entry_tb = get_tb();
223 vcpu->arch.entry_vtb = get_vtb();
224 if (cpu_has_feature(CPU_FTR_ARCH_207S))
225 vcpu->arch.entry_ic = mfspr(SPRN_IC);
226 svcpu->in_use = true;
227
228 svcpu_put(svcpu);
229 }
230
kvmppc_recalc_shadow_msr(struct kvm_vcpu * vcpu)231 static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
232 {
233 ulong guest_msr = kvmppc_get_msr(vcpu);
234 ulong smsr = guest_msr;
235
236 /* Guest MSR values */
237 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
238 smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE |
239 MSR_TM | MSR_TS_MASK;
240 #else
241 smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE;
242 #endif
243 /* Process MSR values */
244 smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
245 /* External providers the guest reserved */
246 smsr |= (guest_msr & vcpu->arch.guest_owned_ext);
247 /* 64-bit Process MSR values */
248 #ifdef CONFIG_PPC_BOOK3S_64
249 smsr |= MSR_HV;
250 #endif
251 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
252 /*
253 * in guest privileged state, we want to fail all TM transactions.
254 * So disable MSR TM bit so that all tbegin. will be able to be
255 * trapped into host.
256 */
257 if (!(guest_msr & MSR_PR))
258 smsr &= ~MSR_TM;
259 #endif
260 vcpu->arch.shadow_msr = smsr;
261 }
262
263 /* Copy data touched by real-mode code from shadow vcpu back to vcpu */
kvmppc_copy_from_svcpu(struct kvm_vcpu * vcpu)264 void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu)
265 {
266 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
267 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
268 ulong old_msr;
269 #endif
270
271 /*
272 * Maybe we were already preempted and synced the svcpu from
273 * our preempt notifiers. Don't bother touching this svcpu then.
274 */
275 if (!svcpu->in_use)
276 goto out;
277
278 vcpu->arch.regs.gpr[0] = svcpu->gpr[0];
279 vcpu->arch.regs.gpr[1] = svcpu->gpr[1];
280 vcpu->arch.regs.gpr[2] = svcpu->gpr[2];
281 vcpu->arch.regs.gpr[3] = svcpu->gpr[3];
282 vcpu->arch.regs.gpr[4] = svcpu->gpr[4];
283 vcpu->arch.regs.gpr[5] = svcpu->gpr[5];
284 vcpu->arch.regs.gpr[6] = svcpu->gpr[6];
285 vcpu->arch.regs.gpr[7] = svcpu->gpr[7];
286 vcpu->arch.regs.gpr[8] = svcpu->gpr[8];
287 vcpu->arch.regs.gpr[9] = svcpu->gpr[9];
288 vcpu->arch.regs.gpr[10] = svcpu->gpr[10];
289 vcpu->arch.regs.gpr[11] = svcpu->gpr[11];
290 vcpu->arch.regs.gpr[12] = svcpu->gpr[12];
291 vcpu->arch.regs.gpr[13] = svcpu->gpr[13];
292 vcpu->arch.regs.ccr = svcpu->cr;
293 vcpu->arch.regs.xer = svcpu->xer;
294 vcpu->arch.regs.ctr = svcpu->ctr;
295 vcpu->arch.regs.link = svcpu->lr;
296 vcpu->arch.regs.nip = svcpu->pc;
297 vcpu->arch.shadow_srr1 = svcpu->shadow_srr1;
298 vcpu->arch.fault_dar = svcpu->fault_dar;
299 vcpu->arch.fault_dsisr = svcpu->fault_dsisr;
300 vcpu->arch.last_inst = svcpu->last_inst;
301 #ifdef CONFIG_PPC_BOOK3S_64
302 vcpu->arch.shadow_fscr = svcpu->shadow_fscr;
303 #endif
304 /*
305 * Update purr and spurr using time base on exit.
306 */
307 vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb;
308 vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb;
309 to_book3s(vcpu)->vtb += get_vtb() - vcpu->arch.entry_vtb;
310 if (cpu_has_feature(CPU_FTR_ARCH_207S))
311 vcpu->arch.ic += mfspr(SPRN_IC) - vcpu->arch.entry_ic;
312
313 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
314 /*
315 * Unlike other MSR bits, MSR[TS]bits can be changed at guest without
316 * notifying host:
317 * modified by unprivileged instructions like "tbegin"/"tend"/
318 * "tresume"/"tsuspend" in PR KVM guest.
319 *
320 * It is necessary to sync here to calculate a correct shadow_msr.
321 *
322 * privileged guest's tbegin will be failed at present. So we
323 * only take care of problem state guest.
324 */
325 old_msr = kvmppc_get_msr(vcpu);
326 if (unlikely((old_msr & MSR_PR) &&
327 (vcpu->arch.shadow_srr1 & (MSR_TS_MASK)) !=
328 (old_msr & (MSR_TS_MASK)))) {
329 old_msr &= ~(MSR_TS_MASK);
330 old_msr |= (vcpu->arch.shadow_srr1 & (MSR_TS_MASK));
331 kvmppc_set_msr_fast(vcpu, old_msr);
332 kvmppc_recalc_shadow_msr(vcpu);
333 }
334 #endif
335
336 svcpu->in_use = false;
337
338 out:
339 svcpu_put(svcpu);
340 }
341
342 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
kvmppc_save_tm_sprs(struct kvm_vcpu * vcpu)343 void kvmppc_save_tm_sprs(struct kvm_vcpu *vcpu)
344 {
345 tm_enable();
346 vcpu->arch.tfhar = mfspr(SPRN_TFHAR);
347 vcpu->arch.texasr = mfspr(SPRN_TEXASR);
348 vcpu->arch.tfiar = mfspr(SPRN_TFIAR);
349 tm_disable();
350 }
351
kvmppc_restore_tm_sprs(struct kvm_vcpu * vcpu)352 void kvmppc_restore_tm_sprs(struct kvm_vcpu *vcpu)
353 {
354 tm_enable();
355 mtspr(SPRN_TFHAR, vcpu->arch.tfhar);
356 mtspr(SPRN_TEXASR, vcpu->arch.texasr);
357 mtspr(SPRN_TFIAR, vcpu->arch.tfiar);
358 tm_disable();
359 }
360
361 /* loadup math bits which is enabled at kvmppc_get_msr() but not enabled at
362 * hardware.
363 */
kvmppc_handle_lost_math_exts(struct kvm_vcpu * vcpu)364 static void kvmppc_handle_lost_math_exts(struct kvm_vcpu *vcpu)
365 {
366 ulong exit_nr;
367 ulong ext_diff = (kvmppc_get_msr(vcpu) & ~vcpu->arch.guest_owned_ext) &
368 (MSR_FP | MSR_VEC | MSR_VSX);
369
370 if (!ext_diff)
371 return;
372
373 if (ext_diff == MSR_FP)
374 exit_nr = BOOK3S_INTERRUPT_FP_UNAVAIL;
375 else if (ext_diff == MSR_VEC)
376 exit_nr = BOOK3S_INTERRUPT_ALTIVEC;
377 else
378 exit_nr = BOOK3S_INTERRUPT_VSX;
379
380 kvmppc_handle_ext(vcpu, exit_nr, ext_diff);
381 }
382
kvmppc_save_tm_pr(struct kvm_vcpu * vcpu)383 void kvmppc_save_tm_pr(struct kvm_vcpu *vcpu)
384 {
385 if (!(MSR_TM_ACTIVE(kvmppc_get_msr(vcpu)))) {
386 kvmppc_save_tm_sprs(vcpu);
387 return;
388 }
389
390 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
391 kvmppc_giveup_ext(vcpu, MSR_VSX);
392
393 preempt_disable();
394 _kvmppc_save_tm_pr(vcpu, mfmsr());
395 preempt_enable();
396 }
397
kvmppc_restore_tm_pr(struct kvm_vcpu * vcpu)398 void kvmppc_restore_tm_pr(struct kvm_vcpu *vcpu)
399 {
400 if (!MSR_TM_ACTIVE(kvmppc_get_msr(vcpu))) {
401 kvmppc_restore_tm_sprs(vcpu);
402 if (kvmppc_get_msr(vcpu) & MSR_TM) {
403 kvmppc_handle_lost_math_exts(vcpu);
404 if (vcpu->arch.fscr & FSCR_TAR)
405 kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
406 }
407 return;
408 }
409
410 preempt_disable();
411 _kvmppc_restore_tm_pr(vcpu, kvmppc_get_msr(vcpu));
412 preempt_enable();
413
414 if (kvmppc_get_msr(vcpu) & MSR_TM) {
415 kvmppc_handle_lost_math_exts(vcpu);
416 if (vcpu->arch.fscr & FSCR_TAR)
417 kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
418 }
419 }
420 #endif
421
kvmppc_core_check_requests_pr(struct kvm_vcpu * vcpu)422 static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu)
423 {
424 int r = 1; /* Indicate we want to get back into the guest */
425
426 /* We misuse TLB_FLUSH to indicate that we want to clear
427 all shadow cache entries */
428 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
429 kvmppc_mmu_pte_flush(vcpu, 0, 0);
430
431 return r;
432 }
433
434 /************* MMU Notifiers *************/
do_kvm_unmap_gfn(struct kvm * kvm,struct kvm_gfn_range * range)435 static bool do_kvm_unmap_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
436 {
437 unsigned long i;
438 struct kvm_vcpu *vcpu;
439
440 kvm_for_each_vcpu(i, vcpu, kvm)
441 kvmppc_mmu_pte_pflush(vcpu, range->start << PAGE_SHIFT,
442 range->end << PAGE_SHIFT);
443
444 return false;
445 }
446
kvm_unmap_gfn_range_pr(struct kvm * kvm,struct kvm_gfn_range * range)447 static bool kvm_unmap_gfn_range_pr(struct kvm *kvm, struct kvm_gfn_range *range)
448 {
449 return do_kvm_unmap_gfn(kvm, range);
450 }
451
kvm_age_gfn_pr(struct kvm * kvm,struct kvm_gfn_range * range)452 static bool kvm_age_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range)
453 {
454 /* XXX could be more clever ;) */
455 return false;
456 }
457
kvm_test_age_gfn_pr(struct kvm * kvm,struct kvm_gfn_range * range)458 static bool kvm_test_age_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range)
459 {
460 /* XXX could be more clever ;) */
461 return false;
462 }
463
kvm_set_spte_gfn_pr(struct kvm * kvm,struct kvm_gfn_range * range)464 static bool kvm_set_spte_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range)
465 {
466 /* The page will get remapped properly on its next fault */
467 return do_kvm_unmap_gfn(kvm, range);
468 }
469
470 /*****************************************/
471
kvmppc_set_msr_pr(struct kvm_vcpu * vcpu,u64 msr)472 static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr)
473 {
474 ulong old_msr;
475
476 /* For PAPR guest, make sure MSR reflects guest mode */
477 if (vcpu->arch.papr_enabled)
478 msr = (msr & ~MSR_HV) | MSR_ME;
479
480 #ifdef EXIT_DEBUG
481 printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
482 #endif
483
484 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
485 /* We should never target guest MSR to TS=10 && PR=0,
486 * since we always fail transaction for guest privilege
487 * state.
488 */
489 if (!(msr & MSR_PR) && MSR_TM_TRANSACTIONAL(msr))
490 kvmppc_emulate_tabort(vcpu,
491 TM_CAUSE_KVM_FAC_UNAV | TM_CAUSE_PERSISTENT);
492 #endif
493
494 old_msr = kvmppc_get_msr(vcpu);
495 msr &= to_book3s(vcpu)->msr_mask;
496 kvmppc_set_msr_fast(vcpu, msr);
497 kvmppc_recalc_shadow_msr(vcpu);
498
499 if (msr & MSR_POW) {
500 if (!vcpu->arch.pending_exceptions) {
501 kvm_vcpu_halt(vcpu);
502 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
503 vcpu->stat.generic.halt_wakeup++;
504
505 /* Unset POW bit after we woke up */
506 msr &= ~MSR_POW;
507 kvmppc_set_msr_fast(vcpu, msr);
508 }
509 }
510
511 if (kvmppc_is_split_real(vcpu))
512 kvmppc_fixup_split_real(vcpu);
513 else
514 kvmppc_unfixup_split_real(vcpu);
515
516 if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) !=
517 (old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
518 kvmppc_mmu_flush_segments(vcpu);
519 kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
520
521 /* Preload magic page segment when in kernel mode */
522 if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
523 struct kvm_vcpu_arch *a = &vcpu->arch;
524
525 if (msr & MSR_DR)
526 kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
527 else
528 kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
529 }
530 }
531
532 /*
533 * When switching from 32 to 64-bit, we may have a stale 32-bit
534 * magic page around, we need to flush it. Typically 32-bit magic
535 * page will be instantiated when calling into RTAS. Note: We
536 * assume that such transition only happens while in kernel mode,
537 * ie, we never transition from user 32-bit to kernel 64-bit with
538 * a 32-bit magic page around.
539 */
540 if (vcpu->arch.magic_page_pa &&
541 !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) {
542 /* going from RTAS to normal kernel code */
543 kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa,
544 ~0xFFFUL);
545 }
546
547 /* Preload FPU if it's enabled */
548 if (kvmppc_get_msr(vcpu) & MSR_FP)
549 kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
550
551 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
552 if (kvmppc_get_msr(vcpu) & MSR_TM)
553 kvmppc_handle_lost_math_exts(vcpu);
554 #endif
555 }
556
kvmppc_set_pvr_pr(struct kvm_vcpu * vcpu,u32 pvr)557 static void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr)
558 {
559 u32 host_pvr;
560
561 vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
562 vcpu->arch.pvr = pvr;
563 #ifdef CONFIG_PPC_BOOK3S_64
564 if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
565 kvmppc_mmu_book3s_64_init(vcpu);
566 if (!to_book3s(vcpu)->hior_explicit)
567 to_book3s(vcpu)->hior = 0xfff00000;
568 to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
569 vcpu->arch.cpu_type = KVM_CPU_3S_64;
570 } else
571 #endif
572 {
573 kvmppc_mmu_book3s_32_init(vcpu);
574 if (!to_book3s(vcpu)->hior_explicit)
575 to_book3s(vcpu)->hior = 0;
576 to_book3s(vcpu)->msr_mask = 0xffffffffULL;
577 vcpu->arch.cpu_type = KVM_CPU_3S_32;
578 }
579
580 kvmppc_sanity_check(vcpu);
581
582 /* If we are in hypervisor level on 970, we can tell the CPU to
583 * treat DCBZ as 32 bytes store */
584 vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
585 if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
586 !strcmp(cur_cpu_spec->platform, "ppc970"))
587 vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
588
589 /* Cell performs badly if MSR_FEx are set. So let's hope nobody
590 really needs them in a VM on Cell and force disable them. */
591 if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
592 to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);
593
594 /*
595 * If they're asking for POWER6 or later, set the flag
596 * indicating that we can do multiple large page sizes
597 * and 1TB segments.
598 * Also set the flag that indicates that tlbie has the large
599 * page bit in the RB operand instead of the instruction.
600 */
601 switch (PVR_VER(pvr)) {
602 case PVR_POWER6:
603 case PVR_POWER7:
604 case PVR_POWER7p:
605 case PVR_POWER8:
606 case PVR_POWER8E:
607 case PVR_POWER8NVL:
608 case PVR_POWER9:
609 vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE |
610 BOOK3S_HFLAG_NEW_TLBIE;
611 break;
612 }
613
614 #ifdef CONFIG_PPC_BOOK3S_32
615 /* 32 bit Book3S always has 32 byte dcbz */
616 vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
617 #endif
618
619 /* On some CPUs we can execute paired single operations natively */
620 asm ( "mfpvr %0" : "=r"(host_pvr));
621 switch (host_pvr) {
622 case 0x00080200: /* lonestar 2.0 */
623 case 0x00088202: /* lonestar 2.2 */
624 case 0x70000100: /* gekko 1.0 */
625 case 0x00080100: /* gekko 2.0 */
626 case 0x00083203: /* gekko 2.3a */
627 case 0x00083213: /* gekko 2.3b */
628 case 0x00083204: /* gekko 2.4 */
629 case 0x00083214: /* gekko 2.4e (8SE) - retail HW2 */
630 case 0x00087200: /* broadway */
631 vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
632 /* Enable HID2.PSE - in case we need it later */
633 mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
634 }
635 }
636
637 /* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
638 * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
639 * emulate 32 bytes dcbz length.
640 *
641 * The Book3s_64 inventors also realized this case and implemented a special bit
642 * in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
643 *
644 * My approach here is to patch the dcbz instruction on executing pages.
645 */
kvmppc_patch_dcbz(struct kvm_vcpu * vcpu,struct kvmppc_pte * pte)646 static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
647 {
648 struct page *hpage;
649 u64 hpage_offset;
650 u32 *page;
651 int i;
652
653 hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
654 if (is_error_page(hpage))
655 return;
656
657 hpage_offset = pte->raddr & ~PAGE_MASK;
658 hpage_offset &= ~0xFFFULL;
659 hpage_offset /= 4;
660
661 get_page(hpage);
662 page = kmap_atomic(hpage);
663
664 /* patch dcbz into reserved instruction, so we trap */
665 for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
666 if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ)
667 page[i] &= cpu_to_be32(0xfffffff7);
668
669 kunmap_atomic(page);
670 put_page(hpage);
671 }
672
kvmppc_visible_gpa(struct kvm_vcpu * vcpu,gpa_t gpa)673 static bool kvmppc_visible_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
674 {
675 ulong mp_pa = vcpu->arch.magic_page_pa;
676
677 if (!(kvmppc_get_msr(vcpu) & MSR_SF))
678 mp_pa = (uint32_t)mp_pa;
679
680 gpa &= ~0xFFFULL;
681 if (unlikely(mp_pa) && unlikely((mp_pa & KVM_PAM) == (gpa & KVM_PAM))) {
682 return true;
683 }
684
685 return kvm_is_visible_gfn(vcpu->kvm, gpa >> PAGE_SHIFT);
686 }
687
kvmppc_handle_pagefault(struct kvm_vcpu * vcpu,ulong eaddr,int vec)688 static int kvmppc_handle_pagefault(struct kvm_vcpu *vcpu,
689 ulong eaddr, int vec)
690 {
691 bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
692 bool iswrite = false;
693 int r = RESUME_GUEST;
694 int relocated;
695 int page_found = 0;
696 struct kvmppc_pte pte = { 0 };
697 bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false;
698 bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false;
699 u64 vsid;
700
701 relocated = data ? dr : ir;
702 if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE))
703 iswrite = true;
704
705 /* Resolve real address if translation turned on */
706 if (relocated) {
707 page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite);
708 } else {
709 pte.may_execute = true;
710 pte.may_read = true;
711 pte.may_write = true;
712 pte.raddr = eaddr & KVM_PAM;
713 pte.eaddr = eaddr;
714 pte.vpage = eaddr >> 12;
715 pte.page_size = MMU_PAGE_64K;
716 pte.wimg = HPTE_R_M;
717 }
718
719 switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) {
720 case 0:
721 pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
722 break;
723 case MSR_DR:
724 if (!data &&
725 (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) &&
726 ((pte.raddr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS))
727 pte.raddr &= ~SPLIT_HACK_MASK;
728 fallthrough;
729 case MSR_IR:
730 vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);
731
732 if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR)
733 pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
734 else
735 pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
736 pte.vpage |= vsid;
737
738 if (vsid == -1)
739 page_found = -EINVAL;
740 break;
741 }
742
743 if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
744 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
745 /*
746 * If we do the dcbz hack, we have to NX on every execution,
747 * so we can patch the executing code. This renders our guest
748 * NX-less.
749 */
750 pte.may_execute = !data;
751 }
752
753 if (page_found == -ENOENT || page_found == -EPERM) {
754 /* Page not found in guest PTE entries, or protection fault */
755 u64 flags;
756
757 if (page_found == -EPERM)
758 flags = DSISR_PROTFAULT;
759 else
760 flags = DSISR_NOHPTE;
761 if (data) {
762 flags |= vcpu->arch.fault_dsisr & DSISR_ISSTORE;
763 kvmppc_core_queue_data_storage(vcpu, eaddr, flags);
764 } else {
765 kvmppc_core_queue_inst_storage(vcpu, flags);
766 }
767 } else if (page_found == -EINVAL) {
768 /* Page not found in guest SLB */
769 kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
770 kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
771 } else if (kvmppc_visible_gpa(vcpu, pte.raddr)) {
772 if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) {
773 /*
774 * There is already a host HPTE there, presumably
775 * a read-only one for a page the guest thinks
776 * is writable, so get rid of it first.
777 */
778 kvmppc_mmu_unmap_page(vcpu, &pte);
779 }
780 /* The guest's PTE is not mapped yet. Map on the host */
781 if (kvmppc_mmu_map_page(vcpu, &pte, iswrite) == -EIO) {
782 /* Exit KVM if mapping failed */
783 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
784 return RESUME_HOST;
785 }
786 if (data)
787 vcpu->stat.sp_storage++;
788 else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
789 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
790 kvmppc_patch_dcbz(vcpu, &pte);
791 } else {
792 /* MMIO */
793 vcpu->stat.mmio_exits++;
794 vcpu->arch.paddr_accessed = pte.raddr;
795 vcpu->arch.vaddr_accessed = pte.eaddr;
796 r = kvmppc_emulate_mmio(vcpu);
797 if ( r == RESUME_HOST_NV )
798 r = RESUME_HOST;
799 }
800
801 return r;
802 }
803
804 /* Give up external provider (FPU, Altivec, VSX) */
kvmppc_giveup_ext(struct kvm_vcpu * vcpu,ulong msr)805 void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
806 {
807 struct thread_struct *t = ¤t->thread;
808
809 /*
810 * VSX instructions can access FP and vector registers, so if
811 * we are giving up VSX, make sure we give up FP and VMX as well.
812 */
813 if (msr & MSR_VSX)
814 msr |= MSR_FP | MSR_VEC;
815
816 msr &= vcpu->arch.guest_owned_ext;
817 if (!msr)
818 return;
819
820 #ifdef DEBUG_EXT
821 printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
822 #endif
823
824 if (msr & MSR_FP) {
825 /*
826 * Note that on CPUs with VSX, giveup_fpu stores
827 * both the traditional FP registers and the added VSX
828 * registers into thread.fp_state.fpr[].
829 */
830 if (t->regs->msr & MSR_FP)
831 giveup_fpu(current);
832 t->fp_save_area = NULL;
833 }
834
835 #ifdef CONFIG_ALTIVEC
836 if (msr & MSR_VEC) {
837 if (current->thread.regs->msr & MSR_VEC)
838 giveup_altivec(current);
839 t->vr_save_area = NULL;
840 }
841 #endif
842
843 vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX);
844 kvmppc_recalc_shadow_msr(vcpu);
845 }
846
847 /* Give up facility (TAR / EBB / DSCR) */
kvmppc_giveup_fac(struct kvm_vcpu * vcpu,ulong fac)848 void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac)
849 {
850 #ifdef CONFIG_PPC_BOOK3S_64
851 if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) {
852 /* Facility not available to the guest, ignore giveup request*/
853 return;
854 }
855
856 switch (fac) {
857 case FSCR_TAR_LG:
858 vcpu->arch.tar = mfspr(SPRN_TAR);
859 mtspr(SPRN_TAR, current->thread.tar);
860 vcpu->arch.shadow_fscr &= ~FSCR_TAR;
861 break;
862 }
863 #endif
864 }
865
866 /* Handle external providers (FPU, Altivec, VSX) */
kvmppc_handle_ext(struct kvm_vcpu * vcpu,unsigned int exit_nr,ulong msr)867 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
868 ulong msr)
869 {
870 struct thread_struct *t = ¤t->thread;
871
872 /* When we have paired singles, we emulate in software */
873 if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
874 return RESUME_GUEST;
875
876 if (!(kvmppc_get_msr(vcpu) & msr)) {
877 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
878 return RESUME_GUEST;
879 }
880
881 if (msr == MSR_VSX) {
882 /* No VSX? Give an illegal instruction interrupt */
883 #ifdef CONFIG_VSX
884 if (!cpu_has_feature(CPU_FTR_VSX))
885 #endif
886 {
887 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
888 return RESUME_GUEST;
889 }
890
891 /*
892 * We have to load up all the FP and VMX registers before
893 * we can let the guest use VSX instructions.
894 */
895 msr = MSR_FP | MSR_VEC | MSR_VSX;
896 }
897
898 /* See if we already own all the ext(s) needed */
899 msr &= ~vcpu->arch.guest_owned_ext;
900 if (!msr)
901 return RESUME_GUEST;
902
903 #ifdef DEBUG_EXT
904 printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
905 #endif
906
907 if (msr & MSR_FP) {
908 preempt_disable();
909 enable_kernel_fp();
910 load_fp_state(&vcpu->arch.fp);
911 disable_kernel_fp();
912 t->fp_save_area = &vcpu->arch.fp;
913 preempt_enable();
914 }
915
916 if (msr & MSR_VEC) {
917 #ifdef CONFIG_ALTIVEC
918 preempt_disable();
919 enable_kernel_altivec();
920 load_vr_state(&vcpu->arch.vr);
921 disable_kernel_altivec();
922 t->vr_save_area = &vcpu->arch.vr;
923 preempt_enable();
924 #endif
925 }
926
927 t->regs->msr |= msr;
928 vcpu->arch.guest_owned_ext |= msr;
929 kvmppc_recalc_shadow_msr(vcpu);
930
931 return RESUME_GUEST;
932 }
933
934 /*
935 * Kernel code using FP or VMX could have flushed guest state to
936 * the thread_struct; if so, get it back now.
937 */
kvmppc_handle_lost_ext(struct kvm_vcpu * vcpu)938 static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu)
939 {
940 unsigned long lost_ext;
941
942 lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr;
943 if (!lost_ext)
944 return;
945
946 if (lost_ext & MSR_FP) {
947 preempt_disable();
948 enable_kernel_fp();
949 load_fp_state(&vcpu->arch.fp);
950 disable_kernel_fp();
951 preempt_enable();
952 }
953 #ifdef CONFIG_ALTIVEC
954 if (lost_ext & MSR_VEC) {
955 preempt_disable();
956 enable_kernel_altivec();
957 load_vr_state(&vcpu->arch.vr);
958 disable_kernel_altivec();
959 preempt_enable();
960 }
961 #endif
962 current->thread.regs->msr |= lost_ext;
963 }
964
965 #ifdef CONFIG_PPC_BOOK3S_64
966
kvmppc_trigger_fac_interrupt(struct kvm_vcpu * vcpu,ulong fac)967 void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac)
968 {
969 /* Inject the Interrupt Cause field and trigger a guest interrupt */
970 vcpu->arch.fscr &= ~(0xffULL << 56);
971 vcpu->arch.fscr |= (fac << 56);
972 kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL);
973 }
974
kvmppc_emulate_fac(struct kvm_vcpu * vcpu,ulong fac)975 static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac)
976 {
977 enum emulation_result er = EMULATE_FAIL;
978
979 if (!(kvmppc_get_msr(vcpu) & MSR_PR))
980 er = kvmppc_emulate_instruction(vcpu);
981
982 if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) {
983 /* Couldn't emulate, trigger interrupt in guest */
984 kvmppc_trigger_fac_interrupt(vcpu, fac);
985 }
986 }
987
988 /* Enable facilities (TAR, EBB, DSCR) for the guest */
kvmppc_handle_fac(struct kvm_vcpu * vcpu,ulong fac)989 static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac)
990 {
991 bool guest_fac_enabled;
992 BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S));
993
994 /*
995 * Not every facility is enabled by FSCR bits, check whether the
996 * guest has this facility enabled at all.
997 */
998 switch (fac) {
999 case FSCR_TAR_LG:
1000 case FSCR_EBB_LG:
1001 guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac));
1002 break;
1003 case FSCR_TM_LG:
1004 guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM;
1005 break;
1006 default:
1007 guest_fac_enabled = false;
1008 break;
1009 }
1010
1011 if (!guest_fac_enabled) {
1012 /* Facility not enabled by the guest */
1013 kvmppc_trigger_fac_interrupt(vcpu, fac);
1014 return RESUME_GUEST;
1015 }
1016
1017 switch (fac) {
1018 case FSCR_TAR_LG:
1019 /* TAR switching isn't lazy in Linux yet */
1020 current->thread.tar = mfspr(SPRN_TAR);
1021 mtspr(SPRN_TAR, vcpu->arch.tar);
1022 vcpu->arch.shadow_fscr |= FSCR_TAR;
1023 break;
1024 default:
1025 kvmppc_emulate_fac(vcpu, fac);
1026 break;
1027 }
1028
1029 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1030 /* Since we disabled MSR_TM at privilege state, the mfspr instruction
1031 * for TM spr can trigger TM fac unavailable. In this case, the
1032 * emulation is handled by kvmppc_emulate_fac(), which invokes
1033 * kvmppc_emulate_mfspr() finally. But note the mfspr can include
1034 * RT for NV registers. So it need to restore those NV reg to reflect
1035 * the update.
1036 */
1037 if ((fac == FSCR_TM_LG) && !(kvmppc_get_msr(vcpu) & MSR_PR))
1038 return RESUME_GUEST_NV;
1039 #endif
1040
1041 return RESUME_GUEST;
1042 }
1043
kvmppc_set_fscr(struct kvm_vcpu * vcpu,u64 fscr)1044 void kvmppc_set_fscr(struct kvm_vcpu *vcpu, u64 fscr)
1045 {
1046 if (fscr & FSCR_SCV)
1047 fscr &= ~FSCR_SCV; /* SCV must not be enabled */
1048 if ((vcpu->arch.fscr & FSCR_TAR) && !(fscr & FSCR_TAR)) {
1049 /* TAR got dropped, drop it in shadow too */
1050 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
1051 } else if (!(vcpu->arch.fscr & FSCR_TAR) && (fscr & FSCR_TAR)) {
1052 vcpu->arch.fscr = fscr;
1053 kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
1054 return;
1055 }
1056
1057 vcpu->arch.fscr = fscr;
1058 }
1059 #endif
1060
kvmppc_setup_debug(struct kvm_vcpu * vcpu)1061 static void kvmppc_setup_debug(struct kvm_vcpu *vcpu)
1062 {
1063 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1064 u64 msr = kvmppc_get_msr(vcpu);
1065
1066 kvmppc_set_msr(vcpu, msr | MSR_SE);
1067 }
1068 }
1069
kvmppc_clear_debug(struct kvm_vcpu * vcpu)1070 static void kvmppc_clear_debug(struct kvm_vcpu *vcpu)
1071 {
1072 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1073 u64 msr = kvmppc_get_msr(vcpu);
1074
1075 kvmppc_set_msr(vcpu, msr & ~MSR_SE);
1076 }
1077 }
1078
kvmppc_exit_pr_progint(struct kvm_vcpu * vcpu,unsigned int exit_nr)1079 static int kvmppc_exit_pr_progint(struct kvm_vcpu *vcpu, unsigned int exit_nr)
1080 {
1081 enum emulation_result er;
1082 ulong flags;
1083 u32 last_inst;
1084 int emul, r;
1085
1086 /*
1087 * shadow_srr1 only contains valid flags if we came here via a program
1088 * exception. The other exceptions (emulation assist, FP unavailable,
1089 * etc.) do not provide flags in SRR1, so use an illegal-instruction
1090 * exception when injecting a program interrupt into the guest.
1091 */
1092 if (exit_nr == BOOK3S_INTERRUPT_PROGRAM)
1093 flags = vcpu->arch.shadow_srr1 & 0x1f0000ull;
1094 else
1095 flags = SRR1_PROGILL;
1096
1097 emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1098 if (emul != EMULATE_DONE)
1099 return RESUME_GUEST;
1100
1101 if (kvmppc_get_msr(vcpu) & MSR_PR) {
1102 #ifdef EXIT_DEBUG
1103 pr_info("Userspace triggered 0x700 exception at\n 0x%lx (0x%x)\n",
1104 kvmppc_get_pc(vcpu), last_inst);
1105 #endif
1106 if ((last_inst & 0xff0007ff) != (INS_DCBZ & 0xfffffff7)) {
1107 kvmppc_core_queue_program(vcpu, flags);
1108 return RESUME_GUEST;
1109 }
1110 }
1111
1112 vcpu->stat.emulated_inst_exits++;
1113 er = kvmppc_emulate_instruction(vcpu);
1114 switch (er) {
1115 case EMULATE_DONE:
1116 r = RESUME_GUEST_NV;
1117 break;
1118 case EMULATE_AGAIN:
1119 r = RESUME_GUEST;
1120 break;
1121 case EMULATE_FAIL:
1122 pr_crit("%s: emulation at %lx failed (%08x)\n",
1123 __func__, kvmppc_get_pc(vcpu), last_inst);
1124 kvmppc_core_queue_program(vcpu, flags);
1125 r = RESUME_GUEST;
1126 break;
1127 case EMULATE_DO_MMIO:
1128 vcpu->run->exit_reason = KVM_EXIT_MMIO;
1129 r = RESUME_HOST_NV;
1130 break;
1131 case EMULATE_EXIT_USER:
1132 r = RESUME_HOST_NV;
1133 break;
1134 default:
1135 BUG();
1136 }
1137
1138 return r;
1139 }
1140
kvmppc_handle_exit_pr(struct kvm_vcpu * vcpu,unsigned int exit_nr)1141 int kvmppc_handle_exit_pr(struct kvm_vcpu *vcpu, unsigned int exit_nr)
1142 {
1143 struct kvm_run *run = vcpu->run;
1144 int r = RESUME_HOST;
1145 int s;
1146
1147 vcpu->stat.sum_exits++;
1148
1149 run->exit_reason = KVM_EXIT_UNKNOWN;
1150 run->ready_for_interrupt_injection = 1;
1151
1152 /* We get here with MSR.EE=1 */
1153
1154 trace_kvm_exit(exit_nr, vcpu);
1155 guest_exit();
1156
1157 switch (exit_nr) {
1158 case BOOK3S_INTERRUPT_INST_STORAGE:
1159 {
1160 ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1161 vcpu->stat.pf_instruc++;
1162
1163 if (kvmppc_is_split_real(vcpu))
1164 kvmppc_fixup_split_real(vcpu);
1165
1166 #ifdef CONFIG_PPC_BOOK3S_32
1167 /* We set segments as unused segments when invalidating them. So
1168 * treat the respective fault as segment fault. */
1169 {
1170 struct kvmppc_book3s_shadow_vcpu *svcpu;
1171 u32 sr;
1172
1173 svcpu = svcpu_get(vcpu);
1174 sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT];
1175 svcpu_put(svcpu);
1176 if (sr == SR_INVALID) {
1177 kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
1178 r = RESUME_GUEST;
1179 break;
1180 }
1181 }
1182 #endif
1183
1184 /* only care about PTEG not found errors, but leave NX alone */
1185 if (shadow_srr1 & 0x40000000) {
1186 int idx = srcu_read_lock(&vcpu->kvm->srcu);
1187 r = kvmppc_handle_pagefault(vcpu, kvmppc_get_pc(vcpu), exit_nr);
1188 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1189 vcpu->stat.sp_instruc++;
1190 } else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
1191 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
1192 /*
1193 * XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
1194 * so we can't use the NX bit inside the guest. Let's cross our fingers,
1195 * that no guest that needs the dcbz hack does NX.
1196 */
1197 kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
1198 r = RESUME_GUEST;
1199 } else {
1200 kvmppc_core_queue_inst_storage(vcpu,
1201 shadow_srr1 & 0x58000000);
1202 r = RESUME_GUEST;
1203 }
1204 break;
1205 }
1206 case BOOK3S_INTERRUPT_DATA_STORAGE:
1207 {
1208 ulong dar = kvmppc_get_fault_dar(vcpu);
1209 u32 fault_dsisr = vcpu->arch.fault_dsisr;
1210 vcpu->stat.pf_storage++;
1211
1212 #ifdef CONFIG_PPC_BOOK3S_32
1213 /* We set segments as unused segments when invalidating them. So
1214 * treat the respective fault as segment fault. */
1215 {
1216 struct kvmppc_book3s_shadow_vcpu *svcpu;
1217 u32 sr;
1218
1219 svcpu = svcpu_get(vcpu);
1220 sr = svcpu->sr[dar >> SID_SHIFT];
1221 svcpu_put(svcpu);
1222 if (sr == SR_INVALID) {
1223 kvmppc_mmu_map_segment(vcpu, dar);
1224 r = RESUME_GUEST;
1225 break;
1226 }
1227 }
1228 #endif
1229
1230 /*
1231 * We need to handle missing shadow PTEs, and
1232 * protection faults due to us mapping a page read-only
1233 * when the guest thinks it is writable.
1234 */
1235 if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) {
1236 int idx = srcu_read_lock(&vcpu->kvm->srcu);
1237 r = kvmppc_handle_pagefault(vcpu, dar, exit_nr);
1238 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1239 } else {
1240 kvmppc_core_queue_data_storage(vcpu, dar, fault_dsisr);
1241 r = RESUME_GUEST;
1242 }
1243 break;
1244 }
1245 case BOOK3S_INTERRUPT_DATA_SEGMENT:
1246 if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
1247 kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
1248 kvmppc_book3s_queue_irqprio(vcpu,
1249 BOOK3S_INTERRUPT_DATA_SEGMENT);
1250 }
1251 r = RESUME_GUEST;
1252 break;
1253 case BOOK3S_INTERRUPT_INST_SEGMENT:
1254 if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
1255 kvmppc_book3s_queue_irqprio(vcpu,
1256 BOOK3S_INTERRUPT_INST_SEGMENT);
1257 }
1258 r = RESUME_GUEST;
1259 break;
1260 /* We're good on these - the host merely wanted to get our attention */
1261 case BOOK3S_INTERRUPT_DECREMENTER:
1262 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1263 case BOOK3S_INTERRUPT_DOORBELL:
1264 case BOOK3S_INTERRUPT_H_DOORBELL:
1265 vcpu->stat.dec_exits++;
1266 r = RESUME_GUEST;
1267 break;
1268 case BOOK3S_INTERRUPT_EXTERNAL:
1269 case BOOK3S_INTERRUPT_EXTERNAL_HV:
1270 case BOOK3S_INTERRUPT_H_VIRT:
1271 vcpu->stat.ext_intr_exits++;
1272 r = RESUME_GUEST;
1273 break;
1274 case BOOK3S_INTERRUPT_HMI:
1275 case BOOK3S_INTERRUPT_PERFMON:
1276 case BOOK3S_INTERRUPT_SYSTEM_RESET:
1277 r = RESUME_GUEST;
1278 break;
1279 case BOOK3S_INTERRUPT_PROGRAM:
1280 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1281 r = kvmppc_exit_pr_progint(vcpu, exit_nr);
1282 break;
1283 case BOOK3S_INTERRUPT_SYSCALL:
1284 {
1285 u32 last_sc;
1286 int emul;
1287
1288 /* Get last sc for papr */
1289 if (vcpu->arch.papr_enabled) {
1290 /* The sc instruction points SRR0 to the next inst */
1291 emul = kvmppc_get_last_inst(vcpu, INST_SC, &last_sc);
1292 if (emul != EMULATE_DONE) {
1293 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) - 4);
1294 r = RESUME_GUEST;
1295 break;
1296 }
1297 }
1298
1299 if (vcpu->arch.papr_enabled &&
1300 (last_sc == 0x44000022) &&
1301 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
1302 /* SC 1 papr hypercalls */
1303 ulong cmd = kvmppc_get_gpr(vcpu, 3);
1304 int i;
1305
1306 #ifdef CONFIG_PPC_BOOK3S_64
1307 if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
1308 r = RESUME_GUEST;
1309 break;
1310 }
1311 #endif
1312
1313 run->papr_hcall.nr = cmd;
1314 for (i = 0; i < 9; ++i) {
1315 ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
1316 run->papr_hcall.args[i] = gpr;
1317 }
1318 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1319 vcpu->arch.hcall_needed = 1;
1320 r = RESUME_HOST;
1321 } else if (vcpu->arch.osi_enabled &&
1322 (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
1323 (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
1324 /* MOL hypercalls */
1325 u64 *gprs = run->osi.gprs;
1326 int i;
1327
1328 run->exit_reason = KVM_EXIT_OSI;
1329 for (i = 0; i < 32; i++)
1330 gprs[i] = kvmppc_get_gpr(vcpu, i);
1331 vcpu->arch.osi_needed = 1;
1332 r = RESUME_HOST_NV;
1333 } else if (!(kvmppc_get_msr(vcpu) & MSR_PR) &&
1334 (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
1335 /* KVM PV hypercalls */
1336 kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
1337 r = RESUME_GUEST;
1338 } else {
1339 /* Guest syscalls */
1340 vcpu->stat.syscall_exits++;
1341 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1342 r = RESUME_GUEST;
1343 }
1344 break;
1345 }
1346 case BOOK3S_INTERRUPT_FP_UNAVAIL:
1347 case BOOK3S_INTERRUPT_ALTIVEC:
1348 case BOOK3S_INTERRUPT_VSX:
1349 {
1350 int ext_msr = 0;
1351 int emul;
1352 u32 last_inst;
1353
1354 if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) {
1355 /* Do paired single instruction emulation */
1356 emul = kvmppc_get_last_inst(vcpu, INST_GENERIC,
1357 &last_inst);
1358 if (emul == EMULATE_DONE)
1359 r = kvmppc_exit_pr_progint(vcpu, exit_nr);
1360 else
1361 r = RESUME_GUEST;
1362
1363 break;
1364 }
1365
1366 /* Enable external provider */
1367 switch (exit_nr) {
1368 case BOOK3S_INTERRUPT_FP_UNAVAIL:
1369 ext_msr = MSR_FP;
1370 break;
1371
1372 case BOOK3S_INTERRUPT_ALTIVEC:
1373 ext_msr = MSR_VEC;
1374 break;
1375
1376 case BOOK3S_INTERRUPT_VSX:
1377 ext_msr = MSR_VSX;
1378 break;
1379 }
1380
1381 r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
1382 break;
1383 }
1384 case BOOK3S_INTERRUPT_ALIGNMENT:
1385 {
1386 u32 last_inst;
1387 int emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1388
1389 if (emul == EMULATE_DONE) {
1390 u32 dsisr;
1391 u64 dar;
1392
1393 dsisr = kvmppc_alignment_dsisr(vcpu, last_inst);
1394 dar = kvmppc_alignment_dar(vcpu, last_inst);
1395
1396 kvmppc_set_dsisr(vcpu, dsisr);
1397 kvmppc_set_dar(vcpu, dar);
1398
1399 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1400 }
1401 r = RESUME_GUEST;
1402 break;
1403 }
1404 #ifdef CONFIG_PPC_BOOK3S_64
1405 case BOOK3S_INTERRUPT_FAC_UNAVAIL:
1406 r = kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56);
1407 break;
1408 #endif
1409 case BOOK3S_INTERRUPT_MACHINE_CHECK:
1410 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1411 r = RESUME_GUEST;
1412 break;
1413 case BOOK3S_INTERRUPT_TRACE:
1414 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1415 run->exit_reason = KVM_EXIT_DEBUG;
1416 r = RESUME_HOST;
1417 } else {
1418 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1419 r = RESUME_GUEST;
1420 }
1421 break;
1422 default:
1423 {
1424 ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1425 /* Ugh - bork here! What did we get? */
1426 printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
1427 exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
1428 r = RESUME_HOST;
1429 BUG();
1430 break;
1431 }
1432 }
1433
1434 if (!(r & RESUME_HOST)) {
1435 /* To avoid clobbering exit_reason, only check for signals if
1436 * we aren't already exiting to userspace for some other
1437 * reason. */
1438
1439 /*
1440 * Interrupts could be timers for the guest which we have to
1441 * inject again, so let's postpone them until we're in the guest
1442 * and if we really did time things so badly, then we just exit
1443 * again due to a host external interrupt.
1444 */
1445 s = kvmppc_prepare_to_enter(vcpu);
1446 if (s <= 0)
1447 r = s;
1448 else {
1449 /* interrupts now hard-disabled */
1450 kvmppc_fix_ee_before_entry();
1451 }
1452
1453 kvmppc_handle_lost_ext(vcpu);
1454 }
1455
1456 trace_kvm_book3s_reenter(r, vcpu);
1457
1458 return r;
1459 }
1460
kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)1461 static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu,
1462 struct kvm_sregs *sregs)
1463 {
1464 struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
1465 int i;
1466
1467 sregs->pvr = vcpu->arch.pvr;
1468
1469 sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
1470 if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1471 for (i = 0; i < 64; i++) {
1472 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
1473 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1474 }
1475 } else {
1476 for (i = 0; i < 16; i++)
1477 sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i);
1478
1479 for (i = 0; i < 8; i++) {
1480 sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
1481 sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
1482 }
1483 }
1484
1485 return 0;
1486 }
1487
kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)1488 static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu,
1489 struct kvm_sregs *sregs)
1490 {
1491 struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
1492 int i;
1493
1494 kvmppc_set_pvr_pr(vcpu, sregs->pvr);
1495
1496 vcpu3s->sdr1 = sregs->u.s.sdr1;
1497 #ifdef CONFIG_PPC_BOOK3S_64
1498 if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1499 /* Flush all SLB entries */
1500 vcpu->arch.mmu.slbmte(vcpu, 0, 0);
1501 vcpu->arch.mmu.slbia(vcpu);
1502
1503 for (i = 0; i < 64; i++) {
1504 u64 rb = sregs->u.s.ppc64.slb[i].slbe;
1505 u64 rs = sregs->u.s.ppc64.slb[i].slbv;
1506
1507 if (rb & SLB_ESID_V)
1508 vcpu->arch.mmu.slbmte(vcpu, rs, rb);
1509 }
1510 } else
1511 #endif
1512 {
1513 for (i = 0; i < 16; i++) {
1514 vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
1515 }
1516 for (i = 0; i < 8; i++) {
1517 kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
1518 (u32)sregs->u.s.ppc32.ibat[i]);
1519 kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
1520 (u32)(sregs->u.s.ppc32.ibat[i] >> 32));
1521 kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
1522 (u32)sregs->u.s.ppc32.dbat[i]);
1523 kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
1524 (u32)(sregs->u.s.ppc32.dbat[i] >> 32));
1525 }
1526 }
1527
1528 /* Flush the MMU after messing with the segments */
1529 kvmppc_mmu_pte_flush(vcpu, 0, 0);
1530
1531 return 0;
1532 }
1533
kvmppc_get_one_reg_pr(struct kvm_vcpu * vcpu,u64 id,union kvmppc_one_reg * val)1534 static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
1535 union kvmppc_one_reg *val)
1536 {
1537 int r = 0;
1538
1539 switch (id) {
1540 case KVM_REG_PPC_DEBUG_INST:
1541 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1542 break;
1543 case KVM_REG_PPC_HIOR:
1544 *val = get_reg_val(id, to_book3s(vcpu)->hior);
1545 break;
1546 case KVM_REG_PPC_VTB:
1547 *val = get_reg_val(id, to_book3s(vcpu)->vtb);
1548 break;
1549 case KVM_REG_PPC_LPCR:
1550 case KVM_REG_PPC_LPCR_64:
1551 /*
1552 * We are only interested in the LPCR_ILE bit
1553 */
1554 if (vcpu->arch.intr_msr & MSR_LE)
1555 *val = get_reg_val(id, LPCR_ILE);
1556 else
1557 *val = get_reg_val(id, 0);
1558 break;
1559 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1560 case KVM_REG_PPC_TFHAR:
1561 *val = get_reg_val(id, vcpu->arch.tfhar);
1562 break;
1563 case KVM_REG_PPC_TFIAR:
1564 *val = get_reg_val(id, vcpu->arch.tfiar);
1565 break;
1566 case KVM_REG_PPC_TEXASR:
1567 *val = get_reg_val(id, vcpu->arch.texasr);
1568 break;
1569 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1570 *val = get_reg_val(id,
1571 vcpu->arch.gpr_tm[id-KVM_REG_PPC_TM_GPR0]);
1572 break;
1573 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1574 {
1575 int i, j;
1576
1577 i = id - KVM_REG_PPC_TM_VSR0;
1578 if (i < 32)
1579 for (j = 0; j < TS_FPRWIDTH; j++)
1580 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1581 else {
1582 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1583 val->vval = vcpu->arch.vr_tm.vr[i-32];
1584 else
1585 r = -ENXIO;
1586 }
1587 break;
1588 }
1589 case KVM_REG_PPC_TM_CR:
1590 *val = get_reg_val(id, vcpu->arch.cr_tm);
1591 break;
1592 case KVM_REG_PPC_TM_XER:
1593 *val = get_reg_val(id, vcpu->arch.xer_tm);
1594 break;
1595 case KVM_REG_PPC_TM_LR:
1596 *val = get_reg_val(id, vcpu->arch.lr_tm);
1597 break;
1598 case KVM_REG_PPC_TM_CTR:
1599 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1600 break;
1601 case KVM_REG_PPC_TM_FPSCR:
1602 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1603 break;
1604 case KVM_REG_PPC_TM_AMR:
1605 *val = get_reg_val(id, vcpu->arch.amr_tm);
1606 break;
1607 case KVM_REG_PPC_TM_PPR:
1608 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1609 break;
1610 case KVM_REG_PPC_TM_VRSAVE:
1611 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1612 break;
1613 case KVM_REG_PPC_TM_VSCR:
1614 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1615 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1616 else
1617 r = -ENXIO;
1618 break;
1619 case KVM_REG_PPC_TM_DSCR:
1620 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1621 break;
1622 case KVM_REG_PPC_TM_TAR:
1623 *val = get_reg_val(id, vcpu->arch.tar_tm);
1624 break;
1625 #endif
1626 default:
1627 r = -EINVAL;
1628 break;
1629 }
1630
1631 return r;
1632 }
1633
kvmppc_set_lpcr_pr(struct kvm_vcpu * vcpu,u64 new_lpcr)1634 static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr)
1635 {
1636 if (new_lpcr & LPCR_ILE)
1637 vcpu->arch.intr_msr |= MSR_LE;
1638 else
1639 vcpu->arch.intr_msr &= ~MSR_LE;
1640 }
1641
kvmppc_set_one_reg_pr(struct kvm_vcpu * vcpu,u64 id,union kvmppc_one_reg * val)1642 static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
1643 union kvmppc_one_reg *val)
1644 {
1645 int r = 0;
1646
1647 switch (id) {
1648 case KVM_REG_PPC_HIOR:
1649 to_book3s(vcpu)->hior = set_reg_val(id, *val);
1650 to_book3s(vcpu)->hior_explicit = true;
1651 break;
1652 case KVM_REG_PPC_VTB:
1653 to_book3s(vcpu)->vtb = set_reg_val(id, *val);
1654 break;
1655 case KVM_REG_PPC_LPCR:
1656 case KVM_REG_PPC_LPCR_64:
1657 kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val));
1658 break;
1659 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1660 case KVM_REG_PPC_TFHAR:
1661 vcpu->arch.tfhar = set_reg_val(id, *val);
1662 break;
1663 case KVM_REG_PPC_TFIAR:
1664 vcpu->arch.tfiar = set_reg_val(id, *val);
1665 break;
1666 case KVM_REG_PPC_TEXASR:
1667 vcpu->arch.texasr = set_reg_val(id, *val);
1668 break;
1669 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1670 vcpu->arch.gpr_tm[id - KVM_REG_PPC_TM_GPR0] =
1671 set_reg_val(id, *val);
1672 break;
1673 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1674 {
1675 int i, j;
1676
1677 i = id - KVM_REG_PPC_TM_VSR0;
1678 if (i < 32)
1679 for (j = 0; j < TS_FPRWIDTH; j++)
1680 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1681 else
1682 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1683 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1684 else
1685 r = -ENXIO;
1686 break;
1687 }
1688 case KVM_REG_PPC_TM_CR:
1689 vcpu->arch.cr_tm = set_reg_val(id, *val);
1690 break;
1691 case KVM_REG_PPC_TM_XER:
1692 vcpu->arch.xer_tm = set_reg_val(id, *val);
1693 break;
1694 case KVM_REG_PPC_TM_LR:
1695 vcpu->arch.lr_tm = set_reg_val(id, *val);
1696 break;
1697 case KVM_REG_PPC_TM_CTR:
1698 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1699 break;
1700 case KVM_REG_PPC_TM_FPSCR:
1701 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1702 break;
1703 case KVM_REG_PPC_TM_AMR:
1704 vcpu->arch.amr_tm = set_reg_val(id, *val);
1705 break;
1706 case KVM_REG_PPC_TM_PPR:
1707 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1708 break;
1709 case KVM_REG_PPC_TM_VRSAVE:
1710 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1711 break;
1712 case KVM_REG_PPC_TM_VSCR:
1713 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1714 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1715 else
1716 r = -ENXIO;
1717 break;
1718 case KVM_REG_PPC_TM_DSCR:
1719 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1720 break;
1721 case KVM_REG_PPC_TM_TAR:
1722 vcpu->arch.tar_tm = set_reg_val(id, *val);
1723 break;
1724 #endif
1725 default:
1726 r = -EINVAL;
1727 break;
1728 }
1729
1730 return r;
1731 }
1732
kvmppc_core_vcpu_create_pr(struct kvm_vcpu * vcpu)1733 static int kvmppc_core_vcpu_create_pr(struct kvm_vcpu *vcpu)
1734 {
1735 struct kvmppc_vcpu_book3s *vcpu_book3s;
1736 unsigned long p;
1737 int err;
1738
1739 err = -ENOMEM;
1740
1741 vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
1742 if (!vcpu_book3s)
1743 goto out;
1744 vcpu->arch.book3s = vcpu_book3s;
1745
1746 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1747 vcpu->arch.shadow_vcpu =
1748 kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL);
1749 if (!vcpu->arch.shadow_vcpu)
1750 goto free_vcpu3s;
1751 #endif
1752
1753 p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
1754 if (!p)
1755 goto free_shadow_vcpu;
1756 vcpu->arch.shared = (void *)p;
1757 #ifdef CONFIG_PPC_BOOK3S_64
1758 /* Always start the shared struct in native endian mode */
1759 #ifdef __BIG_ENDIAN__
1760 vcpu->arch.shared_big_endian = true;
1761 #else
1762 vcpu->arch.shared_big_endian = false;
1763 #endif
1764
1765 /*
1766 * Default to the same as the host if we're on sufficiently
1767 * recent machine that we have 1TB segments;
1768 * otherwise default to PPC970FX.
1769 */
1770 vcpu->arch.pvr = 0x3C0301;
1771 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1772 vcpu->arch.pvr = mfspr(SPRN_PVR);
1773 vcpu->arch.intr_msr = MSR_SF;
1774 #else
1775 /* default to book3s_32 (750) */
1776 vcpu->arch.pvr = 0x84202;
1777 vcpu->arch.intr_msr = 0;
1778 #endif
1779 kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr);
1780 vcpu->arch.slb_nr = 64;
1781
1782 vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE;
1783
1784 err = kvmppc_mmu_init_pr(vcpu);
1785 if (err < 0)
1786 goto free_shared_page;
1787
1788 return 0;
1789
1790 free_shared_page:
1791 free_page((unsigned long)vcpu->arch.shared);
1792 free_shadow_vcpu:
1793 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1794 kfree(vcpu->arch.shadow_vcpu);
1795 free_vcpu3s:
1796 #endif
1797 vfree(vcpu_book3s);
1798 out:
1799 return err;
1800 }
1801
kvmppc_core_vcpu_free_pr(struct kvm_vcpu * vcpu)1802 static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu)
1803 {
1804 struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
1805
1806 kvmppc_mmu_destroy_pr(vcpu);
1807 free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
1808 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1809 kfree(vcpu->arch.shadow_vcpu);
1810 #endif
1811 vfree(vcpu_book3s);
1812 }
1813
kvmppc_vcpu_run_pr(struct kvm_vcpu * vcpu)1814 static int kvmppc_vcpu_run_pr(struct kvm_vcpu *vcpu)
1815 {
1816 int ret;
1817
1818 /* Check if we can run the vcpu at all */
1819 if (!vcpu->arch.sane) {
1820 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1821 ret = -EINVAL;
1822 goto out;
1823 }
1824
1825 kvmppc_setup_debug(vcpu);
1826
1827 /*
1828 * Interrupts could be timers for the guest which we have to inject
1829 * again, so let's postpone them until we're in the guest and if we
1830 * really did time things so badly, then we just exit again due to
1831 * a host external interrupt.
1832 */
1833 ret = kvmppc_prepare_to_enter(vcpu);
1834 if (ret <= 0)
1835 goto out;
1836 /* interrupts now hard-disabled */
1837
1838 /* Save FPU, Altivec and VSX state */
1839 giveup_all(current);
1840
1841 /* Preload FPU if it's enabled */
1842 if (kvmppc_get_msr(vcpu) & MSR_FP)
1843 kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
1844
1845 kvmppc_fix_ee_before_entry();
1846
1847 ret = __kvmppc_vcpu_run(vcpu);
1848
1849 kvmppc_clear_debug(vcpu);
1850
1851 /* No need for guest_exit. It's done in handle_exit.
1852 We also get here with interrupts enabled. */
1853
1854 /* Make sure we save the guest FPU/Altivec/VSX state */
1855 kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
1856
1857 /* Make sure we save the guest TAR/EBB/DSCR state */
1858 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
1859
1860 srr_regs_clobbered();
1861 out:
1862 vcpu->mode = OUTSIDE_GUEST_MODE;
1863 return ret;
1864 }
1865
1866 /*
1867 * Get (and clear) the dirty memory log for a memory slot.
1868 */
kvm_vm_ioctl_get_dirty_log_pr(struct kvm * kvm,struct kvm_dirty_log * log)1869 static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm,
1870 struct kvm_dirty_log *log)
1871 {
1872 struct kvm_memory_slot *memslot;
1873 struct kvm_vcpu *vcpu;
1874 ulong ga, ga_end;
1875 int is_dirty = 0;
1876 int r;
1877 unsigned long n;
1878
1879 mutex_lock(&kvm->slots_lock);
1880
1881 r = kvm_get_dirty_log(kvm, log, &is_dirty, &memslot);
1882 if (r)
1883 goto out;
1884
1885 /* If nothing is dirty, don't bother messing with page tables. */
1886 if (is_dirty) {
1887 ga = memslot->base_gfn << PAGE_SHIFT;
1888 ga_end = ga + (memslot->npages << PAGE_SHIFT);
1889
1890 kvm_for_each_vcpu(n, vcpu, kvm)
1891 kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);
1892
1893 n = kvm_dirty_bitmap_bytes(memslot);
1894 memset(memslot->dirty_bitmap, 0, n);
1895 }
1896
1897 r = 0;
1898 out:
1899 mutex_unlock(&kvm->slots_lock);
1900 return r;
1901 }
1902
kvmppc_core_flush_memslot_pr(struct kvm * kvm,struct kvm_memory_slot * memslot)1903 static void kvmppc_core_flush_memslot_pr(struct kvm *kvm,
1904 struct kvm_memory_slot *memslot)
1905 {
1906 return;
1907 }
1908
kvmppc_core_prepare_memory_region_pr(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)1909 static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm,
1910 const struct kvm_memory_slot *old,
1911 struct kvm_memory_slot *new,
1912 enum kvm_mr_change change)
1913 {
1914 return 0;
1915 }
1916
kvmppc_core_commit_memory_region_pr(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)1917 static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm,
1918 struct kvm_memory_slot *old,
1919 const struct kvm_memory_slot *new,
1920 enum kvm_mr_change change)
1921 {
1922 return;
1923 }
1924
kvmppc_core_free_memslot_pr(struct kvm_memory_slot * slot)1925 static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *slot)
1926 {
1927 return;
1928 }
1929
1930 #ifdef CONFIG_PPC64
kvm_vm_ioctl_get_smmu_info_pr(struct kvm * kvm,struct kvm_ppc_smmu_info * info)1931 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
1932 struct kvm_ppc_smmu_info *info)
1933 {
1934 long int i;
1935 struct kvm_vcpu *vcpu;
1936
1937 info->flags = 0;
1938
1939 /* SLB is always 64 entries */
1940 info->slb_size = 64;
1941
1942 /* Standard 4k base page size segment */
1943 info->sps[0].page_shift = 12;
1944 info->sps[0].slb_enc = 0;
1945 info->sps[0].enc[0].page_shift = 12;
1946 info->sps[0].enc[0].pte_enc = 0;
1947
1948 /*
1949 * 64k large page size.
1950 * We only want to put this in if the CPUs we're emulating
1951 * support it, but unfortunately we don't have a vcpu easily
1952 * to hand here to test. Just pick the first vcpu, and if
1953 * that doesn't exist yet, report the minimum capability,
1954 * i.e., no 64k pages.
1955 * 1T segment support goes along with 64k pages.
1956 */
1957 i = 1;
1958 vcpu = kvm_get_vcpu(kvm, 0);
1959 if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) {
1960 info->flags = KVM_PPC_1T_SEGMENTS;
1961 info->sps[i].page_shift = 16;
1962 info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01;
1963 info->sps[i].enc[0].page_shift = 16;
1964 info->sps[i].enc[0].pte_enc = 1;
1965 ++i;
1966 }
1967
1968 /* Standard 16M large page size segment */
1969 info->sps[i].page_shift = 24;
1970 info->sps[i].slb_enc = SLB_VSID_L;
1971 info->sps[i].enc[0].page_shift = 24;
1972 info->sps[i].enc[0].pte_enc = 0;
1973
1974 return 0;
1975 }
1976
kvm_configure_mmu_pr(struct kvm * kvm,struct kvm_ppc_mmuv3_cfg * cfg)1977 static int kvm_configure_mmu_pr(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
1978 {
1979 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1980 return -ENODEV;
1981 /* Require flags and process table base and size to all be zero. */
1982 if (cfg->flags || cfg->process_table)
1983 return -EINVAL;
1984 return 0;
1985 }
1986
1987 #else
kvm_vm_ioctl_get_smmu_info_pr(struct kvm * kvm,struct kvm_ppc_smmu_info * info)1988 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
1989 struct kvm_ppc_smmu_info *info)
1990 {
1991 /* We should not get called */
1992 BUG();
1993 return 0;
1994 }
1995 #endif /* CONFIG_PPC64 */
1996
1997 static unsigned int kvm_global_user_count = 0;
1998 static DEFINE_SPINLOCK(kvm_global_user_count_lock);
1999
kvmppc_core_init_vm_pr(struct kvm * kvm)2000 static int kvmppc_core_init_vm_pr(struct kvm *kvm)
2001 {
2002 mutex_init(&kvm->arch.hpt_mutex);
2003
2004 #ifdef CONFIG_PPC_BOOK3S_64
2005 /* Start out with the default set of hcalls enabled */
2006 kvmppc_pr_init_default_hcalls(kvm);
2007 #endif
2008
2009 if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
2010 spin_lock(&kvm_global_user_count_lock);
2011 if (++kvm_global_user_count == 1)
2012 pseries_disable_reloc_on_exc();
2013 spin_unlock(&kvm_global_user_count_lock);
2014 }
2015 return 0;
2016 }
2017
kvmppc_core_destroy_vm_pr(struct kvm * kvm)2018 static void kvmppc_core_destroy_vm_pr(struct kvm *kvm)
2019 {
2020 #ifdef CONFIG_PPC64
2021 WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
2022 #endif
2023
2024 if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
2025 spin_lock(&kvm_global_user_count_lock);
2026 BUG_ON(kvm_global_user_count == 0);
2027 if (--kvm_global_user_count == 0)
2028 pseries_enable_reloc_on_exc();
2029 spin_unlock(&kvm_global_user_count_lock);
2030 }
2031 }
2032
kvmppc_core_check_processor_compat_pr(void)2033 static int kvmppc_core_check_processor_compat_pr(void)
2034 {
2035 /*
2036 * PR KVM can work on POWER9 inside a guest partition
2037 * running in HPT mode. It can't work if we are using
2038 * radix translation (because radix provides no way for
2039 * a process to have unique translations in quadrant 3).
2040 */
2041 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
2042 return -EIO;
2043 return 0;
2044 }
2045
kvm_arch_vm_ioctl_pr(struct file * filp,unsigned int ioctl,unsigned long arg)2046 static long kvm_arch_vm_ioctl_pr(struct file *filp,
2047 unsigned int ioctl, unsigned long arg)
2048 {
2049 return -ENOTTY;
2050 }
2051
2052 static struct kvmppc_ops kvm_ops_pr = {
2053 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr,
2054 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr,
2055 .get_one_reg = kvmppc_get_one_reg_pr,
2056 .set_one_reg = kvmppc_set_one_reg_pr,
2057 .vcpu_load = kvmppc_core_vcpu_load_pr,
2058 .vcpu_put = kvmppc_core_vcpu_put_pr,
2059 .inject_interrupt = kvmppc_inject_interrupt_pr,
2060 .set_msr = kvmppc_set_msr_pr,
2061 .vcpu_run = kvmppc_vcpu_run_pr,
2062 .vcpu_create = kvmppc_core_vcpu_create_pr,
2063 .vcpu_free = kvmppc_core_vcpu_free_pr,
2064 .check_requests = kvmppc_core_check_requests_pr,
2065 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr,
2066 .flush_memslot = kvmppc_core_flush_memslot_pr,
2067 .prepare_memory_region = kvmppc_core_prepare_memory_region_pr,
2068 .commit_memory_region = kvmppc_core_commit_memory_region_pr,
2069 .unmap_gfn_range = kvm_unmap_gfn_range_pr,
2070 .age_gfn = kvm_age_gfn_pr,
2071 .test_age_gfn = kvm_test_age_gfn_pr,
2072 .set_spte_gfn = kvm_set_spte_gfn_pr,
2073 .free_memslot = kvmppc_core_free_memslot_pr,
2074 .init_vm = kvmppc_core_init_vm_pr,
2075 .destroy_vm = kvmppc_core_destroy_vm_pr,
2076 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr,
2077 .emulate_op = kvmppc_core_emulate_op_pr,
2078 .emulate_mtspr = kvmppc_core_emulate_mtspr_pr,
2079 .emulate_mfspr = kvmppc_core_emulate_mfspr_pr,
2080 .fast_vcpu_kick = kvm_vcpu_kick,
2081 .arch_vm_ioctl = kvm_arch_vm_ioctl_pr,
2082 #ifdef CONFIG_PPC_BOOK3S_64
2083 .hcall_implemented = kvmppc_hcall_impl_pr,
2084 .configure_mmu = kvm_configure_mmu_pr,
2085 #endif
2086 .giveup_ext = kvmppc_giveup_ext,
2087 };
2088
2089
kvmppc_book3s_init_pr(void)2090 int kvmppc_book3s_init_pr(void)
2091 {
2092 int r;
2093
2094 r = kvmppc_core_check_processor_compat_pr();
2095 if (r < 0)
2096 return r;
2097
2098 kvm_ops_pr.owner = THIS_MODULE;
2099 kvmppc_pr_ops = &kvm_ops_pr;
2100
2101 r = kvmppc_mmu_hpte_sysinit();
2102 return r;
2103 }
2104
kvmppc_book3s_exit_pr(void)2105 void kvmppc_book3s_exit_pr(void)
2106 {
2107 kvmppc_pr_ops = NULL;
2108 kvmppc_mmu_hpte_sysexit();
2109 }
2110
2111 /*
2112 * We only support separate modules for book3s 64
2113 */
2114 #ifdef CONFIG_PPC_BOOK3S_64
2115
2116 module_init(kvmppc_book3s_init_pr);
2117 module_exit(kvmppc_book3s_exit_pr);
2118
2119 MODULE_LICENSE("GPL");
2120 MODULE_ALIAS_MISCDEV(KVM_MINOR);
2121 MODULE_ALIAS("devname:kvm");
2122 #endif
2123