1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000 by Ralf Baechle and others.
7  * Copyright (C) 2005, 2006 by Ralf Baechle (ralf@linux-mips.org)
8  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9  * Copyright (C) 2004 Thiemo Seufer
10  * Copyright (C) 2013  Imagination Technologies Ltd.
11  */
12 #include <linux/cpu.h>
13 #include <linux/errno.h>
14 #include <linux/init.h>
15 #include <linux/kallsyms.h>
16 #include <linux/kernel.h>
17 #include <linux/nmi.h>
18 #include <linux/personality.h>
19 #include <linux/prctl.h>
20 #include <linux/random.h>
21 #include <linux/sched.h>
22 #include <linux/sched/debug.h>
23 #include <linux/sched/task_stack.h>
24 
25 #include <asm/abi.h>
26 #include <asm/asm.h>
27 #include <asm/dsemul.h>
28 #include <asm/dsp.h>
29 #include <asm/exec.h>
30 #include <asm/fpu.h>
31 #include <asm/inst.h>
32 #include <asm/irq.h>
33 #include <asm/irq_regs.h>
34 #include <asm/isadep.h>
35 #include <asm/msa.h>
36 #include <asm/mips-cps.h>
37 #include <asm/mipsregs.h>
38 #include <asm/processor.h>
39 #include <asm/reg.h>
40 #include <asm/stacktrace.h>
41 
42 #ifdef CONFIG_HOTPLUG_CPU
arch_cpu_idle_dead(void)43 void arch_cpu_idle_dead(void)
44 {
45 	play_dead();
46 }
47 #endif
48 
49 asmlinkage void ret_from_fork(void);
50 asmlinkage void ret_from_kernel_thread(void);
51 
start_thread(struct pt_regs * regs,unsigned long pc,unsigned long sp)52 void start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
53 {
54 	unsigned long status;
55 
56 	/* New thread loses kernel privileges. */
57 	status = regs->cp0_status & ~(ST0_CU0|ST0_CU1|ST0_CU2|ST0_FR|KU_MASK);
58 	status |= KU_USER;
59 	regs->cp0_status = status;
60 	lose_fpu(0);
61 	clear_thread_flag(TIF_MSA_CTX_LIVE);
62 	clear_used_math();
63 #ifdef CONFIG_MIPS_FP_SUPPORT
64 	atomic_set(&current->thread.bd_emu_frame, BD_EMUFRAME_NONE);
65 #endif
66 	init_dsp();
67 	regs->cp0_epc = pc;
68 	regs->regs[29] = sp;
69 }
70 
exit_thread(struct task_struct * tsk)71 void exit_thread(struct task_struct *tsk)
72 {
73 	/*
74 	 * User threads may have allocated a delay slot emulation frame.
75 	 * If so, clean up that allocation.
76 	 */
77 	if (!(current->flags & PF_KTHREAD))
78 		dsemul_thread_cleanup(tsk);
79 }
80 
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)81 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
82 {
83 	/*
84 	 * Save any process state which is live in hardware registers to the
85 	 * parent context prior to duplication. This prevents the new child
86 	 * state becoming stale if the parent is preempted before copy_thread()
87 	 * gets a chance to save the parent's live hardware registers to the
88 	 * child context.
89 	 */
90 	preempt_disable();
91 
92 	if (is_msa_enabled())
93 		save_msa(current);
94 	else if (is_fpu_owner())
95 		_save_fp(current);
96 
97 	save_dsp(current);
98 
99 	preempt_enable();
100 
101 	*dst = *src;
102 	return 0;
103 }
104 
105 /*
106  * Copy architecture-specific thread state
107  */
copy_thread(struct task_struct * p,const struct kernel_clone_args * args)108 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
109 {
110 	unsigned long clone_flags = args->flags;
111 	unsigned long usp = args->stack;
112 	unsigned long tls = args->tls;
113 	struct thread_info *ti = task_thread_info(p);
114 	struct pt_regs *childregs, *regs = current_pt_regs();
115 	unsigned long childksp;
116 
117 	childksp = (unsigned long)task_stack_page(p) + THREAD_SIZE - 32;
118 
119 	/* set up new TSS. */
120 	childregs = (struct pt_regs *) childksp - 1;
121 	/*  Put the stack after the struct pt_regs.  */
122 	childksp = (unsigned long) childregs;
123 	p->thread.cp0_status = (read_c0_status() & ~(ST0_CU2|ST0_CU1)) | ST0_KERNEL_CUMASK;
124 	if (unlikely(args->fn)) {
125 		/* kernel thread */
126 		unsigned long status = p->thread.cp0_status;
127 		memset(childregs, 0, sizeof(struct pt_regs));
128 		p->thread.reg16 = (unsigned long)args->fn;
129 		p->thread.reg17 = (unsigned long)args->fn_arg;
130 		p->thread.reg29 = childksp;
131 		p->thread.reg31 = (unsigned long) ret_from_kernel_thread;
132 #if defined(CONFIG_CPU_R3000)
133 		status = (status & ~(ST0_KUP | ST0_IEP | ST0_IEC)) |
134 			 ((status & (ST0_KUC | ST0_IEC)) << 2);
135 #else
136 		status |= ST0_EXL;
137 #endif
138 		childregs->cp0_status = status;
139 		return 0;
140 	}
141 
142 	/* user thread */
143 	*childregs = *regs;
144 	childregs->regs[7] = 0; /* Clear error flag */
145 	childregs->regs[2] = 0; /* Child gets zero as return value */
146 	if (usp)
147 		childregs->regs[29] = usp;
148 
149 	p->thread.reg29 = (unsigned long) childregs;
150 	p->thread.reg31 = (unsigned long) ret_from_fork;
151 
152 	/*
153 	 * New tasks lose permission to use the fpu. This accelerates context
154 	 * switching for most programs since they don't use the fpu.
155 	 */
156 	childregs->cp0_status &= ~(ST0_CU2|ST0_CU1);
157 
158 	clear_tsk_thread_flag(p, TIF_USEDFPU);
159 	clear_tsk_thread_flag(p, TIF_USEDMSA);
160 	clear_tsk_thread_flag(p, TIF_MSA_CTX_LIVE);
161 
162 #ifdef CONFIG_MIPS_MT_FPAFF
163 	clear_tsk_thread_flag(p, TIF_FPUBOUND);
164 #endif /* CONFIG_MIPS_MT_FPAFF */
165 
166 #ifdef CONFIG_MIPS_FP_SUPPORT
167 	atomic_set(&p->thread.bd_emu_frame, BD_EMUFRAME_NONE);
168 #endif
169 
170 	if (clone_flags & CLONE_SETTLS)
171 		ti->tp_value = tls;
172 
173 	return 0;
174 }
175 
176 #ifdef CONFIG_STACKPROTECTOR
177 #include <linux/stackprotector.h>
178 unsigned long __stack_chk_guard __read_mostly;
179 EXPORT_SYMBOL(__stack_chk_guard);
180 #endif
181 
182 struct mips_frame_info {
183 	void		*func;
184 	unsigned long	func_size;
185 	int		frame_size;
186 	int		pc_offset;
187 };
188 
189 #define J_TARGET(pc,target)	\
190 		(((unsigned long)(pc) & 0xf0000000) | ((target) << 2))
191 
is_jr_ra_ins(union mips_instruction * ip)192 static inline int is_jr_ra_ins(union mips_instruction *ip)
193 {
194 #ifdef CONFIG_CPU_MICROMIPS
195 	/*
196 	 * jr16 ra
197 	 * jr ra
198 	 */
199 	if (mm_insn_16bit(ip->word >> 16)) {
200 		if (ip->mm16_r5_format.opcode == mm_pool16c_op &&
201 		    ip->mm16_r5_format.rt == mm_jr16_op &&
202 		    ip->mm16_r5_format.imm == 31)
203 			return 1;
204 		return 0;
205 	}
206 
207 	if (ip->r_format.opcode == mm_pool32a_op &&
208 	    ip->r_format.func == mm_pool32axf_op &&
209 	    ((ip->u_format.uimmediate >> 6) & GENMASK(9, 0)) == mm_jalr_op &&
210 	    ip->r_format.rt == 31)
211 		return 1;
212 	return 0;
213 #else
214 	if (ip->r_format.opcode == spec_op &&
215 	    ip->r_format.func == jr_op &&
216 	    ip->r_format.rs == 31)
217 		return 1;
218 	return 0;
219 #endif
220 }
221 
is_ra_save_ins(union mips_instruction * ip,int * poff)222 static inline int is_ra_save_ins(union mips_instruction *ip, int *poff)
223 {
224 #ifdef CONFIG_CPU_MICROMIPS
225 	/*
226 	 * swsp ra,offset
227 	 * swm16 reglist,offset(sp)
228 	 * swm32 reglist,offset(sp)
229 	 * sw32 ra,offset(sp)
230 	 * jradiussp - NOT SUPPORTED
231 	 *
232 	 * microMIPS is way more fun...
233 	 */
234 	if (mm_insn_16bit(ip->word >> 16)) {
235 		switch (ip->mm16_r5_format.opcode) {
236 		case mm_swsp16_op:
237 			if (ip->mm16_r5_format.rt != 31)
238 				return 0;
239 
240 			*poff = ip->mm16_r5_format.imm;
241 			*poff = (*poff << 2) / sizeof(ulong);
242 			return 1;
243 
244 		case mm_pool16c_op:
245 			switch (ip->mm16_m_format.func) {
246 			case mm_swm16_op:
247 				*poff = ip->mm16_m_format.imm;
248 				*poff += 1 + ip->mm16_m_format.rlist;
249 				*poff = (*poff << 2) / sizeof(ulong);
250 				return 1;
251 
252 			default:
253 				return 0;
254 			}
255 
256 		default:
257 			return 0;
258 		}
259 	}
260 
261 	switch (ip->i_format.opcode) {
262 	case mm_sw32_op:
263 		if (ip->i_format.rs != 29)
264 			return 0;
265 		if (ip->i_format.rt != 31)
266 			return 0;
267 
268 		*poff = ip->i_format.simmediate / sizeof(ulong);
269 		return 1;
270 
271 	case mm_pool32b_op:
272 		switch (ip->mm_m_format.func) {
273 		case mm_swm32_func:
274 			if (ip->mm_m_format.rd < 0x10)
275 				return 0;
276 			if (ip->mm_m_format.base != 29)
277 				return 0;
278 
279 			*poff = ip->mm_m_format.simmediate;
280 			*poff += (ip->mm_m_format.rd & 0xf) * sizeof(u32);
281 			*poff /= sizeof(ulong);
282 			return 1;
283 		default:
284 			return 0;
285 		}
286 
287 	default:
288 		return 0;
289 	}
290 #else
291 	/* sw / sd $ra, offset($sp) */
292 	if ((ip->i_format.opcode == sw_op || ip->i_format.opcode == sd_op) &&
293 		ip->i_format.rs == 29 && ip->i_format.rt == 31) {
294 		*poff = ip->i_format.simmediate / sizeof(ulong);
295 		return 1;
296 	}
297 #ifdef CONFIG_CPU_LOONGSON64
298 	if ((ip->loongson3_lswc2_format.opcode == swc2_op) &&
299 		      (ip->loongson3_lswc2_format.ls == 1) &&
300 		      (ip->loongson3_lswc2_format.fr == 0) &&
301 		      (ip->loongson3_lswc2_format.base == 29)) {
302 		if (ip->loongson3_lswc2_format.rt == 31) {
303 			*poff = ip->loongson3_lswc2_format.offset << 1;
304 			return 1;
305 		}
306 		if (ip->loongson3_lswc2_format.rq == 31) {
307 			*poff = (ip->loongson3_lswc2_format.offset << 1) + 1;
308 			return 1;
309 		}
310 	}
311 #endif
312 	return 0;
313 #endif
314 }
315 
is_jump_ins(union mips_instruction * ip)316 static inline int is_jump_ins(union mips_instruction *ip)
317 {
318 #ifdef CONFIG_CPU_MICROMIPS
319 	/*
320 	 * jr16,jrc,jalr16,jalr16
321 	 * jal
322 	 * jalr/jr,jalr.hb/jr.hb,jalrs,jalrs.hb
323 	 * jraddiusp - NOT SUPPORTED
324 	 *
325 	 * microMIPS is kind of more fun...
326 	 */
327 	if (mm_insn_16bit(ip->word >> 16)) {
328 		if ((ip->mm16_r5_format.opcode == mm_pool16c_op &&
329 		    (ip->mm16_r5_format.rt & mm_jr16_op) == mm_jr16_op))
330 			return 1;
331 		return 0;
332 	}
333 
334 	if (ip->j_format.opcode == mm_j32_op)
335 		return 1;
336 	if (ip->j_format.opcode == mm_jal32_op)
337 		return 1;
338 	if (ip->r_format.opcode != mm_pool32a_op ||
339 			ip->r_format.func != mm_pool32axf_op)
340 		return 0;
341 	return ((ip->u_format.uimmediate >> 6) & mm_jalr_op) == mm_jalr_op;
342 #else
343 	if (ip->j_format.opcode == j_op)
344 		return 1;
345 	if (ip->j_format.opcode == jal_op)
346 		return 1;
347 	if (ip->r_format.opcode != spec_op)
348 		return 0;
349 	return ip->r_format.func == jalr_op || ip->r_format.func == jr_op;
350 #endif
351 }
352 
is_sp_move_ins(union mips_instruction * ip,int * frame_size)353 static inline int is_sp_move_ins(union mips_instruction *ip, int *frame_size)
354 {
355 #ifdef CONFIG_CPU_MICROMIPS
356 	unsigned short tmp;
357 
358 	/*
359 	 * addiusp -imm
360 	 * addius5 sp,-imm
361 	 * addiu32 sp,sp,-imm
362 	 * jradiussp - NOT SUPPORTED
363 	 *
364 	 * microMIPS is not more fun...
365 	 */
366 	if (mm_insn_16bit(ip->word >> 16)) {
367 		if (ip->mm16_r3_format.opcode == mm_pool16d_op &&
368 		    ip->mm16_r3_format.simmediate & mm_addiusp_func) {
369 			tmp = ip->mm_b0_format.simmediate >> 1;
370 			tmp = ((tmp & 0x1ff) ^ 0x100) - 0x100;
371 			if ((tmp + 2) < 4) /* 0x0,0x1,0x1fe,0x1ff are special */
372 				tmp ^= 0x100;
373 			*frame_size = -(signed short)(tmp << 2);
374 			return 1;
375 		}
376 		if (ip->mm16_r5_format.opcode == mm_pool16d_op &&
377 		    ip->mm16_r5_format.rt == 29) {
378 			tmp = ip->mm16_r5_format.imm >> 1;
379 			*frame_size = -(signed short)(tmp & 0xf);
380 			return 1;
381 		}
382 		return 0;
383 	}
384 
385 	if (ip->mm_i_format.opcode == mm_addiu32_op &&
386 	    ip->mm_i_format.rt == 29 && ip->mm_i_format.rs == 29) {
387 		*frame_size = -ip->i_format.simmediate;
388 		return 1;
389 	}
390 #else
391 	/* addiu/daddiu sp,sp,-imm */
392 	if (ip->i_format.rs != 29 || ip->i_format.rt != 29)
393 		return 0;
394 
395 	if (ip->i_format.opcode == addiu_op ||
396 	    ip->i_format.opcode == daddiu_op) {
397 		*frame_size = -ip->i_format.simmediate;
398 		return 1;
399 	}
400 #endif
401 	return 0;
402 }
403 
get_frame_info(struct mips_frame_info * info)404 static int get_frame_info(struct mips_frame_info *info)
405 {
406 	bool is_mmips = IS_ENABLED(CONFIG_CPU_MICROMIPS);
407 	union mips_instruction insn, *ip, *ip_end;
408 	unsigned int last_insn_size = 0;
409 	bool saw_jump = false;
410 
411 	info->pc_offset = -1;
412 	info->frame_size = 0;
413 
414 	ip = (void *)msk_isa16_mode((ulong)info->func);
415 	if (!ip)
416 		goto err;
417 
418 	ip_end = (void *)ip + (info->func_size ? info->func_size : 512);
419 
420 	while (ip < ip_end) {
421 		ip = (void *)ip + last_insn_size;
422 
423 		if (is_mmips && mm_insn_16bit(ip->halfword[0])) {
424 			insn.word = ip->halfword[0] << 16;
425 			last_insn_size = 2;
426 		} else if (is_mmips) {
427 			insn.word = ip->halfword[0] << 16 | ip->halfword[1];
428 			last_insn_size = 4;
429 		} else {
430 			insn.word = ip->word;
431 			last_insn_size = 4;
432 		}
433 
434 		if (is_jr_ra_ins(ip)) {
435 			break;
436 		} else if (!info->frame_size) {
437 			is_sp_move_ins(&insn, &info->frame_size);
438 			continue;
439 		} else if (!saw_jump && is_jump_ins(ip)) {
440 			/*
441 			 * If we see a jump instruction, we are finished
442 			 * with the frame save.
443 			 *
444 			 * Some functions can have a shortcut return at
445 			 * the beginning of the function, so don't start
446 			 * looking for jump instruction until we see the
447 			 * frame setup.
448 			 *
449 			 * The RA save instruction can get put into the
450 			 * delay slot of the jump instruction, so look
451 			 * at the next instruction, too.
452 			 */
453 			saw_jump = true;
454 			continue;
455 		}
456 		if (info->pc_offset == -1 &&
457 		    is_ra_save_ins(&insn, &info->pc_offset))
458 			break;
459 		if (saw_jump)
460 			break;
461 	}
462 	if (info->frame_size && info->pc_offset >= 0) /* nested */
463 		return 0;
464 	if (info->pc_offset < 0) /* leaf */
465 		return 1;
466 	/* prologue seems bogus... */
467 err:
468 	return -1;
469 }
470 
471 static struct mips_frame_info schedule_mfi __read_mostly;
472 
473 #ifdef CONFIG_KALLSYMS
get___schedule_addr(void)474 static unsigned long get___schedule_addr(void)
475 {
476 	return kallsyms_lookup_name("__schedule");
477 }
478 #else
get___schedule_addr(void)479 static unsigned long get___schedule_addr(void)
480 {
481 	union mips_instruction *ip = (void *)schedule;
482 	int max_insns = 8;
483 	int i;
484 
485 	for (i = 0; i < max_insns; i++, ip++) {
486 		if (ip->j_format.opcode == j_op)
487 			return J_TARGET(ip, ip->j_format.target);
488 	}
489 	return 0;
490 }
491 #endif
492 
frame_info_init(void)493 static int __init frame_info_init(void)
494 {
495 	unsigned long size = 0;
496 #ifdef CONFIG_KALLSYMS
497 	unsigned long ofs;
498 #endif
499 	unsigned long addr;
500 
501 	addr = get___schedule_addr();
502 	if (!addr)
503 		addr = (unsigned long)schedule;
504 
505 #ifdef CONFIG_KALLSYMS
506 	kallsyms_lookup_size_offset(addr, &size, &ofs);
507 #endif
508 	schedule_mfi.func = (void *)addr;
509 	schedule_mfi.func_size = size;
510 
511 	get_frame_info(&schedule_mfi);
512 
513 	/*
514 	 * Without schedule() frame info, result given by
515 	 * thread_saved_pc() and __get_wchan() are not reliable.
516 	 */
517 	if (schedule_mfi.pc_offset < 0)
518 		printk("Can't analyze schedule() prologue at %p\n", schedule);
519 
520 	return 0;
521 }
522 
523 arch_initcall(frame_info_init);
524 
525 /*
526  * Return saved PC of a blocked thread.
527  */
thread_saved_pc(struct task_struct * tsk)528 static unsigned long thread_saved_pc(struct task_struct *tsk)
529 {
530 	struct thread_struct *t = &tsk->thread;
531 
532 	/* New born processes are a special case */
533 	if (t->reg31 == (unsigned long) ret_from_fork)
534 		return t->reg31;
535 	if (schedule_mfi.pc_offset < 0)
536 		return 0;
537 	return ((unsigned long *)t->reg29)[schedule_mfi.pc_offset];
538 }
539 
540 
541 #ifdef CONFIG_KALLSYMS
542 /* generic stack unwinding function */
unwind_stack_by_address(unsigned long stack_page,unsigned long * sp,unsigned long pc,unsigned long * ra)543 unsigned long notrace unwind_stack_by_address(unsigned long stack_page,
544 					      unsigned long *sp,
545 					      unsigned long pc,
546 					      unsigned long *ra)
547 {
548 	unsigned long low, high, irq_stack_high;
549 	struct mips_frame_info info;
550 	unsigned long size, ofs;
551 	struct pt_regs *regs;
552 	int leaf;
553 
554 	if (!stack_page)
555 		return 0;
556 
557 	/*
558 	 * IRQ stacks start at IRQ_STACK_START
559 	 * task stacks at THREAD_SIZE - 32
560 	 */
561 	low = stack_page;
562 	if (!preemptible() && on_irq_stack(raw_smp_processor_id(), *sp)) {
563 		high = stack_page + IRQ_STACK_START;
564 		irq_stack_high = high;
565 	} else {
566 		high = stack_page + THREAD_SIZE - 32;
567 		irq_stack_high = 0;
568 	}
569 
570 	/*
571 	 * If we reached the top of the interrupt stack, start unwinding
572 	 * the interrupted task stack.
573 	 */
574 	if (unlikely(*sp == irq_stack_high)) {
575 		unsigned long task_sp = *(unsigned long *)*sp;
576 
577 		/*
578 		 * Check that the pointer saved in the IRQ stack head points to
579 		 * something within the stack of the current task
580 		 */
581 		if (!object_is_on_stack((void *)task_sp))
582 			return 0;
583 
584 		/*
585 		 * Follow pointer to tasks kernel stack frame where interrupted
586 		 * state was saved.
587 		 */
588 		regs = (struct pt_regs *)task_sp;
589 		pc = regs->cp0_epc;
590 		if (!user_mode(regs) && __kernel_text_address(pc)) {
591 			*sp = regs->regs[29];
592 			*ra = regs->regs[31];
593 			return pc;
594 		}
595 		return 0;
596 	}
597 	if (!kallsyms_lookup_size_offset(pc, &size, &ofs))
598 		return 0;
599 	/*
600 	 * Return ra if an exception occurred at the first instruction
601 	 */
602 	if (unlikely(ofs == 0)) {
603 		pc = *ra;
604 		*ra = 0;
605 		return pc;
606 	}
607 
608 	info.func = (void *)(pc - ofs);
609 	info.func_size = ofs;	/* analyze from start to ofs */
610 	leaf = get_frame_info(&info);
611 	if (leaf < 0)
612 		return 0;
613 
614 	if (*sp < low || *sp + info.frame_size > high)
615 		return 0;
616 
617 	if (leaf)
618 		/*
619 		 * For some extreme cases, get_frame_info() can
620 		 * consider wrongly a nested function as a leaf
621 		 * one. In that cases avoid to return always the
622 		 * same value.
623 		 */
624 		pc = pc != *ra ? *ra : 0;
625 	else
626 		pc = ((unsigned long *)(*sp))[info.pc_offset];
627 
628 	*sp += info.frame_size;
629 	*ra = 0;
630 	return __kernel_text_address(pc) ? pc : 0;
631 }
632 EXPORT_SYMBOL(unwind_stack_by_address);
633 
634 /* used by show_backtrace() */
unwind_stack(struct task_struct * task,unsigned long * sp,unsigned long pc,unsigned long * ra)635 unsigned long unwind_stack(struct task_struct *task, unsigned long *sp,
636 			   unsigned long pc, unsigned long *ra)
637 {
638 	unsigned long stack_page = 0;
639 	int cpu;
640 
641 	for_each_possible_cpu(cpu) {
642 		if (on_irq_stack(cpu, *sp)) {
643 			stack_page = (unsigned long)irq_stack[cpu];
644 			break;
645 		}
646 	}
647 
648 	if (!stack_page)
649 		stack_page = (unsigned long)task_stack_page(task);
650 
651 	return unwind_stack_by_address(stack_page, sp, pc, ra);
652 }
653 #endif
654 
655 /*
656  * __get_wchan - a maintenance nightmare^W^Wpain in the ass ...
657  */
__get_wchan(struct task_struct * task)658 unsigned long __get_wchan(struct task_struct *task)
659 {
660 	unsigned long pc = 0;
661 #ifdef CONFIG_KALLSYMS
662 	unsigned long sp;
663 	unsigned long ra = 0;
664 #endif
665 
666 	if (!task_stack_page(task))
667 		goto out;
668 
669 	pc = thread_saved_pc(task);
670 
671 #ifdef CONFIG_KALLSYMS
672 	sp = task->thread.reg29 + schedule_mfi.frame_size;
673 
674 	while (in_sched_functions(pc))
675 		pc = unwind_stack(task, &sp, pc, &ra);
676 #endif
677 
678 out:
679 	return pc;
680 }
681 
mips_stack_top(void)682 unsigned long mips_stack_top(void)
683 {
684 	unsigned long top = TASK_SIZE & PAGE_MASK;
685 
686 	if (IS_ENABLED(CONFIG_MIPS_FP_SUPPORT)) {
687 		/* One page for branch delay slot "emulation" */
688 		top -= PAGE_SIZE;
689 	}
690 
691 	/* Space for the VDSO, data page & GIC user page */
692 	top -= PAGE_ALIGN(current->thread.abi->vdso->size);
693 	top -= PAGE_SIZE;
694 	top -= mips_gic_present() ? PAGE_SIZE : 0;
695 
696 	/* Space for cache colour alignment */
697 	if (cpu_has_dc_aliases)
698 		top -= shm_align_mask + 1;
699 
700 	/* Space to randomize the VDSO base */
701 	if (current->flags & PF_RANDOMIZE)
702 		top -= VDSO_RANDOMIZE_SIZE;
703 
704 	return top;
705 }
706 
707 /*
708  * Don't forget that the stack pointer must be aligned on a 8 bytes
709  * boundary for 32-bits ABI and 16 bytes for 64-bits ABI.
710  */
arch_align_stack(unsigned long sp)711 unsigned long arch_align_stack(unsigned long sp)
712 {
713 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
714 		sp -= get_random_int() & ~PAGE_MASK;
715 
716 	return sp & ALMASK;
717 }
718 
719 static struct cpumask backtrace_csd_busy;
720 
handle_backtrace(void * info)721 static void handle_backtrace(void *info)
722 {
723 	nmi_cpu_backtrace(get_irq_regs());
724 	cpumask_clear_cpu(smp_processor_id(), &backtrace_csd_busy);
725 }
726 
727 static DEFINE_PER_CPU(call_single_data_t, backtrace_csd) =
728 	CSD_INIT(handle_backtrace, NULL);
729 
raise_backtrace(cpumask_t * mask)730 static void raise_backtrace(cpumask_t *mask)
731 {
732 	call_single_data_t *csd;
733 	int cpu;
734 
735 	for_each_cpu(cpu, mask) {
736 		/*
737 		 * If we previously sent an IPI to the target CPU & it hasn't
738 		 * cleared its bit in the busy cpumask then it didn't handle
739 		 * our previous IPI & it's not safe for us to reuse the
740 		 * call_single_data_t.
741 		 */
742 		if (cpumask_test_and_set_cpu(cpu, &backtrace_csd_busy)) {
743 			pr_warn("Unable to send backtrace IPI to CPU%u - perhaps it hung?\n",
744 				cpu);
745 			continue;
746 		}
747 
748 		csd = &per_cpu(backtrace_csd, cpu);
749 		smp_call_function_single_async(cpu, csd);
750 	}
751 }
752 
arch_trigger_cpumask_backtrace(const cpumask_t * mask,bool exclude_self)753 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
754 {
755 	nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_backtrace);
756 }
757 
mips_get_process_fp_mode(struct task_struct * task)758 int mips_get_process_fp_mode(struct task_struct *task)
759 {
760 	int value = 0;
761 
762 	if (!test_tsk_thread_flag(task, TIF_32BIT_FPREGS))
763 		value |= PR_FP_MODE_FR;
764 	if (test_tsk_thread_flag(task, TIF_HYBRID_FPREGS))
765 		value |= PR_FP_MODE_FRE;
766 
767 	return value;
768 }
769 
prepare_for_fp_mode_switch(void * unused)770 static long prepare_for_fp_mode_switch(void *unused)
771 {
772 	/*
773 	 * This is icky, but we use this to simply ensure that all CPUs have
774 	 * context switched, regardless of whether they were previously running
775 	 * kernel or user code. This ensures that no CPU that a mode-switching
776 	 * program may execute on keeps its FPU enabled (& in the old mode)
777 	 * throughout the mode switch.
778 	 */
779 	return 0;
780 }
781 
mips_set_process_fp_mode(struct task_struct * task,unsigned int value)782 int mips_set_process_fp_mode(struct task_struct *task, unsigned int value)
783 {
784 	const unsigned int known_bits = PR_FP_MODE_FR | PR_FP_MODE_FRE;
785 	struct task_struct *t;
786 	struct cpumask process_cpus;
787 	int cpu;
788 
789 	/* If nothing to change, return right away, successfully.  */
790 	if (value == mips_get_process_fp_mode(task))
791 		return 0;
792 
793 	/* Only accept a mode change if 64-bit FP enabled for o32.  */
794 	if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
795 		return -EOPNOTSUPP;
796 
797 	/* And only for o32 tasks.  */
798 	if (IS_ENABLED(CONFIG_64BIT) && !test_thread_flag(TIF_32BIT_REGS))
799 		return -EOPNOTSUPP;
800 
801 	/* Check the value is valid */
802 	if (value & ~known_bits)
803 		return -EOPNOTSUPP;
804 
805 	/* Setting FRE without FR is not supported.  */
806 	if ((value & (PR_FP_MODE_FR | PR_FP_MODE_FRE)) == PR_FP_MODE_FRE)
807 		return -EOPNOTSUPP;
808 
809 	/* Avoid inadvertently triggering emulation */
810 	if ((value & PR_FP_MODE_FR) && raw_cpu_has_fpu &&
811 	    !(raw_current_cpu_data.fpu_id & MIPS_FPIR_F64))
812 		return -EOPNOTSUPP;
813 	if ((value & PR_FP_MODE_FRE) && raw_cpu_has_fpu && !cpu_has_fre)
814 		return -EOPNOTSUPP;
815 
816 	/* FR = 0 not supported in MIPS R6 */
817 	if (!(value & PR_FP_MODE_FR) && raw_cpu_has_fpu && cpu_has_mips_r6)
818 		return -EOPNOTSUPP;
819 
820 	/* Indicate the new FP mode in each thread */
821 	for_each_thread(task, t) {
822 		/* Update desired FP register width */
823 		if (value & PR_FP_MODE_FR) {
824 			clear_tsk_thread_flag(t, TIF_32BIT_FPREGS);
825 		} else {
826 			set_tsk_thread_flag(t, TIF_32BIT_FPREGS);
827 			clear_tsk_thread_flag(t, TIF_MSA_CTX_LIVE);
828 		}
829 
830 		/* Update desired FP single layout */
831 		if (value & PR_FP_MODE_FRE)
832 			set_tsk_thread_flag(t, TIF_HYBRID_FPREGS);
833 		else
834 			clear_tsk_thread_flag(t, TIF_HYBRID_FPREGS);
835 	}
836 
837 	/*
838 	 * We need to ensure that all threads in the process have switched mode
839 	 * before returning, in order to allow userland to not worry about
840 	 * races. We can do this by forcing all CPUs that any thread in the
841 	 * process may be running on to schedule something else - in this case
842 	 * prepare_for_fp_mode_switch().
843 	 *
844 	 * We begin by generating a mask of all CPUs that any thread in the
845 	 * process may be running on.
846 	 */
847 	cpumask_clear(&process_cpus);
848 	for_each_thread(task, t)
849 		cpumask_set_cpu(task_cpu(t), &process_cpus);
850 
851 	/*
852 	 * Now we schedule prepare_for_fp_mode_switch() on each of those CPUs.
853 	 *
854 	 * The CPUs may have rescheduled already since we switched mode or
855 	 * generated the cpumask, but that doesn't matter. If the task in this
856 	 * process is scheduled out then our scheduling
857 	 * prepare_for_fp_mode_switch() will simply be redundant. If it's
858 	 * scheduled in then it will already have picked up the new FP mode
859 	 * whilst doing so.
860 	 */
861 	cpus_read_lock();
862 	for_each_cpu_and(cpu, &process_cpus, cpu_online_mask)
863 		work_on_cpu(cpu, prepare_for_fp_mode_switch, NULL);
864 	cpus_read_unlock();
865 
866 	return 0;
867 }
868 
869 #if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32)
mips_dump_regs32(u32 * uregs,const struct pt_regs * regs)870 void mips_dump_regs32(u32 *uregs, const struct pt_regs *regs)
871 {
872 	unsigned int i;
873 
874 	for (i = MIPS32_EF_R1; i <= MIPS32_EF_R31; i++) {
875 		/* k0/k1 are copied as zero. */
876 		if (i == MIPS32_EF_R26 || i == MIPS32_EF_R27)
877 			uregs[i] = 0;
878 		else
879 			uregs[i] = regs->regs[i - MIPS32_EF_R0];
880 	}
881 
882 	uregs[MIPS32_EF_LO] = regs->lo;
883 	uregs[MIPS32_EF_HI] = regs->hi;
884 	uregs[MIPS32_EF_CP0_EPC] = regs->cp0_epc;
885 	uregs[MIPS32_EF_CP0_BADVADDR] = regs->cp0_badvaddr;
886 	uregs[MIPS32_EF_CP0_STATUS] = regs->cp0_status;
887 	uregs[MIPS32_EF_CP0_CAUSE] = regs->cp0_cause;
888 }
889 #endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */
890 
891 #ifdef CONFIG_64BIT
mips_dump_regs64(u64 * uregs,const struct pt_regs * regs)892 void mips_dump_regs64(u64 *uregs, const struct pt_regs *regs)
893 {
894 	unsigned int i;
895 
896 	for (i = MIPS64_EF_R1; i <= MIPS64_EF_R31; i++) {
897 		/* k0/k1 are copied as zero. */
898 		if (i == MIPS64_EF_R26 || i == MIPS64_EF_R27)
899 			uregs[i] = 0;
900 		else
901 			uregs[i] = regs->regs[i - MIPS64_EF_R0];
902 	}
903 
904 	uregs[MIPS64_EF_LO] = regs->lo;
905 	uregs[MIPS64_EF_HI] = regs->hi;
906 	uregs[MIPS64_EF_CP0_EPC] = regs->cp0_epc;
907 	uregs[MIPS64_EF_CP0_BADVADDR] = regs->cp0_badvaddr;
908 	uregs[MIPS64_EF_CP0_STATUS] = regs->cp0_status;
909 	uregs[MIPS64_EF_CP0_CAUSE] = regs->cp0_cause;
910 }
911 #endif /* CONFIG_64BIT */
912