1# SPDX-License-Identifier: GPL-2.0-only 2config ARM64 3 def_bool y 4 select ACPI_CCA_REQUIRED if ACPI 5 select ACPI_GENERIC_GSI if ACPI 6 select ACPI_GTDT if ACPI 7 select ACPI_IORT if ACPI 8 select ACPI_REDUCED_HARDWARE_ONLY if ACPI 9 select ACPI_MCFG if (ACPI && PCI) 10 select ACPI_SPCR_TABLE if ACPI 11 select ACPI_PPTT if ACPI 12 select ARCH_HAS_DEBUG_WX 13 select ARCH_BINFMT_ELF_EXTRA_PHDRS 14 select ARCH_BINFMT_ELF_STATE 15 select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE 16 select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION 17 select ARCH_ENABLE_MEMORY_HOTPLUG 18 select ARCH_ENABLE_MEMORY_HOTREMOVE 19 select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2 20 select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE 21 select ARCH_HAS_CACHE_LINE_SIZE 22 select ARCH_HAS_CURRENT_STACK_POINTER 23 select ARCH_HAS_DEBUG_VIRTUAL 24 select ARCH_HAS_DEBUG_VM_PGTABLE 25 select ARCH_HAS_DMA_PREP_COHERENT 26 select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI 27 select ARCH_HAS_FAST_MULTIPLIER 28 select ARCH_HAS_FORTIFY_SOURCE 29 select ARCH_HAS_GCOV_PROFILE_ALL 30 select ARCH_HAS_GIGANTIC_PAGE 31 select ARCH_HAS_KCOV 32 select ARCH_HAS_KEEPINITRD 33 select ARCH_HAS_MEMBARRIER_SYNC_CORE 34 select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 35 select ARCH_HAS_PTE_DEVMAP 36 select ARCH_HAS_PTE_SPECIAL 37 select ARCH_HAS_SETUP_DMA_OPS 38 select ARCH_HAS_SET_DIRECT_MAP 39 select ARCH_HAS_SET_MEMORY 40 select ARCH_STACKWALK 41 select ARCH_HAS_STRICT_KERNEL_RWX 42 select ARCH_HAS_STRICT_MODULE_RWX 43 select ARCH_HAS_SYNC_DMA_FOR_DEVICE 44 select ARCH_HAS_SYNC_DMA_FOR_CPU 45 select ARCH_HAS_SYSCALL_WRAPPER 46 select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT 47 select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST 48 select ARCH_HAS_VM_GET_PAGE_PROT 49 select ARCH_HAS_ZONE_DMA_SET if EXPERT 50 select ARCH_HAVE_ELF_PROT 51 select ARCH_HAVE_NMI_SAFE_CMPXCHG 52 select ARCH_INLINE_READ_LOCK if !PREEMPTION 53 select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION 54 select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION 55 select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION 56 select ARCH_INLINE_READ_UNLOCK if !PREEMPTION 57 select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION 58 select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION 59 select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION 60 select ARCH_INLINE_WRITE_LOCK if !PREEMPTION 61 select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION 62 select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION 63 select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION 64 select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION 65 select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION 66 select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION 67 select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION 68 select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION 69 select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION 70 select ARCH_INLINE_SPIN_LOCK if !PREEMPTION 71 select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION 72 select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION 73 select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION 74 select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION 75 select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION 76 select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION 77 select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION 78 select ARCH_KEEP_MEMBLOCK 79 select ARCH_USE_CMPXCHG_LOCKREF 80 select ARCH_USE_GNU_PROPERTY 81 select ARCH_USE_MEMTEST 82 select ARCH_USE_QUEUED_RWLOCKS 83 select ARCH_USE_QUEUED_SPINLOCKS 84 select ARCH_USE_SYM_ANNOTATIONS 85 select ARCH_SUPPORTS_DEBUG_PAGEALLOC 86 select ARCH_SUPPORTS_HUGETLBFS 87 select ARCH_SUPPORTS_MEMORY_FAILURE 88 select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK 89 select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN 90 select ARCH_SUPPORTS_LTO_CLANG_THIN 91 select ARCH_SUPPORTS_CFI_CLANG 92 select ARCH_SUPPORTS_ATOMIC_RMW 93 select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 94 select ARCH_SUPPORTS_NUMA_BALANCING 95 select ARCH_SUPPORTS_PAGE_TABLE_CHECK 96 select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT 97 select ARCH_WANT_DEFAULT_BPF_JIT 98 select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT 99 select ARCH_WANT_FRAME_POINTERS 100 select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36) 101 select ARCH_WANT_HUGETLB_PAGE_OPTIMIZE_VMEMMAP 102 select ARCH_WANT_LD_ORPHAN_WARN 103 select ARCH_WANTS_NO_INSTR 104 select ARCH_HAS_UBSAN_SANITIZE_ALL 105 select ARM_AMBA 106 select ARM_ARCH_TIMER 107 select ARM_GIC 108 select AUDIT_ARCH_COMPAT_GENERIC 109 select ARM_GIC_V2M if PCI 110 select ARM_GIC_V3 111 select ARM_GIC_V3_ITS if PCI 112 select ARM_PSCI_FW 113 select BUILDTIME_TABLE_SORT 114 select CLONE_BACKWARDS 115 select COMMON_CLK 116 select CPU_PM if (SUSPEND || CPU_IDLE) 117 select CRC32 118 select DCACHE_WORD_ACCESS 119 select DMA_DIRECT_REMAP 120 select EDAC_SUPPORT 121 select FRAME_POINTER 122 select GENERIC_ALLOCATOR 123 select GENERIC_ARCH_TOPOLOGY 124 select GENERIC_CLOCKEVENTS_BROADCAST 125 select GENERIC_CPU_AUTOPROBE 126 select GENERIC_CPU_VULNERABILITIES 127 select GENERIC_EARLY_IOREMAP 128 select GENERIC_IDLE_POLL_SETUP 129 select GENERIC_IRQ_IPI 130 select GENERIC_IRQ_PROBE 131 select GENERIC_IRQ_SHOW 132 select GENERIC_IRQ_SHOW_LEVEL 133 select GENERIC_LIB_DEVMEM_IS_ALLOWED 134 select GENERIC_PCI_IOMAP 135 select GENERIC_PTDUMP 136 select GENERIC_SCHED_CLOCK 137 select GENERIC_SMP_IDLE_THREAD 138 select GENERIC_TIME_VSYSCALL 139 select GENERIC_GETTIMEOFDAY 140 select GENERIC_VDSO_TIME_NS 141 select HARDIRQS_SW_RESEND 142 select HAVE_MOVE_PMD 143 select HAVE_MOVE_PUD 144 select HAVE_PCI 145 select HAVE_ACPI_APEI if (ACPI && EFI) 146 select HAVE_ALIGNED_STRUCT_PAGE if SLUB 147 select HAVE_ARCH_AUDITSYSCALL 148 select HAVE_ARCH_BITREVERSE 149 select HAVE_ARCH_COMPILER_H 150 select HAVE_ARCH_HUGE_VMAP 151 select HAVE_ARCH_JUMP_LABEL 152 select HAVE_ARCH_JUMP_LABEL_RELATIVE 153 select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48) 154 select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN 155 select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN 156 select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE) 157 # Some instrumentation may be unsound, hence EXPERT 158 select HAVE_ARCH_KCSAN if EXPERT 159 select HAVE_ARCH_KFENCE 160 select HAVE_ARCH_KGDB 161 select HAVE_ARCH_MMAP_RND_BITS 162 select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT 163 select HAVE_ARCH_PREL32_RELOCATIONS 164 select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET 165 select HAVE_ARCH_SECCOMP_FILTER 166 select HAVE_ARCH_STACKLEAK 167 select HAVE_ARCH_THREAD_STRUCT_WHITELIST 168 select HAVE_ARCH_TRACEHOOK 169 select HAVE_ARCH_TRANSPARENT_HUGEPAGE 170 select HAVE_ARCH_VMAP_STACK 171 select HAVE_ARM_SMCCC 172 select HAVE_ASM_MODVERSIONS 173 select HAVE_EBPF_JIT 174 select HAVE_C_RECORDMCOUNT 175 select HAVE_CMPXCHG_DOUBLE 176 select HAVE_CMPXCHG_LOCAL 177 select HAVE_CONTEXT_TRACKING 178 select HAVE_DEBUG_KMEMLEAK 179 select HAVE_DMA_CONTIGUOUS 180 select HAVE_DYNAMIC_FTRACE 181 select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \ 182 if DYNAMIC_FTRACE_WITH_REGS 183 select HAVE_EFFICIENT_UNALIGNED_ACCESS 184 select HAVE_FAST_GUP 185 select HAVE_FTRACE_MCOUNT_RECORD 186 select HAVE_FUNCTION_TRACER 187 select HAVE_FUNCTION_ERROR_INJECTION 188 select HAVE_FUNCTION_GRAPH_TRACER 189 select HAVE_GCC_PLUGINS 190 select HAVE_HW_BREAKPOINT if PERF_EVENTS 191 select HAVE_IRQ_TIME_ACCOUNTING 192 select HAVE_KVM 193 select HAVE_NMI 194 select HAVE_PATA_PLATFORM 195 select HAVE_PERF_EVENTS 196 select HAVE_PERF_REGS 197 select HAVE_PERF_USER_STACK_DUMP 198 select HAVE_PREEMPT_DYNAMIC_KEY 199 select HAVE_REGS_AND_STACK_ACCESS_API 200 select HAVE_POSIX_CPU_TIMERS_TASK_WORK 201 select HAVE_FUNCTION_ARG_ACCESS_API 202 select MMU_GATHER_RCU_TABLE_FREE 203 select HAVE_RSEQ 204 select HAVE_STACKPROTECTOR 205 select HAVE_SYSCALL_TRACEPOINTS 206 select HAVE_KPROBES 207 select HAVE_KRETPROBES 208 select HAVE_GENERIC_VDSO 209 select IOMMU_DMA if IOMMU_SUPPORT 210 select IRQ_DOMAIN 211 select IRQ_FORCED_THREADING 212 select KASAN_VMALLOC if KASAN 213 select MODULES_USE_ELF_RELA 214 select NEED_DMA_MAP_STATE 215 select NEED_SG_DMA_LENGTH 216 select OF 217 select OF_EARLY_FLATTREE 218 select PCI_DOMAINS_GENERIC if PCI 219 select PCI_ECAM if (ACPI && PCI) 220 select PCI_SYSCALL if PCI 221 select POWER_RESET 222 select POWER_SUPPLY 223 select SPARSE_IRQ 224 select SWIOTLB 225 select SYSCTL_EXCEPTION_TRACE 226 select THREAD_INFO_IN_TASK 227 select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD 228 select TRACE_IRQFLAGS_SUPPORT 229 select TRACE_IRQFLAGS_NMI_SUPPORT 230 help 231 ARM 64-bit (AArch64) Linux support. 232 233config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_REGS 234 def_bool CC_IS_CLANG 235 # https://github.com/ClangBuiltLinux/linux/issues/1507 236 depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600)) 237 select HAVE_DYNAMIC_FTRACE_WITH_REGS 238 239config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_REGS 240 def_bool CC_IS_GCC 241 depends on $(cc-option,-fpatchable-function-entry=2) 242 select HAVE_DYNAMIC_FTRACE_WITH_REGS 243 244config 64BIT 245 def_bool y 246 247config MMU 248 def_bool y 249 250config ARM64_PAGE_SHIFT 251 int 252 default 16 if ARM64_64K_PAGES 253 default 14 if ARM64_16K_PAGES 254 default 12 255 256config ARM64_CONT_PTE_SHIFT 257 int 258 default 5 if ARM64_64K_PAGES 259 default 7 if ARM64_16K_PAGES 260 default 4 261 262config ARM64_CONT_PMD_SHIFT 263 int 264 default 5 if ARM64_64K_PAGES 265 default 5 if ARM64_16K_PAGES 266 default 4 267 268config ARCH_MMAP_RND_BITS_MIN 269 default 14 if ARM64_64K_PAGES 270 default 16 if ARM64_16K_PAGES 271 default 18 272 273# max bits determined by the following formula: 274# VA_BITS - PAGE_SHIFT - 3 275config ARCH_MMAP_RND_BITS_MAX 276 default 19 if ARM64_VA_BITS=36 277 default 24 if ARM64_VA_BITS=39 278 default 27 if ARM64_VA_BITS=42 279 default 30 if ARM64_VA_BITS=47 280 default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES 281 default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES 282 default 33 if ARM64_VA_BITS=48 283 default 14 if ARM64_64K_PAGES 284 default 16 if ARM64_16K_PAGES 285 default 18 286 287config ARCH_MMAP_RND_COMPAT_BITS_MIN 288 default 7 if ARM64_64K_PAGES 289 default 9 if ARM64_16K_PAGES 290 default 11 291 292config ARCH_MMAP_RND_COMPAT_BITS_MAX 293 default 16 294 295config NO_IOPORT_MAP 296 def_bool y if !PCI 297 298config STACKTRACE_SUPPORT 299 def_bool y 300 301config ILLEGAL_POINTER_VALUE 302 hex 303 default 0xdead000000000000 304 305config LOCKDEP_SUPPORT 306 def_bool y 307 308config GENERIC_BUG 309 def_bool y 310 depends on BUG 311 312config GENERIC_BUG_RELATIVE_POINTERS 313 def_bool y 314 depends on GENERIC_BUG 315 316config GENERIC_HWEIGHT 317 def_bool y 318 319config GENERIC_CSUM 320 def_bool y 321 322config GENERIC_CALIBRATE_DELAY 323 def_bool y 324 325config ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE 326 def_bool y 327 328config SMP 329 def_bool y 330 331config KERNEL_MODE_NEON 332 def_bool y 333 334config FIX_EARLYCON_MEM 335 def_bool y 336 337config PGTABLE_LEVELS 338 int 339 default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36 340 default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42 341 default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) 342 default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39 343 default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47 344 default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48 345 346config ARCH_SUPPORTS_UPROBES 347 def_bool y 348 349config ARCH_PROC_KCORE_TEXT 350 def_bool y 351 352config BROKEN_GAS_INST 353 def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n) 354 355config KASAN_SHADOW_OFFSET 356 hex 357 depends on KASAN_GENERIC || KASAN_SW_TAGS 358 default 0xdfff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS 359 default 0xdfffc00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS 360 default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS 361 default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS 362 default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS 363 default 0xefff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS 364 default 0xefffc00000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS 365 default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS 366 default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS 367 default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS 368 default 0xffffffffffffffff 369 370source "arch/arm64/Kconfig.platforms" 371 372menu "Kernel Features" 373 374menu "ARM errata workarounds via the alternatives framework" 375 376config ARM64_WORKAROUND_CLEAN_CACHE 377 bool 378 379config ARM64_ERRATUM_826319 380 bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted" 381 default y 382 select ARM64_WORKAROUND_CLEAN_CACHE 383 help 384 This option adds an alternative code sequence to work around ARM 385 erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or 386 AXI master interface and an L2 cache. 387 388 If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors 389 and is unable to accept a certain write via this interface, it will 390 not progress on read data presented on the read data channel and the 391 system can deadlock. 392 393 The workaround promotes data cache clean instructions to 394 data cache clean-and-invalidate. 395 Please note that this does not necessarily enable the workaround, 396 as it depends on the alternative framework, which will only patch 397 the kernel if an affected CPU is detected. 398 399 If unsure, say Y. 400 401config ARM64_ERRATUM_827319 402 bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect" 403 default y 404 select ARM64_WORKAROUND_CLEAN_CACHE 405 help 406 This option adds an alternative code sequence to work around ARM 407 erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI 408 master interface and an L2 cache. 409 410 Under certain conditions this erratum can cause a clean line eviction 411 to occur at the same time as another transaction to the same address 412 on the AMBA 5 CHI interface, which can cause data corruption if the 413 interconnect reorders the two transactions. 414 415 The workaround promotes data cache clean instructions to 416 data cache clean-and-invalidate. 417 Please note that this does not necessarily enable the workaround, 418 as it depends on the alternative framework, which will only patch 419 the kernel if an affected CPU is detected. 420 421 If unsure, say Y. 422 423config ARM64_ERRATUM_824069 424 bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop" 425 default y 426 select ARM64_WORKAROUND_CLEAN_CACHE 427 help 428 This option adds an alternative code sequence to work around ARM 429 erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected 430 to a coherent interconnect. 431 432 If a Cortex-A53 processor is executing a store or prefetch for 433 write instruction at the same time as a processor in another 434 cluster is executing a cache maintenance operation to the same 435 address, then this erratum might cause a clean cache line to be 436 incorrectly marked as dirty. 437 438 The workaround promotes data cache clean instructions to 439 data cache clean-and-invalidate. 440 Please note that this option does not necessarily enable the 441 workaround, as it depends on the alternative framework, which will 442 only patch the kernel if an affected CPU is detected. 443 444 If unsure, say Y. 445 446config ARM64_ERRATUM_819472 447 bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption" 448 default y 449 select ARM64_WORKAROUND_CLEAN_CACHE 450 help 451 This option adds an alternative code sequence to work around ARM 452 erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache 453 present when it is connected to a coherent interconnect. 454 455 If the processor is executing a load and store exclusive sequence at 456 the same time as a processor in another cluster is executing a cache 457 maintenance operation to the same address, then this erratum might 458 cause data corruption. 459 460 The workaround promotes data cache clean instructions to 461 data cache clean-and-invalidate. 462 Please note that this does not necessarily enable the workaround, 463 as it depends on the alternative framework, which will only patch 464 the kernel if an affected CPU is detected. 465 466 If unsure, say Y. 467 468config ARM64_ERRATUM_832075 469 bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads" 470 default y 471 help 472 This option adds an alternative code sequence to work around ARM 473 erratum 832075 on Cortex-A57 parts up to r1p2. 474 475 Affected Cortex-A57 parts might deadlock when exclusive load/store 476 instructions to Write-Back memory are mixed with Device loads. 477 478 The workaround is to promote device loads to use Load-Acquire 479 semantics. 480 Please note that this does not necessarily enable the workaround, 481 as it depends on the alternative framework, which will only patch 482 the kernel if an affected CPU is detected. 483 484 If unsure, say Y. 485 486config ARM64_ERRATUM_834220 487 bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault" 488 depends on KVM 489 default y 490 help 491 This option adds an alternative code sequence to work around ARM 492 erratum 834220 on Cortex-A57 parts up to r1p2. 493 494 Affected Cortex-A57 parts might report a Stage 2 translation 495 fault as the result of a Stage 1 fault for load crossing a 496 page boundary when there is a permission or device memory 497 alignment fault at Stage 1 and a translation fault at Stage 2. 498 499 The workaround is to verify that the Stage 1 translation 500 doesn't generate a fault before handling the Stage 2 fault. 501 Please note that this does not necessarily enable the workaround, 502 as it depends on the alternative framework, which will only patch 503 the kernel if an affected CPU is detected. 504 505 If unsure, say Y. 506 507config ARM64_ERRATUM_1742098 508 bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence" 509 depends on COMPAT 510 default y 511 help 512 This option removes the AES hwcap for aarch32 user-space to 513 workaround erratum 1742098 on Cortex-A57 and Cortex-A72. 514 515 Affected parts may corrupt the AES state if an interrupt is 516 taken between a pair of AES instructions. These instructions 517 are only present if the cryptography extensions are present. 518 All software should have a fallback implementation for CPUs 519 that don't implement the cryptography extensions. 520 521 If unsure, say Y. 522 523config ARM64_ERRATUM_845719 524 bool "Cortex-A53: 845719: a load might read incorrect data" 525 depends on COMPAT 526 default y 527 help 528 This option adds an alternative code sequence to work around ARM 529 erratum 845719 on Cortex-A53 parts up to r0p4. 530 531 When running a compat (AArch32) userspace on an affected Cortex-A53 532 part, a load at EL0 from a virtual address that matches the bottom 32 533 bits of the virtual address used by a recent load at (AArch64) EL1 534 might return incorrect data. 535 536 The workaround is to write the contextidr_el1 register on exception 537 return to a 32-bit task. 538 Please note that this does not necessarily enable the workaround, 539 as it depends on the alternative framework, which will only patch 540 the kernel if an affected CPU is detected. 541 542 If unsure, say Y. 543 544config ARM64_ERRATUM_843419 545 bool "Cortex-A53: 843419: A load or store might access an incorrect address" 546 default y 547 select ARM64_MODULE_PLTS if MODULES 548 help 549 This option links the kernel with '--fix-cortex-a53-843419' and 550 enables PLT support to replace certain ADRP instructions, which can 551 cause subsequent memory accesses to use an incorrect address on 552 Cortex-A53 parts up to r0p4. 553 554 If unsure, say Y. 555 556config ARM64_LD_HAS_FIX_ERRATUM_843419 557 def_bool $(ld-option,--fix-cortex-a53-843419) 558 559config ARM64_ERRATUM_1024718 560 bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update" 561 default y 562 help 563 This option adds a workaround for ARM Cortex-A55 Erratum 1024718. 564 565 Affected Cortex-A55 cores (all revisions) could cause incorrect 566 update of the hardware dirty bit when the DBM/AP bits are updated 567 without a break-before-make. The workaround is to disable the usage 568 of hardware DBM locally on the affected cores. CPUs not affected by 569 this erratum will continue to use the feature. 570 571 If unsure, say Y. 572 573config ARM64_ERRATUM_1418040 574 bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result" 575 default y 576 depends on COMPAT 577 help 578 This option adds a workaround for ARM Cortex-A76/Neoverse-N1 579 errata 1188873 and 1418040. 580 581 Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could 582 cause register corruption when accessing the timer registers 583 from AArch32 userspace. 584 585 If unsure, say Y. 586 587config ARM64_WORKAROUND_SPECULATIVE_AT 588 bool 589 590config ARM64_ERRATUM_1165522 591 bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 592 default y 593 select ARM64_WORKAROUND_SPECULATIVE_AT 594 help 595 This option adds a workaround for ARM Cortex-A76 erratum 1165522. 596 597 Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with 598 corrupted TLBs by speculating an AT instruction during a guest 599 context switch. 600 601 If unsure, say Y. 602 603config ARM64_ERRATUM_1319367 604 bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 605 default y 606 select ARM64_WORKAROUND_SPECULATIVE_AT 607 help 608 This option adds work arounds for ARM Cortex-A57 erratum 1319537 609 and A72 erratum 1319367 610 611 Cortex-A57 and A72 cores could end-up with corrupted TLBs by 612 speculating an AT instruction during a guest context switch. 613 614 If unsure, say Y. 615 616config ARM64_ERRATUM_1530923 617 bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 618 default y 619 select ARM64_WORKAROUND_SPECULATIVE_AT 620 help 621 This option adds a workaround for ARM Cortex-A55 erratum 1530923. 622 623 Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with 624 corrupted TLBs by speculating an AT instruction during a guest 625 context switch. 626 627 If unsure, say Y. 628 629config ARM64_WORKAROUND_REPEAT_TLBI 630 bool 631 632config ARM64_ERRATUM_1286807 633 bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation" 634 default y 635 select ARM64_WORKAROUND_REPEAT_TLBI 636 help 637 This option adds a workaround for ARM Cortex-A76 erratum 1286807. 638 639 On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual 640 address for a cacheable mapping of a location is being 641 accessed by a core while another core is remapping the virtual 642 address to a new physical page using the recommended 643 break-before-make sequence, then under very rare circumstances 644 TLBI+DSB completes before a read using the translation being 645 invalidated has been observed by other observers. The 646 workaround repeats the TLBI+DSB operation. 647 648config ARM64_ERRATUM_1463225 649 bool "Cortex-A76: Software Step might prevent interrupt recognition" 650 default y 651 help 652 This option adds a workaround for Arm Cortex-A76 erratum 1463225. 653 654 On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping 655 of a system call instruction (SVC) can prevent recognition of 656 subsequent interrupts when software stepping is disabled in the 657 exception handler of the system call and either kernel debugging 658 is enabled or VHE is in use. 659 660 Work around the erratum by triggering a dummy step exception 661 when handling a system call from a task that is being stepped 662 in a VHE configuration of the kernel. 663 664 If unsure, say Y. 665 666config ARM64_ERRATUM_1542419 667 bool "Neoverse-N1: workaround mis-ordering of instruction fetches" 668 default y 669 help 670 This option adds a workaround for ARM Neoverse-N1 erratum 671 1542419. 672 673 Affected Neoverse-N1 cores could execute a stale instruction when 674 modified by another CPU. The workaround depends on a firmware 675 counterpart. 676 677 Workaround the issue by hiding the DIC feature from EL0. This 678 forces user-space to perform cache maintenance. 679 680 If unsure, say Y. 681 682config ARM64_ERRATUM_1508412 683 bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read" 684 default y 685 help 686 This option adds a workaround for Arm Cortex-A77 erratum 1508412. 687 688 Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence 689 of a store-exclusive or read of PAR_EL1 and a load with device or 690 non-cacheable memory attributes. The workaround depends on a firmware 691 counterpart. 692 693 KVM guests must also have the workaround implemented or they can 694 deadlock the system. 695 696 Work around the issue by inserting DMB SY barriers around PAR_EL1 697 register reads and warning KVM users. The DMB barrier is sufficient 698 to prevent a speculative PAR_EL1 read. 699 700 If unsure, say Y. 701 702config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE 703 bool 704 705config ARM64_ERRATUM_2051678 706 bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit" 707 default y 708 help 709 This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678. 710 Affected Cortex-A510 might not respect the ordering rules for 711 hardware update of the page table's dirty bit. The workaround 712 is to not enable the feature on affected CPUs. 713 714 If unsure, say Y. 715 716config ARM64_ERRATUM_2077057 717 bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2" 718 default y 719 help 720 This option adds the workaround for ARM Cortex-A510 erratum 2077057. 721 Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is 722 expected, but a Pointer Authentication trap is taken instead. The 723 erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow 724 EL1 to cause a return to EL2 with a guest controlled ELR_EL2. 725 726 This can only happen when EL2 is stepping EL1. 727 728 When these conditions occur, the SPSR_EL2 value is unchanged from the 729 previous guest entry, and can be restored from the in-memory copy. 730 731 If unsure, say Y. 732 733config ARM64_ERRATUM_2119858 734 bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode" 735 default y 736 depends on CORESIGHT_TRBE 737 select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE 738 help 739 This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858. 740 741 Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace 742 data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in 743 the event of a WRAP event. 744 745 Work around the issue by always making sure we move the TRBPTR_EL1 by 746 256 bytes before enabling the buffer and filling the first 256 bytes of 747 the buffer with ETM ignore packets upon disabling. 748 749 If unsure, say Y. 750 751config ARM64_ERRATUM_2139208 752 bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode" 753 default y 754 depends on CORESIGHT_TRBE 755 select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE 756 help 757 This option adds the workaround for ARM Neoverse-N2 erratum 2139208. 758 759 Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace 760 data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in 761 the event of a WRAP event. 762 763 Work around the issue by always making sure we move the TRBPTR_EL1 by 764 256 bytes before enabling the buffer and filling the first 256 bytes of 765 the buffer with ETM ignore packets upon disabling. 766 767 If unsure, say Y. 768 769config ARM64_WORKAROUND_TSB_FLUSH_FAILURE 770 bool 771 772config ARM64_ERRATUM_2054223 773 bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace" 774 default y 775 select ARM64_WORKAROUND_TSB_FLUSH_FAILURE 776 help 777 Enable workaround for ARM Cortex-A710 erratum 2054223 778 779 Affected cores may fail to flush the trace data on a TSB instruction, when 780 the PE is in trace prohibited state. This will cause losing a few bytes 781 of the trace cached. 782 783 Workaround is to issue two TSB consecutively on affected cores. 784 785 If unsure, say Y. 786 787config ARM64_ERRATUM_2067961 788 bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace" 789 default y 790 select ARM64_WORKAROUND_TSB_FLUSH_FAILURE 791 help 792 Enable workaround for ARM Neoverse-N2 erratum 2067961 793 794 Affected cores may fail to flush the trace data on a TSB instruction, when 795 the PE is in trace prohibited state. This will cause losing a few bytes 796 of the trace cached. 797 798 Workaround is to issue two TSB consecutively on affected cores. 799 800 If unsure, say Y. 801 802config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE 803 bool 804 805config ARM64_ERRATUM_2253138 806 bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range" 807 depends on CORESIGHT_TRBE 808 default y 809 select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE 810 help 811 This option adds the workaround for ARM Neoverse-N2 erratum 2253138. 812 813 Affected Neoverse-N2 cores might write to an out-of-range address, not reserved 814 for TRBE. Under some conditions, the TRBE might generate a write to the next 815 virtually addressed page following the last page of the TRBE address space 816 (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base. 817 818 Work around this in the driver by always making sure that there is a 819 page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE. 820 821 If unsure, say Y. 822 823config ARM64_ERRATUM_2224489 824 bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range" 825 depends on CORESIGHT_TRBE 826 default y 827 select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE 828 help 829 This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489. 830 831 Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved 832 for TRBE. Under some conditions, the TRBE might generate a write to the next 833 virtually addressed page following the last page of the TRBE address space 834 (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base. 835 836 Work around this in the driver by always making sure that there is a 837 page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE. 838 839 If unsure, say Y. 840 841config ARM64_ERRATUM_2441009 842 bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI" 843 default y 844 select ARM64_WORKAROUND_REPEAT_TLBI 845 help 846 This option adds a workaround for ARM Cortex-A510 erratum #2441009. 847 848 Under very rare circumstances, affected Cortex-A510 CPUs 849 may not handle a race between a break-before-make sequence on one 850 CPU, and another CPU accessing the same page. This could allow a 851 store to a page that has been unmapped. 852 853 Work around this by adding the affected CPUs to the list that needs 854 TLB sequences to be done twice. 855 856 If unsure, say Y. 857 858config ARM64_ERRATUM_2064142 859 bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled" 860 depends on CORESIGHT_TRBE 861 default y 862 help 863 This option adds the workaround for ARM Cortex-A510 erratum 2064142. 864 865 Affected Cortex-A510 core might fail to write into system registers after the 866 TRBE has been disabled. Under some conditions after the TRBE has been disabled 867 writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1, 868 and TRBTRG_EL1 will be ignored and will not be effected. 869 870 Work around this in the driver by executing TSB CSYNC and DSB after collection 871 is stopped and before performing a system register write to one of the affected 872 registers. 873 874 If unsure, say Y. 875 876config ARM64_ERRATUM_2038923 877 bool "Cortex-A510: 2038923: workaround TRBE corruption with enable" 878 depends on CORESIGHT_TRBE 879 default y 880 help 881 This option adds the workaround for ARM Cortex-A510 erratum 2038923. 882 883 Affected Cortex-A510 core might cause an inconsistent view on whether trace is 884 prohibited within the CPU. As a result, the trace buffer or trace buffer state 885 might be corrupted. This happens after TRBE buffer has been enabled by setting 886 TRBLIMITR_EL1.E, followed by just a single context synchronization event before 887 execution changes from a context, in which trace is prohibited to one where it 888 isn't, or vice versa. In these mentioned conditions, the view of whether trace 889 is prohibited is inconsistent between parts of the CPU, and the trace buffer or 890 the trace buffer state might be corrupted. 891 892 Work around this in the driver by preventing an inconsistent view of whether the 893 trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a 894 change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or 895 two ISB instructions if no ERET is to take place. 896 897 If unsure, say Y. 898 899config ARM64_ERRATUM_1902691 900 bool "Cortex-A510: 1902691: workaround TRBE trace corruption" 901 depends on CORESIGHT_TRBE 902 default y 903 help 904 This option adds the workaround for ARM Cortex-A510 erratum 1902691. 905 906 Affected Cortex-A510 core might cause trace data corruption, when being written 907 into the memory. Effectively TRBE is broken and hence cannot be used to capture 908 trace data. 909 910 Work around this problem in the driver by just preventing TRBE initialization on 911 affected cpus. The firmware must have disabled the access to TRBE for the kernel 912 on such implementations. This will cover the kernel for any firmware that doesn't 913 do this already. 914 915 If unsure, say Y. 916 917config ARM64_ERRATUM_2457168 918 bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly" 919 depends on ARM64_AMU_EXTN 920 default y 921 help 922 This option adds the workaround for ARM Cortex-A510 erratum 2457168. 923 924 The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate 925 as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments 926 incorrectly giving a significantly higher output value. 927 928 Work around this problem by returning 0 when reading the affected counter in 929 key locations that results in disabling all users of this counter. This effect 930 is the same to firmware disabling affected counters. 931 932 If unsure, say Y. 933 934config CAVIUM_ERRATUM_22375 935 bool "Cavium erratum 22375, 24313" 936 default y 937 help 938 Enable workaround for errata 22375 and 24313. 939 940 This implements two gicv3-its errata workarounds for ThunderX. Both 941 with a small impact affecting only ITS table allocation. 942 943 erratum 22375: only alloc 8MB table size 944 erratum 24313: ignore memory access type 945 946 The fixes are in ITS initialization and basically ignore memory access 947 type and table size provided by the TYPER and BASER registers. 948 949 If unsure, say Y. 950 951config CAVIUM_ERRATUM_23144 952 bool "Cavium erratum 23144: ITS SYNC hang on dual socket system" 953 depends on NUMA 954 default y 955 help 956 ITS SYNC command hang for cross node io and collections/cpu mapping. 957 958 If unsure, say Y. 959 960config CAVIUM_ERRATUM_23154 961 bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation" 962 default y 963 help 964 The ThunderX GICv3 implementation requires a modified version for 965 reading the IAR status to ensure data synchronization 966 (access to icc_iar1_el1 is not sync'ed before and after). 967 968 It also suffers from erratum 38545 (also present on Marvell's 969 OcteonTX and OcteonTX2), resulting in deactivated interrupts being 970 spuriously presented to the CPU interface. 971 972 If unsure, say Y. 973 974config CAVIUM_ERRATUM_27456 975 bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption" 976 default y 977 help 978 On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI 979 instructions may cause the icache to become corrupted if it 980 contains data for a non-current ASID. The fix is to 981 invalidate the icache when changing the mm context. 982 983 If unsure, say Y. 984 985config CAVIUM_ERRATUM_30115 986 bool "Cavium erratum 30115: Guest may disable interrupts in host" 987 default y 988 help 989 On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through 990 1.2, and T83 Pass 1.0, KVM guest execution may disable 991 interrupts in host. Trapping both GICv3 group-0 and group-1 992 accesses sidesteps the issue. 993 994 If unsure, say Y. 995 996config CAVIUM_TX2_ERRATUM_219 997 bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails" 998 default y 999 help 1000 On Cavium ThunderX2, a load, store or prefetch instruction between a 1001 TTBR update and the corresponding context synchronizing operation can 1002 cause a spurious Data Abort to be delivered to any hardware thread in 1003 the CPU core. 1004 1005 Work around the issue by avoiding the problematic code sequence and 1006 trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The 1007 trap handler performs the corresponding register access, skips the 1008 instruction and ensures context synchronization by virtue of the 1009 exception return. 1010 1011 If unsure, say Y. 1012 1013config FUJITSU_ERRATUM_010001 1014 bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly" 1015 default y 1016 help 1017 This option adds a workaround for Fujitsu-A64FX erratum E#010001. 1018 On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory 1019 accesses may cause undefined fault (Data abort, DFSC=0b111111). 1020 This fault occurs under a specific hardware condition when a 1021 load/store instruction performs an address translation using: 1022 case-1 TTBR0_EL1 with TCR_EL1.NFD0 == 1. 1023 case-2 TTBR0_EL2 with TCR_EL2.NFD0 == 1. 1024 case-3 TTBR1_EL1 with TCR_EL1.NFD1 == 1. 1025 case-4 TTBR1_EL2 with TCR_EL2.NFD1 == 1. 1026 1027 The workaround is to ensure these bits are clear in TCR_ELx. 1028 The workaround only affects the Fujitsu-A64FX. 1029 1030 If unsure, say Y. 1031 1032config HISILICON_ERRATUM_161600802 1033 bool "Hip07 161600802: Erroneous redistributor VLPI base" 1034 default y 1035 help 1036 The HiSilicon Hip07 SoC uses the wrong redistributor base 1037 when issued ITS commands such as VMOVP and VMAPP, and requires 1038 a 128kB offset to be applied to the target address in this commands. 1039 1040 If unsure, say Y. 1041 1042config QCOM_FALKOR_ERRATUM_1003 1043 bool "Falkor E1003: Incorrect translation due to ASID change" 1044 default y 1045 help 1046 On Falkor v1, an incorrect ASID may be cached in the TLB when ASID 1047 and BADDR are changed together in TTBRx_EL1. Since we keep the ASID 1048 in TTBR1_EL1, this situation only occurs in the entry trampoline and 1049 then only for entries in the walk cache, since the leaf translation 1050 is unchanged. Work around the erratum by invalidating the walk cache 1051 entries for the trampoline before entering the kernel proper. 1052 1053config QCOM_FALKOR_ERRATUM_1009 1054 bool "Falkor E1009: Prematurely complete a DSB after a TLBI" 1055 default y 1056 select ARM64_WORKAROUND_REPEAT_TLBI 1057 help 1058 On Falkor v1, the CPU may prematurely complete a DSB following a 1059 TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation 1060 one more time to fix the issue. 1061 1062 If unsure, say Y. 1063 1064config QCOM_QDF2400_ERRATUM_0065 1065 bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size" 1066 default y 1067 help 1068 On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports 1069 ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have 1070 been indicated as 16Bytes (0xf), not 8Bytes (0x7). 1071 1072 If unsure, say Y. 1073 1074config QCOM_FALKOR_ERRATUM_E1041 1075 bool "Falkor E1041: Speculative instruction fetches might cause errant memory access" 1076 default y 1077 help 1078 Falkor CPU may speculatively fetch instructions from an improper 1079 memory location when MMU translation is changed from SCTLR_ELn[M]=1 1080 to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem. 1081 1082 If unsure, say Y. 1083 1084config NVIDIA_CARMEL_CNP_ERRATUM 1085 bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores" 1086 default y 1087 help 1088 If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not 1089 invalidate shared TLB entries installed by a different core, as it would 1090 on standard ARM cores. 1091 1092 If unsure, say Y. 1093 1094config SOCIONEXT_SYNQUACER_PREITS 1095 bool "Socionext Synquacer: Workaround for GICv3 pre-ITS" 1096 default y 1097 help 1098 Socionext Synquacer SoCs implement a separate h/w block to generate 1099 MSI doorbell writes with non-zero values for the device ID. 1100 1101 If unsure, say Y. 1102 1103endmenu # "ARM errata workarounds via the alternatives framework" 1104 1105choice 1106 prompt "Page size" 1107 default ARM64_4K_PAGES 1108 help 1109 Page size (translation granule) configuration. 1110 1111config ARM64_4K_PAGES 1112 bool "4KB" 1113 help 1114 This feature enables 4KB pages support. 1115 1116config ARM64_16K_PAGES 1117 bool "16KB" 1118 help 1119 The system will use 16KB pages support. AArch32 emulation 1120 requires applications compiled with 16K (or a multiple of 16K) 1121 aligned segments. 1122 1123config ARM64_64K_PAGES 1124 bool "64KB" 1125 help 1126 This feature enables 64KB pages support (4KB by default) 1127 allowing only two levels of page tables and faster TLB 1128 look-up. AArch32 emulation requires applications compiled 1129 with 64K aligned segments. 1130 1131endchoice 1132 1133choice 1134 prompt "Virtual address space size" 1135 default ARM64_VA_BITS_39 if ARM64_4K_PAGES 1136 default ARM64_VA_BITS_47 if ARM64_16K_PAGES 1137 default ARM64_VA_BITS_42 if ARM64_64K_PAGES 1138 help 1139 Allows choosing one of multiple possible virtual address 1140 space sizes. The level of translation table is determined by 1141 a combination of page size and virtual address space size. 1142 1143config ARM64_VA_BITS_36 1144 bool "36-bit" if EXPERT 1145 depends on ARM64_16K_PAGES 1146 1147config ARM64_VA_BITS_39 1148 bool "39-bit" 1149 depends on ARM64_4K_PAGES 1150 1151config ARM64_VA_BITS_42 1152 bool "42-bit" 1153 depends on ARM64_64K_PAGES 1154 1155config ARM64_VA_BITS_47 1156 bool "47-bit" 1157 depends on ARM64_16K_PAGES 1158 1159config ARM64_VA_BITS_48 1160 bool "48-bit" 1161 1162config ARM64_VA_BITS_52 1163 bool "52-bit" 1164 depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN) 1165 help 1166 Enable 52-bit virtual addressing for userspace when explicitly 1167 requested via a hint to mmap(). The kernel will also use 52-bit 1168 virtual addresses for its own mappings (provided HW support for 1169 this feature is available, otherwise it reverts to 48-bit). 1170 1171 NOTE: Enabling 52-bit virtual addressing in conjunction with 1172 ARMv8.3 Pointer Authentication will result in the PAC being 1173 reduced from 7 bits to 3 bits, which may have a significant 1174 impact on its susceptibility to brute-force attacks. 1175 1176 If unsure, select 48-bit virtual addressing instead. 1177 1178endchoice 1179 1180config ARM64_FORCE_52BIT 1181 bool "Force 52-bit virtual addresses for userspace" 1182 depends on ARM64_VA_BITS_52 && EXPERT 1183 help 1184 For systems with 52-bit userspace VAs enabled, the kernel will attempt 1185 to maintain compatibility with older software by providing 48-bit VAs 1186 unless a hint is supplied to mmap. 1187 1188 This configuration option disables the 48-bit compatibility logic, and 1189 forces all userspace addresses to be 52-bit on HW that supports it. One 1190 should only enable this configuration option for stress testing userspace 1191 memory management code. If unsure say N here. 1192 1193config ARM64_VA_BITS 1194 int 1195 default 36 if ARM64_VA_BITS_36 1196 default 39 if ARM64_VA_BITS_39 1197 default 42 if ARM64_VA_BITS_42 1198 default 47 if ARM64_VA_BITS_47 1199 default 48 if ARM64_VA_BITS_48 1200 default 52 if ARM64_VA_BITS_52 1201 1202choice 1203 prompt "Physical address space size" 1204 default ARM64_PA_BITS_48 1205 help 1206 Choose the maximum physical address range that the kernel will 1207 support. 1208 1209config ARM64_PA_BITS_48 1210 bool "48-bit" 1211 1212config ARM64_PA_BITS_52 1213 bool "52-bit (ARMv8.2)" 1214 depends on ARM64_64K_PAGES 1215 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 1216 help 1217 Enable support for a 52-bit physical address space, introduced as 1218 part of the ARMv8.2-LPA extension. 1219 1220 With this enabled, the kernel will also continue to work on CPUs that 1221 do not support ARMv8.2-LPA, but with some added memory overhead (and 1222 minor performance overhead). 1223 1224endchoice 1225 1226config ARM64_PA_BITS 1227 int 1228 default 48 if ARM64_PA_BITS_48 1229 default 52 if ARM64_PA_BITS_52 1230 1231choice 1232 prompt "Endianness" 1233 default CPU_LITTLE_ENDIAN 1234 help 1235 Select the endianness of data accesses performed by the CPU. Userspace 1236 applications will need to be compiled and linked for the endianness 1237 that is selected here. 1238 1239config CPU_BIG_ENDIAN 1240 bool "Build big-endian kernel" 1241 depends on !LD_IS_LLD || LLD_VERSION >= 130000 1242 help 1243 Say Y if you plan on running a kernel with a big-endian userspace. 1244 1245config CPU_LITTLE_ENDIAN 1246 bool "Build little-endian kernel" 1247 help 1248 Say Y if you plan on running a kernel with a little-endian userspace. 1249 This is usually the case for distributions targeting arm64. 1250 1251endchoice 1252 1253config SCHED_MC 1254 bool "Multi-core scheduler support" 1255 help 1256 Multi-core scheduler support improves the CPU scheduler's decision 1257 making when dealing with multi-core CPU chips at a cost of slightly 1258 increased overhead in some places. If unsure say N here. 1259 1260config SCHED_CLUSTER 1261 bool "Cluster scheduler support" 1262 help 1263 Cluster scheduler support improves the CPU scheduler's decision 1264 making when dealing with machines that have clusters of CPUs. 1265 Cluster usually means a couple of CPUs which are placed closely 1266 by sharing mid-level caches, last-level cache tags or internal 1267 busses. 1268 1269config SCHED_SMT 1270 bool "SMT scheduler support" 1271 help 1272 Improves the CPU scheduler's decision making when dealing with 1273 MultiThreading at a cost of slightly increased overhead in some 1274 places. If unsure say N here. 1275 1276config NR_CPUS 1277 int "Maximum number of CPUs (2-4096)" 1278 range 2 4096 1279 default "256" 1280 1281config HOTPLUG_CPU 1282 bool "Support for hot-pluggable CPUs" 1283 select GENERIC_IRQ_MIGRATION 1284 help 1285 Say Y here to experiment with turning CPUs off and on. CPUs 1286 can be controlled through /sys/devices/system/cpu. 1287 1288# Common NUMA Features 1289config NUMA 1290 bool "NUMA Memory Allocation and Scheduler Support" 1291 select GENERIC_ARCH_NUMA 1292 select ACPI_NUMA if ACPI 1293 select OF_NUMA 1294 select HAVE_SETUP_PER_CPU_AREA 1295 select NEED_PER_CPU_EMBED_FIRST_CHUNK 1296 select NEED_PER_CPU_PAGE_FIRST_CHUNK 1297 select USE_PERCPU_NUMA_NODE_ID 1298 help 1299 Enable NUMA (Non-Uniform Memory Access) support. 1300 1301 The kernel will try to allocate memory used by a CPU on the 1302 local memory of the CPU and add some more 1303 NUMA awareness to the kernel. 1304 1305config NODES_SHIFT 1306 int "Maximum NUMA Nodes (as a power of 2)" 1307 range 1 10 1308 default "4" 1309 depends on NUMA 1310 help 1311 Specify the maximum number of NUMA Nodes available on the target 1312 system. Increases memory reserved to accommodate various tables. 1313 1314source "kernel/Kconfig.hz" 1315 1316config ARCH_SPARSEMEM_ENABLE 1317 def_bool y 1318 select SPARSEMEM_VMEMMAP_ENABLE 1319 select SPARSEMEM_VMEMMAP 1320 1321config HW_PERF_EVENTS 1322 def_bool y 1323 depends on ARM_PMU 1324 1325# Supported by clang >= 7.0 or GCC >= 12.0.0 1326config CC_HAVE_SHADOW_CALL_STACK 1327 def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18) 1328 1329config PARAVIRT 1330 bool "Enable paravirtualization code" 1331 help 1332 This changes the kernel so it can modify itself when it is run 1333 under a hypervisor, potentially improving performance significantly 1334 over full virtualization. 1335 1336config PARAVIRT_TIME_ACCOUNTING 1337 bool "Paravirtual steal time accounting" 1338 select PARAVIRT 1339 help 1340 Select this option to enable fine granularity task steal time 1341 accounting. Time spent executing other tasks in parallel with 1342 the current vCPU is discounted from the vCPU power. To account for 1343 that, there can be a small performance impact. 1344 1345 If in doubt, say N here. 1346 1347config KEXEC 1348 depends on PM_SLEEP_SMP 1349 select KEXEC_CORE 1350 bool "kexec system call" 1351 help 1352 kexec is a system call that implements the ability to shutdown your 1353 current kernel, and to start another kernel. It is like a reboot 1354 but it is independent of the system firmware. And like a reboot 1355 you can start any kernel with it, not just Linux. 1356 1357config KEXEC_FILE 1358 bool "kexec file based system call" 1359 select KEXEC_CORE 1360 select HAVE_IMA_KEXEC if IMA 1361 help 1362 This is new version of kexec system call. This system call is 1363 file based and takes file descriptors as system call argument 1364 for kernel and initramfs as opposed to list of segments as 1365 accepted by previous system call. 1366 1367config KEXEC_SIG 1368 bool "Verify kernel signature during kexec_file_load() syscall" 1369 depends on KEXEC_FILE 1370 help 1371 Select this option to verify a signature with loaded kernel 1372 image. If configured, any attempt of loading a image without 1373 valid signature will fail. 1374 1375 In addition to that option, you need to enable signature 1376 verification for the corresponding kernel image type being 1377 loaded in order for this to work. 1378 1379config KEXEC_IMAGE_VERIFY_SIG 1380 bool "Enable Image signature verification support" 1381 default y 1382 depends on KEXEC_SIG 1383 depends on EFI && SIGNED_PE_FILE_VERIFICATION 1384 help 1385 Enable Image signature verification support. 1386 1387comment "Support for PE file signature verification disabled" 1388 depends on KEXEC_SIG 1389 depends on !EFI || !SIGNED_PE_FILE_VERIFICATION 1390 1391config CRASH_DUMP 1392 bool "Build kdump crash kernel" 1393 help 1394 Generate crash dump after being started by kexec. This should 1395 be normally only set in special crash dump kernels which are 1396 loaded in the main kernel with kexec-tools into a specially 1397 reserved region and then later executed after a crash by 1398 kdump/kexec. 1399 1400 For more details see Documentation/admin-guide/kdump/kdump.rst 1401 1402config TRANS_TABLE 1403 def_bool y 1404 depends on HIBERNATION || KEXEC_CORE 1405 1406config XEN_DOM0 1407 def_bool y 1408 depends on XEN 1409 1410config XEN 1411 bool "Xen guest support on ARM64" 1412 depends on ARM64 && OF 1413 select SWIOTLB_XEN 1414 select PARAVIRT 1415 help 1416 Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64. 1417 1418config FORCE_MAX_ZONEORDER 1419 int 1420 default "14" if ARM64_64K_PAGES 1421 default "12" if ARM64_16K_PAGES 1422 default "11" 1423 help 1424 The kernel memory allocator divides physically contiguous memory 1425 blocks into "zones", where each zone is a power of two number of 1426 pages. This option selects the largest power of two that the kernel 1427 keeps in the memory allocator. If you need to allocate very large 1428 blocks of physically contiguous memory, then you may need to 1429 increase this value. 1430 1431 This config option is actually maximum order plus one. For example, 1432 a value of 11 means that the largest free memory block is 2^10 pages. 1433 1434 We make sure that we can allocate upto a HugePage size for each configuration. 1435 Hence we have : 1436 MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2 1437 1438 However for 4K, we choose a higher default value, 11 as opposed to 10, giving us 1439 4M allocations matching the default size used by generic code. 1440 1441config UNMAP_KERNEL_AT_EL0 1442 bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT 1443 default y 1444 help 1445 Speculation attacks against some high-performance processors can 1446 be used to bypass MMU permission checks and leak kernel data to 1447 userspace. This can be defended against by unmapping the kernel 1448 when running in userspace, mapping it back in on exception entry 1449 via a trampoline page in the vector table. 1450 1451 If unsure, say Y. 1452 1453config MITIGATE_SPECTRE_BRANCH_HISTORY 1454 bool "Mitigate Spectre style attacks against branch history" if EXPERT 1455 default y 1456 help 1457 Speculation attacks against some high-performance processors can 1458 make use of branch history to influence future speculation. 1459 When taking an exception from user-space, a sequence of branches 1460 or a firmware call overwrites the branch history. 1461 1462config RODATA_FULL_DEFAULT_ENABLED 1463 bool "Apply r/o permissions of VM areas also to their linear aliases" 1464 default y 1465 help 1466 Apply read-only attributes of VM areas to the linear alias of 1467 the backing pages as well. This prevents code or read-only data 1468 from being modified (inadvertently or intentionally) via another 1469 mapping of the same memory page. This additional enhancement can 1470 be turned off at runtime by passing rodata=[off|on] (and turned on 1471 with rodata=full if this option is set to 'n') 1472 1473 This requires the linear region to be mapped down to pages, 1474 which may adversely affect performance in some cases. 1475 1476config ARM64_SW_TTBR0_PAN 1477 bool "Emulate Privileged Access Never using TTBR0_EL1 switching" 1478 help 1479 Enabling this option prevents the kernel from accessing 1480 user-space memory directly by pointing TTBR0_EL1 to a reserved 1481 zeroed area and reserved ASID. The user access routines 1482 restore the valid TTBR0_EL1 temporarily. 1483 1484config ARM64_TAGGED_ADDR_ABI 1485 bool "Enable the tagged user addresses syscall ABI" 1486 default y 1487 help 1488 When this option is enabled, user applications can opt in to a 1489 relaxed ABI via prctl() allowing tagged addresses to be passed 1490 to system calls as pointer arguments. For details, see 1491 Documentation/arm64/tagged-address-abi.rst. 1492 1493menuconfig COMPAT 1494 bool "Kernel support for 32-bit EL0" 1495 depends on ARM64_4K_PAGES || EXPERT 1496 select HAVE_UID16 1497 select OLD_SIGSUSPEND3 1498 select COMPAT_OLD_SIGACTION 1499 help 1500 This option enables support for a 32-bit EL0 running under a 64-bit 1501 kernel at EL1. AArch32-specific components such as system calls, 1502 the user helper functions, VFP support and the ptrace interface are 1503 handled appropriately by the kernel. 1504 1505 If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware 1506 that you will only be able to execute AArch32 binaries that were compiled 1507 with page size aligned segments. 1508 1509 If you want to execute 32-bit userspace applications, say Y. 1510 1511if COMPAT 1512 1513config KUSER_HELPERS 1514 bool "Enable kuser helpers page for 32-bit applications" 1515 default y 1516 help 1517 Warning: disabling this option may break 32-bit user programs. 1518 1519 Provide kuser helpers to compat tasks. The kernel provides 1520 helper code to userspace in read only form at a fixed location 1521 to allow userspace to be independent of the CPU type fitted to 1522 the system. This permits binaries to be run on ARMv4 through 1523 to ARMv8 without modification. 1524 1525 See Documentation/arm/kernel_user_helpers.rst for details. 1526 1527 However, the fixed address nature of these helpers can be used 1528 by ROP (return orientated programming) authors when creating 1529 exploits. 1530 1531 If all of the binaries and libraries which run on your platform 1532 are built specifically for your platform, and make no use of 1533 these helpers, then you can turn this option off to hinder 1534 such exploits. However, in that case, if a binary or library 1535 relying on those helpers is run, it will not function correctly. 1536 1537 Say N here only if you are absolutely certain that you do not 1538 need these helpers; otherwise, the safe option is to say Y. 1539 1540config COMPAT_VDSO 1541 bool "Enable vDSO for 32-bit applications" 1542 depends on !CPU_BIG_ENDIAN 1543 depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != "" 1544 select GENERIC_COMPAT_VDSO 1545 default y 1546 help 1547 Place in the process address space of 32-bit applications an 1548 ELF shared object providing fast implementations of gettimeofday 1549 and clock_gettime. 1550 1551 You must have a 32-bit build of glibc 2.22 or later for programs 1552 to seamlessly take advantage of this. 1553 1554config THUMB2_COMPAT_VDSO 1555 bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT 1556 depends on COMPAT_VDSO 1557 default y 1558 help 1559 Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y, 1560 otherwise with '-marm'. 1561 1562menuconfig ARMV8_DEPRECATED 1563 bool "Emulate deprecated/obsolete ARMv8 instructions" 1564 depends on SYSCTL 1565 help 1566 Legacy software support may require certain instructions 1567 that have been deprecated or obsoleted in the architecture. 1568 1569 Enable this config to enable selective emulation of these 1570 features. 1571 1572 If unsure, say Y 1573 1574if ARMV8_DEPRECATED 1575 1576config SWP_EMULATION 1577 bool "Emulate SWP/SWPB instructions" 1578 help 1579 ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that 1580 they are always undefined. Say Y here to enable software 1581 emulation of these instructions for userspace using LDXR/STXR. 1582 This feature can be controlled at runtime with the abi.swp 1583 sysctl which is disabled by default. 1584 1585 In some older versions of glibc [<=2.8] SWP is used during futex 1586 trylock() operations with the assumption that the code will not 1587 be preempted. This invalid assumption may be more likely to fail 1588 with SWP emulation enabled, leading to deadlock of the user 1589 application. 1590 1591 NOTE: when accessing uncached shared regions, LDXR/STXR rely 1592 on an external transaction monitoring block called a global 1593 monitor to maintain update atomicity. If your system does not 1594 implement a global monitor, this option can cause programs that 1595 perform SWP operations to uncached memory to deadlock. 1596 1597 If unsure, say Y 1598 1599config CP15_BARRIER_EMULATION 1600 bool "Emulate CP15 Barrier instructions" 1601 help 1602 The CP15 barrier instructions - CP15ISB, CP15DSB, and 1603 CP15DMB - are deprecated in ARMv8 (and ARMv7). It is 1604 strongly recommended to use the ISB, DSB, and DMB 1605 instructions instead. 1606 1607 Say Y here to enable software emulation of these 1608 instructions for AArch32 userspace code. When this option is 1609 enabled, CP15 barrier usage is traced which can help 1610 identify software that needs updating. This feature can be 1611 controlled at runtime with the abi.cp15_barrier sysctl. 1612 1613 If unsure, say Y 1614 1615config SETEND_EMULATION 1616 bool "Emulate SETEND instruction" 1617 help 1618 The SETEND instruction alters the data-endianness of the 1619 AArch32 EL0, and is deprecated in ARMv8. 1620 1621 Say Y here to enable software emulation of the instruction 1622 for AArch32 userspace code. This feature can be controlled 1623 at runtime with the abi.setend sysctl. 1624 1625 Note: All the cpus on the system must have mixed endian support at EL0 1626 for this feature to be enabled. If a new CPU - which doesn't support mixed 1627 endian - is hotplugged in after this feature has been enabled, there could 1628 be unexpected results in the applications. 1629 1630 If unsure, say Y 1631endif # ARMV8_DEPRECATED 1632 1633endif # COMPAT 1634 1635menu "ARMv8.1 architectural features" 1636 1637config ARM64_HW_AFDBM 1638 bool "Support for hardware updates of the Access and Dirty page flags" 1639 default y 1640 help 1641 The ARMv8.1 architecture extensions introduce support for 1642 hardware updates of the access and dirty information in page 1643 table entries. When enabled in TCR_EL1 (HA and HD bits) on 1644 capable processors, accesses to pages with PTE_AF cleared will 1645 set this bit instead of raising an access flag fault. 1646 Similarly, writes to read-only pages with the DBM bit set will 1647 clear the read-only bit (AP[2]) instead of raising a 1648 permission fault. 1649 1650 Kernels built with this configuration option enabled continue 1651 to work on pre-ARMv8.1 hardware and the performance impact is 1652 minimal. If unsure, say Y. 1653 1654config ARM64_PAN 1655 bool "Enable support for Privileged Access Never (PAN)" 1656 default y 1657 help 1658 Privileged Access Never (PAN; part of the ARMv8.1 Extensions) 1659 prevents the kernel or hypervisor from accessing user-space (EL0) 1660 memory directly. 1661 1662 Choosing this option will cause any unprotected (not using 1663 copy_to_user et al) memory access to fail with a permission fault. 1664 1665 The feature is detected at runtime, and will remain as a 'nop' 1666 instruction if the cpu does not implement the feature. 1667 1668config AS_HAS_LDAPR 1669 def_bool $(as-instr,.arch_extension rcpc) 1670 1671config AS_HAS_LSE_ATOMICS 1672 def_bool $(as-instr,.arch_extension lse) 1673 1674config ARM64_LSE_ATOMICS 1675 bool 1676 default ARM64_USE_LSE_ATOMICS 1677 depends on AS_HAS_LSE_ATOMICS 1678 1679config ARM64_USE_LSE_ATOMICS 1680 bool "Atomic instructions" 1681 depends on JUMP_LABEL 1682 default y 1683 help 1684 As part of the Large System Extensions, ARMv8.1 introduces new 1685 atomic instructions that are designed specifically to scale in 1686 very large systems. 1687 1688 Say Y here to make use of these instructions for the in-kernel 1689 atomic routines. This incurs a small overhead on CPUs that do 1690 not support these instructions and requires the kernel to be 1691 built with binutils >= 2.25 in order for the new instructions 1692 to be used. 1693 1694endmenu # "ARMv8.1 architectural features" 1695 1696menu "ARMv8.2 architectural features" 1697 1698config AS_HAS_ARMV8_2 1699 def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a) 1700 1701config AS_HAS_SHA3 1702 def_bool $(as-instr,.arch armv8.2-a+sha3) 1703 1704config ARM64_PMEM 1705 bool "Enable support for persistent memory" 1706 select ARCH_HAS_PMEM_API 1707 select ARCH_HAS_UACCESS_FLUSHCACHE 1708 help 1709 Say Y to enable support for the persistent memory API based on the 1710 ARMv8.2 DCPoP feature. 1711 1712 The feature is detected at runtime, and the kernel will use DC CVAC 1713 operations if DC CVAP is not supported (following the behaviour of 1714 DC CVAP itself if the system does not define a point of persistence). 1715 1716config ARM64_RAS_EXTN 1717 bool "Enable support for RAS CPU Extensions" 1718 default y 1719 help 1720 CPUs that support the Reliability, Availability and Serviceability 1721 (RAS) Extensions, part of ARMv8.2 are able to track faults and 1722 errors, classify them and report them to software. 1723 1724 On CPUs with these extensions system software can use additional 1725 barriers to determine if faults are pending and read the 1726 classification from a new set of registers. 1727 1728 Selecting this feature will allow the kernel to use these barriers 1729 and access the new registers if the system supports the extension. 1730 Platform RAS features may additionally depend on firmware support. 1731 1732config ARM64_CNP 1733 bool "Enable support for Common Not Private (CNP) translations" 1734 default y 1735 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 1736 help 1737 Common Not Private (CNP) allows translation table entries to 1738 be shared between different PEs in the same inner shareable 1739 domain, so the hardware can use this fact to optimise the 1740 caching of such entries in the TLB. 1741 1742 Selecting this option allows the CNP feature to be detected 1743 at runtime, and does not affect PEs that do not implement 1744 this feature. 1745 1746endmenu # "ARMv8.2 architectural features" 1747 1748menu "ARMv8.3 architectural features" 1749 1750config ARM64_PTR_AUTH 1751 bool "Enable support for pointer authentication" 1752 default y 1753 help 1754 Pointer authentication (part of the ARMv8.3 Extensions) provides 1755 instructions for signing and authenticating pointers against secret 1756 keys, which can be used to mitigate Return Oriented Programming (ROP) 1757 and other attacks. 1758 1759 This option enables these instructions at EL0 (i.e. for userspace). 1760 Choosing this option will cause the kernel to initialise secret keys 1761 for each process at exec() time, with these keys being 1762 context-switched along with the process. 1763 1764 The feature is detected at runtime. If the feature is not present in 1765 hardware it will not be advertised to userspace/KVM guest nor will it 1766 be enabled. 1767 1768 If the feature is present on the boot CPU but not on a late CPU, then 1769 the late CPU will be parked. Also, if the boot CPU does not have 1770 address auth and the late CPU has then the late CPU will still boot 1771 but with the feature disabled. On such a system, this option should 1772 not be selected. 1773 1774config ARM64_PTR_AUTH_KERNEL 1775 bool "Use pointer authentication for kernel" 1776 default y 1777 depends on ARM64_PTR_AUTH 1778 depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC 1779 # Modern compilers insert a .note.gnu.property section note for PAC 1780 # which is only understood by binutils starting with version 2.33.1. 1781 depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100) 1782 depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE 1783 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS) 1784 help 1785 If the compiler supports the -mbranch-protection or 1786 -msign-return-address flag (e.g. GCC 7 or later), then this option 1787 will cause the kernel itself to be compiled with return address 1788 protection. In this case, and if the target hardware is known to 1789 support pointer authentication, then CONFIG_STACKPROTECTOR can be 1790 disabled with minimal loss of protection. 1791 1792 This feature works with FUNCTION_GRAPH_TRACER option only if 1793 DYNAMIC_FTRACE_WITH_REGS is enabled. 1794 1795config CC_HAS_BRANCH_PROT_PAC_RET 1796 # GCC 9 or later, clang 8 or later 1797 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf) 1798 1799config CC_HAS_SIGN_RETURN_ADDRESS 1800 # GCC 7, 8 1801 def_bool $(cc-option,-msign-return-address=all) 1802 1803config AS_HAS_PAC 1804 def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a) 1805 1806config AS_HAS_CFI_NEGATE_RA_STATE 1807 def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n) 1808 1809endmenu # "ARMv8.3 architectural features" 1810 1811menu "ARMv8.4 architectural features" 1812 1813config ARM64_AMU_EXTN 1814 bool "Enable support for the Activity Monitors Unit CPU extension" 1815 default y 1816 help 1817 The activity monitors extension is an optional extension introduced 1818 by the ARMv8.4 CPU architecture. This enables support for version 1 1819 of the activity monitors architecture, AMUv1. 1820 1821 To enable the use of this extension on CPUs that implement it, say Y. 1822 1823 Note that for architectural reasons, firmware _must_ implement AMU 1824 support when running on CPUs that present the activity monitors 1825 extension. The required support is present in: 1826 * Version 1.5 and later of the ARM Trusted Firmware 1827 1828 For kernels that have this configuration enabled but boot with broken 1829 firmware, you may need to say N here until the firmware is fixed. 1830 Otherwise you may experience firmware panics or lockups when 1831 accessing the counter registers. Even if you are not observing these 1832 symptoms, the values returned by the register reads might not 1833 correctly reflect reality. Most commonly, the value read will be 0, 1834 indicating that the counter is not enabled. 1835 1836config AS_HAS_ARMV8_4 1837 def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a) 1838 1839config ARM64_TLB_RANGE 1840 bool "Enable support for tlbi range feature" 1841 default y 1842 depends on AS_HAS_ARMV8_4 1843 help 1844 ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a 1845 range of input addresses. 1846 1847 The feature introduces new assembly instructions, and they were 1848 support when binutils >= 2.30. 1849 1850endmenu # "ARMv8.4 architectural features" 1851 1852menu "ARMv8.5 architectural features" 1853 1854config AS_HAS_ARMV8_5 1855 def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a) 1856 1857config ARM64_BTI 1858 bool "Branch Target Identification support" 1859 default y 1860 help 1861 Branch Target Identification (part of the ARMv8.5 Extensions) 1862 provides a mechanism to limit the set of locations to which computed 1863 branch instructions such as BR or BLR can jump. 1864 1865 To make use of BTI on CPUs that support it, say Y. 1866 1867 BTI is intended to provide complementary protection to other control 1868 flow integrity protection mechanisms, such as the Pointer 1869 authentication mechanism provided as part of the ARMv8.3 Extensions. 1870 For this reason, it does not make sense to enable this option without 1871 also enabling support for pointer authentication. Thus, when 1872 enabling this option you should also select ARM64_PTR_AUTH=y. 1873 1874 Userspace binaries must also be specifically compiled to make use of 1875 this mechanism. If you say N here or the hardware does not support 1876 BTI, such binaries can still run, but you get no additional 1877 enforcement of branch destinations. 1878 1879config ARM64_BTI_KERNEL 1880 bool "Use Branch Target Identification for kernel" 1881 default y 1882 depends on ARM64_BTI 1883 depends on ARM64_PTR_AUTH_KERNEL 1884 depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI 1885 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697 1886 depends on !CC_IS_GCC || GCC_VERSION >= 100100 1887 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106671 1888 depends on !CC_IS_GCC 1889 # https://github.com/llvm/llvm-project/commit/a88c722e687e6780dcd6a58718350dc76fcc4cc9 1890 depends on !CC_IS_CLANG || CLANG_VERSION >= 120000 1891 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS) 1892 help 1893 Build the kernel with Branch Target Identification annotations 1894 and enable enforcement of this for kernel code. When this option 1895 is enabled and the system supports BTI all kernel code including 1896 modular code must have BTI enabled. 1897 1898config CC_HAS_BRANCH_PROT_PAC_RET_BTI 1899 # GCC 9 or later, clang 8 or later 1900 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti) 1901 1902config ARM64_E0PD 1903 bool "Enable support for E0PD" 1904 default y 1905 help 1906 E0PD (part of the ARMv8.5 extensions) allows us to ensure 1907 that EL0 accesses made via TTBR1 always fault in constant time, 1908 providing similar benefits to KASLR as those provided by KPTI, but 1909 with lower overhead and without disrupting legitimate access to 1910 kernel memory such as SPE. 1911 1912 This option enables E0PD for TTBR1 where available. 1913 1914config ARCH_RANDOM 1915 bool "Enable support for random number generation" 1916 default y 1917 help 1918 Random number generation (part of the ARMv8.5 Extensions) 1919 provides a high bandwidth, cryptographically secure 1920 hardware random number generator. 1921 1922config ARM64_AS_HAS_MTE 1923 # Initial support for MTE went in binutils 2.32.0, checked with 1924 # ".arch armv8.5-a+memtag" below. However, this was incomplete 1925 # as a late addition to the final architecture spec (LDGM/STGM) 1926 # is only supported in the newer 2.32.x and 2.33 binutils 1927 # versions, hence the extra "stgm" instruction check below. 1928 def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0]) 1929 1930config ARM64_MTE 1931 bool "Memory Tagging Extension support" 1932 default y 1933 depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI 1934 depends on AS_HAS_ARMV8_5 1935 depends on AS_HAS_LSE_ATOMICS 1936 # Required for tag checking in the uaccess routines 1937 depends on ARM64_PAN 1938 select ARCH_HAS_SUBPAGE_FAULTS 1939 select ARCH_USES_HIGH_VMA_FLAGS 1940 help 1941 Memory Tagging (part of the ARMv8.5 Extensions) provides 1942 architectural support for run-time, always-on detection of 1943 various classes of memory error to aid with software debugging 1944 to eliminate vulnerabilities arising from memory-unsafe 1945 languages. 1946 1947 This option enables the support for the Memory Tagging 1948 Extension at EL0 (i.e. for userspace). 1949 1950 Selecting this option allows the feature to be detected at 1951 runtime. Any secondary CPU not implementing this feature will 1952 not be allowed a late bring-up. 1953 1954 Userspace binaries that want to use this feature must 1955 explicitly opt in. The mechanism for the userspace is 1956 described in: 1957 1958 Documentation/arm64/memory-tagging-extension.rst. 1959 1960endmenu # "ARMv8.5 architectural features" 1961 1962menu "ARMv8.7 architectural features" 1963 1964config ARM64_EPAN 1965 bool "Enable support for Enhanced Privileged Access Never (EPAN)" 1966 default y 1967 depends on ARM64_PAN 1968 help 1969 Enhanced Privileged Access Never (EPAN) allows Privileged 1970 Access Never to be used with Execute-only mappings. 1971 1972 The feature is detected at runtime, and will remain disabled 1973 if the cpu does not implement the feature. 1974endmenu # "ARMv8.7 architectural features" 1975 1976config ARM64_SVE 1977 bool "ARM Scalable Vector Extension support" 1978 default y 1979 help 1980 The Scalable Vector Extension (SVE) is an extension to the AArch64 1981 execution state which complements and extends the SIMD functionality 1982 of the base architecture to support much larger vectors and to enable 1983 additional vectorisation opportunities. 1984 1985 To enable use of this extension on CPUs that implement it, say Y. 1986 1987 On CPUs that support the SVE2 extensions, this option will enable 1988 those too. 1989 1990 Note that for architectural reasons, firmware _must_ implement SVE 1991 support when running on SVE capable hardware. The required support 1992 is present in: 1993 1994 * version 1.5 and later of the ARM Trusted Firmware 1995 * the AArch64 boot wrapper since commit 5e1261e08abf 1996 ("bootwrapper: SVE: Enable SVE for EL2 and below"). 1997 1998 For other firmware implementations, consult the firmware documentation 1999 or vendor. 2000 2001 If you need the kernel to boot on SVE-capable hardware with broken 2002 firmware, you may need to say N here until you get your firmware 2003 fixed. Otherwise, you may experience firmware panics or lockups when 2004 booting the kernel. If unsure and you are not observing these 2005 symptoms, you should assume that it is safe to say Y. 2006 2007config ARM64_SME 2008 bool "ARM Scalable Matrix Extension support" 2009 default y 2010 depends on ARM64_SVE 2011 help 2012 The Scalable Matrix Extension (SME) is an extension to the AArch64 2013 execution state which utilises a substantial subset of the SVE 2014 instruction set, together with the addition of new architectural 2015 register state capable of holding two dimensional matrix tiles to 2016 enable various matrix operations. 2017 2018config ARM64_MODULE_PLTS 2019 bool "Use PLTs to allow module memory to spill over into vmalloc area" 2020 depends on MODULES 2021 select HAVE_MOD_ARCH_SPECIFIC 2022 help 2023 Allocate PLTs when loading modules so that jumps and calls whose 2024 targets are too far away for their relative offsets to be encoded 2025 in the instructions themselves can be bounced via veneers in the 2026 module's PLT. This allows modules to be allocated in the generic 2027 vmalloc area after the dedicated module memory area has been 2028 exhausted. 2029 2030 When running with address space randomization (KASLR), the module 2031 region itself may be too far away for ordinary relative jumps and 2032 calls, and so in that case, module PLTs are required and cannot be 2033 disabled. 2034 2035 Specific errata workaround(s) might also force module PLTs to be 2036 enabled (ARM64_ERRATUM_843419). 2037 2038config ARM64_PSEUDO_NMI 2039 bool "Support for NMI-like interrupts" 2040 select ARM_GIC_V3 2041 help 2042 Adds support for mimicking Non-Maskable Interrupts through the use of 2043 GIC interrupt priority. This support requires version 3 or later of 2044 ARM GIC. 2045 2046 This high priority configuration for interrupts needs to be 2047 explicitly enabled by setting the kernel parameter 2048 "irqchip.gicv3_pseudo_nmi" to 1. 2049 2050 If unsure, say N 2051 2052if ARM64_PSEUDO_NMI 2053config ARM64_DEBUG_PRIORITY_MASKING 2054 bool "Debug interrupt priority masking" 2055 help 2056 This adds runtime checks to functions enabling/disabling 2057 interrupts when using priority masking. The additional checks verify 2058 the validity of ICC_PMR_EL1 when calling concerned functions. 2059 2060 If unsure, say N 2061endif # ARM64_PSEUDO_NMI 2062 2063config RELOCATABLE 2064 bool "Build a relocatable kernel image" if EXPERT 2065 select ARCH_HAS_RELR 2066 default y 2067 help 2068 This builds the kernel as a Position Independent Executable (PIE), 2069 which retains all relocation metadata required to relocate the 2070 kernel binary at runtime to a different virtual address than the 2071 address it was linked at. 2072 Since AArch64 uses the RELA relocation format, this requires a 2073 relocation pass at runtime even if the kernel is loaded at the 2074 same address it was linked at. 2075 2076config RANDOMIZE_BASE 2077 bool "Randomize the address of the kernel image" 2078 select ARM64_MODULE_PLTS if MODULES 2079 select RELOCATABLE 2080 help 2081 Randomizes the virtual address at which the kernel image is 2082 loaded, as a security feature that deters exploit attempts 2083 relying on knowledge of the location of kernel internals. 2084 2085 It is the bootloader's job to provide entropy, by passing a 2086 random u64 value in /chosen/kaslr-seed at kernel entry. 2087 2088 When booting via the UEFI stub, it will invoke the firmware's 2089 EFI_RNG_PROTOCOL implementation (if available) to supply entropy 2090 to the kernel proper. In addition, it will randomise the physical 2091 location of the kernel Image as well. 2092 2093 If unsure, say N. 2094 2095config RANDOMIZE_MODULE_REGION_FULL 2096 bool "Randomize the module region over a 2 GB range" 2097 depends on RANDOMIZE_BASE 2098 default y 2099 help 2100 Randomizes the location of the module region inside a 2 GB window 2101 covering the core kernel. This way, it is less likely for modules 2102 to leak information about the location of core kernel data structures 2103 but it does imply that function calls between modules and the core 2104 kernel will need to be resolved via veneers in the module PLT. 2105 2106 When this option is not set, the module region will be randomized over 2107 a limited range that contains the [_stext, _etext] interval of the 2108 core kernel, so branch relocations are almost always in range unless 2109 ARM64_MODULE_PLTS is enabled and the region is exhausted. In this 2110 particular case of region exhaustion, modules might be able to fall 2111 back to a larger 2GB area. 2112 2113config CC_HAVE_STACKPROTECTOR_SYSREG 2114 def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0) 2115 2116config STACKPROTECTOR_PER_TASK 2117 def_bool y 2118 depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG 2119 2120# The GPIO number here must be sorted by descending number. In case of 2121# a multiplatform kernel, we just want the highest value required by the 2122# selected platforms. 2123config ARCH_NR_GPIO 2124 int 2125 default 2048 if ARCH_APPLE 2126 default 0 2127 help 2128 Maximum number of GPIOs in the system. 2129 2130 If unsure, leave the default value. 2131 2132endmenu # "Kernel Features" 2133 2134menu "Boot options" 2135 2136config ARM64_ACPI_PARKING_PROTOCOL 2137 bool "Enable support for the ARM64 ACPI parking protocol" 2138 depends on ACPI 2139 help 2140 Enable support for the ARM64 ACPI parking protocol. If disabled 2141 the kernel will not allow booting through the ARM64 ACPI parking 2142 protocol even if the corresponding data is present in the ACPI 2143 MADT table. 2144 2145config CMDLINE 2146 string "Default kernel command string" 2147 default "" 2148 help 2149 Provide a set of default command-line options at build time by 2150 entering them here. As a minimum, you should specify the the 2151 root device (e.g. root=/dev/nfs). 2152 2153choice 2154 prompt "Kernel command line type" if CMDLINE != "" 2155 default CMDLINE_FROM_BOOTLOADER 2156 help 2157 Choose how the kernel will handle the provided default kernel 2158 command line string. 2159 2160config CMDLINE_FROM_BOOTLOADER 2161 bool "Use bootloader kernel arguments if available" 2162 help 2163 Uses the command-line options passed by the boot loader. If 2164 the boot loader doesn't provide any, the default kernel command 2165 string provided in CMDLINE will be used. 2166 2167config CMDLINE_FORCE 2168 bool "Always use the default kernel command string" 2169 help 2170 Always use the default kernel command string, even if the boot 2171 loader passes other arguments to the kernel. 2172 This is useful if you cannot or don't want to change the 2173 command-line options your boot loader passes to the kernel. 2174 2175endchoice 2176 2177config EFI_STUB 2178 bool 2179 2180config EFI 2181 bool "UEFI runtime support" 2182 depends on OF && !CPU_BIG_ENDIAN 2183 depends on KERNEL_MODE_NEON 2184 select ARCH_SUPPORTS_ACPI 2185 select LIBFDT 2186 select UCS2_STRING 2187 select EFI_PARAMS_FROM_FDT 2188 select EFI_RUNTIME_WRAPPERS 2189 select EFI_STUB 2190 select EFI_GENERIC_STUB 2191 imply IMA_SECURE_AND_OR_TRUSTED_BOOT 2192 default y 2193 help 2194 This option provides support for runtime services provided 2195 by UEFI firmware (such as non-volatile variables, realtime 2196 clock, and platform reset). A UEFI stub is also provided to 2197 allow the kernel to be booted as an EFI application. This 2198 is only useful on systems that have UEFI firmware. 2199 2200config DMI 2201 bool "Enable support for SMBIOS (DMI) tables" 2202 depends on EFI 2203 default y 2204 help 2205 This enables SMBIOS/DMI feature for systems. 2206 2207 This option is only useful on systems that have UEFI firmware. 2208 However, even with this option, the resultant kernel should 2209 continue to boot on existing non-UEFI platforms. 2210 2211endmenu # "Boot options" 2212 2213menu "Power management options" 2214 2215source "kernel/power/Kconfig" 2216 2217config ARCH_HIBERNATION_POSSIBLE 2218 def_bool y 2219 depends on CPU_PM 2220 2221config ARCH_HIBERNATION_HEADER 2222 def_bool y 2223 depends on HIBERNATION 2224 2225config ARCH_SUSPEND_POSSIBLE 2226 def_bool y 2227 2228endmenu # "Power management options" 2229 2230menu "CPU Power Management" 2231 2232source "drivers/cpuidle/Kconfig" 2233 2234source "drivers/cpufreq/Kconfig" 2235 2236endmenu # "CPU Power Management" 2237 2238source "drivers/acpi/Kconfig" 2239 2240source "arch/arm64/kvm/Kconfig" 2241 2242if CRYPTO 2243source "arch/arm64/crypto/Kconfig" 2244endif # CRYPTO 2245