1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 La Monte H.P. Yarroll
7  *
8  * This file is part of the SCTP kernel implementation
9  *
10  * This module provides the abstraction for an SCTP association.
11  *
12  * This SCTP implementation is free software;
13  * you can redistribute it and/or modify it under the terms of
14  * the GNU General Public License as published by
15  * the Free Software Foundation; either version 2, or (at your option)
16  * any later version.
17  *
18  * This SCTP implementation is distributed in the hope that it
19  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20  *                 ************************
21  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22  * See the GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with GNU CC; see the file COPYING.  If not, write to
26  * the Free Software Foundation, 59 Temple Place - Suite 330,
27  * Boston, MA 02111-1307, USA.
28  *
29  * Please send any bug reports or fixes you make to the
30  * email address(es):
31  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
32  *
33  * Or submit a bug report through the following website:
34  *    http://www.sf.net/projects/lksctp
35  *
36  * Written or modified by:
37  *    La Monte H.P. Yarroll <piggy@acm.org>
38  *    Karl Knutson          <karl@athena.chicago.il.us>
39  *    Jon Grimm             <jgrimm@us.ibm.com>
40  *    Xingang Guo           <xingang.guo@intel.com>
41  *    Hui Huang             <hui.huang@nokia.com>
42  *    Sridhar Samudrala	    <sri@us.ibm.com>
43  *    Daisy Chang	    <daisyc@us.ibm.com>
44  *    Ryan Layer	    <rmlayer@us.ibm.com>
45  *    Kevin Gao             <kevin.gao@intel.com>
46  *
47  * Any bugs reported given to us we will try to fix... any fixes shared will
48  * be incorporated into the next SCTP release.
49  */
50 
51 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
52 
53 #include <linux/types.h>
54 #include <linux/fcntl.h>
55 #include <linux/poll.h>
56 #include <linux/init.h>
57 
58 #include <linux/slab.h>
59 #include <linux/in.h>
60 #include <net/ipv6.h>
61 #include <net/sctp/sctp.h>
62 #include <net/sctp/sm.h>
63 
64 /* Forward declarations for internal functions. */
65 static void sctp_assoc_bh_rcv(struct work_struct *work);
66 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
67 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
68 
69 /* Keep track of the new idr low so that we don't re-use association id
70  * numbers too fast.  It is protected by they idr spin lock is in the
71  * range of 1 - INT_MAX.
72  */
73 static u32 idr_low = 1;
74 
75 
76 /* 1st Level Abstractions. */
77 
78 /* Initialize a new association from provided memory. */
sctp_association_init(struct sctp_association * asoc,const struct sctp_endpoint * ep,const struct sock * sk,sctp_scope_t scope,gfp_t gfp)79 static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
80 					  const struct sctp_endpoint *ep,
81 					  const struct sock *sk,
82 					  sctp_scope_t scope,
83 					  gfp_t gfp)
84 {
85 	struct sctp_sock *sp;
86 	int i;
87 	sctp_paramhdr_t *p;
88 	int err;
89 
90 	/* Retrieve the SCTP per socket area.  */
91 	sp = sctp_sk((struct sock *)sk);
92 
93 	/* Discarding const is appropriate here.  */
94 	asoc->ep = (struct sctp_endpoint *)ep;
95 	sctp_endpoint_hold(asoc->ep);
96 
97 	/* Hold the sock.  */
98 	asoc->base.sk = (struct sock *)sk;
99 	sock_hold(asoc->base.sk);
100 
101 	/* Initialize the common base substructure.  */
102 	asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
103 
104 	/* Initialize the object handling fields.  */
105 	atomic_set(&asoc->base.refcnt, 1);
106 	asoc->base.dead = 0;
107 	asoc->base.malloced = 0;
108 
109 	/* Initialize the bind addr area.  */
110 	sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
111 
112 	asoc->state = SCTP_STATE_CLOSED;
113 
114 	/* Set these values from the socket values, a conversion between
115 	 * millsecons to seconds/microseconds must also be done.
116 	 */
117 	asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000;
118 	asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000)
119 					* 1000;
120 	asoc->frag_point = 0;
121 	asoc->user_frag = sp->user_frag;
122 
123 	/* Set the association max_retrans and RTO values from the
124 	 * socket values.
125 	 */
126 	asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
127 	asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
128 	asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
129 	asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
130 
131 	asoc->overall_error_count = 0;
132 
133 	/* Initialize the association's heartbeat interval based on the
134 	 * sock configured value.
135 	 */
136 	asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
137 
138 	/* Initialize path max retrans value. */
139 	asoc->pathmaxrxt = sp->pathmaxrxt;
140 
141 	/* Initialize default path MTU. */
142 	asoc->pathmtu = sp->pathmtu;
143 
144 	/* Set association default SACK delay */
145 	asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
146 	asoc->sackfreq = sp->sackfreq;
147 
148 	/* Set the association default flags controlling
149 	 * Heartbeat, SACK delay, and Path MTU Discovery.
150 	 */
151 	asoc->param_flags = sp->param_flags;
152 
153 	/* Initialize the maximum mumber of new data packets that can be sent
154 	 * in a burst.
155 	 */
156 	asoc->max_burst = sp->max_burst;
157 
158 	/* initialize association timers */
159 	asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0;
160 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
161 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
162 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
163 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0;
164 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0;
165 
166 	/* sctpimpguide Section 2.12.2
167 	 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
168 	 * recommended value of 5 times 'RTO.Max'.
169 	 */
170 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
171 		= 5 * asoc->rto_max;
172 
173 	asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0;
174 	asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
175 	asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] =
176 		min_t(unsigned long, sp->autoclose, sctp_max_autoclose) * HZ;
177 
178 	/* Initializes the timers */
179 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
180 		setup_timer(&asoc->timers[i], sctp_timer_events[i],
181 				(unsigned long)asoc);
182 
183 	/* Pull default initialization values from the sock options.
184 	 * Note: This assumes that the values have already been
185 	 * validated in the sock.
186 	 */
187 	asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
188 	asoc->c.sinit_num_ostreams  = sp->initmsg.sinit_num_ostreams;
189 	asoc->max_init_attempts	= sp->initmsg.sinit_max_attempts;
190 
191 	asoc->max_init_timeo =
192 		 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
193 
194 	/* Allocate storage for the ssnmap after the inbound and outbound
195 	 * streams have been negotiated during Init.
196 	 */
197 	asoc->ssnmap = NULL;
198 
199 	/* Set the local window size for receive.
200 	 * This is also the rcvbuf space per association.
201 	 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
202 	 * 1500 bytes in one SCTP packet.
203 	 */
204 	if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
205 		asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
206 	else
207 		asoc->rwnd = sk->sk_rcvbuf/2;
208 
209 	asoc->a_rwnd = asoc->rwnd;
210 
211 	asoc->rwnd_over = 0;
212 	asoc->rwnd_press = 0;
213 
214 	/* Use my own max window until I learn something better.  */
215 	asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
216 
217 	/* Set the sndbuf size for transmit.  */
218 	asoc->sndbuf_used = 0;
219 
220 	/* Initialize the receive memory counter */
221 	atomic_set(&asoc->rmem_alloc, 0);
222 
223 	init_waitqueue_head(&asoc->wait);
224 
225 	asoc->c.my_vtag = sctp_generate_tag(ep);
226 	asoc->peer.i.init_tag = 0;     /* INIT needs a vtag of 0. */
227 	asoc->c.peer_vtag = 0;
228 	asoc->c.my_ttag   = 0;
229 	asoc->c.peer_ttag = 0;
230 	asoc->c.my_port = ep->base.bind_addr.port;
231 
232 	asoc->c.initial_tsn = sctp_generate_tsn(ep);
233 
234 	asoc->next_tsn = asoc->c.initial_tsn;
235 
236 	asoc->ctsn_ack_point = asoc->next_tsn - 1;
237 	asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
238 	asoc->highest_sacked = asoc->ctsn_ack_point;
239 	asoc->last_cwr_tsn = asoc->ctsn_ack_point;
240 	asoc->unack_data = 0;
241 
242 	/* ADDIP Section 4.1 Asconf Chunk Procedures
243 	 *
244 	 * When an endpoint has an ASCONF signaled change to be sent to the
245 	 * remote endpoint it should do the following:
246 	 * ...
247 	 * A2) a serial number should be assigned to the chunk. The serial
248 	 * number SHOULD be a monotonically increasing number. The serial
249 	 * numbers SHOULD be initialized at the start of the
250 	 * association to the same value as the initial TSN.
251 	 */
252 	asoc->addip_serial = asoc->c.initial_tsn;
253 
254 	INIT_LIST_HEAD(&asoc->addip_chunk_list);
255 	INIT_LIST_HEAD(&asoc->asconf_ack_list);
256 
257 	/* Make an empty list of remote transport addresses.  */
258 	INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
259 	asoc->peer.transport_count = 0;
260 
261 	/* RFC 2960 5.1 Normal Establishment of an Association
262 	 *
263 	 * After the reception of the first data chunk in an
264 	 * association the endpoint must immediately respond with a
265 	 * sack to acknowledge the data chunk.  Subsequent
266 	 * acknowledgements should be done as described in Section
267 	 * 6.2.
268 	 *
269 	 * [We implement this by telling a new association that it
270 	 * already received one packet.]
271 	 */
272 	asoc->peer.sack_needed = 1;
273 	asoc->peer.sack_cnt = 0;
274 
275 	/* Assume that the peer will tell us if he recognizes ASCONF
276 	 * as part of INIT exchange.
277 	 * The sctp_addip_noauth option is there for backward compatibilty
278 	 * and will revert old behavior.
279 	 */
280 	asoc->peer.asconf_capable = 0;
281 	if (sctp_addip_noauth)
282 		asoc->peer.asconf_capable = 1;
283 	asoc->asconf_addr_del_pending = NULL;
284 	asoc->src_out_of_asoc_ok = 0;
285 	asoc->new_transport = NULL;
286 
287 	/* Create an input queue.  */
288 	sctp_inq_init(&asoc->base.inqueue);
289 	sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
290 
291 	/* Create an output queue.  */
292 	sctp_outq_init(asoc, &asoc->outqueue);
293 
294 	if (!sctp_ulpq_init(&asoc->ulpq, asoc))
295 		goto fail_init;
296 
297 	memset(&asoc->peer.tsn_map, 0, sizeof(struct sctp_tsnmap));
298 
299 	asoc->need_ecne = 0;
300 
301 	asoc->assoc_id = 0;
302 
303 	/* Assume that peer would support both address types unless we are
304 	 * told otherwise.
305 	 */
306 	asoc->peer.ipv4_address = 1;
307 	if (asoc->base.sk->sk_family == PF_INET6)
308 		asoc->peer.ipv6_address = 1;
309 	INIT_LIST_HEAD(&asoc->asocs);
310 
311 	asoc->autoclose = sp->autoclose;
312 
313 	asoc->default_stream = sp->default_stream;
314 	asoc->default_ppid = sp->default_ppid;
315 	asoc->default_flags = sp->default_flags;
316 	asoc->default_context = sp->default_context;
317 	asoc->default_timetolive = sp->default_timetolive;
318 	asoc->default_rcv_context = sp->default_rcv_context;
319 
320 	/* AUTH related initializations */
321 	INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
322 	err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp);
323 	if (err)
324 		goto fail_init;
325 
326 	asoc->active_key_id = ep->active_key_id;
327 	asoc->asoc_shared_key = NULL;
328 
329 	asoc->default_hmac_id = 0;
330 	/* Save the hmacs and chunks list into this association */
331 	if (ep->auth_hmacs_list)
332 		memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
333 			ntohs(ep->auth_hmacs_list->param_hdr.length));
334 	if (ep->auth_chunk_list)
335 		memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
336 			ntohs(ep->auth_chunk_list->param_hdr.length));
337 
338 	/* Get the AUTH random number for this association */
339 	p = (sctp_paramhdr_t *)asoc->c.auth_random;
340 	p->type = SCTP_PARAM_RANDOM;
341 	p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH);
342 	get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
343 
344 	return asoc;
345 
346 fail_init:
347 	sctp_endpoint_put(asoc->ep);
348 	sock_put(asoc->base.sk);
349 	return NULL;
350 }
351 
352 /* Allocate and initialize a new association */
sctp_association_new(const struct sctp_endpoint * ep,const struct sock * sk,sctp_scope_t scope,gfp_t gfp)353 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
354 					 const struct sock *sk,
355 					 sctp_scope_t scope,
356 					 gfp_t gfp)
357 {
358 	struct sctp_association *asoc;
359 
360 	asoc = t_new(struct sctp_association, gfp);
361 	if (!asoc)
362 		goto fail;
363 
364 	if (!sctp_association_init(asoc, ep, sk, scope, gfp))
365 		goto fail_init;
366 
367 	asoc->base.malloced = 1;
368 	SCTP_DBG_OBJCNT_INC(assoc);
369 	SCTP_DEBUG_PRINTK("Created asoc %p\n", asoc);
370 
371 	return asoc;
372 
373 fail_init:
374 	kfree(asoc);
375 fail:
376 	return NULL;
377 }
378 
379 /* Free this association if possible.  There may still be users, so
380  * the actual deallocation may be delayed.
381  */
sctp_association_free(struct sctp_association * asoc)382 void sctp_association_free(struct sctp_association *asoc)
383 {
384 	struct sock *sk = asoc->base.sk;
385 	struct sctp_transport *transport;
386 	struct list_head *pos, *temp;
387 	int i;
388 
389 	/* Only real associations count against the endpoint, so
390 	 * don't bother for if this is a temporary association.
391 	 */
392 	if (!list_empty(&asoc->asocs)) {
393 		list_del(&asoc->asocs);
394 
395 		/* Decrement the backlog value for a TCP-style listening
396 		 * socket.
397 		 */
398 		if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
399 			sk->sk_ack_backlog--;
400 	}
401 
402 	/* Mark as dead, so other users can know this structure is
403 	 * going away.
404 	 */
405 	asoc->base.dead = 1;
406 
407 	/* Dispose of any data lying around in the outqueue. */
408 	sctp_outq_free(&asoc->outqueue);
409 
410 	/* Dispose of any pending messages for the upper layer. */
411 	sctp_ulpq_free(&asoc->ulpq);
412 
413 	/* Dispose of any pending chunks on the inqueue. */
414 	sctp_inq_free(&asoc->base.inqueue);
415 
416 	sctp_tsnmap_free(&asoc->peer.tsn_map);
417 
418 	/* Free ssnmap storage. */
419 	sctp_ssnmap_free(asoc->ssnmap);
420 
421 	/* Clean up the bound address list. */
422 	sctp_bind_addr_free(&asoc->base.bind_addr);
423 
424 	/* Do we need to go through all of our timers and
425 	 * delete them?   To be safe we will try to delete all, but we
426 	 * should be able to go through and make a guess based
427 	 * on our state.
428 	 */
429 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
430 		if (timer_pending(&asoc->timers[i]) &&
431 		    del_timer(&asoc->timers[i]))
432 			sctp_association_put(asoc);
433 	}
434 
435 	/* Free peer's cached cookie. */
436 	kfree(asoc->peer.cookie);
437 	kfree(asoc->peer.peer_random);
438 	kfree(asoc->peer.peer_chunks);
439 	kfree(asoc->peer.peer_hmacs);
440 
441 	/* Release the transport structures. */
442 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
443 		transport = list_entry(pos, struct sctp_transport, transports);
444 		list_del(pos);
445 		sctp_transport_free(transport);
446 	}
447 
448 	asoc->peer.transport_count = 0;
449 
450 	sctp_asconf_queue_teardown(asoc);
451 
452 	/* Free pending address space being deleted */
453 	if (asoc->asconf_addr_del_pending != NULL)
454 		kfree(asoc->asconf_addr_del_pending);
455 
456 	/* AUTH - Free the endpoint shared keys */
457 	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
458 
459 	/* AUTH - Free the association shared key */
460 	sctp_auth_key_put(asoc->asoc_shared_key);
461 
462 	sctp_association_put(asoc);
463 }
464 
465 /* Cleanup and free up an association. */
sctp_association_destroy(struct sctp_association * asoc)466 static void sctp_association_destroy(struct sctp_association *asoc)
467 {
468 	SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return);
469 
470 	sctp_endpoint_put(asoc->ep);
471 	sock_put(asoc->base.sk);
472 
473 	if (asoc->assoc_id != 0) {
474 		spin_lock_bh(&sctp_assocs_id_lock);
475 		idr_remove(&sctp_assocs_id, asoc->assoc_id);
476 		spin_unlock_bh(&sctp_assocs_id_lock);
477 	}
478 
479 	WARN_ON(atomic_read(&asoc->rmem_alloc));
480 
481 	if (asoc->base.malloced) {
482 		kfree(asoc);
483 		SCTP_DBG_OBJCNT_DEC(assoc);
484 	}
485 }
486 
487 /* Change the primary destination address for the peer. */
sctp_assoc_set_primary(struct sctp_association * asoc,struct sctp_transport * transport)488 void sctp_assoc_set_primary(struct sctp_association *asoc,
489 			    struct sctp_transport *transport)
490 {
491 	int changeover = 0;
492 
493 	/* it's a changeover only if we already have a primary path
494 	 * that we are changing
495 	 */
496 	if (asoc->peer.primary_path != NULL &&
497 	    asoc->peer.primary_path != transport)
498 		changeover = 1 ;
499 
500 	asoc->peer.primary_path = transport;
501 
502 	/* Set a default msg_name for events. */
503 	memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
504 	       sizeof(union sctp_addr));
505 
506 	/* If the primary path is changing, assume that the
507 	 * user wants to use this new path.
508 	 */
509 	if ((transport->state == SCTP_ACTIVE) ||
510 	    (transport->state == SCTP_UNKNOWN))
511 		asoc->peer.active_path = transport;
512 
513 	/*
514 	 * SFR-CACC algorithm:
515 	 * Upon the receipt of a request to change the primary
516 	 * destination address, on the data structure for the new
517 	 * primary destination, the sender MUST do the following:
518 	 *
519 	 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
520 	 * to this destination address earlier. The sender MUST set
521 	 * CYCLING_CHANGEOVER to indicate that this switch is a
522 	 * double switch to the same destination address.
523 	 *
524 	 * Really, only bother is we have data queued or outstanding on
525 	 * the association.
526 	 */
527 	if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
528 		return;
529 
530 	if (transport->cacc.changeover_active)
531 		transport->cacc.cycling_changeover = changeover;
532 
533 	/* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
534 	 * a changeover has occurred.
535 	 */
536 	transport->cacc.changeover_active = changeover;
537 
538 	/* 3) The sender MUST store the next TSN to be sent in
539 	 * next_tsn_at_change.
540 	 */
541 	transport->cacc.next_tsn_at_change = asoc->next_tsn;
542 }
543 
544 /* Remove a transport from an association.  */
sctp_assoc_rm_peer(struct sctp_association * asoc,struct sctp_transport * peer)545 void sctp_assoc_rm_peer(struct sctp_association *asoc,
546 			struct sctp_transport *peer)
547 {
548 	struct list_head	*pos;
549 	struct sctp_transport	*transport;
550 
551 	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_rm_peer:association %p addr: ",
552 				 " port: %d\n",
553 				 asoc,
554 				 (&peer->ipaddr),
555 				 ntohs(peer->ipaddr.v4.sin_port));
556 
557 	/* If we are to remove the current retran_path, update it
558 	 * to the next peer before removing this peer from the list.
559 	 */
560 	if (asoc->peer.retran_path == peer)
561 		sctp_assoc_update_retran_path(asoc);
562 
563 	/* Remove this peer from the list. */
564 	list_del(&peer->transports);
565 
566 	/* Get the first transport of asoc. */
567 	pos = asoc->peer.transport_addr_list.next;
568 	transport = list_entry(pos, struct sctp_transport, transports);
569 
570 	/* Update any entries that match the peer to be deleted. */
571 	if (asoc->peer.primary_path == peer)
572 		sctp_assoc_set_primary(asoc, transport);
573 	if (asoc->peer.active_path == peer)
574 		asoc->peer.active_path = transport;
575 	if (asoc->peer.retran_path == peer)
576 		asoc->peer.retran_path = transport;
577 	if (asoc->peer.last_data_from == peer)
578 		asoc->peer.last_data_from = transport;
579 
580 	/* If we remove the transport an INIT was last sent to, set it to
581 	 * NULL. Combined with the update of the retran path above, this
582 	 * will cause the next INIT to be sent to the next available
583 	 * transport, maintaining the cycle.
584 	 */
585 	if (asoc->init_last_sent_to == peer)
586 		asoc->init_last_sent_to = NULL;
587 
588 	/* If we remove the transport an SHUTDOWN was last sent to, set it
589 	 * to NULL. Combined with the update of the retran path above, this
590 	 * will cause the next SHUTDOWN to be sent to the next available
591 	 * transport, maintaining the cycle.
592 	 */
593 	if (asoc->shutdown_last_sent_to == peer)
594 		asoc->shutdown_last_sent_to = NULL;
595 
596 	/* If we remove the transport an ASCONF was last sent to, set it to
597 	 * NULL.
598 	 */
599 	if (asoc->addip_last_asconf &&
600 	    asoc->addip_last_asconf->transport == peer)
601 		asoc->addip_last_asconf->transport = NULL;
602 
603 	/* If we have something on the transmitted list, we have to
604 	 * save it off.  The best place is the active path.
605 	 */
606 	if (!list_empty(&peer->transmitted)) {
607 		struct sctp_transport *active = asoc->peer.active_path;
608 		struct sctp_chunk *ch;
609 
610 		/* Reset the transport of each chunk on this list */
611 		list_for_each_entry(ch, &peer->transmitted,
612 					transmitted_list) {
613 			ch->transport = NULL;
614 			ch->rtt_in_progress = 0;
615 		}
616 
617 		list_splice_tail_init(&peer->transmitted,
618 					&active->transmitted);
619 
620 		/* Start a T3 timer here in case it wasn't running so
621 		 * that these migrated packets have a chance to get
622 		 * retrnasmitted.
623 		 */
624 		if (!timer_pending(&active->T3_rtx_timer))
625 			if (!mod_timer(&active->T3_rtx_timer,
626 					jiffies + active->rto))
627 				sctp_transport_hold(active);
628 	}
629 
630 	asoc->peer.transport_count--;
631 
632 	sctp_transport_free(peer);
633 }
634 
635 /* Add a transport address to an association.  */
sctp_assoc_add_peer(struct sctp_association * asoc,const union sctp_addr * addr,const gfp_t gfp,const int peer_state)636 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
637 					   const union sctp_addr *addr,
638 					   const gfp_t gfp,
639 					   const int peer_state)
640 {
641 	struct sctp_transport *peer;
642 	struct sctp_sock *sp;
643 	unsigned short port;
644 
645 	sp = sctp_sk(asoc->base.sk);
646 
647 	/* AF_INET and AF_INET6 share common port field. */
648 	port = ntohs(addr->v4.sin_port);
649 
650 	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_add_peer:association %p addr: ",
651 				 " port: %d state:%d\n",
652 				 asoc,
653 				 addr,
654 				 port,
655 				 peer_state);
656 
657 	/* Set the port if it has not been set yet.  */
658 	if (0 == asoc->peer.port)
659 		asoc->peer.port = port;
660 
661 	/* Check to see if this is a duplicate. */
662 	peer = sctp_assoc_lookup_paddr(asoc, addr);
663 	if (peer) {
664 		/* An UNKNOWN state is only set on transports added by
665 		 * user in sctp_connectx() call.  Such transports should be
666 		 * considered CONFIRMED per RFC 4960, Section 5.4.
667 		 */
668 		if (peer->state == SCTP_UNKNOWN) {
669 			peer->state = SCTP_ACTIVE;
670 		}
671 		return peer;
672 	}
673 
674 	peer = sctp_transport_new(addr, gfp);
675 	if (!peer)
676 		return NULL;
677 
678 	sctp_transport_set_owner(peer, asoc);
679 
680 	/* Initialize the peer's heartbeat interval based on the
681 	 * association configured value.
682 	 */
683 	peer->hbinterval = asoc->hbinterval;
684 
685 	/* Set the path max_retrans.  */
686 	peer->pathmaxrxt = asoc->pathmaxrxt;
687 
688 	/* Initialize the peer's SACK delay timeout based on the
689 	 * association configured value.
690 	 */
691 	peer->sackdelay = asoc->sackdelay;
692 	peer->sackfreq = asoc->sackfreq;
693 
694 	/* Enable/disable heartbeat, SACK delay, and path MTU discovery
695 	 * based on association setting.
696 	 */
697 	peer->param_flags = asoc->param_flags;
698 
699 	sctp_transport_route(peer, NULL, sp);
700 
701 	/* Initialize the pmtu of the transport. */
702 	if (peer->param_flags & SPP_PMTUD_DISABLE) {
703 		if (asoc->pathmtu)
704 			peer->pathmtu = asoc->pathmtu;
705 		else
706 			peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
707 	}
708 
709 	/* If this is the first transport addr on this association,
710 	 * initialize the association PMTU to the peer's PMTU.
711 	 * If not and the current association PMTU is higher than the new
712 	 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
713 	 */
714 	if (asoc->pathmtu)
715 		asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
716 	else
717 		asoc->pathmtu = peer->pathmtu;
718 
719 	SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to "
720 			  "%d\n", asoc, asoc->pathmtu);
721 	peer->pmtu_pending = 0;
722 
723 	asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
724 
725 	/* The asoc->peer.port might not be meaningful yet, but
726 	 * initialize the packet structure anyway.
727 	 */
728 	sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
729 			 asoc->peer.port);
730 
731 	/* 7.2.1 Slow-Start
732 	 *
733 	 * o The initial cwnd before DATA transmission or after a sufficiently
734 	 *   long idle period MUST be set to
735 	 *      min(4*MTU, max(2*MTU, 4380 bytes))
736 	 *
737 	 * o The initial value of ssthresh MAY be arbitrarily high
738 	 *   (for example, implementations MAY use the size of the
739 	 *   receiver advertised window).
740 	 */
741 	peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
742 
743 	/* At this point, we may not have the receiver's advertised window,
744 	 * so initialize ssthresh to the default value and it will be set
745 	 * later when we process the INIT.
746 	 */
747 	peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
748 
749 	peer->partial_bytes_acked = 0;
750 	peer->flight_size = 0;
751 	peer->burst_limited = 0;
752 
753 	/* Set the transport's RTO.initial value */
754 	peer->rto = asoc->rto_initial;
755 
756 	/* Set the peer's active state. */
757 	peer->state = peer_state;
758 
759 	/* Attach the remote transport to our asoc.  */
760 	list_add_tail(&peer->transports, &asoc->peer.transport_addr_list);
761 	asoc->peer.transport_count++;
762 
763 	/* If we do not yet have a primary path, set one.  */
764 	if (!asoc->peer.primary_path) {
765 		sctp_assoc_set_primary(asoc, peer);
766 		asoc->peer.retran_path = peer;
767 	}
768 
769 	if (asoc->peer.active_path == asoc->peer.retran_path &&
770 	    peer->state != SCTP_UNCONFIRMED) {
771 		asoc->peer.retran_path = peer;
772 	}
773 
774 	return peer;
775 }
776 
777 /* Delete a transport address from an association.  */
sctp_assoc_del_peer(struct sctp_association * asoc,const union sctp_addr * addr)778 void sctp_assoc_del_peer(struct sctp_association *asoc,
779 			 const union sctp_addr *addr)
780 {
781 	struct list_head	*pos;
782 	struct list_head	*temp;
783 	struct sctp_transport	*transport;
784 
785 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
786 		transport = list_entry(pos, struct sctp_transport, transports);
787 		if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
788 			/* Do book keeping for removing the peer and free it. */
789 			sctp_assoc_rm_peer(asoc, transport);
790 			break;
791 		}
792 	}
793 }
794 
795 /* Lookup a transport by address. */
sctp_assoc_lookup_paddr(const struct sctp_association * asoc,const union sctp_addr * address)796 struct sctp_transport *sctp_assoc_lookup_paddr(
797 					const struct sctp_association *asoc,
798 					const union sctp_addr *address)
799 {
800 	struct sctp_transport *t;
801 
802 	/* Cycle through all transports searching for a peer address. */
803 
804 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
805 			transports) {
806 		if (sctp_cmp_addr_exact(address, &t->ipaddr))
807 			return t;
808 	}
809 
810 	return NULL;
811 }
812 
813 /* Remove all transports except a give one */
sctp_assoc_del_nonprimary_peers(struct sctp_association * asoc,struct sctp_transport * primary)814 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
815 				     struct sctp_transport *primary)
816 {
817 	struct sctp_transport	*temp;
818 	struct sctp_transport	*t;
819 
820 	list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
821 				 transports) {
822 		/* if the current transport is not the primary one, delete it */
823 		if (t != primary)
824 			sctp_assoc_rm_peer(asoc, t);
825 	}
826 }
827 
828 /* Engage in transport control operations.
829  * Mark the transport up or down and send a notification to the user.
830  * Select and update the new active and retran paths.
831  */
sctp_assoc_control_transport(struct sctp_association * asoc,struct sctp_transport * transport,sctp_transport_cmd_t command,sctp_sn_error_t error)832 void sctp_assoc_control_transport(struct sctp_association *asoc,
833 				  struct sctp_transport *transport,
834 				  sctp_transport_cmd_t command,
835 				  sctp_sn_error_t error)
836 {
837 	struct sctp_transport *t = NULL;
838 	struct sctp_transport *first;
839 	struct sctp_transport *second;
840 	struct sctp_ulpevent *event;
841 	struct sockaddr_storage addr;
842 	int spc_state = 0;
843 
844 	/* Record the transition on the transport.  */
845 	switch (command) {
846 	case SCTP_TRANSPORT_UP:
847 		/* If we are moving from UNCONFIRMED state due
848 		 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
849 		 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
850 		 */
851 		if (SCTP_UNCONFIRMED == transport->state &&
852 		    SCTP_HEARTBEAT_SUCCESS == error)
853 			spc_state = SCTP_ADDR_CONFIRMED;
854 		else
855 			spc_state = SCTP_ADDR_AVAILABLE;
856 		transport->state = SCTP_ACTIVE;
857 		break;
858 
859 	case SCTP_TRANSPORT_DOWN:
860 		/* If the transport was never confirmed, do not transition it
861 		 * to inactive state.  Also, release the cached route since
862 		 * there may be a better route next time.
863 		 */
864 		if (transport->state != SCTP_UNCONFIRMED)
865 			transport->state = SCTP_INACTIVE;
866 		else {
867 			dst_release(transport->dst);
868 			transport->dst = NULL;
869 		}
870 
871 		spc_state = SCTP_ADDR_UNREACHABLE;
872 		break;
873 
874 	default:
875 		return;
876 	}
877 
878 	/* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the
879 	 * user.
880 	 */
881 	memset(&addr, 0, sizeof(struct sockaddr_storage));
882 	memcpy(&addr, &transport->ipaddr, transport->af_specific->sockaddr_len);
883 	event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
884 				0, spc_state, error, GFP_ATOMIC);
885 	if (event)
886 		sctp_ulpq_tail_event(&asoc->ulpq, event);
887 
888 	/* Select new active and retran paths. */
889 
890 	/* Look for the two most recently used active transports.
891 	 *
892 	 * This code produces the wrong ordering whenever jiffies
893 	 * rolls over, but we still get usable transports, so we don't
894 	 * worry about it.
895 	 */
896 	first = NULL; second = NULL;
897 
898 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
899 			transports) {
900 
901 		if ((t->state == SCTP_INACTIVE) ||
902 		    (t->state == SCTP_UNCONFIRMED))
903 			continue;
904 		if (!first || t->last_time_heard > first->last_time_heard) {
905 			second = first;
906 			first = t;
907 		}
908 		if (!second || t->last_time_heard > second->last_time_heard)
909 			second = t;
910 	}
911 
912 	/* RFC 2960 6.4 Multi-Homed SCTP Endpoints
913 	 *
914 	 * By default, an endpoint should always transmit to the
915 	 * primary path, unless the SCTP user explicitly specifies the
916 	 * destination transport address (and possibly source
917 	 * transport address) to use.
918 	 *
919 	 * [If the primary is active but not most recent, bump the most
920 	 * recently used transport.]
921 	 */
922 	if (((asoc->peer.primary_path->state == SCTP_ACTIVE) ||
923 	     (asoc->peer.primary_path->state == SCTP_UNKNOWN)) &&
924 	    first != asoc->peer.primary_path) {
925 		second = first;
926 		first = asoc->peer.primary_path;
927 	}
928 
929 	/* If we failed to find a usable transport, just camp on the
930 	 * primary, even if it is inactive.
931 	 */
932 	if (!first) {
933 		first = asoc->peer.primary_path;
934 		second = asoc->peer.primary_path;
935 	}
936 
937 	/* Set the active and retran transports.  */
938 	asoc->peer.active_path = first;
939 	asoc->peer.retran_path = second;
940 }
941 
942 /* Hold a reference to an association. */
sctp_association_hold(struct sctp_association * asoc)943 void sctp_association_hold(struct sctp_association *asoc)
944 {
945 	atomic_inc(&asoc->base.refcnt);
946 }
947 
948 /* Release a reference to an association and cleanup
949  * if there are no more references.
950  */
sctp_association_put(struct sctp_association * asoc)951 void sctp_association_put(struct sctp_association *asoc)
952 {
953 	if (atomic_dec_and_test(&asoc->base.refcnt))
954 		sctp_association_destroy(asoc);
955 }
956 
957 /* Allocate the next TSN, Transmission Sequence Number, for the given
958  * association.
959  */
sctp_association_get_next_tsn(struct sctp_association * asoc)960 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
961 {
962 	/* From Section 1.6 Serial Number Arithmetic:
963 	 * Transmission Sequence Numbers wrap around when they reach
964 	 * 2**32 - 1.  That is, the next TSN a DATA chunk MUST use
965 	 * after transmitting TSN = 2*32 - 1 is TSN = 0.
966 	 */
967 	__u32 retval = asoc->next_tsn;
968 	asoc->next_tsn++;
969 	asoc->unack_data++;
970 
971 	return retval;
972 }
973 
974 /* Compare two addresses to see if they match.  Wildcard addresses
975  * only match themselves.
976  */
sctp_cmp_addr_exact(const union sctp_addr * ss1,const union sctp_addr * ss2)977 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
978 			const union sctp_addr *ss2)
979 {
980 	struct sctp_af *af;
981 
982 	af = sctp_get_af_specific(ss1->sa.sa_family);
983 	if (unlikely(!af))
984 		return 0;
985 
986 	return af->cmp_addr(ss1, ss2);
987 }
988 
989 /* Return an ecne chunk to get prepended to a packet.
990  * Note:  We are sly and return a shared, prealloced chunk.  FIXME:
991  * No we don't, but we could/should.
992  */
sctp_get_ecne_prepend(struct sctp_association * asoc)993 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
994 {
995 	struct sctp_chunk *chunk;
996 
997 	/* Send ECNE if needed.
998 	 * Not being able to allocate a chunk here is not deadly.
999 	 */
1000 	if (asoc->need_ecne)
1001 		chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn);
1002 	else
1003 		chunk = NULL;
1004 
1005 	return chunk;
1006 }
1007 
1008 /*
1009  * Find which transport this TSN was sent on.
1010  */
sctp_assoc_lookup_tsn(struct sctp_association * asoc,__u32 tsn)1011 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
1012 					     __u32 tsn)
1013 {
1014 	struct sctp_transport *active;
1015 	struct sctp_transport *match;
1016 	struct sctp_transport *transport;
1017 	struct sctp_chunk *chunk;
1018 	__be32 key = htonl(tsn);
1019 
1020 	match = NULL;
1021 
1022 	/*
1023 	 * FIXME: In general, find a more efficient data structure for
1024 	 * searching.
1025 	 */
1026 
1027 	/*
1028 	 * The general strategy is to search each transport's transmitted
1029 	 * list.   Return which transport this TSN lives on.
1030 	 *
1031 	 * Let's be hopeful and check the active_path first.
1032 	 * Another optimization would be to know if there is only one
1033 	 * outbound path and not have to look for the TSN at all.
1034 	 *
1035 	 */
1036 
1037 	active = asoc->peer.active_path;
1038 
1039 	list_for_each_entry(chunk, &active->transmitted,
1040 			transmitted_list) {
1041 
1042 		if (key == chunk->subh.data_hdr->tsn) {
1043 			match = active;
1044 			goto out;
1045 		}
1046 	}
1047 
1048 	/* If not found, go search all the other transports. */
1049 	list_for_each_entry(transport, &asoc->peer.transport_addr_list,
1050 			transports) {
1051 
1052 		if (transport == active)
1053 			continue;
1054 		list_for_each_entry(chunk, &transport->transmitted,
1055 				transmitted_list) {
1056 			if (key == chunk->subh.data_hdr->tsn) {
1057 				match = transport;
1058 				goto out;
1059 			}
1060 		}
1061 	}
1062 out:
1063 	return match;
1064 }
1065 
1066 /* Is this the association we are looking for? */
sctp_assoc_is_match(struct sctp_association * asoc,const union sctp_addr * laddr,const union sctp_addr * paddr)1067 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
1068 					   const union sctp_addr *laddr,
1069 					   const union sctp_addr *paddr)
1070 {
1071 	struct sctp_transport *transport;
1072 
1073 	if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
1074 	    (htons(asoc->peer.port) == paddr->v4.sin_port)) {
1075 		transport = sctp_assoc_lookup_paddr(asoc, paddr);
1076 		if (!transport)
1077 			goto out;
1078 
1079 		if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1080 					 sctp_sk(asoc->base.sk)))
1081 			goto out;
1082 	}
1083 	transport = NULL;
1084 
1085 out:
1086 	return transport;
1087 }
1088 
1089 /* Do delayed input processing.  This is scheduled by sctp_rcv(). */
sctp_assoc_bh_rcv(struct work_struct * work)1090 static void sctp_assoc_bh_rcv(struct work_struct *work)
1091 {
1092 	struct sctp_association *asoc =
1093 		container_of(work, struct sctp_association,
1094 			     base.inqueue.immediate);
1095 	struct sctp_endpoint *ep;
1096 	struct sctp_chunk *chunk;
1097 	struct sctp_inq *inqueue;
1098 	int state;
1099 	sctp_subtype_t subtype;
1100 	int error = 0;
1101 
1102 	/* The association should be held so we should be safe. */
1103 	ep = asoc->ep;
1104 
1105 	inqueue = &asoc->base.inqueue;
1106 	sctp_association_hold(asoc);
1107 	while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1108 		state = asoc->state;
1109 		subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1110 
1111 		/* SCTP-AUTH, Section 6.3:
1112 		 *    The receiver has a list of chunk types which it expects
1113 		 *    to be received only after an AUTH-chunk.  This list has
1114 		 *    been sent to the peer during the association setup.  It
1115 		 *    MUST silently discard these chunks if they are not placed
1116 		 *    after an AUTH chunk in the packet.
1117 		 */
1118 		if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1119 			continue;
1120 
1121 		/* Remember where the last DATA chunk came from so we
1122 		 * know where to send the SACK.
1123 		 */
1124 		if (sctp_chunk_is_data(chunk))
1125 			asoc->peer.last_data_from = chunk->transport;
1126 		else
1127 			SCTP_INC_STATS(SCTP_MIB_INCTRLCHUNKS);
1128 
1129 		if (chunk->transport)
1130 			chunk->transport->last_time_heard = jiffies;
1131 
1132 		/* Run through the state machine. */
1133 		error = sctp_do_sm(SCTP_EVENT_T_CHUNK, subtype,
1134 				   state, ep, asoc, chunk, GFP_ATOMIC);
1135 
1136 		/* Check to see if the association is freed in response to
1137 		 * the incoming chunk.  If so, get out of the while loop.
1138 		 */
1139 		if (asoc->base.dead)
1140 			break;
1141 
1142 		/* If there is an error on chunk, discard this packet. */
1143 		if (error && chunk)
1144 			chunk->pdiscard = 1;
1145 	}
1146 	sctp_association_put(asoc);
1147 }
1148 
1149 /* This routine moves an association from its old sk to a new sk.  */
sctp_assoc_migrate(struct sctp_association * assoc,struct sock * newsk)1150 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1151 {
1152 	struct sctp_sock *newsp = sctp_sk(newsk);
1153 	struct sock *oldsk = assoc->base.sk;
1154 
1155 	/* Delete the association from the old endpoint's list of
1156 	 * associations.
1157 	 */
1158 	list_del_init(&assoc->asocs);
1159 
1160 	/* Decrement the backlog value for a TCP-style socket. */
1161 	if (sctp_style(oldsk, TCP))
1162 		oldsk->sk_ack_backlog--;
1163 
1164 	/* Release references to the old endpoint and the sock.  */
1165 	sctp_endpoint_put(assoc->ep);
1166 	sock_put(assoc->base.sk);
1167 
1168 	/* Get a reference to the new endpoint.  */
1169 	assoc->ep = newsp->ep;
1170 	sctp_endpoint_hold(assoc->ep);
1171 
1172 	/* Get a reference to the new sock.  */
1173 	assoc->base.sk = newsk;
1174 	sock_hold(assoc->base.sk);
1175 
1176 	/* Add the association to the new endpoint's list of associations.  */
1177 	sctp_endpoint_add_asoc(newsp->ep, assoc);
1178 }
1179 
1180 /* Update an association (possibly from unexpected COOKIE-ECHO processing).  */
sctp_assoc_update(struct sctp_association * asoc,struct sctp_association * new)1181 void sctp_assoc_update(struct sctp_association *asoc,
1182 		       struct sctp_association *new)
1183 {
1184 	struct sctp_transport *trans;
1185 	struct list_head *pos, *temp;
1186 
1187 	/* Copy in new parameters of peer. */
1188 	asoc->c = new->c;
1189 	asoc->peer.rwnd = new->peer.rwnd;
1190 	asoc->peer.sack_needed = new->peer.sack_needed;
1191 	asoc->peer.i = new->peer.i;
1192 	sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1193 			 asoc->peer.i.initial_tsn, GFP_ATOMIC);
1194 
1195 	/* Remove any peer addresses not present in the new association. */
1196 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1197 		trans = list_entry(pos, struct sctp_transport, transports);
1198 		if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1199 			sctp_assoc_rm_peer(asoc, trans);
1200 			continue;
1201 		}
1202 
1203 		if (asoc->state >= SCTP_STATE_ESTABLISHED)
1204 			sctp_transport_reset(trans);
1205 	}
1206 
1207 	/* If the case is A (association restart), use
1208 	 * initial_tsn as next_tsn. If the case is B, use
1209 	 * current next_tsn in case data sent to peer
1210 	 * has been discarded and needs retransmission.
1211 	 */
1212 	if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1213 		asoc->next_tsn = new->next_tsn;
1214 		asoc->ctsn_ack_point = new->ctsn_ack_point;
1215 		asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1216 
1217 		/* Reinitialize SSN for both local streams
1218 		 * and peer's streams.
1219 		 */
1220 		sctp_ssnmap_clear(asoc->ssnmap);
1221 
1222 		/* Flush the ULP reassembly and ordered queue.
1223 		 * Any data there will now be stale and will
1224 		 * cause problems.
1225 		 */
1226 		sctp_ulpq_flush(&asoc->ulpq);
1227 
1228 		/* reset the overall association error count so
1229 		 * that the restarted association doesn't get torn
1230 		 * down on the next retransmission timer.
1231 		 */
1232 		asoc->overall_error_count = 0;
1233 
1234 	} else {
1235 		/* Add any peer addresses from the new association. */
1236 		list_for_each_entry(trans, &new->peer.transport_addr_list,
1237 				transports) {
1238 			if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1239 				sctp_assoc_add_peer(asoc, &trans->ipaddr,
1240 						    GFP_ATOMIC, trans->state);
1241 		}
1242 
1243 		asoc->ctsn_ack_point = asoc->next_tsn - 1;
1244 		asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1245 		if (!asoc->ssnmap) {
1246 			/* Move the ssnmap. */
1247 			asoc->ssnmap = new->ssnmap;
1248 			new->ssnmap = NULL;
1249 		}
1250 
1251 		if (!asoc->assoc_id) {
1252 			/* get a new association id since we don't have one
1253 			 * yet.
1254 			 */
1255 			sctp_assoc_set_id(asoc, GFP_ATOMIC);
1256 		}
1257 	}
1258 
1259 	/* SCTP-AUTH: Save the peer parameters from the new assocaitions
1260 	 * and also move the association shared keys over
1261 	 */
1262 	kfree(asoc->peer.peer_random);
1263 	asoc->peer.peer_random = new->peer.peer_random;
1264 	new->peer.peer_random = NULL;
1265 
1266 	kfree(asoc->peer.peer_chunks);
1267 	asoc->peer.peer_chunks = new->peer.peer_chunks;
1268 	new->peer.peer_chunks = NULL;
1269 
1270 	kfree(asoc->peer.peer_hmacs);
1271 	asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1272 	new->peer.peer_hmacs = NULL;
1273 
1274 	sctp_auth_key_put(asoc->asoc_shared_key);
1275 	sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1276 }
1277 
1278 /* Update the retran path for sending a retransmitted packet.
1279  * Round-robin through the active transports, else round-robin
1280  * through the inactive transports as this is the next best thing
1281  * we can try.
1282  */
sctp_assoc_update_retran_path(struct sctp_association * asoc)1283 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1284 {
1285 	struct sctp_transport *t, *next;
1286 	struct list_head *head = &asoc->peer.transport_addr_list;
1287 	struct list_head *pos;
1288 
1289 	if (asoc->peer.transport_count == 1)
1290 		return;
1291 
1292 	/* Find the next transport in a round-robin fashion. */
1293 	t = asoc->peer.retran_path;
1294 	pos = &t->transports;
1295 	next = NULL;
1296 
1297 	while (1) {
1298 		/* Skip the head. */
1299 		if (pos->next == head)
1300 			pos = head->next;
1301 		else
1302 			pos = pos->next;
1303 
1304 		t = list_entry(pos, struct sctp_transport, transports);
1305 
1306 		/* We have exhausted the list, but didn't find any
1307 		 * other active transports.  If so, use the next
1308 		 * transport.
1309 		 */
1310 		if (t == asoc->peer.retran_path) {
1311 			t = next;
1312 			break;
1313 		}
1314 
1315 		/* Try to find an active transport. */
1316 
1317 		if ((t->state == SCTP_ACTIVE) ||
1318 		    (t->state == SCTP_UNKNOWN)) {
1319 			break;
1320 		} else {
1321 			/* Keep track of the next transport in case
1322 			 * we don't find any active transport.
1323 			 */
1324 			if (t->state != SCTP_UNCONFIRMED && !next)
1325 				next = t;
1326 		}
1327 	}
1328 
1329 	if (t)
1330 		asoc->peer.retran_path = t;
1331 	else
1332 		t = asoc->peer.retran_path;
1333 
1334 	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association"
1335 				 " %p addr: ",
1336 				 " port: %d\n",
1337 				 asoc,
1338 				 (&t->ipaddr),
1339 				 ntohs(t->ipaddr.v4.sin_port));
1340 }
1341 
1342 /* Choose the transport for sending retransmit packet.  */
sctp_assoc_choose_alter_transport(struct sctp_association * asoc,struct sctp_transport * last_sent_to)1343 struct sctp_transport *sctp_assoc_choose_alter_transport(
1344 	struct sctp_association *asoc, struct sctp_transport *last_sent_to)
1345 {
1346 	/* If this is the first time packet is sent, use the active path,
1347 	 * else use the retran path. If the last packet was sent over the
1348 	 * retran path, update the retran path and use it.
1349 	 */
1350 	if (!last_sent_to)
1351 		return asoc->peer.active_path;
1352 	else {
1353 		if (last_sent_to == asoc->peer.retran_path)
1354 			sctp_assoc_update_retran_path(asoc);
1355 		return asoc->peer.retran_path;
1356 	}
1357 }
1358 
1359 /* Update the association's pmtu and frag_point by going through all the
1360  * transports. This routine is called when a transport's PMTU has changed.
1361  */
sctp_assoc_sync_pmtu(struct sctp_association * asoc)1362 void sctp_assoc_sync_pmtu(struct sctp_association *asoc)
1363 {
1364 	struct sctp_transport *t;
1365 	__u32 pmtu = 0;
1366 
1367 	if (!asoc)
1368 		return;
1369 
1370 	/* Get the lowest pmtu of all the transports. */
1371 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
1372 				transports) {
1373 		if (t->pmtu_pending && t->dst) {
1374 			sctp_transport_update_pmtu(t, dst_mtu(t->dst));
1375 			t->pmtu_pending = 0;
1376 		}
1377 		if (!pmtu || (t->pathmtu < pmtu))
1378 			pmtu = t->pathmtu;
1379 	}
1380 
1381 	if (pmtu) {
1382 		asoc->pathmtu = pmtu;
1383 		asoc->frag_point = sctp_frag_point(asoc, pmtu);
1384 	}
1385 
1386 	SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n",
1387 			  __func__, asoc, asoc->pathmtu, asoc->frag_point);
1388 }
1389 
1390 /* Should we send a SACK to update our peer? */
sctp_peer_needs_update(struct sctp_association * asoc)1391 static inline int sctp_peer_needs_update(struct sctp_association *asoc)
1392 {
1393 	switch (asoc->state) {
1394 	case SCTP_STATE_ESTABLISHED:
1395 	case SCTP_STATE_SHUTDOWN_PENDING:
1396 	case SCTP_STATE_SHUTDOWN_RECEIVED:
1397 	case SCTP_STATE_SHUTDOWN_SENT:
1398 		if ((asoc->rwnd > asoc->a_rwnd) &&
1399 		    ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1400 			   (asoc->base.sk->sk_rcvbuf >> sctp_rwnd_upd_shift),
1401 			   asoc->pathmtu)))
1402 			return 1;
1403 		break;
1404 	default:
1405 		break;
1406 	}
1407 	return 0;
1408 }
1409 
1410 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
sctp_assoc_rwnd_increase(struct sctp_association * asoc,unsigned len)1411 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned len)
1412 {
1413 	struct sctp_chunk *sack;
1414 	struct timer_list *timer;
1415 
1416 	if (asoc->rwnd_over) {
1417 		if (asoc->rwnd_over >= len) {
1418 			asoc->rwnd_over -= len;
1419 		} else {
1420 			asoc->rwnd += (len - asoc->rwnd_over);
1421 			asoc->rwnd_over = 0;
1422 		}
1423 	} else {
1424 		asoc->rwnd += len;
1425 	}
1426 
1427 	/* If we had window pressure, start recovering it
1428 	 * once our rwnd had reached the accumulated pressure
1429 	 * threshold.  The idea is to recover slowly, but up
1430 	 * to the initial advertised window.
1431 	 */
1432 	if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) {
1433 		int change = min(asoc->pathmtu, asoc->rwnd_press);
1434 		asoc->rwnd += change;
1435 		asoc->rwnd_press -= change;
1436 	}
1437 
1438 	SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) "
1439 			  "- %u\n", __func__, asoc, len, asoc->rwnd,
1440 			  asoc->rwnd_over, asoc->a_rwnd);
1441 
1442 	/* Send a window update SACK if the rwnd has increased by at least the
1443 	 * minimum of the association's PMTU and half of the receive buffer.
1444 	 * The algorithm used is similar to the one described in
1445 	 * Section 4.2.3.3 of RFC 1122.
1446 	 */
1447 	if (sctp_peer_needs_update(asoc)) {
1448 		asoc->a_rwnd = asoc->rwnd;
1449 		SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p "
1450 				  "rwnd: %u a_rwnd: %u\n", __func__,
1451 				  asoc, asoc->rwnd, asoc->a_rwnd);
1452 		sack = sctp_make_sack(asoc);
1453 		if (!sack)
1454 			return;
1455 
1456 		asoc->peer.sack_needed = 0;
1457 
1458 		sctp_outq_tail(&asoc->outqueue, sack);
1459 
1460 		/* Stop the SACK timer.  */
1461 		timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1462 		if (timer_pending(timer) && del_timer(timer))
1463 			sctp_association_put(asoc);
1464 	}
1465 }
1466 
1467 /* Decrease asoc's rwnd by len. */
sctp_assoc_rwnd_decrease(struct sctp_association * asoc,unsigned len)1468 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned len)
1469 {
1470 	int rx_count;
1471 	int over = 0;
1472 
1473 	SCTP_ASSERT(asoc->rwnd, "rwnd zero", return);
1474 	SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return);
1475 
1476 	if (asoc->ep->rcvbuf_policy)
1477 		rx_count = atomic_read(&asoc->rmem_alloc);
1478 	else
1479 		rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1480 
1481 	/* If we've reached or overflowed our receive buffer, announce
1482 	 * a 0 rwnd if rwnd would still be positive.  Store the
1483 	 * the pottential pressure overflow so that the window can be restored
1484 	 * back to original value.
1485 	 */
1486 	if (rx_count >= asoc->base.sk->sk_rcvbuf)
1487 		over = 1;
1488 
1489 	if (asoc->rwnd >= len) {
1490 		asoc->rwnd -= len;
1491 		if (over) {
1492 			asoc->rwnd_press += asoc->rwnd;
1493 			asoc->rwnd = 0;
1494 		}
1495 	} else {
1496 		asoc->rwnd_over = len - asoc->rwnd;
1497 		asoc->rwnd = 0;
1498 	}
1499 	SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u, %u)\n",
1500 			  __func__, asoc, len, asoc->rwnd,
1501 			  asoc->rwnd_over, asoc->rwnd_press);
1502 }
1503 
1504 /* Build the bind address list for the association based on info from the
1505  * local endpoint and the remote peer.
1506  */
sctp_assoc_set_bind_addr_from_ep(struct sctp_association * asoc,sctp_scope_t scope,gfp_t gfp)1507 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1508 				     sctp_scope_t scope, gfp_t gfp)
1509 {
1510 	int flags;
1511 
1512 	/* Use scoping rules to determine the subset of addresses from
1513 	 * the endpoint.
1514 	 */
1515 	flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1516 	if (asoc->peer.ipv4_address)
1517 		flags |= SCTP_ADDR4_PEERSUPP;
1518 	if (asoc->peer.ipv6_address)
1519 		flags |= SCTP_ADDR6_PEERSUPP;
1520 
1521 	return sctp_bind_addr_copy(&asoc->base.bind_addr,
1522 				   &asoc->ep->base.bind_addr,
1523 				   scope, gfp, flags);
1524 }
1525 
1526 /* Build the association's bind address list from the cookie.  */
sctp_assoc_set_bind_addr_from_cookie(struct sctp_association * asoc,struct sctp_cookie * cookie,gfp_t gfp)1527 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1528 					 struct sctp_cookie *cookie,
1529 					 gfp_t gfp)
1530 {
1531 	int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1532 	int var_size3 = cookie->raw_addr_list_len;
1533 	__u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1534 
1535 	return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1536 				      asoc->ep->base.bind_addr.port, gfp);
1537 }
1538 
1539 /* Lookup laddr in the bind address list of an association. */
sctp_assoc_lookup_laddr(struct sctp_association * asoc,const union sctp_addr * laddr)1540 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1541 			    const union sctp_addr *laddr)
1542 {
1543 	int found = 0;
1544 
1545 	if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1546 	    sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1547 				 sctp_sk(asoc->base.sk)))
1548 		found = 1;
1549 
1550 	return found;
1551 }
1552 
1553 /* Set an association id for a given association */
sctp_assoc_set_id(struct sctp_association * asoc,gfp_t gfp)1554 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1555 {
1556 	int assoc_id;
1557 	int error = 0;
1558 
1559 	/* If the id is already assigned, keep it. */
1560 	if (asoc->assoc_id)
1561 		return error;
1562 retry:
1563 	if (unlikely(!idr_pre_get(&sctp_assocs_id, gfp)))
1564 		return -ENOMEM;
1565 
1566 	spin_lock_bh(&sctp_assocs_id_lock);
1567 	error = idr_get_new_above(&sctp_assocs_id, (void *)asoc,
1568 				    idr_low, &assoc_id);
1569 	if (!error) {
1570 		idr_low = assoc_id + 1;
1571 		if (idr_low == INT_MAX)
1572 			idr_low = 1;
1573 	}
1574 	spin_unlock_bh(&sctp_assocs_id_lock);
1575 	if (error == -EAGAIN)
1576 		goto retry;
1577 	else if (error)
1578 		return error;
1579 
1580 	asoc->assoc_id = (sctp_assoc_t) assoc_id;
1581 	return error;
1582 }
1583 
1584 /* Free the ASCONF queue */
sctp_assoc_free_asconf_queue(struct sctp_association * asoc)1585 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1586 {
1587 	struct sctp_chunk *asconf;
1588 	struct sctp_chunk *tmp;
1589 
1590 	list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1591 		list_del_init(&asconf->list);
1592 		sctp_chunk_free(asconf);
1593 	}
1594 }
1595 
1596 /* Free asconf_ack cache */
sctp_assoc_free_asconf_acks(struct sctp_association * asoc)1597 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1598 {
1599 	struct sctp_chunk *ack;
1600 	struct sctp_chunk *tmp;
1601 
1602 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1603 				transmitted_list) {
1604 		list_del_init(&ack->transmitted_list);
1605 		sctp_chunk_free(ack);
1606 	}
1607 }
1608 
1609 /* Clean up the ASCONF_ACK queue */
sctp_assoc_clean_asconf_ack_cache(const struct sctp_association * asoc)1610 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1611 {
1612 	struct sctp_chunk *ack;
1613 	struct sctp_chunk *tmp;
1614 
1615 	/* We can remove all the entries from the queue up to
1616 	 * the "Peer-Sequence-Number".
1617 	 */
1618 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1619 				transmitted_list) {
1620 		if (ack->subh.addip_hdr->serial ==
1621 				htonl(asoc->peer.addip_serial))
1622 			break;
1623 
1624 		list_del_init(&ack->transmitted_list);
1625 		sctp_chunk_free(ack);
1626 	}
1627 }
1628 
1629 /* Find the ASCONF_ACK whose serial number matches ASCONF */
sctp_assoc_lookup_asconf_ack(const struct sctp_association * asoc,__be32 serial)1630 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1631 					const struct sctp_association *asoc,
1632 					__be32 serial)
1633 {
1634 	struct sctp_chunk *ack;
1635 
1636 	/* Walk through the list of cached ASCONF-ACKs and find the
1637 	 * ack chunk whose serial number matches that of the request.
1638 	 */
1639 	list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1640 		if (ack->subh.addip_hdr->serial == serial) {
1641 			sctp_chunk_hold(ack);
1642 			return ack;
1643 		}
1644 	}
1645 
1646 	return NULL;
1647 }
1648 
sctp_asconf_queue_teardown(struct sctp_association * asoc)1649 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1650 {
1651 	/* Free any cached ASCONF_ACK chunk. */
1652 	sctp_assoc_free_asconf_acks(asoc);
1653 
1654 	/* Free the ASCONF queue. */
1655 	sctp_assoc_free_asconf_queue(asoc);
1656 
1657 	/* Free any cached ASCONF chunk. */
1658 	if (asoc->addip_last_asconf)
1659 		sctp_chunk_free(asoc->addip_last_asconf);
1660 }
1661