1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
16 
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
22 
23 /*
24  * Ceph uses the messenger to exchange ceph_msg messages with other
25  * hosts in the system.  The messenger provides ordered and reliable
26  * delivery.  We tolerate TCP disconnects by reconnecting (with
27  * exponential backoff) in the case of a fault (disconnection, bad
28  * crc, protocol error).  Acks allow sent messages to be discarded by
29  * the sender.
30  */
31 
32 /*
33  * We track the state of the socket on a given connection using
34  * values defined below.  The transition to a new socket state is
35  * handled by a function which verifies we aren't coming from an
36  * unexpected state.
37  *
38  *      --------
39  *      | NEW* |  transient initial state
40  *      --------
41  *          | con_sock_state_init()
42  *          v
43  *      ----------
44  *      | CLOSED |  initialized, but no socket (and no
45  *      ----------  TCP connection)
46  *       ^      \
47  *       |       \ con_sock_state_connecting()
48  *       |        ----------------------
49  *       |                              \
50  *       + con_sock_state_closed()       \
51  *       |+---------------------------    \
52  *       | \                          \    \
53  *       |  -----------                \    \
54  *       |  | CLOSING |  socket event;  \    \
55  *       |  -----------  await close     \    \
56  *       |       ^                        \   |
57  *       |       |                         \  |
58  *       |       + con_sock_state_closing() \ |
59  *       |      / \                         | |
60  *       |     /   ---------------          | |
61  *       |    /                   \         v v
62  *       |   /                    --------------
63  *       |  /    -----------------| CONNECTING |  socket created, TCP
64  *       |  |   /                 --------------  connect initiated
65  *       |  |   | con_sock_state_connected()
66  *       |  |   v
67  *      -------------
68  *      | CONNECTED |  TCP connection established
69  *      -------------
70  *
71  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
72  */
73 
74 #define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
75 #define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
76 #define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
77 #define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
78 #define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
79 
80 /*
81  * connection states
82  */
83 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
84 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
85 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
86 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
87 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
88 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
89 
90 /*
91  * ceph_connection flag bits
92  */
93 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
94 				       * messages on errors */
95 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
96 #define CON_FLAG_WRITE_PENDING	   2  /* we have data ready to send */
97 #define CON_FLAG_SOCK_CLOSED	   3  /* socket state changed to closed */
98 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
99 
100 /* static tag bytes (protocol control messages) */
101 static char tag_msg = CEPH_MSGR_TAG_MSG;
102 static char tag_ack = CEPH_MSGR_TAG_ACK;
103 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
104 
105 #ifdef CONFIG_LOCKDEP
106 static struct lock_class_key socket_class;
107 #endif
108 
109 /*
110  * When skipping (ignoring) a block of input we read it into a "skip
111  * buffer," which is this many bytes in size.
112  */
113 #define SKIP_BUF_SIZE	1024
114 
115 static void queue_con(struct ceph_connection *con);
116 static void con_work(struct work_struct *);
117 static void ceph_fault(struct ceph_connection *con);
118 
119 /*
120  * Nicely render a sockaddr as a string.  An array of formatted
121  * strings is used, to approximate reentrancy.
122  */
123 #define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
124 #define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
125 #define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
126 #define MAX_ADDR_STR_LEN	64	/* 54 is enough */
127 
128 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
129 static atomic_t addr_str_seq = ATOMIC_INIT(0);
130 
131 static struct page *zero_page;		/* used in certain error cases */
132 
ceph_pr_addr(const struct sockaddr_storage * ss)133 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
134 {
135 	int i;
136 	char *s;
137 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
138 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
139 
140 	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
141 	s = addr_str[i];
142 
143 	switch (ss->ss_family) {
144 	case AF_INET:
145 		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
146 			 ntohs(in4->sin_port));
147 		break;
148 
149 	case AF_INET6:
150 		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
151 			 ntohs(in6->sin6_port));
152 		break;
153 
154 	default:
155 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
156 			 ss->ss_family);
157 	}
158 
159 	return s;
160 }
161 EXPORT_SYMBOL(ceph_pr_addr);
162 
encode_my_addr(struct ceph_messenger * msgr)163 static void encode_my_addr(struct ceph_messenger *msgr)
164 {
165 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
166 	ceph_encode_addr(&msgr->my_enc_addr);
167 }
168 
169 /*
170  * work queue for all reading and writing to/from the socket.
171  */
172 static struct workqueue_struct *ceph_msgr_wq;
173 
_ceph_msgr_exit(void)174 void _ceph_msgr_exit(void)
175 {
176 	if (ceph_msgr_wq) {
177 		destroy_workqueue(ceph_msgr_wq);
178 		ceph_msgr_wq = NULL;
179 	}
180 
181 	BUG_ON(zero_page == NULL);
182 	kunmap(zero_page);
183 	page_cache_release(zero_page);
184 	zero_page = NULL;
185 }
186 
ceph_msgr_init(void)187 int ceph_msgr_init(void)
188 {
189 	BUG_ON(zero_page != NULL);
190 	zero_page = ZERO_PAGE(0);
191 	page_cache_get(zero_page);
192 
193 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
194 	if (ceph_msgr_wq)
195 		return 0;
196 
197 	pr_err("msgr_init failed to create workqueue\n");
198 	_ceph_msgr_exit();
199 
200 	return -ENOMEM;
201 }
202 EXPORT_SYMBOL(ceph_msgr_init);
203 
ceph_msgr_exit(void)204 void ceph_msgr_exit(void)
205 {
206 	BUG_ON(ceph_msgr_wq == NULL);
207 
208 	_ceph_msgr_exit();
209 }
210 EXPORT_SYMBOL(ceph_msgr_exit);
211 
ceph_msgr_flush(void)212 void ceph_msgr_flush(void)
213 {
214 	flush_workqueue(ceph_msgr_wq);
215 }
216 EXPORT_SYMBOL(ceph_msgr_flush);
217 
218 /* Connection socket state transition functions */
219 
con_sock_state_init(struct ceph_connection * con)220 static void con_sock_state_init(struct ceph_connection *con)
221 {
222 	int old_state;
223 
224 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
225 	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
226 		printk("%s: unexpected old state %d\n", __func__, old_state);
227 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
228 	     CON_SOCK_STATE_CLOSED);
229 }
230 
con_sock_state_connecting(struct ceph_connection * con)231 static void con_sock_state_connecting(struct ceph_connection *con)
232 {
233 	int old_state;
234 
235 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
236 	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
237 		printk("%s: unexpected old state %d\n", __func__, old_state);
238 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
239 	     CON_SOCK_STATE_CONNECTING);
240 }
241 
con_sock_state_connected(struct ceph_connection * con)242 static void con_sock_state_connected(struct ceph_connection *con)
243 {
244 	int old_state;
245 
246 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
247 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
248 		printk("%s: unexpected old state %d\n", __func__, old_state);
249 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
250 	     CON_SOCK_STATE_CONNECTED);
251 }
252 
con_sock_state_closing(struct ceph_connection * con)253 static void con_sock_state_closing(struct ceph_connection *con)
254 {
255 	int old_state;
256 
257 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
258 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
259 			old_state != CON_SOCK_STATE_CONNECTED &&
260 			old_state != CON_SOCK_STATE_CLOSING))
261 		printk("%s: unexpected old state %d\n", __func__, old_state);
262 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
263 	     CON_SOCK_STATE_CLOSING);
264 }
265 
con_sock_state_closed(struct ceph_connection * con)266 static void con_sock_state_closed(struct ceph_connection *con)
267 {
268 	int old_state;
269 
270 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
271 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
272 		    old_state != CON_SOCK_STATE_CLOSING &&
273 		    old_state != CON_SOCK_STATE_CONNECTING &&
274 		    old_state != CON_SOCK_STATE_CLOSED))
275 		printk("%s: unexpected old state %d\n", __func__, old_state);
276 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
277 	     CON_SOCK_STATE_CLOSED);
278 }
279 
280 /*
281  * socket callback functions
282  */
283 
284 /* data available on socket, or listen socket received a connect */
ceph_sock_data_ready(struct sock * sk,int count_unused)285 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
286 {
287 	struct ceph_connection *con = sk->sk_user_data;
288 	if (atomic_read(&con->msgr->stopping)) {
289 		return;
290 	}
291 
292 	if (sk->sk_state != TCP_CLOSE_WAIT) {
293 		dout("%s on %p state = %lu, queueing work\n", __func__,
294 		     con, con->state);
295 		queue_con(con);
296 	}
297 }
298 
299 /* socket has buffer space for writing */
ceph_sock_write_space(struct sock * sk)300 static void ceph_sock_write_space(struct sock *sk)
301 {
302 	struct ceph_connection *con = sk->sk_user_data;
303 
304 	/* only queue to workqueue if there is data we want to write,
305 	 * and there is sufficient space in the socket buffer to accept
306 	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
307 	 * doesn't get called again until try_write() fills the socket
308 	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
309 	 * and net/core/stream.c:sk_stream_write_space().
310 	 */
311 	if (test_bit(CON_FLAG_WRITE_PENDING, &con->flags)) {
312 		if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
313 			dout("%s %p queueing write work\n", __func__, con);
314 			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
315 			queue_con(con);
316 		}
317 	} else {
318 		dout("%s %p nothing to write\n", __func__, con);
319 	}
320 }
321 
322 /* socket's state has changed */
ceph_sock_state_change(struct sock * sk)323 static void ceph_sock_state_change(struct sock *sk)
324 {
325 	struct ceph_connection *con = sk->sk_user_data;
326 
327 	dout("%s %p state = %lu sk_state = %u\n", __func__,
328 	     con, con->state, sk->sk_state);
329 
330 	switch (sk->sk_state) {
331 	case TCP_CLOSE:
332 		dout("%s TCP_CLOSE\n", __func__);
333 	case TCP_CLOSE_WAIT:
334 		dout("%s TCP_CLOSE_WAIT\n", __func__);
335 		con_sock_state_closing(con);
336 		set_bit(CON_FLAG_SOCK_CLOSED, &con->flags);
337 		queue_con(con);
338 		break;
339 	case TCP_ESTABLISHED:
340 		dout("%s TCP_ESTABLISHED\n", __func__);
341 		con_sock_state_connected(con);
342 		queue_con(con);
343 		break;
344 	default:	/* Everything else is uninteresting */
345 		break;
346 	}
347 }
348 
349 /*
350  * set up socket callbacks
351  */
set_sock_callbacks(struct socket * sock,struct ceph_connection * con)352 static void set_sock_callbacks(struct socket *sock,
353 			       struct ceph_connection *con)
354 {
355 	struct sock *sk = sock->sk;
356 	sk->sk_user_data = con;
357 	sk->sk_data_ready = ceph_sock_data_ready;
358 	sk->sk_write_space = ceph_sock_write_space;
359 	sk->sk_state_change = ceph_sock_state_change;
360 }
361 
362 
363 /*
364  * socket helpers
365  */
366 
367 /*
368  * initiate connection to a remote socket.
369  */
ceph_tcp_connect(struct ceph_connection * con)370 static int ceph_tcp_connect(struct ceph_connection *con)
371 {
372 	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
373 	struct socket *sock;
374 	int ret;
375 
376 	BUG_ON(con->sock);
377 	ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
378 			       IPPROTO_TCP, &sock);
379 	if (ret)
380 		return ret;
381 	sock->sk->sk_allocation = GFP_NOFS;
382 
383 #ifdef CONFIG_LOCKDEP
384 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
385 #endif
386 
387 	set_sock_callbacks(sock, con);
388 
389 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
390 
391 	con_sock_state_connecting(con);
392 	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
393 				 O_NONBLOCK);
394 	if (ret == -EINPROGRESS) {
395 		dout("connect %s EINPROGRESS sk_state = %u\n",
396 		     ceph_pr_addr(&con->peer_addr.in_addr),
397 		     sock->sk->sk_state);
398 	} else if (ret < 0) {
399 		pr_err("connect %s error %d\n",
400 		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
401 		sock_release(sock);
402 		con->error_msg = "connect error";
403 
404 		return ret;
405 	}
406 	con->sock = sock;
407 	return 0;
408 }
409 
ceph_tcp_recvmsg(struct socket * sock,void * buf,size_t len)410 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
411 {
412 	struct kvec iov = {buf, len};
413 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
414 	int r;
415 
416 	r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
417 	if (r == -EAGAIN)
418 		r = 0;
419 	return r;
420 }
421 
422 /*
423  * write something.  @more is true if caller will be sending more data
424  * shortly.
425  */
ceph_tcp_sendmsg(struct socket * sock,struct kvec * iov,size_t kvlen,size_t len,int more)426 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
427 		     size_t kvlen, size_t len, int more)
428 {
429 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
430 	int r;
431 
432 	if (more)
433 		msg.msg_flags |= MSG_MORE;
434 	else
435 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
436 
437 	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
438 	if (r == -EAGAIN)
439 		r = 0;
440 	return r;
441 }
442 
ceph_tcp_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int more)443 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
444 		     int offset, size_t size, int more)
445 {
446 	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
447 	int ret;
448 
449 	ret = kernel_sendpage(sock, page, offset, size, flags);
450 	if (ret == -EAGAIN)
451 		ret = 0;
452 
453 	return ret;
454 }
455 
456 
457 /*
458  * Shutdown/close the socket for the given connection.
459  */
con_close_socket(struct ceph_connection * con)460 static int con_close_socket(struct ceph_connection *con)
461 {
462 	int rc = 0;
463 
464 	dout("con_close_socket on %p sock %p\n", con, con->sock);
465 	if (con->sock) {
466 		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
467 		sock_release(con->sock);
468 		con->sock = NULL;
469 	}
470 
471 	/*
472 	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
473 	 * independent of the connection mutex, and we could have
474 	 * received a socket close event before we had the chance to
475 	 * shut the socket down.
476 	 */
477 	clear_bit(CON_FLAG_SOCK_CLOSED, &con->flags);
478 
479 	con_sock_state_closed(con);
480 	return rc;
481 }
482 
483 /*
484  * Reset a connection.  Discard all incoming and outgoing messages
485  * and clear *_seq state.
486  */
ceph_msg_remove(struct ceph_msg * msg)487 static void ceph_msg_remove(struct ceph_msg *msg)
488 {
489 	list_del_init(&msg->list_head);
490 	BUG_ON(msg->con == NULL);
491 	msg->con->ops->put(msg->con);
492 	msg->con = NULL;
493 
494 	ceph_msg_put(msg);
495 }
ceph_msg_remove_list(struct list_head * head)496 static void ceph_msg_remove_list(struct list_head *head)
497 {
498 	while (!list_empty(head)) {
499 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
500 							list_head);
501 		ceph_msg_remove(msg);
502 	}
503 }
504 
reset_connection(struct ceph_connection * con)505 static void reset_connection(struct ceph_connection *con)
506 {
507 	/* reset connection, out_queue, msg_ and connect_seq */
508 	/* discard existing out_queue and msg_seq */
509 	dout("reset_connection %p\n", con);
510 	ceph_msg_remove_list(&con->out_queue);
511 	ceph_msg_remove_list(&con->out_sent);
512 
513 	if (con->in_msg) {
514 		BUG_ON(con->in_msg->con != con);
515 		con->in_msg->con = NULL;
516 		ceph_msg_put(con->in_msg);
517 		con->in_msg = NULL;
518 		con->ops->put(con);
519 	}
520 
521 	con->connect_seq = 0;
522 	con->out_seq = 0;
523 	if (con->out_msg) {
524 		ceph_msg_put(con->out_msg);
525 		con->out_msg = NULL;
526 	}
527 	con->in_seq = 0;
528 	con->in_seq_acked = 0;
529 }
530 
531 /*
532  * mark a peer down.  drop any open connections.
533  */
ceph_con_close(struct ceph_connection * con)534 void ceph_con_close(struct ceph_connection *con)
535 {
536 	mutex_lock(&con->mutex);
537 	dout("con_close %p peer %s\n", con,
538 	     ceph_pr_addr(&con->peer_addr.in_addr));
539 	con->state = CON_STATE_CLOSED;
540 
541 	clear_bit(CON_FLAG_LOSSYTX, &con->flags); /* so we retry next connect */
542 	clear_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags);
543 	clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
544 	clear_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags);
545 	clear_bit(CON_FLAG_BACKOFF, &con->flags);
546 
547 	reset_connection(con);
548 	con->peer_global_seq = 0;
549 	cancel_delayed_work(&con->work);
550 	con_close_socket(con);
551 	mutex_unlock(&con->mutex);
552 }
553 EXPORT_SYMBOL(ceph_con_close);
554 
555 /*
556  * Reopen a closed connection, with a new peer address.
557  */
ceph_con_open(struct ceph_connection * con,__u8 entity_type,__u64 entity_num,struct ceph_entity_addr * addr)558 void ceph_con_open(struct ceph_connection *con,
559 		   __u8 entity_type, __u64 entity_num,
560 		   struct ceph_entity_addr *addr)
561 {
562 	mutex_lock(&con->mutex);
563 	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
564 
565 	WARN_ON(con->state != CON_STATE_CLOSED);
566 	con->state = CON_STATE_PREOPEN;
567 
568 	con->peer_name.type = (__u8) entity_type;
569 	con->peer_name.num = cpu_to_le64(entity_num);
570 
571 	memcpy(&con->peer_addr, addr, sizeof(*addr));
572 	con->delay = 0;      /* reset backoff memory */
573 	mutex_unlock(&con->mutex);
574 	queue_con(con);
575 }
576 EXPORT_SYMBOL(ceph_con_open);
577 
578 /*
579  * return true if this connection ever successfully opened
580  */
ceph_con_opened(struct ceph_connection * con)581 bool ceph_con_opened(struct ceph_connection *con)
582 {
583 	return con->connect_seq > 0;
584 }
585 
586 /*
587  * initialize a new connection.
588  */
ceph_con_init(struct ceph_connection * con,void * private,const struct ceph_connection_operations * ops,struct ceph_messenger * msgr)589 void ceph_con_init(struct ceph_connection *con, void *private,
590 	const struct ceph_connection_operations *ops,
591 	struct ceph_messenger *msgr)
592 {
593 	dout("con_init %p\n", con);
594 	memset(con, 0, sizeof(*con));
595 	con->private = private;
596 	con->ops = ops;
597 	con->msgr = msgr;
598 
599 	con_sock_state_init(con);
600 
601 	mutex_init(&con->mutex);
602 	INIT_LIST_HEAD(&con->out_queue);
603 	INIT_LIST_HEAD(&con->out_sent);
604 	INIT_DELAYED_WORK(&con->work, con_work);
605 
606 	con->state = CON_STATE_CLOSED;
607 }
608 EXPORT_SYMBOL(ceph_con_init);
609 
610 
611 /*
612  * We maintain a global counter to order connection attempts.  Get
613  * a unique seq greater than @gt.
614  */
get_global_seq(struct ceph_messenger * msgr,u32 gt)615 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
616 {
617 	u32 ret;
618 
619 	spin_lock(&msgr->global_seq_lock);
620 	if (msgr->global_seq < gt)
621 		msgr->global_seq = gt;
622 	ret = ++msgr->global_seq;
623 	spin_unlock(&msgr->global_seq_lock);
624 	return ret;
625 }
626 
con_out_kvec_reset(struct ceph_connection * con)627 static void con_out_kvec_reset(struct ceph_connection *con)
628 {
629 	con->out_kvec_left = 0;
630 	con->out_kvec_bytes = 0;
631 	con->out_kvec_cur = &con->out_kvec[0];
632 }
633 
con_out_kvec_add(struct ceph_connection * con,size_t size,void * data)634 static void con_out_kvec_add(struct ceph_connection *con,
635 				size_t size, void *data)
636 {
637 	int index;
638 
639 	index = con->out_kvec_left;
640 	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
641 
642 	con->out_kvec[index].iov_len = size;
643 	con->out_kvec[index].iov_base = data;
644 	con->out_kvec_left++;
645 	con->out_kvec_bytes += size;
646 }
647 
648 #ifdef CONFIG_BLOCK
init_bio_iter(struct bio * bio,struct bio ** iter,int * seg)649 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
650 {
651 	if (!bio) {
652 		*iter = NULL;
653 		*seg = 0;
654 		return;
655 	}
656 	*iter = bio;
657 	*seg = bio->bi_idx;
658 }
659 
iter_bio_next(struct bio ** bio_iter,int * seg)660 static void iter_bio_next(struct bio **bio_iter, int *seg)
661 {
662 	if (*bio_iter == NULL)
663 		return;
664 
665 	BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
666 
667 	(*seg)++;
668 	if (*seg == (*bio_iter)->bi_vcnt)
669 		init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
670 }
671 #endif
672 
prepare_write_message_data(struct ceph_connection * con)673 static void prepare_write_message_data(struct ceph_connection *con)
674 {
675 	struct ceph_msg *msg = con->out_msg;
676 
677 	BUG_ON(!msg);
678 	BUG_ON(!msg->hdr.data_len);
679 
680 	/* initialize page iterator */
681 	con->out_msg_pos.page = 0;
682 	if (msg->pages)
683 		con->out_msg_pos.page_pos = msg->page_alignment;
684 	else
685 		con->out_msg_pos.page_pos = 0;
686 #ifdef CONFIG_BLOCK
687 	if (msg->bio)
688 		init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
689 #endif
690 	con->out_msg_pos.data_pos = 0;
691 	con->out_msg_pos.did_page_crc = false;
692 	con->out_more = 1;  /* data + footer will follow */
693 }
694 
695 /*
696  * Prepare footer for currently outgoing message, and finish things
697  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
698  */
prepare_write_message_footer(struct ceph_connection * con)699 static void prepare_write_message_footer(struct ceph_connection *con)
700 {
701 	struct ceph_msg *m = con->out_msg;
702 	int v = con->out_kvec_left;
703 
704 	m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
705 
706 	dout("prepare_write_message_footer %p\n", con);
707 	con->out_kvec_is_msg = true;
708 	con->out_kvec[v].iov_base = &m->footer;
709 	con->out_kvec[v].iov_len = sizeof(m->footer);
710 	con->out_kvec_bytes += sizeof(m->footer);
711 	con->out_kvec_left++;
712 	con->out_more = m->more_to_follow;
713 	con->out_msg_done = true;
714 }
715 
716 /*
717  * Prepare headers for the next outgoing message.
718  */
prepare_write_message(struct ceph_connection * con)719 static void prepare_write_message(struct ceph_connection *con)
720 {
721 	struct ceph_msg *m;
722 	u32 crc;
723 
724 	con_out_kvec_reset(con);
725 	con->out_kvec_is_msg = true;
726 	con->out_msg_done = false;
727 
728 	/* Sneak an ack in there first?  If we can get it into the same
729 	 * TCP packet that's a good thing. */
730 	if (con->in_seq > con->in_seq_acked) {
731 		con->in_seq_acked = con->in_seq;
732 		con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
733 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
734 		con_out_kvec_add(con, sizeof (con->out_temp_ack),
735 			&con->out_temp_ack);
736 	}
737 
738 	BUG_ON(list_empty(&con->out_queue));
739 	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
740 	con->out_msg = m;
741 	BUG_ON(m->con != con);
742 
743 	/* put message on sent list */
744 	ceph_msg_get(m);
745 	list_move_tail(&m->list_head, &con->out_sent);
746 
747 	/*
748 	 * only assign outgoing seq # if we haven't sent this message
749 	 * yet.  if it is requeued, resend with it's original seq.
750 	 */
751 	if (m->needs_out_seq) {
752 		m->hdr.seq = cpu_to_le64(++con->out_seq);
753 		m->needs_out_seq = false;
754 	}
755 
756 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
757 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
758 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
759 	     le32_to_cpu(m->hdr.data_len),
760 	     m->nr_pages);
761 	BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
762 
763 	/* tag + hdr + front + middle */
764 	con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
765 	con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
766 	con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
767 
768 	if (m->middle)
769 		con_out_kvec_add(con, m->middle->vec.iov_len,
770 			m->middle->vec.iov_base);
771 
772 	/* fill in crc (except data pages), footer */
773 	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
774 	con->out_msg->hdr.crc = cpu_to_le32(crc);
775 	con->out_msg->footer.flags = 0;
776 
777 	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
778 	con->out_msg->footer.front_crc = cpu_to_le32(crc);
779 	if (m->middle) {
780 		crc = crc32c(0, m->middle->vec.iov_base,
781 				m->middle->vec.iov_len);
782 		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
783 	} else
784 		con->out_msg->footer.middle_crc = 0;
785 	dout("%s front_crc %u middle_crc %u\n", __func__,
786 	     le32_to_cpu(con->out_msg->footer.front_crc),
787 	     le32_to_cpu(con->out_msg->footer.middle_crc));
788 
789 	/* is there a data payload? */
790 	con->out_msg->footer.data_crc = 0;
791 	if (m->hdr.data_len)
792 		prepare_write_message_data(con);
793 	else
794 		/* no, queue up footer too and be done */
795 		prepare_write_message_footer(con);
796 
797 	set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
798 }
799 
800 /*
801  * Prepare an ack.
802  */
prepare_write_ack(struct ceph_connection * con)803 static void prepare_write_ack(struct ceph_connection *con)
804 {
805 	dout("prepare_write_ack %p %llu -> %llu\n", con,
806 	     con->in_seq_acked, con->in_seq);
807 	con->in_seq_acked = con->in_seq;
808 
809 	con_out_kvec_reset(con);
810 
811 	con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
812 
813 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
814 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
815 				&con->out_temp_ack);
816 
817 	con->out_more = 1;  /* more will follow.. eventually.. */
818 	set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
819 }
820 
821 /*
822  * Prepare to write keepalive byte.
823  */
prepare_write_keepalive(struct ceph_connection * con)824 static void prepare_write_keepalive(struct ceph_connection *con)
825 {
826 	dout("prepare_write_keepalive %p\n", con);
827 	con_out_kvec_reset(con);
828 	con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
829 	set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
830 }
831 
832 /*
833  * Connection negotiation.
834  */
835 
get_connect_authorizer(struct ceph_connection * con,int * auth_proto)836 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
837 						int *auth_proto)
838 {
839 	struct ceph_auth_handshake *auth;
840 
841 	if (!con->ops->get_authorizer) {
842 		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
843 		con->out_connect.authorizer_len = 0;
844 		return NULL;
845 	}
846 
847 	/* Can't hold the mutex while getting authorizer */
848 	mutex_unlock(&con->mutex);
849 	auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
850 	mutex_lock(&con->mutex);
851 
852 	if (IS_ERR(auth))
853 		return auth;
854 	if (con->state != CON_STATE_NEGOTIATING)
855 		return ERR_PTR(-EAGAIN);
856 
857 	con->auth_reply_buf = auth->authorizer_reply_buf;
858 	con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
859 	return auth;
860 }
861 
862 /*
863  * We connected to a peer and are saying hello.
864  */
prepare_write_banner(struct ceph_connection * con)865 static void prepare_write_banner(struct ceph_connection *con)
866 {
867 	con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
868 	con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
869 					&con->msgr->my_enc_addr);
870 
871 	con->out_more = 0;
872 	set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
873 }
874 
prepare_write_connect(struct ceph_connection * con)875 static int prepare_write_connect(struct ceph_connection *con)
876 {
877 	unsigned global_seq = get_global_seq(con->msgr, 0);
878 	int proto;
879 	int auth_proto;
880 	struct ceph_auth_handshake *auth;
881 
882 	switch (con->peer_name.type) {
883 	case CEPH_ENTITY_TYPE_MON:
884 		proto = CEPH_MONC_PROTOCOL;
885 		break;
886 	case CEPH_ENTITY_TYPE_OSD:
887 		proto = CEPH_OSDC_PROTOCOL;
888 		break;
889 	case CEPH_ENTITY_TYPE_MDS:
890 		proto = CEPH_MDSC_PROTOCOL;
891 		break;
892 	default:
893 		BUG();
894 	}
895 
896 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
897 	     con->connect_seq, global_seq, proto);
898 
899 	con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
900 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
901 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
902 	con->out_connect.global_seq = cpu_to_le32(global_seq);
903 	con->out_connect.protocol_version = cpu_to_le32(proto);
904 	con->out_connect.flags = 0;
905 
906 	auth_proto = CEPH_AUTH_UNKNOWN;
907 	auth = get_connect_authorizer(con, &auth_proto);
908 	if (IS_ERR(auth))
909 		return PTR_ERR(auth);
910 
911 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
912 	con->out_connect.authorizer_len = auth ?
913 		cpu_to_le32(auth->authorizer_buf_len) : 0;
914 
915 	con_out_kvec_add(con, sizeof (con->out_connect),
916 					&con->out_connect);
917 	if (auth && auth->authorizer_buf_len)
918 		con_out_kvec_add(con, auth->authorizer_buf_len,
919 					auth->authorizer_buf);
920 
921 	con->out_more = 0;
922 	set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
923 
924 	return 0;
925 }
926 
927 /*
928  * write as much of pending kvecs to the socket as we can.
929  *  1 -> done
930  *  0 -> socket full, but more to do
931  * <0 -> error
932  */
write_partial_kvec(struct ceph_connection * con)933 static int write_partial_kvec(struct ceph_connection *con)
934 {
935 	int ret;
936 
937 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
938 	while (con->out_kvec_bytes > 0) {
939 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
940 				       con->out_kvec_left, con->out_kvec_bytes,
941 				       con->out_more);
942 		if (ret <= 0)
943 			goto out;
944 		con->out_kvec_bytes -= ret;
945 		if (con->out_kvec_bytes == 0)
946 			break;            /* done */
947 
948 		/* account for full iov entries consumed */
949 		while (ret >= con->out_kvec_cur->iov_len) {
950 			BUG_ON(!con->out_kvec_left);
951 			ret -= con->out_kvec_cur->iov_len;
952 			con->out_kvec_cur++;
953 			con->out_kvec_left--;
954 		}
955 		/* and for a partially-consumed entry */
956 		if (ret) {
957 			con->out_kvec_cur->iov_len -= ret;
958 			con->out_kvec_cur->iov_base += ret;
959 		}
960 	}
961 	con->out_kvec_left = 0;
962 	con->out_kvec_is_msg = false;
963 	ret = 1;
964 out:
965 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
966 	     con->out_kvec_bytes, con->out_kvec_left, ret);
967 	return ret;  /* done! */
968 }
969 
out_msg_pos_next(struct ceph_connection * con,struct page * page,size_t len,size_t sent,bool in_trail)970 static void out_msg_pos_next(struct ceph_connection *con, struct page *page,
971 			size_t len, size_t sent, bool in_trail)
972 {
973 	struct ceph_msg *msg = con->out_msg;
974 
975 	BUG_ON(!msg);
976 	BUG_ON(!sent);
977 
978 	con->out_msg_pos.data_pos += sent;
979 	con->out_msg_pos.page_pos += sent;
980 	if (sent < len)
981 		return;
982 
983 	BUG_ON(sent != len);
984 	con->out_msg_pos.page_pos = 0;
985 	con->out_msg_pos.page++;
986 	con->out_msg_pos.did_page_crc = false;
987 	if (in_trail)
988 		list_move_tail(&page->lru,
989 			       &msg->trail->head);
990 	else if (msg->pagelist)
991 		list_move_tail(&page->lru,
992 			       &msg->pagelist->head);
993 #ifdef CONFIG_BLOCK
994 	else if (msg->bio)
995 		iter_bio_next(&msg->bio_iter, &msg->bio_seg);
996 #endif
997 }
998 
999 /*
1000  * Write as much message data payload as we can.  If we finish, queue
1001  * up the footer.
1002  *  1 -> done, footer is now queued in out_kvec[].
1003  *  0 -> socket full, but more to do
1004  * <0 -> error
1005  */
write_partial_msg_pages(struct ceph_connection * con)1006 static int write_partial_msg_pages(struct ceph_connection *con)
1007 {
1008 	struct ceph_msg *msg = con->out_msg;
1009 	unsigned data_len = le32_to_cpu(msg->hdr.data_len);
1010 	size_t len;
1011 	bool do_datacrc = !con->msgr->nocrc;
1012 	int ret;
1013 	int total_max_write;
1014 	bool in_trail = false;
1015 	const size_t trail_len = (msg->trail ? msg->trail->length : 0);
1016 	const size_t trail_off = data_len - trail_len;
1017 
1018 	dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
1019 	     con, msg, con->out_msg_pos.page, msg->nr_pages,
1020 	     con->out_msg_pos.page_pos);
1021 
1022 	/*
1023 	 * Iterate through each page that contains data to be
1024 	 * written, and send as much as possible for each.
1025 	 *
1026 	 * If we are calculating the data crc (the default), we will
1027 	 * need to map the page.  If we have no pages, they have
1028 	 * been revoked, so use the zero page.
1029 	 */
1030 	while (data_len > con->out_msg_pos.data_pos) {
1031 		struct page *page = NULL;
1032 		int max_write = PAGE_SIZE;
1033 		int bio_offset = 0;
1034 
1035 		in_trail = in_trail || con->out_msg_pos.data_pos >= trail_off;
1036 		if (!in_trail)
1037 			total_max_write = trail_off - con->out_msg_pos.data_pos;
1038 
1039 		if (in_trail) {
1040 			total_max_write = data_len - con->out_msg_pos.data_pos;
1041 
1042 			page = list_first_entry(&msg->trail->head,
1043 						struct page, lru);
1044 		} else if (msg->pages) {
1045 			page = msg->pages[con->out_msg_pos.page];
1046 		} else if (msg->pagelist) {
1047 			page = list_first_entry(&msg->pagelist->head,
1048 						struct page, lru);
1049 #ifdef CONFIG_BLOCK
1050 		} else if (msg->bio) {
1051 			struct bio_vec *bv;
1052 
1053 			bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
1054 			page = bv->bv_page;
1055 			bio_offset = bv->bv_offset;
1056 			max_write = bv->bv_len;
1057 #endif
1058 		} else {
1059 			page = zero_page;
1060 		}
1061 		len = min_t(int, max_write - con->out_msg_pos.page_pos,
1062 			    total_max_write);
1063 
1064 		if (do_datacrc && !con->out_msg_pos.did_page_crc) {
1065 			void *base;
1066 			u32 crc = le32_to_cpu(msg->footer.data_crc);
1067 			char *kaddr;
1068 
1069 			kaddr = kmap(page);
1070 			BUG_ON(kaddr == NULL);
1071 			base = kaddr + con->out_msg_pos.page_pos + bio_offset;
1072 			crc = crc32c(crc, base, len);
1073 			kunmap(page);
1074 			msg->footer.data_crc = cpu_to_le32(crc);
1075 			con->out_msg_pos.did_page_crc = true;
1076 		}
1077 		ret = ceph_tcp_sendpage(con->sock, page,
1078 				      con->out_msg_pos.page_pos + bio_offset,
1079 				      len, 1);
1080 		if (ret <= 0)
1081 			goto out;
1082 
1083 		out_msg_pos_next(con, page, len, (size_t) ret, in_trail);
1084 	}
1085 
1086 	dout("write_partial_msg_pages %p msg %p done\n", con, msg);
1087 
1088 	/* prepare and queue up footer, too */
1089 	if (!do_datacrc)
1090 		msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1091 	con_out_kvec_reset(con);
1092 	prepare_write_message_footer(con);
1093 	ret = 1;
1094 out:
1095 	return ret;
1096 }
1097 
1098 /*
1099  * write some zeros
1100  */
write_partial_skip(struct ceph_connection * con)1101 static int write_partial_skip(struct ceph_connection *con)
1102 {
1103 	int ret;
1104 
1105 	while (con->out_skip > 0) {
1106 		size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1107 
1108 		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
1109 		if (ret <= 0)
1110 			goto out;
1111 		con->out_skip -= ret;
1112 	}
1113 	ret = 1;
1114 out:
1115 	return ret;
1116 }
1117 
1118 /*
1119  * Prepare to read connection handshake, or an ack.
1120  */
prepare_read_banner(struct ceph_connection * con)1121 static void prepare_read_banner(struct ceph_connection *con)
1122 {
1123 	dout("prepare_read_banner %p\n", con);
1124 	con->in_base_pos = 0;
1125 }
1126 
prepare_read_connect(struct ceph_connection * con)1127 static void prepare_read_connect(struct ceph_connection *con)
1128 {
1129 	dout("prepare_read_connect %p\n", con);
1130 	con->in_base_pos = 0;
1131 }
1132 
prepare_read_ack(struct ceph_connection * con)1133 static void prepare_read_ack(struct ceph_connection *con)
1134 {
1135 	dout("prepare_read_ack %p\n", con);
1136 	con->in_base_pos = 0;
1137 }
1138 
prepare_read_tag(struct ceph_connection * con)1139 static void prepare_read_tag(struct ceph_connection *con)
1140 {
1141 	dout("prepare_read_tag %p\n", con);
1142 	con->in_base_pos = 0;
1143 	con->in_tag = CEPH_MSGR_TAG_READY;
1144 }
1145 
1146 /*
1147  * Prepare to read a message.
1148  */
prepare_read_message(struct ceph_connection * con)1149 static int prepare_read_message(struct ceph_connection *con)
1150 {
1151 	dout("prepare_read_message %p\n", con);
1152 	BUG_ON(con->in_msg != NULL);
1153 	con->in_base_pos = 0;
1154 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1155 	return 0;
1156 }
1157 
1158 
read_partial(struct ceph_connection * con,int end,int size,void * object)1159 static int read_partial(struct ceph_connection *con,
1160 			int end, int size, void *object)
1161 {
1162 	while (con->in_base_pos < end) {
1163 		int left = end - con->in_base_pos;
1164 		int have = size - left;
1165 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1166 		if (ret <= 0)
1167 			return ret;
1168 		con->in_base_pos += ret;
1169 	}
1170 	return 1;
1171 }
1172 
1173 
1174 /*
1175  * Read all or part of the connect-side handshake on a new connection
1176  */
read_partial_banner(struct ceph_connection * con)1177 static int read_partial_banner(struct ceph_connection *con)
1178 {
1179 	int size;
1180 	int end;
1181 	int ret;
1182 
1183 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1184 
1185 	/* peer's banner */
1186 	size = strlen(CEPH_BANNER);
1187 	end = size;
1188 	ret = read_partial(con, end, size, con->in_banner);
1189 	if (ret <= 0)
1190 		goto out;
1191 
1192 	size = sizeof (con->actual_peer_addr);
1193 	end += size;
1194 	ret = read_partial(con, end, size, &con->actual_peer_addr);
1195 	if (ret <= 0)
1196 		goto out;
1197 
1198 	size = sizeof (con->peer_addr_for_me);
1199 	end += size;
1200 	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1201 	if (ret <= 0)
1202 		goto out;
1203 
1204 out:
1205 	return ret;
1206 }
1207 
read_partial_connect(struct ceph_connection * con)1208 static int read_partial_connect(struct ceph_connection *con)
1209 {
1210 	int size;
1211 	int end;
1212 	int ret;
1213 
1214 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1215 
1216 	size = sizeof (con->in_reply);
1217 	end = size;
1218 	ret = read_partial(con, end, size, &con->in_reply);
1219 	if (ret <= 0)
1220 		goto out;
1221 
1222 	size = le32_to_cpu(con->in_reply.authorizer_len);
1223 	end += size;
1224 	ret = read_partial(con, end, size, con->auth_reply_buf);
1225 	if (ret <= 0)
1226 		goto out;
1227 
1228 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1229 	     con, (int)con->in_reply.tag,
1230 	     le32_to_cpu(con->in_reply.connect_seq),
1231 	     le32_to_cpu(con->in_reply.global_seq));
1232 out:
1233 	return ret;
1234 
1235 }
1236 
1237 /*
1238  * Verify the hello banner looks okay.
1239  */
verify_hello(struct ceph_connection * con)1240 static int verify_hello(struct ceph_connection *con)
1241 {
1242 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1243 		pr_err("connect to %s got bad banner\n",
1244 		       ceph_pr_addr(&con->peer_addr.in_addr));
1245 		con->error_msg = "protocol error, bad banner";
1246 		return -1;
1247 	}
1248 	return 0;
1249 }
1250 
addr_is_blank(struct sockaddr_storage * ss)1251 static bool addr_is_blank(struct sockaddr_storage *ss)
1252 {
1253 	switch (ss->ss_family) {
1254 	case AF_INET:
1255 		return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1256 	case AF_INET6:
1257 		return
1258 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1259 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1260 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1261 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1262 	}
1263 	return false;
1264 }
1265 
addr_port(struct sockaddr_storage * ss)1266 static int addr_port(struct sockaddr_storage *ss)
1267 {
1268 	switch (ss->ss_family) {
1269 	case AF_INET:
1270 		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1271 	case AF_INET6:
1272 		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1273 	}
1274 	return 0;
1275 }
1276 
addr_set_port(struct sockaddr_storage * ss,int p)1277 static void addr_set_port(struct sockaddr_storage *ss, int p)
1278 {
1279 	switch (ss->ss_family) {
1280 	case AF_INET:
1281 		((struct sockaddr_in *)ss)->sin_port = htons(p);
1282 		break;
1283 	case AF_INET6:
1284 		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1285 		break;
1286 	}
1287 }
1288 
1289 /*
1290  * Unlike other *_pton function semantics, zero indicates success.
1291  */
ceph_pton(const char * str,size_t len,struct sockaddr_storage * ss,char delim,const char ** ipend)1292 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1293 		char delim, const char **ipend)
1294 {
1295 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1296 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1297 
1298 	memset(ss, 0, sizeof(*ss));
1299 
1300 	if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1301 		ss->ss_family = AF_INET;
1302 		return 0;
1303 	}
1304 
1305 	if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1306 		ss->ss_family = AF_INET6;
1307 		return 0;
1308 	}
1309 
1310 	return -EINVAL;
1311 }
1312 
1313 /*
1314  * Extract hostname string and resolve using kernel DNS facility.
1315  */
1316 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
ceph_dns_resolve_name(const char * name,size_t namelen,struct sockaddr_storage * ss,char delim,const char ** ipend)1317 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1318 		struct sockaddr_storage *ss, char delim, const char **ipend)
1319 {
1320 	const char *end, *delim_p;
1321 	char *colon_p, *ip_addr = NULL;
1322 	int ip_len, ret;
1323 
1324 	/*
1325 	 * The end of the hostname occurs immediately preceding the delimiter or
1326 	 * the port marker (':') where the delimiter takes precedence.
1327 	 */
1328 	delim_p = memchr(name, delim, namelen);
1329 	colon_p = memchr(name, ':', namelen);
1330 
1331 	if (delim_p && colon_p)
1332 		end = delim_p < colon_p ? delim_p : colon_p;
1333 	else if (!delim_p && colon_p)
1334 		end = colon_p;
1335 	else {
1336 		end = delim_p;
1337 		if (!end) /* case: hostname:/ */
1338 			end = name + namelen;
1339 	}
1340 
1341 	if (end <= name)
1342 		return -EINVAL;
1343 
1344 	/* do dns_resolve upcall */
1345 	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1346 	if (ip_len > 0)
1347 		ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1348 	else
1349 		ret = -ESRCH;
1350 
1351 	kfree(ip_addr);
1352 
1353 	*ipend = end;
1354 
1355 	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1356 			ret, ret ? "failed" : ceph_pr_addr(ss));
1357 
1358 	return ret;
1359 }
1360 #else
ceph_dns_resolve_name(const char * name,size_t namelen,struct sockaddr_storage * ss,char delim,const char ** ipend)1361 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1362 		struct sockaddr_storage *ss, char delim, const char **ipend)
1363 {
1364 	return -EINVAL;
1365 }
1366 #endif
1367 
1368 /*
1369  * Parse a server name (IP or hostname). If a valid IP address is not found
1370  * then try to extract a hostname to resolve using userspace DNS upcall.
1371  */
ceph_parse_server_name(const char * name,size_t namelen,struct sockaddr_storage * ss,char delim,const char ** ipend)1372 static int ceph_parse_server_name(const char *name, size_t namelen,
1373 			struct sockaddr_storage *ss, char delim, const char **ipend)
1374 {
1375 	int ret;
1376 
1377 	ret = ceph_pton(name, namelen, ss, delim, ipend);
1378 	if (ret)
1379 		ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1380 
1381 	return ret;
1382 }
1383 
1384 /*
1385  * Parse an ip[:port] list into an addr array.  Use the default
1386  * monitor port if a port isn't specified.
1387  */
ceph_parse_ips(const char * c,const char * end,struct ceph_entity_addr * addr,int max_count,int * count)1388 int ceph_parse_ips(const char *c, const char *end,
1389 		   struct ceph_entity_addr *addr,
1390 		   int max_count, int *count)
1391 {
1392 	int i, ret = -EINVAL;
1393 	const char *p = c;
1394 
1395 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1396 	for (i = 0; i < max_count; i++) {
1397 		const char *ipend;
1398 		struct sockaddr_storage *ss = &addr[i].in_addr;
1399 		int port;
1400 		char delim = ',';
1401 
1402 		if (*p == '[') {
1403 			delim = ']';
1404 			p++;
1405 		}
1406 
1407 		ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1408 		if (ret)
1409 			goto bad;
1410 		ret = -EINVAL;
1411 
1412 		p = ipend;
1413 
1414 		if (delim == ']') {
1415 			if (*p != ']') {
1416 				dout("missing matching ']'\n");
1417 				goto bad;
1418 			}
1419 			p++;
1420 		}
1421 
1422 		/* port? */
1423 		if (p < end && *p == ':') {
1424 			port = 0;
1425 			p++;
1426 			while (p < end && *p >= '0' && *p <= '9') {
1427 				port = (port * 10) + (*p - '0');
1428 				p++;
1429 			}
1430 			if (port > 65535 || port == 0)
1431 				goto bad;
1432 		} else {
1433 			port = CEPH_MON_PORT;
1434 		}
1435 
1436 		addr_set_port(ss, port);
1437 
1438 		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1439 
1440 		if (p == end)
1441 			break;
1442 		if (*p != ',')
1443 			goto bad;
1444 		p++;
1445 	}
1446 
1447 	if (p != end)
1448 		goto bad;
1449 
1450 	if (count)
1451 		*count = i + 1;
1452 	return 0;
1453 
1454 bad:
1455 	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1456 	return ret;
1457 }
1458 EXPORT_SYMBOL(ceph_parse_ips);
1459 
process_banner(struct ceph_connection * con)1460 static int process_banner(struct ceph_connection *con)
1461 {
1462 	dout("process_banner on %p\n", con);
1463 
1464 	if (verify_hello(con) < 0)
1465 		return -1;
1466 
1467 	ceph_decode_addr(&con->actual_peer_addr);
1468 	ceph_decode_addr(&con->peer_addr_for_me);
1469 
1470 	/*
1471 	 * Make sure the other end is who we wanted.  note that the other
1472 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
1473 	 * them the benefit of the doubt.
1474 	 */
1475 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1476 		   sizeof(con->peer_addr)) != 0 &&
1477 	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1478 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1479 		pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1480 			   ceph_pr_addr(&con->peer_addr.in_addr),
1481 			   (int)le32_to_cpu(con->peer_addr.nonce),
1482 			   ceph_pr_addr(&con->actual_peer_addr.in_addr),
1483 			   (int)le32_to_cpu(con->actual_peer_addr.nonce));
1484 		con->error_msg = "wrong peer at address";
1485 		return -1;
1486 	}
1487 
1488 	/*
1489 	 * did we learn our address?
1490 	 */
1491 	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1492 		int port = addr_port(&con->msgr->inst.addr.in_addr);
1493 
1494 		memcpy(&con->msgr->inst.addr.in_addr,
1495 		       &con->peer_addr_for_me.in_addr,
1496 		       sizeof(con->peer_addr_for_me.in_addr));
1497 		addr_set_port(&con->msgr->inst.addr.in_addr, port);
1498 		encode_my_addr(con->msgr);
1499 		dout("process_banner learned my addr is %s\n",
1500 		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1501 	}
1502 
1503 	return 0;
1504 }
1505 
process_connect(struct ceph_connection * con)1506 static int process_connect(struct ceph_connection *con)
1507 {
1508 	u64 sup_feat = con->msgr->supported_features;
1509 	u64 req_feat = con->msgr->required_features;
1510 	u64 server_feat = le64_to_cpu(con->in_reply.features);
1511 	int ret;
1512 
1513 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1514 
1515 	switch (con->in_reply.tag) {
1516 	case CEPH_MSGR_TAG_FEATURES:
1517 		pr_err("%s%lld %s feature set mismatch,"
1518 		       " my %llx < server's %llx, missing %llx\n",
1519 		       ENTITY_NAME(con->peer_name),
1520 		       ceph_pr_addr(&con->peer_addr.in_addr),
1521 		       sup_feat, server_feat, server_feat & ~sup_feat);
1522 		con->error_msg = "missing required protocol features";
1523 		reset_connection(con);
1524 		return -1;
1525 
1526 	case CEPH_MSGR_TAG_BADPROTOVER:
1527 		pr_err("%s%lld %s protocol version mismatch,"
1528 		       " my %d != server's %d\n",
1529 		       ENTITY_NAME(con->peer_name),
1530 		       ceph_pr_addr(&con->peer_addr.in_addr),
1531 		       le32_to_cpu(con->out_connect.protocol_version),
1532 		       le32_to_cpu(con->in_reply.protocol_version));
1533 		con->error_msg = "protocol version mismatch";
1534 		reset_connection(con);
1535 		return -1;
1536 
1537 	case CEPH_MSGR_TAG_BADAUTHORIZER:
1538 		con->auth_retry++;
1539 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1540 		     con->auth_retry);
1541 		if (con->auth_retry == 2) {
1542 			con->error_msg = "connect authorization failure";
1543 			return -1;
1544 		}
1545 		con_out_kvec_reset(con);
1546 		ret = prepare_write_connect(con);
1547 		if (ret < 0)
1548 			return ret;
1549 		prepare_read_connect(con);
1550 		break;
1551 
1552 	case CEPH_MSGR_TAG_RESETSESSION:
1553 		/*
1554 		 * If we connected with a large connect_seq but the peer
1555 		 * has no record of a session with us (no connection, or
1556 		 * connect_seq == 0), they will send RESETSESION to indicate
1557 		 * that they must have reset their session, and may have
1558 		 * dropped messages.
1559 		 */
1560 		dout("process_connect got RESET peer seq %u\n",
1561 		     le32_to_cpu(con->in_reply.connect_seq));
1562 		pr_err("%s%lld %s connection reset\n",
1563 		       ENTITY_NAME(con->peer_name),
1564 		       ceph_pr_addr(&con->peer_addr.in_addr));
1565 		reset_connection(con);
1566 		con_out_kvec_reset(con);
1567 		ret = prepare_write_connect(con);
1568 		if (ret < 0)
1569 			return ret;
1570 		prepare_read_connect(con);
1571 
1572 		/* Tell ceph about it. */
1573 		mutex_unlock(&con->mutex);
1574 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1575 		if (con->ops->peer_reset)
1576 			con->ops->peer_reset(con);
1577 		mutex_lock(&con->mutex);
1578 		if (con->state != CON_STATE_NEGOTIATING)
1579 			return -EAGAIN;
1580 		break;
1581 
1582 	case CEPH_MSGR_TAG_RETRY_SESSION:
1583 		/*
1584 		 * If we sent a smaller connect_seq than the peer has, try
1585 		 * again with a larger value.
1586 		 */
1587 		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
1588 		     le32_to_cpu(con->out_connect.connect_seq),
1589 		     le32_to_cpu(con->in_reply.connect_seq));
1590 		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
1591 		con_out_kvec_reset(con);
1592 		ret = prepare_write_connect(con);
1593 		if (ret < 0)
1594 			return ret;
1595 		prepare_read_connect(con);
1596 		break;
1597 
1598 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
1599 		/*
1600 		 * If we sent a smaller global_seq than the peer has, try
1601 		 * again with a larger value.
1602 		 */
1603 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1604 		     con->peer_global_seq,
1605 		     le32_to_cpu(con->in_reply.global_seq));
1606 		get_global_seq(con->msgr,
1607 			       le32_to_cpu(con->in_reply.global_seq));
1608 		con_out_kvec_reset(con);
1609 		ret = prepare_write_connect(con);
1610 		if (ret < 0)
1611 			return ret;
1612 		prepare_read_connect(con);
1613 		break;
1614 
1615 	case CEPH_MSGR_TAG_READY:
1616 		if (req_feat & ~server_feat) {
1617 			pr_err("%s%lld %s protocol feature mismatch,"
1618 			       " my required %llx > server's %llx, need %llx\n",
1619 			       ENTITY_NAME(con->peer_name),
1620 			       ceph_pr_addr(&con->peer_addr.in_addr),
1621 			       req_feat, server_feat, req_feat & ~server_feat);
1622 			con->error_msg = "missing required protocol features";
1623 			reset_connection(con);
1624 			return -1;
1625 		}
1626 
1627 		WARN_ON(con->state != CON_STATE_NEGOTIATING);
1628 		con->state = CON_STATE_OPEN;
1629 		con->auth_retry = 0;    /* we authenticated; clear flag */
1630 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1631 		con->connect_seq++;
1632 		con->peer_features = server_feat;
1633 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
1634 		     con->peer_global_seq,
1635 		     le32_to_cpu(con->in_reply.connect_seq),
1636 		     con->connect_seq);
1637 		WARN_ON(con->connect_seq !=
1638 			le32_to_cpu(con->in_reply.connect_seq));
1639 
1640 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1641 			set_bit(CON_FLAG_LOSSYTX, &con->flags);
1642 
1643 		con->delay = 0;      /* reset backoff memory */
1644 
1645 		prepare_read_tag(con);
1646 		break;
1647 
1648 	case CEPH_MSGR_TAG_WAIT:
1649 		/*
1650 		 * If there is a connection race (we are opening
1651 		 * connections to each other), one of us may just have
1652 		 * to WAIT.  This shouldn't happen if we are the
1653 		 * client.
1654 		 */
1655 		pr_err("process_connect got WAIT as client\n");
1656 		con->error_msg = "protocol error, got WAIT as client";
1657 		return -1;
1658 
1659 	default:
1660 		pr_err("connect protocol error, will retry\n");
1661 		con->error_msg = "protocol error, garbage tag during connect";
1662 		return -1;
1663 	}
1664 	return 0;
1665 }
1666 
1667 
1668 /*
1669  * read (part of) an ack
1670  */
read_partial_ack(struct ceph_connection * con)1671 static int read_partial_ack(struct ceph_connection *con)
1672 {
1673 	int size = sizeof (con->in_temp_ack);
1674 	int end = size;
1675 
1676 	return read_partial(con, end, size, &con->in_temp_ack);
1677 }
1678 
1679 
1680 /*
1681  * We can finally discard anything that's been acked.
1682  */
process_ack(struct ceph_connection * con)1683 static void process_ack(struct ceph_connection *con)
1684 {
1685 	struct ceph_msg *m;
1686 	u64 ack = le64_to_cpu(con->in_temp_ack);
1687 	u64 seq;
1688 
1689 	while (!list_empty(&con->out_sent)) {
1690 		m = list_first_entry(&con->out_sent, struct ceph_msg,
1691 				     list_head);
1692 		seq = le64_to_cpu(m->hdr.seq);
1693 		if (seq > ack)
1694 			break;
1695 		dout("got ack for seq %llu type %d at %p\n", seq,
1696 		     le16_to_cpu(m->hdr.type), m);
1697 		m->ack_stamp = jiffies;
1698 		ceph_msg_remove(m);
1699 	}
1700 	prepare_read_tag(con);
1701 }
1702 
1703 
1704 
1705 
read_partial_message_section(struct ceph_connection * con,struct kvec * section,unsigned int sec_len,u32 * crc)1706 static int read_partial_message_section(struct ceph_connection *con,
1707 					struct kvec *section,
1708 					unsigned int sec_len, u32 *crc)
1709 {
1710 	int ret, left;
1711 
1712 	BUG_ON(!section);
1713 
1714 	while (section->iov_len < sec_len) {
1715 		BUG_ON(section->iov_base == NULL);
1716 		left = sec_len - section->iov_len;
1717 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1718 				       section->iov_len, left);
1719 		if (ret <= 0)
1720 			return ret;
1721 		section->iov_len += ret;
1722 	}
1723 	if (section->iov_len == sec_len)
1724 		*crc = crc32c(0, section->iov_base, section->iov_len);
1725 
1726 	return 1;
1727 }
1728 
1729 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
1730 
read_partial_message_pages(struct ceph_connection * con,struct page ** pages,unsigned data_len,bool do_datacrc)1731 static int read_partial_message_pages(struct ceph_connection *con,
1732 				      struct page **pages,
1733 				      unsigned data_len, bool do_datacrc)
1734 {
1735 	void *p;
1736 	int ret;
1737 	int left;
1738 
1739 	left = min((int)(data_len - con->in_msg_pos.data_pos),
1740 		   (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1741 	/* (page) data */
1742 	BUG_ON(pages == NULL);
1743 	p = kmap(pages[con->in_msg_pos.page]);
1744 	ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1745 			       left);
1746 	if (ret > 0 && do_datacrc)
1747 		con->in_data_crc =
1748 			crc32c(con->in_data_crc,
1749 				  p + con->in_msg_pos.page_pos, ret);
1750 	kunmap(pages[con->in_msg_pos.page]);
1751 	if (ret <= 0)
1752 		return ret;
1753 	con->in_msg_pos.data_pos += ret;
1754 	con->in_msg_pos.page_pos += ret;
1755 	if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1756 		con->in_msg_pos.page_pos = 0;
1757 		con->in_msg_pos.page++;
1758 	}
1759 
1760 	return ret;
1761 }
1762 
1763 #ifdef CONFIG_BLOCK
read_partial_message_bio(struct ceph_connection * con,struct bio ** bio_iter,int * bio_seg,unsigned data_len,bool do_datacrc)1764 static int read_partial_message_bio(struct ceph_connection *con,
1765 				    struct bio **bio_iter, int *bio_seg,
1766 				    unsigned data_len, bool do_datacrc)
1767 {
1768 	struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1769 	void *p;
1770 	int ret, left;
1771 
1772 	left = min((int)(data_len - con->in_msg_pos.data_pos),
1773 		   (int)(bv->bv_len - con->in_msg_pos.page_pos));
1774 
1775 	p = kmap(bv->bv_page) + bv->bv_offset;
1776 
1777 	ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1778 			       left);
1779 	if (ret > 0 && do_datacrc)
1780 		con->in_data_crc =
1781 			crc32c(con->in_data_crc,
1782 				  p + con->in_msg_pos.page_pos, ret);
1783 	kunmap(bv->bv_page);
1784 	if (ret <= 0)
1785 		return ret;
1786 	con->in_msg_pos.data_pos += ret;
1787 	con->in_msg_pos.page_pos += ret;
1788 	if (con->in_msg_pos.page_pos == bv->bv_len) {
1789 		con->in_msg_pos.page_pos = 0;
1790 		iter_bio_next(bio_iter, bio_seg);
1791 	}
1792 
1793 	return ret;
1794 }
1795 #endif
1796 
1797 /*
1798  * read (part of) a message.
1799  */
read_partial_message(struct ceph_connection * con)1800 static int read_partial_message(struct ceph_connection *con)
1801 {
1802 	struct ceph_msg *m = con->in_msg;
1803 	int size;
1804 	int end;
1805 	int ret;
1806 	unsigned front_len, middle_len, data_len;
1807 	bool do_datacrc = !con->msgr->nocrc;
1808 	u64 seq;
1809 	u32 crc;
1810 
1811 	dout("read_partial_message con %p msg %p\n", con, m);
1812 
1813 	/* header */
1814 	size = sizeof (con->in_hdr);
1815 	end = size;
1816 	ret = read_partial(con, end, size, &con->in_hdr);
1817 	if (ret <= 0)
1818 		return ret;
1819 
1820 	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1821 	if (cpu_to_le32(crc) != con->in_hdr.crc) {
1822 		pr_err("read_partial_message bad hdr "
1823 		       " crc %u != expected %u\n",
1824 		       crc, con->in_hdr.crc);
1825 		return -EBADMSG;
1826 	}
1827 
1828 	front_len = le32_to_cpu(con->in_hdr.front_len);
1829 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1830 		return -EIO;
1831 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
1832 	if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1833 		return -EIO;
1834 	data_len = le32_to_cpu(con->in_hdr.data_len);
1835 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
1836 		return -EIO;
1837 
1838 	/* verify seq# */
1839 	seq = le64_to_cpu(con->in_hdr.seq);
1840 	if ((s64)seq - (s64)con->in_seq < 1) {
1841 		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1842 			ENTITY_NAME(con->peer_name),
1843 			ceph_pr_addr(&con->peer_addr.in_addr),
1844 			seq, con->in_seq + 1);
1845 		con->in_base_pos = -front_len - middle_len - data_len -
1846 			sizeof(m->footer);
1847 		con->in_tag = CEPH_MSGR_TAG_READY;
1848 		return 0;
1849 	} else if ((s64)seq - (s64)con->in_seq > 1) {
1850 		pr_err("read_partial_message bad seq %lld expected %lld\n",
1851 		       seq, con->in_seq + 1);
1852 		con->error_msg = "bad message sequence # for incoming message";
1853 		return -EBADMSG;
1854 	}
1855 
1856 	/* allocate message? */
1857 	if (!con->in_msg) {
1858 		int skip = 0;
1859 
1860 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1861 		     con->in_hdr.front_len, con->in_hdr.data_len);
1862 		ret = ceph_con_in_msg_alloc(con, &skip);
1863 		if (ret < 0)
1864 			return ret;
1865 		if (skip) {
1866 			/* skip this message */
1867 			dout("alloc_msg said skip message\n");
1868 			BUG_ON(con->in_msg);
1869 			con->in_base_pos = -front_len - middle_len - data_len -
1870 				sizeof(m->footer);
1871 			con->in_tag = CEPH_MSGR_TAG_READY;
1872 			con->in_seq++;
1873 			return 0;
1874 		}
1875 
1876 		BUG_ON(!con->in_msg);
1877 		BUG_ON(con->in_msg->con != con);
1878 		m = con->in_msg;
1879 		m->front.iov_len = 0;    /* haven't read it yet */
1880 		if (m->middle)
1881 			m->middle->vec.iov_len = 0;
1882 
1883 		con->in_msg_pos.page = 0;
1884 		if (m->pages)
1885 			con->in_msg_pos.page_pos = m->page_alignment;
1886 		else
1887 			con->in_msg_pos.page_pos = 0;
1888 		con->in_msg_pos.data_pos = 0;
1889 
1890 #ifdef CONFIG_BLOCK
1891 		if (m->bio)
1892 			init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1893 #endif
1894 	}
1895 
1896 	/* front */
1897 	ret = read_partial_message_section(con, &m->front, front_len,
1898 					   &con->in_front_crc);
1899 	if (ret <= 0)
1900 		return ret;
1901 
1902 	/* middle */
1903 	if (m->middle) {
1904 		ret = read_partial_message_section(con, &m->middle->vec,
1905 						   middle_len,
1906 						   &con->in_middle_crc);
1907 		if (ret <= 0)
1908 			return ret;
1909 	}
1910 
1911 	/* (page) data */
1912 	while (con->in_msg_pos.data_pos < data_len) {
1913 		if (m->pages) {
1914 			ret = read_partial_message_pages(con, m->pages,
1915 						 data_len, do_datacrc);
1916 			if (ret <= 0)
1917 				return ret;
1918 #ifdef CONFIG_BLOCK
1919 		} else if (m->bio) {
1920 			BUG_ON(!m->bio_iter);
1921 			ret = read_partial_message_bio(con,
1922 						 &m->bio_iter, &m->bio_seg,
1923 						 data_len, do_datacrc);
1924 			if (ret <= 0)
1925 				return ret;
1926 #endif
1927 		} else {
1928 			BUG_ON(1);
1929 		}
1930 	}
1931 
1932 	/* footer */
1933 	size = sizeof (m->footer);
1934 	end += size;
1935 	ret = read_partial(con, end, size, &m->footer);
1936 	if (ret <= 0)
1937 		return ret;
1938 
1939 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1940 	     m, front_len, m->footer.front_crc, middle_len,
1941 	     m->footer.middle_crc, data_len, m->footer.data_crc);
1942 
1943 	/* crc ok? */
1944 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1945 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
1946 		       m, con->in_front_crc, m->footer.front_crc);
1947 		return -EBADMSG;
1948 	}
1949 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1950 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
1951 		       m, con->in_middle_crc, m->footer.middle_crc);
1952 		return -EBADMSG;
1953 	}
1954 	if (do_datacrc &&
1955 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1956 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1957 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1958 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1959 		return -EBADMSG;
1960 	}
1961 
1962 	return 1; /* done! */
1963 }
1964 
1965 /*
1966  * Process message.  This happens in the worker thread.  The callback should
1967  * be careful not to do anything that waits on other incoming messages or it
1968  * may deadlock.
1969  */
process_message(struct ceph_connection * con)1970 static void process_message(struct ceph_connection *con)
1971 {
1972 	struct ceph_msg *msg;
1973 
1974 	BUG_ON(con->in_msg->con != con);
1975 	con->in_msg->con = NULL;
1976 	msg = con->in_msg;
1977 	con->in_msg = NULL;
1978 	con->ops->put(con);
1979 
1980 	/* if first message, set peer_name */
1981 	if (con->peer_name.type == 0)
1982 		con->peer_name = msg->hdr.src;
1983 
1984 	con->in_seq++;
1985 	mutex_unlock(&con->mutex);
1986 
1987 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1988 	     msg, le64_to_cpu(msg->hdr.seq),
1989 	     ENTITY_NAME(msg->hdr.src),
1990 	     le16_to_cpu(msg->hdr.type),
1991 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1992 	     le32_to_cpu(msg->hdr.front_len),
1993 	     le32_to_cpu(msg->hdr.data_len),
1994 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1995 	con->ops->dispatch(con, msg);
1996 
1997 	mutex_lock(&con->mutex);
1998 }
1999 
2000 
2001 /*
2002  * Write something to the socket.  Called in a worker thread when the
2003  * socket appears to be writeable and we have something ready to send.
2004  */
try_write(struct ceph_connection * con)2005 static int try_write(struct ceph_connection *con)
2006 {
2007 	int ret = 1;
2008 
2009 	dout("try_write start %p state %lu\n", con, con->state);
2010 
2011 more:
2012 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2013 
2014 	/* open the socket first? */
2015 	if (con->state == CON_STATE_PREOPEN) {
2016 		BUG_ON(con->sock);
2017 		con->state = CON_STATE_CONNECTING;
2018 
2019 		con_out_kvec_reset(con);
2020 		prepare_write_banner(con);
2021 		prepare_read_banner(con);
2022 
2023 		BUG_ON(con->in_msg);
2024 		con->in_tag = CEPH_MSGR_TAG_READY;
2025 		dout("try_write initiating connect on %p new state %lu\n",
2026 		     con, con->state);
2027 		ret = ceph_tcp_connect(con);
2028 		if (ret < 0) {
2029 			con->error_msg = "connect error";
2030 			goto out;
2031 		}
2032 	}
2033 
2034 more_kvec:
2035 	/* kvec data queued? */
2036 	if (con->out_skip) {
2037 		ret = write_partial_skip(con);
2038 		if (ret <= 0)
2039 			goto out;
2040 	}
2041 	if (con->out_kvec_left) {
2042 		ret = write_partial_kvec(con);
2043 		if (ret <= 0)
2044 			goto out;
2045 	}
2046 
2047 	/* msg pages? */
2048 	if (con->out_msg) {
2049 		if (con->out_msg_done) {
2050 			ceph_msg_put(con->out_msg);
2051 			con->out_msg = NULL;   /* we're done with this one */
2052 			goto do_next;
2053 		}
2054 
2055 		ret = write_partial_msg_pages(con);
2056 		if (ret == 1)
2057 			goto more_kvec;  /* we need to send the footer, too! */
2058 		if (ret == 0)
2059 			goto out;
2060 		if (ret < 0) {
2061 			dout("try_write write_partial_msg_pages err %d\n",
2062 			     ret);
2063 			goto out;
2064 		}
2065 	}
2066 
2067 do_next:
2068 	if (con->state == CON_STATE_OPEN) {
2069 		/* is anything else pending? */
2070 		if (!list_empty(&con->out_queue)) {
2071 			prepare_write_message(con);
2072 			goto more;
2073 		}
2074 		if (con->in_seq > con->in_seq_acked) {
2075 			prepare_write_ack(con);
2076 			goto more;
2077 		}
2078 		if (test_and_clear_bit(CON_FLAG_KEEPALIVE_PENDING,
2079 				       &con->flags)) {
2080 			prepare_write_keepalive(con);
2081 			goto more;
2082 		}
2083 	}
2084 
2085 	/* Nothing to do! */
2086 	clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
2087 	dout("try_write nothing else to write.\n");
2088 	ret = 0;
2089 out:
2090 	dout("try_write done on %p ret %d\n", con, ret);
2091 	return ret;
2092 }
2093 
2094 
2095 
2096 /*
2097  * Read what we can from the socket.
2098  */
try_read(struct ceph_connection * con)2099 static int try_read(struct ceph_connection *con)
2100 {
2101 	int ret = -1;
2102 
2103 more:
2104 	dout("try_read start on %p state %lu\n", con, con->state);
2105 	if (con->state != CON_STATE_CONNECTING &&
2106 	    con->state != CON_STATE_NEGOTIATING &&
2107 	    con->state != CON_STATE_OPEN)
2108 		return 0;
2109 
2110 	BUG_ON(!con->sock);
2111 
2112 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2113 	     con->in_base_pos);
2114 
2115 	if (con->state == CON_STATE_CONNECTING) {
2116 		dout("try_read connecting\n");
2117 		ret = read_partial_banner(con);
2118 		if (ret <= 0)
2119 			goto out;
2120 		ret = process_banner(con);
2121 		if (ret < 0)
2122 			goto out;
2123 
2124 		con->state = CON_STATE_NEGOTIATING;
2125 
2126 		/*
2127 		 * Received banner is good, exchange connection info.
2128 		 * Do not reset out_kvec, as sending our banner raced
2129 		 * with receiving peer banner after connect completed.
2130 		 */
2131 		ret = prepare_write_connect(con);
2132 		if (ret < 0)
2133 			goto out;
2134 		prepare_read_connect(con);
2135 
2136 		/* Send connection info before awaiting response */
2137 		goto out;
2138 	}
2139 
2140 	if (con->state == CON_STATE_NEGOTIATING) {
2141 		dout("try_read negotiating\n");
2142 		ret = read_partial_connect(con);
2143 		if (ret <= 0)
2144 			goto out;
2145 		ret = process_connect(con);
2146 		if (ret < 0)
2147 			goto out;
2148 		goto more;
2149 	}
2150 
2151 	WARN_ON(con->state != CON_STATE_OPEN);
2152 
2153 	if (con->in_base_pos < 0) {
2154 		/*
2155 		 * skipping + discarding content.
2156 		 *
2157 		 * FIXME: there must be a better way to do this!
2158 		 */
2159 		static char buf[SKIP_BUF_SIZE];
2160 		int skip = min((int) sizeof (buf), -con->in_base_pos);
2161 
2162 		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2163 		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2164 		if (ret <= 0)
2165 			goto out;
2166 		con->in_base_pos += ret;
2167 		if (con->in_base_pos)
2168 			goto more;
2169 	}
2170 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2171 		/*
2172 		 * what's next?
2173 		 */
2174 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2175 		if (ret <= 0)
2176 			goto out;
2177 		dout("try_read got tag %d\n", (int)con->in_tag);
2178 		switch (con->in_tag) {
2179 		case CEPH_MSGR_TAG_MSG:
2180 			prepare_read_message(con);
2181 			break;
2182 		case CEPH_MSGR_TAG_ACK:
2183 			prepare_read_ack(con);
2184 			break;
2185 		case CEPH_MSGR_TAG_CLOSE:
2186 			con_close_socket(con);
2187 			con->state = CON_STATE_CLOSED;
2188 			goto out;
2189 		default:
2190 			goto bad_tag;
2191 		}
2192 	}
2193 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2194 		ret = read_partial_message(con);
2195 		if (ret <= 0) {
2196 			switch (ret) {
2197 			case -EBADMSG:
2198 				con->error_msg = "bad crc";
2199 				ret = -EIO;
2200 				break;
2201 			case -EIO:
2202 				con->error_msg = "io error";
2203 				break;
2204 			}
2205 			goto out;
2206 		}
2207 		if (con->in_tag == CEPH_MSGR_TAG_READY)
2208 			goto more;
2209 		process_message(con);
2210 		if (con->state == CON_STATE_OPEN)
2211 			prepare_read_tag(con);
2212 		goto more;
2213 	}
2214 	if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2215 		ret = read_partial_ack(con);
2216 		if (ret <= 0)
2217 			goto out;
2218 		process_ack(con);
2219 		goto more;
2220 	}
2221 
2222 out:
2223 	dout("try_read done on %p ret %d\n", con, ret);
2224 	return ret;
2225 
2226 bad_tag:
2227 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2228 	con->error_msg = "protocol error, garbage tag";
2229 	ret = -1;
2230 	goto out;
2231 }
2232 
2233 
2234 /*
2235  * Atomically queue work on a connection.  Bump @con reference to
2236  * avoid races with connection teardown.
2237  */
queue_con(struct ceph_connection * con)2238 static void queue_con(struct ceph_connection *con)
2239 {
2240 	if (!con->ops->get(con)) {
2241 		dout("queue_con %p ref count 0\n", con);
2242 		return;
2243 	}
2244 
2245 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2246 		dout("queue_con %p - already queued\n", con);
2247 		con->ops->put(con);
2248 	} else {
2249 		dout("queue_con %p\n", con);
2250 	}
2251 }
2252 
con_sock_closed(struct ceph_connection * con)2253 static bool con_sock_closed(struct ceph_connection *con)
2254 {
2255 	if (!test_and_clear_bit(CON_FLAG_SOCK_CLOSED, &con->flags))
2256 		return false;
2257 
2258 #define CASE(x)								\
2259 	case CON_STATE_ ## x:						\
2260 		con->error_msg = "socket closed (con state " #x ")";	\
2261 		break;
2262 
2263 	switch (con->state) {
2264 	CASE(CLOSED);
2265 	CASE(PREOPEN);
2266 	CASE(CONNECTING);
2267 	CASE(NEGOTIATING);
2268 	CASE(OPEN);
2269 	CASE(STANDBY);
2270 	default:
2271 		pr_warning("%s con %p unrecognized state %lu\n",
2272 			__func__, con, con->state);
2273 		con->error_msg = "unrecognized con state";
2274 		BUG();
2275 		break;
2276 	}
2277 #undef CASE
2278 
2279 	return true;
2280 }
2281 
2282 /*
2283  * Do some work on a connection.  Drop a connection ref when we're done.
2284  */
con_work(struct work_struct * work)2285 static void con_work(struct work_struct *work)
2286 {
2287 	struct ceph_connection *con = container_of(work, struct ceph_connection,
2288 						   work.work);
2289 	int ret;
2290 
2291 	mutex_lock(&con->mutex);
2292 restart:
2293 	if (con_sock_closed(con))
2294 		goto fault;
2295 
2296 	if (test_and_clear_bit(CON_FLAG_BACKOFF, &con->flags)) {
2297 		dout("con_work %p backing off\n", con);
2298 		if (queue_delayed_work(ceph_msgr_wq, &con->work,
2299 				       round_jiffies_relative(con->delay))) {
2300 			dout("con_work %p backoff %lu\n", con, con->delay);
2301 			mutex_unlock(&con->mutex);
2302 			return;
2303 		} else {
2304 			dout("con_work %p FAILED to back off %lu\n", con,
2305 			     con->delay);
2306 			set_bit(CON_FLAG_BACKOFF, &con->flags);
2307 		}
2308 		goto done;
2309 	}
2310 
2311 	if (con->state == CON_STATE_STANDBY) {
2312 		dout("con_work %p STANDBY\n", con);
2313 		goto done;
2314 	}
2315 	if (con->state == CON_STATE_CLOSED) {
2316 		dout("con_work %p CLOSED\n", con);
2317 		BUG_ON(con->sock);
2318 		goto done;
2319 	}
2320 	if (con->state == CON_STATE_PREOPEN) {
2321 		dout("con_work OPENING\n");
2322 		BUG_ON(con->sock);
2323 	}
2324 
2325 	ret = try_read(con);
2326 	if (ret == -EAGAIN)
2327 		goto restart;
2328 	if (ret < 0) {
2329 		con->error_msg = "socket error on read";
2330 		goto fault;
2331 	}
2332 
2333 	ret = try_write(con);
2334 	if (ret == -EAGAIN)
2335 		goto restart;
2336 	if (ret < 0) {
2337 		con->error_msg = "socket error on write";
2338 		goto fault;
2339 	}
2340 
2341 done:
2342 	mutex_unlock(&con->mutex);
2343 done_unlocked:
2344 	con->ops->put(con);
2345 	return;
2346 
2347 fault:
2348 	ceph_fault(con);     /* error/fault path */
2349 	goto done_unlocked;
2350 }
2351 
2352 
2353 /*
2354  * Generic error/fault handler.  A retry mechanism is used with
2355  * exponential backoff
2356  */
ceph_fault(struct ceph_connection * con)2357 static void ceph_fault(struct ceph_connection *con)
2358 	__releases(con->mutex)
2359 {
2360 	pr_warning("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2361 	       ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2362 	dout("fault %p state %lu to peer %s\n",
2363 	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2364 
2365 	WARN_ON(con->state != CON_STATE_CONNECTING &&
2366 	       con->state != CON_STATE_NEGOTIATING &&
2367 	       con->state != CON_STATE_OPEN);
2368 
2369 	con_close_socket(con);
2370 
2371 	if (test_bit(CON_FLAG_LOSSYTX, &con->flags)) {
2372 		dout("fault on LOSSYTX channel, marking CLOSED\n");
2373 		con->state = CON_STATE_CLOSED;
2374 		goto out_unlock;
2375 	}
2376 
2377 	if (con->in_msg) {
2378 		BUG_ON(con->in_msg->con != con);
2379 		con->in_msg->con = NULL;
2380 		ceph_msg_put(con->in_msg);
2381 		con->in_msg = NULL;
2382 		con->ops->put(con);
2383 	}
2384 
2385 	/* Requeue anything that hasn't been acked */
2386 	list_splice_init(&con->out_sent, &con->out_queue);
2387 
2388 	/* If there are no messages queued or keepalive pending, place
2389 	 * the connection in a STANDBY state */
2390 	if (list_empty(&con->out_queue) &&
2391 	    !test_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags)) {
2392 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2393 		clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
2394 		con->state = CON_STATE_STANDBY;
2395 	} else {
2396 		/* retry after a delay. */
2397 		con->state = CON_STATE_PREOPEN;
2398 		if (con->delay == 0)
2399 			con->delay = BASE_DELAY_INTERVAL;
2400 		else if (con->delay < MAX_DELAY_INTERVAL)
2401 			con->delay *= 2;
2402 		con->ops->get(con);
2403 		if (queue_delayed_work(ceph_msgr_wq, &con->work,
2404 				       round_jiffies_relative(con->delay))) {
2405 			dout("fault queued %p delay %lu\n", con, con->delay);
2406 		} else {
2407 			con->ops->put(con);
2408 			dout("fault failed to queue %p delay %lu, backoff\n",
2409 			     con, con->delay);
2410 			/*
2411 			 * In many cases we see a socket state change
2412 			 * while con_work is running and end up
2413 			 * queuing (non-delayed) work, such that we
2414 			 * can't backoff with a delay.  Set a flag so
2415 			 * that when con_work restarts we schedule the
2416 			 * delay then.
2417 			 */
2418 			set_bit(CON_FLAG_BACKOFF, &con->flags);
2419 		}
2420 	}
2421 
2422 out_unlock:
2423 	mutex_unlock(&con->mutex);
2424 	/*
2425 	 * in case we faulted due to authentication, invalidate our
2426 	 * current tickets so that we can get new ones.
2427 	 */
2428 	if (con->auth_retry && con->ops->invalidate_authorizer) {
2429 		dout("calling invalidate_authorizer()\n");
2430 		con->ops->invalidate_authorizer(con);
2431 	}
2432 
2433 	if (con->ops->fault)
2434 		con->ops->fault(con);
2435 }
2436 
2437 
2438 
2439 /*
2440  * initialize a new messenger instance
2441  */
ceph_messenger_init(struct ceph_messenger * msgr,struct ceph_entity_addr * myaddr,u32 supported_features,u32 required_features,bool nocrc)2442 void ceph_messenger_init(struct ceph_messenger *msgr,
2443 			struct ceph_entity_addr *myaddr,
2444 			u32 supported_features,
2445 			u32 required_features,
2446 			bool nocrc)
2447 {
2448 	msgr->supported_features = supported_features;
2449 	msgr->required_features = required_features;
2450 
2451 	spin_lock_init(&msgr->global_seq_lock);
2452 
2453 	if (myaddr)
2454 		msgr->inst.addr = *myaddr;
2455 
2456 	/* select a random nonce */
2457 	msgr->inst.addr.type = 0;
2458 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2459 	encode_my_addr(msgr);
2460 	msgr->nocrc = nocrc;
2461 
2462 	atomic_set(&msgr->stopping, 0);
2463 
2464 	dout("%s %p\n", __func__, msgr);
2465 }
2466 EXPORT_SYMBOL(ceph_messenger_init);
2467 
clear_standby(struct ceph_connection * con)2468 static void clear_standby(struct ceph_connection *con)
2469 {
2470 	/* come back from STANDBY? */
2471 	if (con->state == CON_STATE_STANDBY) {
2472 		dout("clear_standby %p and ++connect_seq\n", con);
2473 		con->state = CON_STATE_PREOPEN;
2474 		con->connect_seq++;
2475 		WARN_ON(test_bit(CON_FLAG_WRITE_PENDING, &con->flags));
2476 		WARN_ON(test_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags));
2477 	}
2478 }
2479 
2480 /*
2481  * Queue up an outgoing message on the given connection.
2482  */
ceph_con_send(struct ceph_connection * con,struct ceph_msg * msg)2483 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2484 {
2485 	/* set src+dst */
2486 	msg->hdr.src = con->msgr->inst.name;
2487 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2488 	msg->needs_out_seq = true;
2489 
2490 	mutex_lock(&con->mutex);
2491 
2492 	if (con->state == CON_STATE_CLOSED) {
2493 		dout("con_send %p closed, dropping %p\n", con, msg);
2494 		ceph_msg_put(msg);
2495 		mutex_unlock(&con->mutex);
2496 		return;
2497 	}
2498 
2499 	BUG_ON(msg->con != NULL);
2500 	msg->con = con->ops->get(con);
2501 	BUG_ON(msg->con == NULL);
2502 
2503 	BUG_ON(!list_empty(&msg->list_head));
2504 	list_add_tail(&msg->list_head, &con->out_queue);
2505 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2506 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2507 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2508 	     le32_to_cpu(msg->hdr.front_len),
2509 	     le32_to_cpu(msg->hdr.middle_len),
2510 	     le32_to_cpu(msg->hdr.data_len));
2511 
2512 	clear_standby(con);
2513 	mutex_unlock(&con->mutex);
2514 
2515 	/* if there wasn't anything waiting to send before, queue
2516 	 * new work */
2517 	if (test_and_set_bit(CON_FLAG_WRITE_PENDING, &con->flags) == 0)
2518 		queue_con(con);
2519 }
2520 EXPORT_SYMBOL(ceph_con_send);
2521 
2522 /*
2523  * Revoke a message that was previously queued for send
2524  */
ceph_msg_revoke(struct ceph_msg * msg)2525 void ceph_msg_revoke(struct ceph_msg *msg)
2526 {
2527 	struct ceph_connection *con = msg->con;
2528 
2529 	if (!con)
2530 		return;		/* Message not in our possession */
2531 
2532 	mutex_lock(&con->mutex);
2533 	if (!list_empty(&msg->list_head)) {
2534 		dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2535 		list_del_init(&msg->list_head);
2536 		BUG_ON(msg->con == NULL);
2537 		msg->con->ops->put(msg->con);
2538 		msg->con = NULL;
2539 		msg->hdr.seq = 0;
2540 
2541 		ceph_msg_put(msg);
2542 	}
2543 	if (con->out_msg == msg) {
2544 		dout("%s %p msg %p - was sending\n", __func__, con, msg);
2545 		con->out_msg = NULL;
2546 		if (con->out_kvec_is_msg) {
2547 			con->out_skip = con->out_kvec_bytes;
2548 			con->out_kvec_is_msg = false;
2549 		}
2550 		msg->hdr.seq = 0;
2551 
2552 		ceph_msg_put(msg);
2553 	}
2554 	mutex_unlock(&con->mutex);
2555 }
2556 
2557 /*
2558  * Revoke a message that we may be reading data into
2559  */
ceph_msg_revoke_incoming(struct ceph_msg * msg)2560 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2561 {
2562 	struct ceph_connection *con;
2563 
2564 	BUG_ON(msg == NULL);
2565 	if (!msg->con) {
2566 		dout("%s msg %p null con\n", __func__, msg);
2567 
2568 		return;		/* Message not in our possession */
2569 	}
2570 
2571 	con = msg->con;
2572 	mutex_lock(&con->mutex);
2573 	if (con->in_msg == msg) {
2574 		unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
2575 		unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
2576 		unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
2577 
2578 		/* skip rest of message */
2579 		dout("%s %p msg %p revoked\n", __func__, con, msg);
2580 		con->in_base_pos = con->in_base_pos -
2581 				sizeof(struct ceph_msg_header) -
2582 				front_len -
2583 				middle_len -
2584 				data_len -
2585 				sizeof(struct ceph_msg_footer);
2586 		ceph_msg_put(con->in_msg);
2587 		con->in_msg = NULL;
2588 		con->in_tag = CEPH_MSGR_TAG_READY;
2589 		con->in_seq++;
2590 	} else {
2591 		dout("%s %p in_msg %p msg %p no-op\n",
2592 		     __func__, con, con->in_msg, msg);
2593 	}
2594 	mutex_unlock(&con->mutex);
2595 }
2596 
2597 /*
2598  * Queue a keepalive byte to ensure the tcp connection is alive.
2599  */
ceph_con_keepalive(struct ceph_connection * con)2600 void ceph_con_keepalive(struct ceph_connection *con)
2601 {
2602 	dout("con_keepalive %p\n", con);
2603 	mutex_lock(&con->mutex);
2604 	clear_standby(con);
2605 	mutex_unlock(&con->mutex);
2606 	if (test_and_set_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags) == 0 &&
2607 	    test_and_set_bit(CON_FLAG_WRITE_PENDING, &con->flags) == 0)
2608 		queue_con(con);
2609 }
2610 EXPORT_SYMBOL(ceph_con_keepalive);
2611 
2612 
2613 /*
2614  * construct a new message with given type, size
2615  * the new msg has a ref count of 1.
2616  */
ceph_msg_new(int type,int front_len,gfp_t flags,bool can_fail)2617 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2618 			      bool can_fail)
2619 {
2620 	struct ceph_msg *m;
2621 
2622 	m = kmalloc(sizeof(*m), flags);
2623 	if (m == NULL)
2624 		goto out;
2625 	kref_init(&m->kref);
2626 
2627 	m->con = NULL;
2628 	INIT_LIST_HEAD(&m->list_head);
2629 
2630 	m->hdr.tid = 0;
2631 	m->hdr.type = cpu_to_le16(type);
2632 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2633 	m->hdr.version = 0;
2634 	m->hdr.front_len = cpu_to_le32(front_len);
2635 	m->hdr.middle_len = 0;
2636 	m->hdr.data_len = 0;
2637 	m->hdr.data_off = 0;
2638 	m->hdr.reserved = 0;
2639 	m->footer.front_crc = 0;
2640 	m->footer.middle_crc = 0;
2641 	m->footer.data_crc = 0;
2642 	m->footer.flags = 0;
2643 	m->front_max = front_len;
2644 	m->front_is_vmalloc = false;
2645 	m->more_to_follow = false;
2646 	m->ack_stamp = 0;
2647 	m->pool = NULL;
2648 
2649 	/* middle */
2650 	m->middle = NULL;
2651 
2652 	/* data */
2653 	m->nr_pages = 0;
2654 	m->page_alignment = 0;
2655 	m->pages = NULL;
2656 	m->pagelist = NULL;
2657 	m->bio = NULL;
2658 	m->bio_iter = NULL;
2659 	m->bio_seg = 0;
2660 	m->trail = NULL;
2661 
2662 	/* front */
2663 	if (front_len) {
2664 		if (front_len > PAGE_CACHE_SIZE) {
2665 			m->front.iov_base = __vmalloc(front_len, flags,
2666 						      PAGE_KERNEL);
2667 			m->front_is_vmalloc = true;
2668 		} else {
2669 			m->front.iov_base = kmalloc(front_len, flags);
2670 		}
2671 		if (m->front.iov_base == NULL) {
2672 			dout("ceph_msg_new can't allocate %d bytes\n",
2673 			     front_len);
2674 			goto out2;
2675 		}
2676 	} else {
2677 		m->front.iov_base = NULL;
2678 	}
2679 	m->front.iov_len = front_len;
2680 
2681 	dout("ceph_msg_new %p front %d\n", m, front_len);
2682 	return m;
2683 
2684 out2:
2685 	ceph_msg_put(m);
2686 out:
2687 	if (!can_fail) {
2688 		pr_err("msg_new can't create type %d front %d\n", type,
2689 		       front_len);
2690 		WARN_ON(1);
2691 	} else {
2692 		dout("msg_new can't create type %d front %d\n", type,
2693 		     front_len);
2694 	}
2695 	return NULL;
2696 }
2697 EXPORT_SYMBOL(ceph_msg_new);
2698 
2699 /*
2700  * Allocate "middle" portion of a message, if it is needed and wasn't
2701  * allocated by alloc_msg.  This allows us to read a small fixed-size
2702  * per-type header in the front and then gracefully fail (i.e.,
2703  * propagate the error to the caller based on info in the front) when
2704  * the middle is too large.
2705  */
ceph_alloc_middle(struct ceph_connection * con,struct ceph_msg * msg)2706 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2707 {
2708 	int type = le16_to_cpu(msg->hdr.type);
2709 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
2710 
2711 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2712 	     ceph_msg_type_name(type), middle_len);
2713 	BUG_ON(!middle_len);
2714 	BUG_ON(msg->middle);
2715 
2716 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2717 	if (!msg->middle)
2718 		return -ENOMEM;
2719 	return 0;
2720 }
2721 
2722 /*
2723  * Allocate a message for receiving an incoming message on a
2724  * connection, and save the result in con->in_msg.  Uses the
2725  * connection's private alloc_msg op if available.
2726  *
2727  * Returns 0 on success, or a negative error code.
2728  *
2729  * On success, if we set *skip = 1:
2730  *  - the next message should be skipped and ignored.
2731  *  - con->in_msg == NULL
2732  * or if we set *skip = 0:
2733  *  - con->in_msg is non-null.
2734  * On error (ENOMEM, EAGAIN, ...),
2735  *  - con->in_msg == NULL
2736  */
ceph_con_in_msg_alloc(struct ceph_connection * con,int * skip)2737 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
2738 {
2739 	struct ceph_msg_header *hdr = &con->in_hdr;
2740 	int type = le16_to_cpu(hdr->type);
2741 	int front_len = le32_to_cpu(hdr->front_len);
2742 	int middle_len = le32_to_cpu(hdr->middle_len);
2743 	int ret = 0;
2744 
2745 	BUG_ON(con->in_msg != NULL);
2746 
2747 	if (con->ops->alloc_msg) {
2748 		struct ceph_msg *msg;
2749 
2750 		mutex_unlock(&con->mutex);
2751 		msg = con->ops->alloc_msg(con, hdr, skip);
2752 		mutex_lock(&con->mutex);
2753 		if (con->state != CON_STATE_OPEN) {
2754 			if (msg)
2755 				ceph_msg_put(msg);
2756 			return -EAGAIN;
2757 		}
2758 		con->in_msg = msg;
2759 		if (con->in_msg) {
2760 			con->in_msg->con = con->ops->get(con);
2761 			BUG_ON(con->in_msg->con == NULL);
2762 		}
2763 		if (*skip) {
2764 			con->in_msg = NULL;
2765 			return 0;
2766 		}
2767 		if (!con->in_msg) {
2768 			con->error_msg =
2769 				"error allocating memory for incoming message";
2770 			return -ENOMEM;
2771 		}
2772 	}
2773 	if (!con->in_msg) {
2774 		con->in_msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2775 		if (!con->in_msg) {
2776 			pr_err("unable to allocate msg type %d len %d\n",
2777 			       type, front_len);
2778 			return -ENOMEM;
2779 		}
2780 		con->in_msg->con = con->ops->get(con);
2781 		BUG_ON(con->in_msg->con == NULL);
2782 		con->in_msg->page_alignment = le16_to_cpu(hdr->data_off);
2783 	}
2784 	memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2785 
2786 	if (middle_len && !con->in_msg->middle) {
2787 		ret = ceph_alloc_middle(con, con->in_msg);
2788 		if (ret < 0) {
2789 			ceph_msg_put(con->in_msg);
2790 			con->in_msg = NULL;
2791 		}
2792 	}
2793 
2794 	return ret;
2795 }
2796 
2797 
2798 /*
2799  * Free a generically kmalloc'd message.
2800  */
ceph_msg_kfree(struct ceph_msg * m)2801 void ceph_msg_kfree(struct ceph_msg *m)
2802 {
2803 	dout("msg_kfree %p\n", m);
2804 	if (m->front_is_vmalloc)
2805 		vfree(m->front.iov_base);
2806 	else
2807 		kfree(m->front.iov_base);
2808 	kfree(m);
2809 }
2810 
2811 /*
2812  * Drop a msg ref.  Destroy as needed.
2813  */
ceph_msg_last_put(struct kref * kref)2814 void ceph_msg_last_put(struct kref *kref)
2815 {
2816 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2817 
2818 	dout("ceph_msg_put last one on %p\n", m);
2819 	WARN_ON(!list_empty(&m->list_head));
2820 
2821 	/* drop middle, data, if any */
2822 	if (m->middle) {
2823 		ceph_buffer_put(m->middle);
2824 		m->middle = NULL;
2825 	}
2826 	m->nr_pages = 0;
2827 	m->pages = NULL;
2828 
2829 	if (m->pagelist) {
2830 		ceph_pagelist_release(m->pagelist);
2831 		kfree(m->pagelist);
2832 		m->pagelist = NULL;
2833 	}
2834 
2835 	m->trail = NULL;
2836 
2837 	if (m->pool)
2838 		ceph_msgpool_put(m->pool, m);
2839 	else
2840 		ceph_msg_kfree(m);
2841 }
2842 EXPORT_SYMBOL(ceph_msg_last_put);
2843 
ceph_msg_dump(struct ceph_msg * msg)2844 void ceph_msg_dump(struct ceph_msg *msg)
2845 {
2846 	pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2847 		 msg->front_max, msg->nr_pages);
2848 	print_hex_dump(KERN_DEBUG, "header: ",
2849 		       DUMP_PREFIX_OFFSET, 16, 1,
2850 		       &msg->hdr, sizeof(msg->hdr), true);
2851 	print_hex_dump(KERN_DEBUG, " front: ",
2852 		       DUMP_PREFIX_OFFSET, 16, 1,
2853 		       msg->front.iov_base, msg->front.iov_len, true);
2854 	if (msg->middle)
2855 		print_hex_dump(KERN_DEBUG, "middle: ",
2856 			       DUMP_PREFIX_OFFSET, 16, 1,
2857 			       msg->middle->vec.iov_base,
2858 			       msg->middle->vec.iov_len, true);
2859 	print_hex_dump(KERN_DEBUG, "footer: ",
2860 		       DUMP_PREFIX_OFFSET, 16, 1,
2861 		       &msg->footer, sizeof(msg->footer), true);
2862 }
2863 EXPORT_SYMBOL(ceph_msg_dump);
2864